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We study the modified and boundedly modified mixed Tsirelson spaces
Tyl (F ,0,),°-11 and Tyl (% , 0,)°- 1], respectively, defined by a subsequence
(F,) of the sequence of Schreier families (Z#,). These are reflexive asymptotic /;
spaces with an unconditional basis (e;); having the property that every sequence
{x;}7_, of normalized disjointly supported vectors contained in <{e;»2, is equiv-
alent to the basis of /7. We show that if lim 1/ =1 then the space T[(%, 0,)_,
and its modified variations Ty[ (%, 0,);2]1 or Ty, (%, 0,),] are totally
incomparable by proving that ¢, is finitely disjointly representable in every block
subspace of T[ (%, 0,),°_,]. Next, we present an example of a boundedly modified
mixed Tsirelson space Xps1) w = Tary[ (Fi,, 0,) ;- 1] which is arbitrarily distortable.
Finally, we construct a variation of the space X, , which is hereditarily indecom-
posable.  © 1998 Academic Press
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INTRODUCTION

Given a sequence (.#,);_, of compact families of finite subsets of N and

a sequence (0,)gy_, of reals converging to zero, the mixed Tsirelson space
T[( Ay, 0r)_ 1] is defined as follows.

T[ (A, 0,)7_,] is the completion of the linear space ¢, of the sequen-
ces which are eventually zero under the norm | .| defined by the following

implicit formula: For x € ¢y,

lx] = {|x| o, SUp 0, sup { Y E;x|l :neN, (E)7_,is %k-admissible}}.
k i=1
(1)

Here, for Ec N, | Ex| is the restriction of the vector x on the set E and,
for a family .# of subsets of N, an .#-admissible sequence is a sequence
(E,)7_, of successive subsets of N such that the set {min E|, .., min E,}
belongs to .#. Mixed Tsirelson spaces were introduced in [3]. However,
this class includes the previously constructed Schlumprecht’s space [16]
which initiated a series of results answering fundamental and longstanding
problems of the theory of Banach spaces. The remarkable nonlinear trans-
fer by Odell and Schlumprecht [13] of the biorthogonal asymptotic sets
from Schlumprecht’s space to 7,, 1 <p < oo, which settled the distortion
problem, indicates the impact of the new spaces on the understanding of
the classical Banach spaces. On the other hand, these new norms led to the
discovery of the class of hereditarily indecomposable (H.I.) spaces [ 9], that
is, spaces with the property that no subspace can be written as a topologi-
cal direct sum of two infinite dimensional closed subspaces. As it was
proved by Gowers [ 8], the H.I. property is a consequence of the absence
of unconditionality in the sense that every Banach space which does not
contain any unconditional basic sequence has an H.I. subspace. Gowers
and Maurey [9] have proved that the H.I. spaces have small spaces of
operators; it is a fundamental open problem whether there exists such a
space with the property that every bounded linear operator 7: X — X is of
the form T=/I+ K where K is a compact operator. On the other hand, a
recent result of Argyros and Felouzis [4] shows that a large class of
Banach spaces that includes /,, 1 <p < oo, are quotients of H.I. spaces.

In the present paper we study variations of mixed Tsirelson spaces which
we call modified mixed Tsirelson spaces. Given a family .# of finite subsets
of N, a sequence (E;)7_, of subsets of N is called .#-allowable if the sets
E; are disjoint and the set {min E,, .., min E,} belongs to .#. The modified
mixed Tsirelson space X,, corresponding to the mixed Tsirelson space
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X=T[ (M, 0,)F_,] is the Banach space whose norm || satisfies the
implicit equation

x| = max {|x|m, sup 6, sup { Y IEx|:neN, (E):_,is ,/%k-allowable}}.
k i=1
(2)

We also consider boundedly modified mixed Tsirelson spaces that lie
between X and X,,. Such a space is denoted by X, for some se N, and
its norm is given by an implicit formula analogous to (1) or (2) where the
inner “sup” is taken over all .#, -allowable families for 1 <k <s and over
all ., -admissible families for k>s+ 1. It is clear that the modified and
boundedly modified mixed Tsirelson spaces which are defined by a sub-
sequence /.= %, of the sequence of Schreier families (#,), have the
property that, for every n, every normalized sequence (x;)7_; of n disjointly
supported vectors with supports contained in [ 7, o) is 6, -equivalent to the
basis of /7.

The modified Tsirelson space T, was introduced by W. B. Johnson [10]
shortly after Tsirelson’s discovery [ 19]. Later, P. Casazza and E. Odell [6]
proved that the modified Tsirelson space is isomorphic to the original one.
The use of the modified version of the norm in the 2-convexification of T
is crucial for the proof of the fact that it is a weak Hilbert space. The rela-
tion between modified mixed Tsirelson norms and the corresponding mixed
Tsirelson norms is in general quite different from the one between 7" and
Ty To explain the situation we restrict our attention to the two main
examples of mixed Tsirelson norms.

The first is Schlumprecht’s space S [16] defined by .4, =./ =
{A<=N: #A4<k}, and 0, = 1/log,(k + 1). The second is the space X intro-
duced by Argyros and Deliyanni in [3], defined by a certain subsequence
(Za)ien of the sequence of Schreier families (,),cn and an appropriate
sequence (0;)rcn- It is known that ¢, is finitely representable in every
infinite dimensional subspace of S and we show here that the same holds
true for X. From this we easily see that the modified versions S,,, X,, are
totally incomparable to S and X, respectively. Schlumprecht observed
further that although his space S is reflexive, the space S,, contains /;
[17]. On the other hand, as we show here, the space X,, remains reflexive
and contains no /,. This is the first property where we do not have an
analogy between S and X. The result is somehow unexpected since X,,,
being an asymptotic /; space, has richer /; structure than S,,. These results
raise naturally certain questions related to the structure of S,, and X,,. For
example, it is not known if S, is /; -saturated or if X, is arbitrarily distortable.

The results mentioned above are presented in Section 1. More precisely,
we prove that if lim 0)/"=1, then ¢, is finitely representable in every
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finite dimensional subspace of the space T[(%,,0,);_;]. Next, for an
arbitrary null sequence (6,,),, we show that the modified mixed Tsirelson
space T, [ (%, 0,)5 ;] is reflexive. As a consequence we get that the
2-convexifications of such spaces yield weak Hilbert spaces not containing
¢, and totally incomparable to 7?.

