PERGAMON

A Remark on Nonexistence of Global Solutions to Quasi-Linear Hyperbolic and Parabolic Equations

D. Erdem and V. K. Kalantarov
Department of Mathematics, Faculty of Science
Hacettepe University, Ankara, Turkey

(Received July 2000; revised and accepted June 2001)
Communicated by C. Bardos

Abstract

Sufficient conditions for global nonexistence of solutions of initial value problems for a class of second-order quasi-linear hyperbolic and parabolic equations are given. (C) 2002 Elsevier Science Ltd. All rights reserved.

Keywords-Quasi-linear equations, Global nonexistence.

INTRODUCTION

We consider the initial boundary value problems for the following quasi-linear hyperbolic equation:

$$
\begin{equation*}
u_{t t}-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\left(d_{0}+|\nabla u|^{m-2}\right) \frac{\partial u}{\partial x_{i}}\right)+h(u, \nabla u)=f(u), \quad x \in \Omega, \quad t>0 \tag{H}
\end{equation*}
$$

and the following quasi-linear parabolic equation:

$$
\begin{equation*}
u_{t}-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\left(d_{0}+|\nabla u|^{m-2}\right) \frac{\partial u}{\partial x_{i}}\right)+h(u, \nabla u)=f(u), \quad x \in \Omega, \quad t>0 \tag{P}
\end{equation*}
$$

where $m \geq 2$ is a given number, h and f are continuous functions, and Ω is a bounded domain in R^{n} with sufficiently smooth boundary $\partial \Omega$. We assume that

$$
\begin{equation*}
(f(u), u) \geq 2(\alpha+1) G(u), \quad \forall u \in L_{\infty}(\Omega), \quad \alpha>0, \quad G(u)=\int_{\Omega}\left(\int_{0}^{u} f(s) d s\right) d x \tag{F}
\end{equation*}
$$

and

$$
\begin{equation*}
|h(u, p)| \leq C\left(|u|^{m / 2}+|p|^{m / 2}\right), \quad C>0, \quad \forall u \in R^{1}, \quad \forall p \in R^{n} . \tag{G}
\end{equation*}
$$

Here and below (.,.) is the $L_{2}(\Omega)$ inner product and $\|$.$\| is the L_{2}(\Omega)$ norm. Our aim is to find sufficient conditions for global nonexistence of solutions to initial boundary value problems for equations (P) and (H). Global nonexistence theorems for equations (P) and (H), when $h \equiv 0$
and $f(u)=u^{q+1}, q>1$ is proven in [1] (see also [2]). Sufficient conditions of global nonexistence of solutions to equations (P) and (H) when $m=2$ are obtained in [3]. A global nonexistence theorem for (P) when h satisfies the condition

$$
\begin{equation*}
|h(u, p)| \leq C(|u|+|p|), \quad \forall u \in R^{1}, \quad \forall p \in R^{n}, \quad C>0 \tag{1}
\end{equation*}
$$

is established in [4].

HYPERBOLIC EQUATION

Consider the problem

$$
\begin{gather*}
u_{t t}-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\left(d_{0}+|\nabla u|^{m-2}\right) \frac{\partial u}{\partial x_{i}}\right)+h(u, \nabla u)=f(u), \tag{1}\\
u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x), \quad x \in \Omega \tag{2}\\
u(x, t)-0, \quad x \in \partial \Omega, \quad t>0 . \tag{3}
\end{gather*}
$$

We assume that in Theorems 1 and $2, u_{0}, u_{1}, h$, and f are sufficiently smooth functions, so that problem (1)-(3) has a local in time strong solution (about the local existence theorems; see, for example, $[5,6]$). Let us note that our results are also true for the corresponding weak solutions of (1)-(3) with $u_{0} \in W_{0}^{m, 1}(\Omega)$ and $u_{1} \in L_{2}(\Omega)$ and the weak solutions of (15)-(17) with $u_{0} \in W_{0}^{m, 1}$.