In Section 2 we consider a boundedly modified mixed Tsirelson space of
the form Xy = Tar)[ (%> 0.), -] for a suitable choice of (% ) and
(0,). We show that this space is arbitrarily distortable. This result is related
to the question: Does there exist a distortable Banach space of bounded
distortion? By [11, 12, 18] such a space must contain an asymptotic 7,
subspace with an unconditional basis which contains /7’s uniformly; so the
search turns to asymptotic /; spaces with an unconditional basis. By [3]
(also [2]), the class of spaces T[(%,,0,),] provides examples of such
spaces which are arbitrarily distortable. However, it is not known whether
the original representative of this class, Tsirelson’s space 7T, is arbitrarily
distortable, or whether it contains an arbitrarily distortable subspace. The
space Xy, constructed here is closer to T than T[(#,,0,),], in the
sense that it has more homogeneous /; structure.

In Section 3 we construct a space X based on X,y , which is
hereditarily indecomposable. The basic idea for the definition of X comes
from [9].

The strategy in proving these results is similar to the one followed in
[3]. We briefly explain the idea. In order to prove that X, , is
arbitrarily distortable, we start with a set K= J;Z, .o/ of functionals which
define the norm of the space. Each set .o/, contains functionals of the
form 6,7 _, f;, where the {f;}7_, are disjointly supported functionals
in the dual ball and the family {supp f;}7_, is F-allowable if j=1 or

%cj-admissible if j> 1. Our goal is to show the following.

There exists ¢ >0 such that for every block subspace Y of X, , and for
large j there exists y; € Y with [y;| =1 satisfying

1yl = sup { f(y,): f €4}, (3)
| /()] <cO; forall i<j, fe.d. (4)

These two conditions imply that X, , is an arbitrarily distortable space.

The fundamental objects that we use in order to find such vectors y; are
the (e, j)-basic special convex combinations. The (e, j)-basic s.c.c. are convex
combinations of the basis (e,),cn of the space X, , whose normaliza-
tions satisfy conditions (3) and (4) if ¢ is small enough. The choice of (6,,),,,
(F,)n ensures that for every j>2 and for every infinite D = N, there exists
an (e, j)-basic special convex combination supported in D.

Next we show that in every block subspace Y of X, , and for every
Jj=2 we can choose a normalized vector y; in Y with the following: for
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every i and every f € .o/, there exist an (¢, j)-basic special convex combina-
tion x,and a functional g, € ./ such that

|f(y,)| < Cgf(xf)

for some constant C. Thus, we reduce the estimation of the action of .o on
y; to the estimation of the action of .o on basic special convex combina-
tions. Our basic tool for this proof is the analysis of a functional
felU2, o which is the array of functionals used for the inductive
construction of f.

In the case of the space X with no unconditional basic sequence which
is constructed in the third section, the scheme of ideas is similar with some
additional difficulties coming from the existence of the dependent chains of
functionals.

1. MIXED TSIRELSON SPACES AND
THEIR MODIFIED VERSIONS

A. Preliminaries

Notation. Let (e;)2; be the standard basis of the linear space ¢y, of
finitely supported sequences. For x =32 | a,e; € ¢y, the support of x is the
set supp x={ieN:a; #0}. For E, F finite subsets of N, E<F means
max E<min F or either £ or F is empty. For neN, EcN, n<FE (resp.
E<n) means n<min E (resp. max E<n). For x, y in ¢y, X <y means
supp x <supp y. For ne N, x € ¢y we write n < x (resp. x <n) if n <supp x
(resp. supp x <n). We say that the sets E; =N, i=1, .., n are successive if
E,<E,--- <E,. Similarly, the vectors x;, i=1,..n are successive if
X <Xxp< - <Xx,. Forx=3 a;e; and E a subset of N, we denote by Ex
the vector Ex=3",_pae;.

The Schreier Families #,. Let ./ be a family of finite subsets of N. We
say that .# is compact if it is closed in the topology of pointwise con-
vergence in 2N, ./ is hereditary if whenever B< A and A € .4 then Be /.
M is spreading if whenever A= {m,, .., m} €M and B={ny, .. n} is
such that m;<n;, i=1, .., k, then Be . /4.

Notation. Let .4, A/ be families of finite subsets of N. We denote by
AM[ A'] the family

/%[,/V]z{u A;ineN,A;e N, Aj<Ay,< --- <A, and

i=1

min A, ..,min 4,} € 4 ;.
{ 1 n
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The Schreier family % is defined as
S ={Ac=N: #4<min 4}.
The generalized Schreier families 7,, o < w,, were introduced in [1]:

1.1. DEFINITION.
Fo={@} U {{n}:neN}

%Jrl:{@}u{u A;neN A, e F ,n<A, <A, < --- <A,,}

i=1
and for a limit ordinal « we choose a sequence («,),, o, To and set

F,=1{J} v {4: there exists ne N such that A€ #, andn< A4}.

Notice that # =&. Also, for n,m <w, Z#,[ %,]1 =%, m-
It is easy to see that each %, is a compact, hereditary, and spreading
family.

1.2. LEMMA. For n<w define the family ™ inductively as follows:
F=5%.
FY  ={Us_ A keN, A, eF Y fori=1, .k, A;nA;= fori#j

and k<min A; <min A, < --- <min A4,}.
Then, for all n, F M= 7,.

Proof. The proof is an immediate consequence of the following.

CLam. Let neN and let A;e %, i=1, ..,k be such that A, A;=J
for i#j and min A;<min A, < --- <min A,. Then, there exist sets
Ase,, i=1,.,k such that A1<Ai<--- <Ay, min A;,<min A}; for
i=1,..k and J)*_, Ai=%_, 4

i=1 i

Proof of the Claim. 1t is done by induction on n. For n =0 it is trivial.
Suppose it is true for n.

Let 4;, i=1, ..,k be sets in %, such that 4, A,;=(J for i# j and
min 4, <min 4, < --- <min 4,. Each 4, is of the form A4,={)7%, B;
where Bj € 7, and, for each i, m;<B| <B;< --- <B,,. Let {B;} 717 "
be a rearrangement of the family {B;: i=1,..k j=1,..,m;, which
satisfies min By <min B, < --- <min B,, | ... ;. [t is easy to see that, for
each i,

. T .
min A;=min By <min B,,, 4 ... 1 +1- (%)
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By the inductive assumption, there exist sets B}, j=1,..,m;+ - +my,
with Bje #,, U] "™ B;={J711 " "™ B; and such that B} < B, <
<B;,,1+ oy and min B;<min B; for all j=1,.,m+ --- +m;. For

i=1, ..,k we set

A= U B,
Jj=mi+ - +m_+1
Then, A\ <Ay< --- <A}, U*_, A:=*_, 4}, and for each i=1, .., k we
have by (*)
m; <min Bm1+ cm_ 1 <min B;n1+ e+ 1
so A} e . Moreover, using () again, we see that

min 4;<min B, | ...,  1=min4;.
This completes the proof of the Claim. The lemma follows. ||

Distortion. Let 2> 1. A Banach space X is A-distortable if there exists an
equivalent norm |-| on X such that, for every infinite dimensional subspace
Y of X,

|yl
SUP{H vze Y, yll=lzl=1,2>2

X is arbitrarily distortable if it is A-distortable for every 1> 1.

B. Mixed Tsirelson Spaces

A Banach space X with a basis (e;)2, is an asymptotic ¢, space if there
exists a constant C such that, for all » and all block sequences (x;)7_; in
Xwithn<x <x,< - <X,

*Z llx; | <

1*1

i=1

The first example of an asymptotic /; space not containing /; was con-
structed by Tsirelson [ 19]. Tsirelson’s space is the completion of the vector
space co, of all eventually zero sequences under the norm || defined
implicitly as

IXIT=maX{|xw,Sup {5 Y. IIEx|rineN  and

i=1

n<E<E,<-- <E,,}}.
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A sequence (E;)7_; of finite subsets of N with n<FE, <E,< --- <E, is
called Schreier admissible (or ¥-admissible). In other words, a sequence
(E;)7_, 1is Schreier admissible if the FE,’s are successive and
{min E|, .., min E,} € 4. More generally, we give the following definition.

1.3. DEFINITION. Let .# be a family of finite subsets of N.

(a) A finite sequence (E;)7_, of subsets of N is .#-admissible if
E\<E,< .- <E,and {min E, .., min E,} € /.

(b) A finite sequence (x;)7_, of vectors in cy, is .#-admissible if the
sequence (supp x;)7_; is .#-admissible.

The mixed Tsirelson spaces are defined as follows:

1.4. DeFINITION.  Let {.4,} 2, be a sequence of compact families of
finite subsets of N and let (0,);°_, be a sequence of numbers in (0, 1) with

0, — 0. The mixed Tsirelson space T[ (.4, 0,):_,] is the completion of ¢y,
under the norm ||| defined implicitly by

Ix| = max {|x|w, sup sup {Hk Y |lE;x|l:neN and
s _

i=1

(Ei)?zl is %k-admissible}} .

The mixed Tsirelson spaces T[(.4,,0,)>_,] where (.#,), is a sub-
sequence of the sequence of Schreier families ()72, were introduced
in [3] and further studied in [2, 14]. Every such space is a reflexive
asymptotic /; Banach space and the natural basis (e;); is a 1-unconditional
basis for it. The first example of an arbitrarily distortable asymptotic ¢;
Banach space was a space of this type [3]. More generally, Androulakis

and Odell have proved the following:

1.5. THEOREM [2]. Suppose that the sequence (0,), satisfies
0,1 m=0,0, for all n, m and let 0 =1im 0. If 0,/0" — 0 then the space
T (%, ,0,) 1] is arbitrarily distortable.

ns’ o n

In particular, this is the case if lim 0} = 1. The first result of this section
concerns mixed Tsirelson spaces T[(%,,0,),] corresponding to such
sequences (6,),. Following [2] we call a sequence (0,), regular, if
0,€(0,1) foralln 6,0andd,,,,>0,0, for all n,meN.
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1.6. THEOREM. Let (0,)>_, be a regular sequence with lim 0Y"=1. Let
X=T[(#,,0,_,]. For every ¢>0, every infinite dimensional block sub-
space 'Y of X contains for every n a sequence of disjointly supported vectors
(y:)F_ which is (1 + &)-equivalent to the canonical basis of /", .

Given a block subspace Y of X and ne N we shall construct a sequence
(x;)7_, if disjointly supported normalized vectors in Y such that
[>%_, x;]| <36. Since the basis (e,), of X is 1-unconditional this implies
that (x;)7_, is 36-equivalent to the canonical basis of /” . From this the
theorem follows by a standard argument due to R. C. James. The building
blocks of our construction are the (e, j)-rapidly increasing special convex
combinations, the prototypes of which were used in [ 3]. Before proceeding
to the construction we need to establish some preliminary results most of
which also have their analogues in [3].

Notation. Let X=T[(%,, 0, ]

(A) Inductively, we define a subset K= (J°_, K" of By. as follows:
Forj=1,2,..,

K)={+e, neNj.

Assume that K7, j=1, 2, ... have been defined. We set K" = ()2 | K7 and,
for j=1, 2, ..., we set

Kt =K2u{0,(fi+ -+ fa):deN, fieK" i=1,..n,
supp f1< --- <supp fyand (f,)?_,is Z, 7,-admissible}.

Let K= o, K
Then K is a norming set for X, that is, for xe X’

I x| =sup { f(x): feK}.

(B) For j=1,2,.., we denote by .o/ the set .4 = ;2 (K/\K°).
(C) Let meN, peK™K™ 1 An analyszs of ¢ is a family
{K*(¢)}7_, of subsets of K such that
(1) For every s<m, K*(p) < K* the elements of K*(¢) are dis-
jointly supported and (J,c s, SUpp f'= supp ¢.

(2) If f belongs to K*T!(¢@) then either f e K*(¢p) or, some j=>1,
there exists a Z-admissible family ( f)%, in K°(p) such that

S=0,(fi+ -+ 12
(3) K"(p)={o}.