Theorem 1. Let u be the solution of problem (1)-(3). Assume that h satisfies condition (G), f satisfies condition (F), and the following conditions are valid:

$$
\alpha>\frac{m-2}{2}, \quad m \geq 2, \quad\left\|u_{0}\right\|^{2}>0, \quad\left(u_{1}, u_{0}\right)>(\sqrt{\alpha+2}+1+\alpha) \lambda \frac{\left\|u_{0}\right\|^{2}}{\alpha}
$$

where

$$
\begin{gathered}
\lambda=\sqrt{\frac{C^{2}\left(1+\lambda_{m}\right) m}{2(2+\alpha)(2 \alpha-m+2)}}, \quad \lambda_{m}=\inf _{w \in W_{0}^{1, m}(\Omega)} \frac{\int_{\Omega}|\nabla w(x)|^{m} d x}{\int_{\Omega}|w(x)|^{m} d x} \\
I(0)=-\frac{1}{2}\left\|-\lambda u_{0}+u_{1}\right\|^{2}-\frac{1}{m} \int_{\Omega}\left|\nabla u_{0}\right|^{m} d x-\frac{\lambda^{2}}{2}\left\|u_{0}\right\|-\frac{\lambda}{2}\left\|\nabla u_{0}\right\|^{2}+G\left(u_{0}\right) \geq 0 .
\end{gathered}
$$

Then $\|u(., t)\| \rightarrow \infty$ as $t \rightarrow t_{1}$, where

$$
t_{1} \leq t_{2}=\frac{1}{2 \sqrt{\alpha+2} \lambda} \ln \frac{(\sqrt{\alpha+2}-1-\alpha) \lambda\left\|u_{0}\right\|^{2}+\alpha\left(u_{1}, u_{0}\right)}{(-\sqrt{\alpha+2}-1-\alpha) \lambda\left\|u_{0}\right\|^{2}+\alpha\left(u_{1}, u_{0}\right)}
$$

Proof. In order to prove this theorem, we will use the following lemma.
Lemma 1. (See [3].) Suppose that a positive, twice differentiable function $\Psi(t)$ satisfies on $t \geq 0$ the inequality

$$
\Psi^{\prime \prime} \Psi-\left(1+\alpha_{1}\right)\left(\Psi^{\prime}\right)^{2} \geq-2 M_{1} \Psi \Psi^{\prime}-M_{2} \Psi^{2}
$$

where $\alpha_{1}>0, M_{1}, M_{2} \geq 0$. If $\Psi(0)>0, \Psi^{\prime}(0)>-\gamma_{2} \alpha_{1}^{-1} \Psi(0)$, and $M_{1}+M_{2}>0$, then $\Psi(t)$ tends to infinity as

$$
t \rightarrow t_{1} \leq t_{2}=\frac{1}{2 \sqrt{M_{1}^{2}+\alpha_{1} M_{2}}} \ln \frac{\gamma_{1} \Psi(0)+\alpha_{1} \Psi^{\prime}(0)}{\gamma_{2} \Psi(0)+\alpha_{1} \Psi^{\prime}(0)}
$$

where $\gamma_{1,2}=-M_{1} \mp \sqrt{M_{1}^{2}+\alpha_{1} M_{2}}$. If $\Psi(0)>0, \Psi^{\prime}(0)>0$, and $M_{1}=M_{2}=0$, then $\Psi(t) \rightarrow \infty$ as $t \rightarrow t_{1} \leq t_{2}=\Psi(0) / \alpha_{1} \Psi^{\prime}(0)$.

Let us consider the function $v(x, t)=e^{-\lambda t} u(x, t)$, where u is the solution of problem (1)-(3). Then we can rewrite problem (1)-(3) as follows:

$$
\begin{gather*}
v_{t t}+2 \lambda v_{t}+\lambda^{2} v-d_{0} \Delta v-e^{(m-2) \lambda t} \operatorname{div}\left(|\nabla v|^{m-2} \nabla v\right)+\tilde{h}(t, v, \nabla v)=\tilde{f}(t, v), \\
v(x, 0)=v_{0}(x), \quad v_{t}(x, 0)=v_{1}(x), \quad x \in \Omega \tag{4}\\
v(x, t)=0, \quad x \in \partial \Omega
\end{gather*}
$$

Here $\tilde{f}(t, v)=e^{-\lambda t} f\left(e^{\lambda t} v\right), \tilde{h}(t, v, \nabla v)=e^{-\lambda t} h\left(e^{\lambda t} v, e^{\lambda t} \nabla v\right)$. By using (F), (G), we can easily see that \tilde{f} and $\tilde{G}(t, v)=e^{-2 \lambda t} G\left(e^{\lambda t} v\right)$ satisfy

$$
\begin{align*}
|\tilde{h}(t, v, \nabla v)| & \leq C e^{((m-2) / 2) \lambda t}\left(|v|^{m / 2}+|\nabla v|^{m / 2}\right), \tag{5}\\
(\tilde{f}(t, v), v) & \geq 2(\alpha+1) \tilde{G}(t, v) \tag{6}\\
\frac{d}{d \tau} \tilde{G}(t, v(., \tau)) & =\left(\tilde{f}(t, v), v_{\tau}\right), \tag{7}\\
\frac{d}{d t} \tilde{G}(t, v(., t)) & =\tilde{G}_{t}(t, v(t))+\left(\tilde{f}(t, v), v_{t}\right) \tag{8}\\
\tilde{G}_{t}(t, v) & \geq 2 \lambda \alpha \tilde{G}(t, v) \tag{9}
\end{align*}
$$

Taking $L_{2}(\Omega)$ inner product of both sides of (4) with v_{t} and using the relations

$$
\left(\Delta v, v_{t}\right)=-\frac{1}{2} \frac{d}{d t} \int_{\Omega}|\nabla v|^{2} d x \quad \text { and } \quad \int_{\Omega} \operatorname{div}\left(|\nabla v|^{(m-2)} \nabla v\right) v_{t} d x=-\frac{1}{m} \frac{d}{d t} \int_{\Omega}|\nabla v|^{m} d x
$$

we get

$$
\begin{gather*}
\frac{1}{2} \frac{d}{d t}\left\|v_{t}\right\|^{2}+2 \lambda\left\|v_{t}\right\|^{2}+\frac{\lambda^{2}}{2} \frac{d}{d t}\|v\|^{2}+\frac{d_{0}}{2} \frac{d}{d t}\|\nabla v\|^{2} \\
+\frac{e^{(m-2) \lambda t}}{m} \frac{d}{d t} \int_{\Omega}|\nabla v|^{m} d x+\left(\tilde{h}(t, v, \nabla v), v_{t}\right)=\left(\tilde{f}(t, v), v_{t}\right) . \tag{10}
\end{gather*}
$$

By using (5),(8), we can obtain from (10), the following inequality:

$$
\begin{gathered}
\frac{1}{2} \frac{d}{d t}\left\|v_{t}\right\|^{2}+\frac{\lambda^{2}}{2} \frac{d}{d t}\|v\|^{2}+\frac{d_{0}}{2} \frac{d}{d t}\|\nabla v\|^{2} \\
+\frac{e^{(m-2) \lambda t}}{m} \frac{d}{d t} \int_{\Omega}|\nabla v|^{m} d x-\frac{d}{d t} \tilde{G}(t, v) \leq-2 \lambda\left\|v_{t}\right\|^{2}+2 \epsilon_{0}\left\|v_{t}\right\|^{2} \\
+\frac{C^{2}}{4 \epsilon_{0}} e^{(m-2) \lambda t} \int_{\Omega}|v|^{m} d x+\frac{C^{2} e^{(m-2) \lambda t}}{4 \epsilon_{0}} \int_{\Omega}|\nabla v|^{m} d x-\tilde{G}_{t}(t, v) .
\end{gathered}
$$

By using the Poincaré inequality

$$
\int_{\Omega}|v|^{m} d x \leq \lambda_{m} \int_{s 2}|\nabla v|^{m} d x
$$

and (9) in the last inequality, we get

$$
\begin{equation*}
\frac{d}{d t} I(t) \geq 2\left(\lambda-\epsilon_{0}\right)\left\|v_{t}\right\|^{2}-\left[\frac{C^{2}}{4 \epsilon_{0}}\left(1+\lambda_{m}\right)+\frac{m-2}{m} \lambda\right] e^{(m-2) \lambda t} \int_{\Omega}|\nabla v|^{m} d x+2 \alpha \lambda \tilde{G}(t, v), \tag{11}
\end{equation*}
$$

where

$$
I(t)=-\frac{1}{2}\left\|v_{t}\right\|^{2}-\frac{\lambda^{2}}{2}\|v\|^{2}-\frac{d_{0}}{2}\|\nabla v\|^{2}-\frac{e^{(m-2) \lambda t}}{m} \int_{\Omega}|\nabla v|^{m} d x+\tilde{G}(t, v) .
$$