It is easy to see that every ¢ € K as an analysis.
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1.7. DEFINITION. Let n=1, €>0, and FEN, Fe %, A convex com-
bination Y, page, is called an (e, n)-basic special convex combination
(basic s.c.c.) if, for every GeZ, _ 1, X jccdr <&

1.8. PROPOSITION. Let D be an infinite subset of N. Then, for every n>1
and &>0, there exists an (e n)-basic special convex combination
X = rerdrer with F=supp(x)c D.

Proof. For n=1, we choose my>1/¢ and A<D with my<A4 and
|A| =mg. Then, x = (1/mgy) X rc 4 €x 1s an (&, 1)-basic s.c.c.
For n>1 the proof is by induction based on the following:

1.9. LEMMA. Let n>1 and suppose that the integers my, my, ..., m,, and

the block wvectors xi, Xy, .., X,, satisfy the following: For every
k=1,2,..,my—1,

(a) 2my_,<my.

(b)  supp(oxy) = (my_y, my].
(c¢) xgisa(12my_,, n)-basic s.c.c.

Then, the vector x = (1/mgy) 370 | X, is a (2/my, n + 1)-basic s.c.c.

Proof. The proof is straightforward (see also Lemma 1.6 of [3]). |

1.10. DErFINITION. Let ¢ >0, je N, and suppose that {z,}7_, is a finite
block sequence with the property that there exist integers {/,}7_, with
2<z; <<z, << - <, <z,<1,, and such that a convex combina-
tion 3% _, ace, is an (e, j)-basic s.c.c. Then, the corresponding convex
combination of the z,’s, x =Y"% _, a,z, is called an (¢, j)-s.c.c. of {z;} ¥ _;-

An (g, j)-s.c.c. x=D7%_, azz; of unit vectors {z,}7_, is said to be semi-
normalized if | x| > 3.

Remark. 1t is easy to see that if x=37_, a2z, is an (¢, j)-s.c.c. and
lzxll=1, k=1,..,n, then |x||>0,,,. Indeed, if f; € By« are chosen so
that fi(z,) =zl =1, supp(f1)=(2,1,], and supp fi =(l_y, 1] for
k=2, .., n, then the family { f;}, is %, -admissible. This implies that the
functional ¢ =0, ,, 3 f; belongs to By, hence || x| = ¢(x)=0,, .

The following lemma states that every block subspace Y of X contains
for any ¢ and j a seminormalized (¢, j)-s.c.c. The condition lim 6}” =1is
essential at this point.

1.11. LEMMA. Let jeN, &> 0, and let {z,} -, be a block sequence in X.
There exists ne N and normalized blocks y,, k=1, ..,n of the sequence
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{zx} 2oy such that a convex combination x =Y} _, a, y; is a seminormalized
(&, j)-s.c.c.

Proof. We may assume that the vectors z,, k=1, 2, ... are normalized.
Choose an infinite block sequence {x;} 2, of {z;} 2, such that, for each
I, x} = Ykea, i 18 an (& j)-sc.c. of {zp} ke,

If for some /, |x} || =1, then we are done. If not, we set y; = x}/||x} || and,
as before, choose an infinite sequence {x7}, of (e, j)-s.c.c. of {y;}7>,.

Notice that, for each /, the family {z:supp(z;) = supp(x7)} is Z; -
admissible (since %;,,=%1[%,1]), and so X7 is a combination of
the form x7 =3 b, (Acz,) where Y b, =1, 2,22, and {z;} is an %, ,-
admissible family. This gives that |x2|| =26, ,.

If, for some /, ||x7|| >3 then we are done. If not, then we set y7? = x7/||x7||
and continue as before.

Continuing in this manner, if we never get some (e, j)-s.c.c. x5 with
|x¥| =1, then we can repeat the same procedure for as many steps s as we
wish and always get 1> x5 =2"""0,;, .

But the assumption that lim, %" =1 implies that lim, , ,, 2° "0, 1, = 0.
This leads to a contradiction which completes the proof. ||

1.12. LeMMA. Let x=3,.pase;, where FeZ;, be an (e, j)-basic s.c.c.
Then, 0,< ||x|| <0;+e.

Proof. 1t is obvious that ¢ =0,(3 ;. rej) belongs to By and ¢(x)=0,.
This yields the lower estimate for | x|.

It remains to prove that, for all € K, [{(x)| <0, +e¢. Let i € K; we may
assume that  is positive. Set

J={leF: y(e;)<0,}.
and
L=F\J={leF:y(e;)>0}.

We shall prove that L e % _, and so > ;. a, <& This is a consequence of
the following:

Cram. Let r=1,2,. feK and suppose that f(e;) >0, for all
kesupp(f). Then, supp(f)e 1-

Proof of the Claim. The proof is by induction on s, for feK?
s=1,2,.

For s—l let feK!, with f=0,Y,. ek AeZ. Since 0,>0,, we get
i<r—1and so 4 =supp(f)eZ

r—1-
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Suppose that the claim is true for all ge K* and let fe K**+!. Then,
f=0;37_, f;) where the set (f;)]., is Z-admissible and, for each /,
/1 € K°. Suppose that f(e,) > 0, for all k e supp(f). Then, r>i and, for each
I=1,..,m, filex)>0,/0,=20,_,. 1t follows from the inductive hypothesis
that supp(f) e _,_;, =1, .,m. So, supp(f)e %[ % _,_1]=%,_,. This
completes the proof of the claim.

We conclude that Le % _, and so

V(g o)

1.13. LEMMA. Let x=Y7}_, a;y; be an (e, j)-s.c.c. of {yi}i_y, where
e<0;. Let i<j and suppose that (E,);_, is an F;-admissible family of
intervals. Then,

<1//<Z a,e,>+ Y oa;<0,+e 1

leJ leL

S &
5 |E,x<<1+0> max [, <2 max |y .

r=1 i <ks<n <k<n

Proof. We can assume that the E,’s are adjacent intervals. Set
={k: k=1, .., nand supp(y,) is intersected by at least two different E,’s}.
For each r=1, ..., s, define
B,={k:k=1, .., nand supp(y,) < E,}.