Equation (11) implies the following inequality:

$$
\begin{align*}
\frac{d}{d t} I(t) \geq 2 \alpha \lambda & {\left[-\frac{1}{2}\left\|v_{t}\right\|^{2}-\frac{\lambda^{2}}{2}\|v\|^{2}-\frac{d_{0}}{2}\|\nabla v\|^{2}-\frac{e^{(m-2) \lambda t}}{m} \int_{\Omega}|\nabla v|^{m} d x+\tilde{G}(t, v)\right] } \\
& +\left[\alpha \lambda+2\left(\lambda-\epsilon_{0}\right)\right]\left\|v_{t}\right\|^{2}+\alpha \lambda d_{0}\|\nabla v\|^{2} \tag{12}\\
+ & {\left[\frac{2 \alpha \lambda}{m}-\frac{\lambda(m-2)}{m}-\frac{C^{2}}{4 \epsilon_{0}}\left(1+\lambda_{m}\right)\right] e^{(m-2) \lambda t} \int_{\Omega}|\nabla v|^{m} d x }
\end{align*}
$$

Choosing in (12),

$$
\epsilon_{0}=\frac{\lambda(\alpha+2)}{2} \quad \text { and } \quad \lambda=\sqrt{\frac{C^{2}\left(1+\lambda_{m}\right) m}{2(2+\alpha)(2 \alpha-m+2)}},
$$

we obtain $\frac{d}{d t} I(t) \geq 2 \alpha \lambda I(t)$, that is, $\frac{d}{d t}\left\{e^{-2 \alpha \lambda t} I(t)\right\} \geq 0$. Thus, we have $I(t) \geq e^{2 \alpha \lambda t} I(0)$. Since $I(0) \geq 0$, we see that $I(t) \geq 0, \forall t>0$.
Let us multiply equation (4) in $L_{2}(\Omega)$ with v,
$\left(v_{t t}, v\right)+2 \lambda\left(v_{t}, v\right)+\lambda^{2}(v, v)-d_{0}(\Delta v, v)-e^{(m-2) \lambda t}\left(\operatorname{div}|\nabla v|^{m-2} \nabla v, v\right)+\tilde{h}((t, v, \nabla v), v)=\tilde{f}((t, v), v)$.
By using the equalities

$$
\int_{\Omega} \operatorname{div}\left(|\nabla v|^{m-2} \nabla v\right) v d x=-\int_{\Omega}|\nabla v|^{m} d x, \quad \int_{\Omega} v \Delta v d x=-\int_{\Omega}|\nabla v|^{2} d x
$$

and conditions (5),(6), we can easily get

$$
\begin{aligned}
\left(v_{t t}, v\right) \geq-\lambda & \frac{d}{d t}\|v\|^{2}-\lambda^{2}\|v\|^{2}-d_{0}\|\nabla v\|^{2}-e^{(m-2) \lambda t} \int_{\Omega}|\nabla v|^{m} d x \\
& \quad-C e^{((m-2) \lambda t) / 2} \int_{\Omega}|\nabla v|^{m / 2} v d x-C e^{((m-2) \lambda t) / 2} \int_{\Omega}|v|^{m / 2} v d x+(\tilde{f}(t, v), v),
\end{aligned}
$$

or

$$
\begin{gather*}
\left(v_{t t}, v\right) \geq-\lambda \frac{d}{d t}\|v\|^{2}-\lambda^{2}\|v\|^{2}-d_{0}\|\nabla v\|^{2}-e^{(m-2) \lambda t} \int_{\Omega}|\nabla v|^{m} d x \tag{13}\\
-\frac{C^{2}}{4 \epsilon_{1}} e^{(m-2) \lambda t} \int_{\Omega}|v|^{m} d x-2 \epsilon_{1}\|v\|^{2}-\frac{C^{2} e^{(m-2) \lambda t}}{4 \epsilon_{1}} \int_{\Omega}|\nabla v|^{m} d x+2(\alpha+1) \tilde{G}(t, v)
\end{gather*}
$$

By using the Poincaré inequality, we obtain from (13), the following inequality:

$$
\begin{gathered}
\left(v_{t t}, v\right) \geq-\lambda \frac{d}{d t}\|v\|^{2}-\lambda^{2}\|v\|^{2}-d_{0}\|\nabla v\|^{2} \\
-\left[1+\left(1+\lambda_{m}\right) \frac{C^{2}}{4 \epsilon_{1}}\right] e^{(m-2) \lambda t} \int_{\Omega}|\nabla v|^{m} d x-2 \epsilon_{1}\|v\|^{2}+2(\alpha+1) \tilde{G}(t, v), \\
\left(v_{t t}, v\right)-(\alpha+1)\left\|v_{t}\right\|^{2} \geq 2(\alpha+1)\left[-\frac{1}{2}\left\|v_{t}\right\|^{2}-\frac{\lambda^{2}}{2}\|v\|^{2}-\frac{d_{0}}{2}\|\nabla v\|^{2}\right. \\
\left.-\frac{e^{(m-2) \lambda t}}{m} \int_{\Omega}|\nabla v|^{m} d x+\tilde{G}(t, v)\right]+\left(\alpha \lambda^{2}-2 \epsilon_{1}\right)\|v\|^{2}+\alpha d_{0}\|\nabla v\|^{2} \\
+\left[\frac{2(\alpha+1)}{m}-\left(1+\lambda_{m}\right) \frac{C^{2}}{4 \epsilon_{1}}-1\right] e^{(m-2) \lambda t} \int_{\Omega}|\nabla v|^{m} d x-\lambda \frac{d}{d t}\|v\|^{2}, \\
\quad\left(v_{t t}, v\right)-(\alpha+1)\left\|v_{t}\right\|^{2} \geq 2(\alpha+1) I(t)-2 \lambda^{2}\|v\|^{2}-\lambda \frac{d}{d t}\|v\|^{2},
\end{gathered}
$$

where $\epsilon_{1}=m\left(1+\lambda_{m}\right) C^{2} /(8(\alpha+1)-4 m)$. We know that $I(t) \geq 0$. So we have the following inequality:

$$
\begin{equation*}
\left(v_{t t}, v\right)-(\alpha+1)\left\|v_{t}\right\|^{2} \geq-2 \lambda^{2}\|v\|^{2}-\lambda \frac{d}{d t}\|v\|^{2} \tag{14}
\end{equation*}
$$

Let us show that the function $\Psi(t)=\|v(., t)\|^{2}$ satisfies all hypotheses of Lemma 1 with $\alpha_{1}=\alpha / 2$. Since $\Psi^{\prime}(t)=2\left(v, v_{t}\right)$ and $\Psi^{\prime \prime}(t)=2\left\|v_{t}\right\|^{2}+2\left(v_{t t}, v\right)$, we have

$$
\begin{aligned}
\Psi^{\prime \prime}(t) \Psi(t)-\left(\alpha_{1}+1\right) & \left(\Psi^{\prime}(t)\right)^{2}=\left[2\left\|v_{t}\right\|^{2}+2\left(v_{t t}, v\right)\right]\|v\|^{2}-4\left(\alpha_{1}+1\right)\left(v_{t}, v\right)^{2} \\
& =4\left(\alpha_{1}+1\right)\left[\left\|v_{t}\right\|^{2}\|v\|^{2}-\left(v_{t}, v\right)^{2}\right]+2 \Psi(t)\left[\left(v_{t t}, v\right)-\left(2 \alpha_{1}+1\right)\left\|v_{t}\right\|^{2}\right]
\end{aligned}
$$

Due to (14) and the Schwarz inequality, we get

$$
\Psi^{\prime \prime}(t) \Psi(t)-\left(1+\alpha_{1}\right)\left(\Psi^{\prime}(t)\right)^{2} \geq-4 \lambda^{2} \Psi^{2}(t)-2 \lambda \Psi^{\prime}(t) \Psi(t)
$$

$\Psi^{\prime}(0)>-\gamma_{2} \alpha_{1}^{-1} \Psi(0)$ is also true, since $\left(u_{1}, u_{0}\right)>(\sqrt{\alpha+2}+1+\alpha) \lambda\left(\left\|u_{0}\right\|^{2} / \alpha\right)$, that is, conditions of Lemma 1 are satisfied. So $\Psi(t)$ tends to infinity as t tends to t_{1}.