The sets B, are mutually disjoint and {1, 2, .., n} =(Js_, B,) U L. So,

E, < Z akyk>
keB,

<Y ap |yl + ) ax

k=1 keL

> IEx|< X
r=1

r=1

Y @ Y IE vl
kel r=1

Vel

0. "

13

Suppose now that 2< y; <[y <y, < -+ <[ <y<[ and Y}_, aze;
is the basic s.c.c. which defines the s.cc. x=>7_, a,y,. We shall show
that {/,:keL}e# <7 _,. This will imply that ), _, a; <¢ and hence
complete the proof.

To see that {/,:keL} e, for each keL let rk—mln{r E, intersects
supp(yx)}. The map k —r, from Lto {1,2,..s} is one to one. This gives
that # L <s. Consider now, for each k€ L, m, =min E, . Then, m, </,
k € L. Since the set {m tkeL} belongs to &, we conclude (by the spread-
ing property of %) that {li:keL}eZ as well 1
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1.14. DeFINITION.  (A) A finite or infinite sequence {z,}, is called a
rapidly increasing sequence if there exists an increasing sequence of positive
integers {7}, such that the following are satisfied:

(a) The sequence {0, /0, }, is increasing, 2<0, /0,  for each k,
and lim, _, (0, /0, )= co if the sequence is infinite.

(b) Each z, is a semi-normalized (0,2k, tr)-s.c.C.

(c) Foreach k, |z,],<0,/0

(B) Let keN, ¢>0. Let {z,}%_, be a rapidly increasing sequence,
where each z; is a semi-normalized (ka, ty)scc and 2<0,,,/0, <0, /0,
Suppose also that there exist coefficients {a,}7_, such that the vector

X=Y7%_,a.z; is an (g j)-scc. of {z;}%_,. Then x is called an
(&, j)-rapidly increasing special convex combination ((e, j)-R.Ls.c.c.).

Tev1”

1.15. PROPOSITION. Let je N, 0<6<t9f, and let x=7Y7_,a,z; be an
(&, j)-R.Is.c.c. of the z,’s where each z, is a seminormalized (ka, ty)-s.c.c.
Let ty be any integer such that j+1<1t,<t, and 2<0, /0, .

Then, for every ¢ in the norming set K of X, we have the following
estimates:

() o) <80, if p ety i< ).
(i) o) <40, if p e j<i<i.
(iil) o) <40,  +a,) if pedh t,<i<ty . p>1.

In particular, 0, ,/2 < ||x|| <80),.

Proof. The lower estimate for |x|| follows by the remark after Defini-
tion 1.10 and the fact that |z, || > 3. The upper estimate follows from the
first part of the proposition. The proof of this is similar to the one of
Proposition 2.12 in [3]. Let {/,}7_, be such that 2<z;</;<--- <
ln_1<z,<l[,and Y} _, ace, is an (&, j)-basic s.c.c.

Given ¢ € K, we shall construct i € co(K) such that

(@) @(Xk_qarzi) SAP(EE_, akelk)-
(b) If peof, i<t,, then y eco(.e).

(c) Ifpess, t,<i<t,,, for some p>1, then =1y, +e;‘;), where
Yy eco(, ).
p—1

)
)

Since, for ¥ € co(.o4) we have y(3 z,e,) < 0;, estimates (ii) and (iii) will
follow immediately. For (i) we apply Lemma 1.12.

We consider an analysis {K*(¢)}7_, of ¢, and we cut each z, into two
parts, z; and z7, with the following property:
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(x) For each level K*°(¢) of the analysis of ¢, and for each z., either
there exists a unique f € K*(¢@) with supp(zy) nsupp(f) # & or there exists
feK* (@) such that max supp(zj_;) <supp(f) <min supp(zjy ).

The same is true for zj. This partition of the z,’s is possible, as done in
[ 3, Definition 2.4].

We shall see that using property (x) we can build ¥’ and " such that
lp(zi)| <¥'(e;) and |p(z%)| <y"(e,) for all k. So we may assume that the
z;’s have property (*) and then multiply our estimate by 2.

For each fe U7, K*(¢p) we set

D= {k: supp(¢) N supp(z;) = supp( f) N supp(z,) # I}

By induction on s =0, ..., m we shall define a function g, e co(K), supported
on {/,: ke D} and such that:

(@) [f(z)] <2g(e,) for all ke Dy.

fb)1 If fe., q<ltl, then greco(e). If feo,, t,<qg<t,,,, then
gr=3(gs+ e;‘p‘), where g eco(./, ).

For s =0, f =ef, if D,={k} we set g,=ef.
Let s> 0. Suppose that g, has been defined for all fe (J{Zg K'(¢). Let

f=0,/i+ - +f)eK(p\K " ().

We set I={i:1<i<d, D, #J} and T=D\U,c; Dy

Case 1. g<t,;. Then, we set

gf=9q<2 gt X ei)'

iel keT

Property (a) for the case ke J;c; D follows from the inductive assump-
tion. For ke T we get, by Lemma 1.13, since ¢ < ¢,, that

d
[fzl <0, X 1fiz)] <20,=2g/(e,).

i=1
To prove that greco(.%) we need to show that the set {g:iel} U
{ly: ke T} is 7, -admissible.
Here we use property (). According to (=), for each k € T there exists an
ir € {1, ..., d} such that max supp(z;_,) <supp(/f;) <min supp(z_ ).
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This means that i, #i, for k#leT and i, ¢1 It follows that
|T| + || <d. Since also, for each k € T, min supp( f; ) </, by the spreading
property of %, we get that

{min supp(f;):iel} V{l,:keT}eZ
hence the family {g,};c; U {ef} xer is Z,-admissible.

Case 2. gq=>1,.Suppose that t,<q <1, . If p¢ Dyor peJ;c; Dy, then
we set

gr="0 <Z gt X e,k>
iel keT
Since supp(gy) < {l:k=1,..,n} €7 and j<t, ;, it is clear that
gfeco(,;z/p -
For ke U;c; Dy, we get

[z =0, 11i(z0)] <20,84(e,) <0, _ gs(e;)=g/ley)

by the inductive assumption and the fact that 29 < 6
For ke T, k <p, we have

Iz <0, Z |fi(zi)| <O 2kl <O, 0

Tyt

2 = etp_] = gf(elk)

by the property of the R.IS. {z.},.
For ke T, k>p, we have ¢<t,,,; <1, so

d
fz)l =0, 3 1fi(z)] <20,<0, = g/le,)
i=1

by Lemma 1.13.
Suppose now that p e T. Then we set

gf:;[etpl <z gt Y e;’;>+e;‘;}

iel ke T\{p}

As before, we get

|f(zi)] <2g4(ey)
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for k # p, and

|f(zp)l <1 =2g,(ep).

This completes the inductive step of the construction and the proof of the
proposition. ||

In what follows, a finite tree of sequences .7~ will be a finite set of finite
sequences of positive integers, partially ordered by the relation a< f iff a
is an initial part of f, and satisfying the following properties:

(a) For each a€.7, the set {f: f is an initial part of a} is a subset

by If a=(kyyenky_1,kp)e7 and 1<I<k
1, DeT.

then (kq, ...,

(c) The maximal (under <) elements of Z are all of the same
length.

It follows that 7~ has a unique root, the empty sequence which we denote
by 0. The length of the sequence « is denoted by |a|. The height of 7 is the
length of the maximal elements of 7. For each a € 7 which is not maximal
we set S,={fe7:a<pf and |[f|=|a|+1}. We also consider the
lexicographic order, denoted by <, on 7. For a=(ky, ... k,,_1, k,n) €T
we denote by a* the sequence a* = (ky, ..., k,,,_1, k,,, + 1).

1.16. DeriNiTION.  Let re N. Let j;, ..., j, be positive integers, and & > 0.
An (&, (jy, ... j,))-tree in X is a set of vectors 7 ¥={u,}, ., indexed by a
finite tree 7 of height r, and satisfying the following properties:

(a) The terminal nodes {u,} -, of the tree are elements of the basis
{e ), le., for |a|=r, aeT, u,=e,. Moreover, for a, fe7 with
le| =|pl=r, if a<f (in the lexicographig order), then [, </;.

(b) There exist positive coefficients {ay} 5o 7\ such that, for each
yed, |yl=t<r, we have Zﬁesvaﬁzl and U, =3 s jal=r y<a
(ITy<p=<aap) e isan (& jop1+ jopo+ - + j,)-basic sce. of {e; }ue s, o -

It is clear that, given an infinite subset L of N, j,, ..., j, positive integers,
and ¢ >0, one can construct an (¢, (j,, ..., j,))-tree in X, supported in L, by
repeatedly applying Lemma 1.9. It is also not hard to see in the same man-
ner that the following construction is possible.

1.17. LEmMA. Let L be an infinite subset of N, ne N, ¢>0, and j,, ..., J,
be positive integers. There exist a tree of sequences 7, subsets T ¥, ... T X
of X, and positive coefficients {ag} gc 7o) Such that:
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(a) For r<n, set J,={aeT:|a|<r}. Then, T} ={ul},cr is an

r

(& (J1» o Jo))-tree in X Wlth coe]ﬁaents {ag} pe 7 (o} » supported in L.

(b) Let {ey,ae T, |a|=r} be the terminal nodes of the tree T ).
Then, if «, fe T, |a| =r <n, and peS,, we have I, <l <I.,

1.18. DEFINITION. A finite family Z¥,.., 7% as described in

Lemma 1.17 is called an (¢, (j,, ..., j,)) family of nested trees in X.

Proof of Theorem 1.6. Given ne N, and a block subspace Y of X we
shall construct a sequence xi, ..., x,, of disjointly supported unit vectors in
Y which is 36-equivalent to the canonical basis of /7%, .

The construction is as follows.

First, choose #>0 with #<1/60n. Choose j, such that 640, <n. Let
5o € N be such that 0% <#. Choose j; such that

[

0j1+1

=
0, 1

J1

SoJo<J1 and

Inductively, choose j,, ..., j, so that, for each k=2, ... n

S <n, and 0j1+m+jk+l> ! :
Oj v )1 0;, 1+7

Jit ot e <Jgs

The latter is possible, since lim,,_, ,, 0)"=1.
Next, we choose an infinite R.LS. {z,} ° , in Y where each z, is a (62, t,)-
seminormalized s.c.c. For each i, let /;=max(supp z;). Let i, be such that

0, "
ty>j1t+ - +j,+1 and <
Ji+ e+l 16

We set Lo={1;} ;=

Now let 0 <e<min{€] , . ., n(1—0y)}.
We choose an (g, (jy, .., j,))-family of nested trees (7%, .., 7 F) in X,

indexed by a tree .7, supported in L,. Let {az} ;. be the corresponding
coefficients. Then, for each r <n, there exists a set {/%},. 7. o, contained

in Ly, and such that for all 1 <r and ye 7 with |y|=1¢,

W= (H aﬁ)%

y<a ol =r \y<p<a

is an (& j4q1+ - + Jj,)-basic s.cc. of {er}aeq o=
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For each ae.7 with |«| =r, denote by z’ the element of {z;},. With
max supp(z,) =1I7. Then, for ye 7 with |y| =¢<r, the vector

i= T (11 )

y<a lal=r \y<f=<a

isan (¢ j,.1+ -+ +j.)-Rlscec.
For each r=1,..,n, we set x"=y/|lyy|. If r=2 then for each ae T
<ol <r—1, we set x, =(1/|lygll) ¥,, so that, for each t<r—1,

veme Y (g 3 (M1 g

Hyouoceﬂ_,lsz:r 0<f=a we T, lal=1t \0<f<a

1.19. LemmA. For each r<n, t<r, and o€ 7 with |a| =1,

1
—< x| <16(1 .
<X <1601 +7)

Proof. By the construction, for each t<r—1 and a € 7 with |a| =1¢, y’,
isan (¢ j, 1+ --- +j,)-R.Isc.c. It follows from Proposition 1.15 that

0. ,
Jig1+ -+ i+1
e Lyl <80; 4.ty

2
Hence, for 0 < |a| =1,
0; 4 7
L\LM<‘|X;\|_|‘Y«|‘< Dot 461 ).
16 16 9j1+"'+jr H OH j1+ o+ g+l

1.20. Lemma. Let r=2 and o€ with |a|=t<r—1. If
Jeg1+ oo+ jo_1 and (E ) _, is an F;-admissible family of sets, then

k

Y IE, x5, <32(1+7).