PARABOLIC EQUATION

Consider the problem

$$
\begin{gather*}
u_{t}-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\left(d_{0}+|\nabla u|^{m-2}\right) \frac{\partial u}{\partial x_{i}}\right)+h(u, \nabla u)=f(u), \tag{15}\\
u(x, 0)=u_{0}(x), \quad x \in \Omega \tag{16}\\
u(x, t)=0, \quad x \in \partial \Omega, \quad t>0 \tag{17}
\end{gather*}
$$

where Ω is a bounded domain in R^{n} with sufficiently smooth boundary $\partial \Omega$.
Theorem 2. Suppose that conditions (F) and (G) are satisfied for the functions f. Let u be the solution of problem (15)-(17). Assume that the following conditions are valid:

$$
\begin{gathered}
\alpha>\frac{m-2}{2}, \quad m \geq 2, \quad d_{0}>0 \\
I(0) \equiv-\frac{d_{0}}{2}\left\|u_{0}\right\|^{2}-\frac{1}{m} \int_{\Omega}\left|\nabla u_{0}\right|^{m} d x-\frac{\lambda}{2}\left\|u_{0}\right\|^{2}+G\left(u_{0}\right)>0 \\
\lambda=\frac{C^{2}\left(1+\lambda_{m}\right)(1+\alpha) m}{2(\alpha-\beta)(2 \alpha+2-m)}, \quad \beta \in(0, \alpha) .
\end{gathered}
$$

Then $\int_{0}^{t}\|u(., s)\|_{L_{2}(\Omega)} d s \rightarrow \infty$ as

$$
t \rightarrow t_{1} \leq t_{2}=\frac{2 \alpha+2-m}{(1+\lambda m) m C^{2}} \ln \frac{K_{1}}{K_{2}}
$$

where

$$
\begin{aligned}
& K_{1}=4(2 \alpha+2-m)(\sqrt{1+\beta}-1)^{2}(\alpha+1) I(0) \\
& K_{2}=K_{1}-(1+\beta)\left(1+\lambda_{m}\right) C^{2} m\left\|u_{0}\right\|^{2}>0, \quad\left\|u_{0}\right\|>0
\end{aligned}
$$

Proof. The proof of this theorem is similar to the proof of Theorem 1. Here we prove that if u is a solution of problem (15)-(17) then the function $\Psi(t)=\int_{0}^{t}\|u(., s)\|^{2} d s+c_{1}$, with suitable chosen c_{1} satisfies the conditions of Lemma 1.

REFERENCES

1. H.A. Levine and L.E. Payne, Nonexistance of global weak solutions for classes of nonlinear wave and parabolic equations, J. Math. Anal. Appl. 55, 329-334 (1976).
2. Z. Junning, Existence and nonexistence of solutions for $u_{t}=\operatorname{div}\left(|\nabla v|^{p-2} \nabla u\right)+f(\nabla u, u, x, t)$, J. Math. Analy. Appl. 172, 130-146 (1993).
3. V.K. Kalantarov and O.A. Ladyzhenskaya, The occurence of collapse for quasilinear equation of parabolic and hyperbolic types, J. Sov. Math. 10, 53-70 (1978).
4. D. Erdem, Blow up solutions to quasilinear parabolic equations, Appl. Math. Lett. 12 (3), 65-69 (1999).
5. V.C. Chen and W. von Wahl, Das Rand-Anfangswertproblem für quasilineare Wellengleichungen im Sobolevraumen niedriger Ordnung, J. Reine Angew. Math. 337, 77-112 (1982).
6. C.M. Dafcrmos and W.J. Hrusa, Energy methods for quasilinear hyperbolic initial-boundary value problems. Applications to elastodynamics, Arch. Rational Mech. Anal. 87, 267-292 (1985).