Proof. By the construction,

Vo= X < I1 a/f> Yy
l=r—1,a<y ‘a<p=xy

where I;’1<y;<l;11 for every ye 7 with |y|=r—1 and a<y. (Recall

that 7 is a convex combination of (z}) 4 _, and that max supp(zj) =1/%. By

the definition of (T F, o T ), we have 171 <1 <1751



MODIFIED MIXED TSIRELSON SPACES 61

Also, the corresponding basic convex combination
r—1 __
Uy = > < [1 aﬂ>€l;1
Pl=r—1,a<y ‘a<g=xy

isan (¢ j,o1+ - +j,)-basic scc.
An argument similar to the one in Lemma 1.13 yields

k
Y IEye <2 max [y}l
p=1 IPl=r—1La<y
Dividing by |yg| we obtain the conclusion. ||
1.21. PROPOSITION. The sequence {x"}"_, is 36-equivalent to the
standard basis of /", .
Proof. We need to prove that

>

r=1

< 36.

To do this we estimate (> 7_, x") for ¢ €K, distinguishing two cases
for ¢:

Case I. @€, i>j,. Let ro €{0, .., n} be such that

jr0<i<jr0+l'
Then

(@) Forr=ro+2wegeti<j,<j+ -+ j,_;. Using Lemma 1.20,
we see that

(") <320,(1+ 1) <640, <.

(b) Let now I1<r<ro—1. We know that ypj is an

(6, ji+jo+ - +j.)-RIlsce. of the z’s. Also, ¢e.of, where
It a2t i< SE

Let z;, .., z; be the semi-normalized s.c.c’s which compose y; where,
for p=1, ..k, zi) is a (02, t,)-seminormalized s.c.c. Set ¢5=1, where by
construction 7, is such that Ht,-o/01‘1+-~-+fn+1<’7/16 and ¢, =1,<1, for
all p=1, .., k.

From Proposition 1.15 we get

lp(yp) <40,<40, it i<t}

1
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and
lp(yo)| <40y +e) if izt

Dividing by ||y | and by the choice of the j,’s we obtain

80, : )
lp(x")| < ——<yp i i<t],
6j1+---+j,+1
and
0, 0> .
lp(x7)] <8 o g At tat]
6)jl+~~+j,+1 0j1+~~+j,+1
<g+80 < if it
> (R AR N 1=1.

We conclude that, in this case,

(2 x)<l(2,.)
r=1 r#rg,rg+1

Case II. ¢e ., i<j, Consider an analysis {K*(¢)}?_, of ¢. For
s<q and feK*(¢), let f T € K*(p) be the successor of fin K*(¢); that is,
f* is such that supp f<supp f* and if ge K*(¢) with supp f<supp g
then either g= f* or supp '+ <supp g.

For fe |, K*(¢p), we set

+1(x)| + lp(x ") <np +2 <3.

E’= [min(supp f), min(supp f*))= N

(E/=[min(supp f), max(supp x")] if f does not have a successor).
Recall that x'=Y"_, a,z; and, for k=1, .., m, I, =max(supp z;). We
set

L=[IL1, )N, k=1,.,m—1 and

1,,=[1},, max(supp x")].

Notice that for r >2 we have supp(x}) < I,.

For k=1,..,m and feJ, K*(¢p), we say that f covers I, if I, = E”.

We may assume without loss of generality that min(supp ¢) </}. There-
fore, for fixed s, any I, is either covered by some fin K*(¢) or intersected
by E/ for at least two different f’s in K*(¢). Also, every I, is covered by ¢.
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Jy={k=1, .., m: I is covered by some functional

in U K*(¢) belonging to some class .o/ with /> j,},

and

Jr= {k =1, .., m: I} is covered only by functionals

in U K*(¢) which belong to [ %}

1< jy
Consider any ke J;. Let f € U K*(¢) be a functional which covers /, and

such that f e.o for some /> j,. Then, exactly as in Case I we can get

lp(x < [f(xp)| <n

for all but two re {2, ..,n}. This gives [p(37_, x;)| <nyp+32(1 +7) <34,
and we conclude that

‘(p<i Y akx2> <34

r=2keJ;

We turn now to J,. Let ¢ =0,37_, f, where i < j,. Consider the set
R, = {keJ,: I, is intersected by at least two f,’s}.

Since the family (f,);_, is Z-admissible, the set {l,: ke R\\{min R,}}

belongs to % = 7, and so, {[;: ke R,} € 7, _,. Therefore, 3\ g arp<e.
Let L, =J,\R, and, for p=1, ..., s, let

L?={keL,:I, c E%}.

For any r =2, we get

(% ot
kelJ

<@<i

APy

)+( T ) max i)

p=1 keLf keR;
s
<91<Z fp< Y akx,’c>>+emax x|
p=1 keLll7 k

Consider now any p, 1 <p<s, with L? # ¢J. By the definition of J, this
implies that f, = H,.p Zi’;l g? where i, < j, and ( gﬁ’)iLl is %p—admissible. (It
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is clear that we cannot have f, € K® and L # (#.) We will partition L% in
the same way that we partitioned J,: We set

Ry ={keL?: I, is intersected by at least two g?’s}
and for each t=1, .., 1/,
Ly(p)=1{keL?: I, c E%}.

The family {g?: p such that LY # &, t=1, ..1,} is %, ; -admissible and so

the set {/; =keJ5_, RS} belongs to 7, , ,, = %, =F ;. We conclude
that

Y ap<e.
keUpRlz’

So, for each r>2 we get the estimate

“P( Z akx;c>
kelJ,

<020,

P t

g7 < > akxlrc>

ke L(p)

0,54 3t ) +omax g
p

keRj

<07 Y gf’< > akx2> +01< > ak>max [ x% I + & max |7 ||
Pt ke Li(p) keU, RS k k
<01) g;”< > akx2> +(0;+1)e
pt keL;(p)

We can now partition each L5(p) and continue in this manner for s, steps,
where 03 < 7. By the choice of j,, joso < j;. Recall that ¢ € K%. If ¢ > s, then
for r=2,

<op ¥ /(T at)

feKi=50(p) I, cES

+(1+0,+ - +6§°“)amlgx %Il

@ < Z akxlrc>
keld,

Of course, if g <s, then we have only the second term at the right hand
side. Finally, for r > 2, we get

‘(P< Z akxlrc>
keld,

<max || x%| <17 + > < 607.
k

&
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We conclude that
o(27)
r=1

This completes the proof of the proposition. Theorem 1.6 now follows. ||

<ot +|o( T T aut)

r=2kelJ;

+ 2
r=2

(/)< Z akx;>
keld,

<1+ 34+ 60ny < 36.

C. Modified Mixed Tsirelson Spaces

The modified Tsirelson space T,, was introduced by W. B. Johnson in
[10]. Later, P. Casazza and E. Odell [6] proved that T,, is naturally
isomorphic to 7. Analogously, given a sequence of compact families
{ A} 7_, in [N] = and a sequence of positive reals {0,};7_,, we define
the modified mixed Tsirelson space T [ (M, 0,) 7]

1.22. DEerINITION. Let .# be a family of finite subsets of N.

(a) A finite sequence (E,)*_, of finite non-empty subsets of N is said
to be .#-allowable if the set {min E|, min E,, .., min E;} belongs to .#
and E,nE;= forall i, j=1,..,k, i#j.

(b) A finite sequence (x;)*_, of vectors in co, is .#-allowable if the

sequence (supp(x;))*_, is .#-allowable.

1.23. DEFINITION OF THE SPACE T [ (A, 0,)5_1]. Let (M), be a
sequence of compact, hereditary and spreading families of finite subsets of
N and let (6,), be a sequence of positive reals with 6, <1 for every k and
lim, 0, =0. Inductively, we define a subset K of B,_ as follows.

We set K°={ +e¢,:neN}.

For s >0, given K° we define for each k> 1,

Kf{“:{é)k(Z f,.>:neN,f,-eKS,i<n,

i=1

and the sequence (f;)7_, is %k-allowable}.

We set

Ks+1=Ks U<G K2+1>

k=1
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Finally, we define
= U K
s=0

Note that K is the smallest subset of B, which contains +e, for all ne N
and has the property that 0,(f,+ --- + f,) is in K whenever f}, .., f, €K
and the sequence (f;)7_, is .4 -allowable.

We now define a norm on ¢y, by

[x|| =sup<{x, f> forall xecgy.
feK

The space Ty [ (A, 0,)F_,] is the completion of (cq, ||-]]). We call K the
norming set of T [ (A, 9k)k:1]
The following proposition is an easy consequence of the definition:

1.24. PROPOSITION. Let X =T, [ (M, O )7 1].

(a) The norm of X satisfies the following implicit equation: For all
xeX,

x|l = max {|x w» SUp 0, sup { Y ONEx| : (E)i_yis Ay allowable}}
k i=1

(b) The sequence (e,);>_, is a 1-unconditional basis for X.

We also consider boundedly modified mixed Tsirelson spaces denoted by

TM(m)[(%k’ 011,

for some m e N. The definition of Ty, [ (-4, 0;)7_ ;] is similar to that of
Tl (M, 0,) 7], the only difference being that at the inductive step s+ 1
we set

K;“:{«%(Z ﬁ)rneN,fieKﬂi@a

and the sequence (f;)7_, is ,//k-allowable}.



MODIFIED MIXED TSIRELSON SPACES 67

for k <m, while

K§€+1={0k<z f,.>:neN,f,-eKs,i<n,

i=1

and the sequence (f;)7_, is %k—admissible}.

fork=m+1.

1.25. PROPOSITION.  Let Y= Ty [ (A, 01) -1 1

(a) The norm ||-|| of Y satisfies the following implicit equation:

||x] = max {|x| > Max 0, sup { YONEx| s (E)i_yis /%k-allowable},
k<m

i=1

sup 0, sup { Y NEx| : (E)i_yis zﬂk—admissible}}.

k=zm+1 i=1

(b) The sequence (e,), is a 1-unconditional basis for Y.

In the sequel we consider spaces Tp[ (A, 0:)7-1] or
Tagom)[ (A, O01) i~ 1 ] Where (), is a subsequence of the Schreier sequence
(Z,)_,. In this case, by Proposition 1.24(a) (resp. Proposition 1.25(a)) we
have that for all sequences (x;)?_; of disjointly supported vectors with
supp x; = [, ©0),

n

> X

i=1

n
=01 ) x|

i=1

in Tyl (M, 0) 11 (xesp. Tpoml (Mg, Or)—11)- 1t is clear from this
inequality that ¢, is not finitely disjointly representable in any block sub-
space of Ty [ [ (A, 0r) ;=11 OF T pyi)[ (A, 04) -1 ]. Combining this with
Theorem 1.6 we get the following.

1.26. CorOLLARY. Let (0,)%_, be a regular sequence with lim 0}"=1.

Let X=Ty[(F, 0)-1] or X=Tam(F, Ok) =11 Then the spaces X
and T[ (%, 0,) 5] are totally incomparable.

1.27. THEOREM. Suppose that the sequence (0,), decreases to 0 and
that the Schreier family & is contained in M,. Then, the spaces
Tof (A, 02) =] and Tyl (A, 01) -1 1, m=1, 2, ... are reflexive.
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Proof. Let X=T [ (M, 0;) 7] The proof for T s, [ (A, 0r) -] is
the same. We shall prove that the basis (e,);°_; is boundedly complete and
shrinking in X.

(a) (e,)>, is boundedly complete. Suppose on the contrary there
exist ¢>0 and a block sequence {x;};2, of {e,}:, such that
sup, [I>7_; x;| <1 while |x;| >efori=1,2,.

Choose ny € N such that ny,0, >¢. Then, the finite sequence (x; )f"on0 1
s Y-allowable and since & <.#; it is .#-allowable. Using Proposi
tion 1.24(a) (resp. Proposition 1.25(a)) we get

n=1

2n 2n,
Z x;| =0, Z x| =n0,e> 1,
i:n0+1 i:n0+1

a contradiction which completes the proof.
(b) (e, >, is a shrinking basis. For fe X*, meN, we denote by

n=1
0,,(f) the restriction of f to the space spanned by (e;)is,,- We need to
prove that, for every f € By«, Q,,(f) — 0 as m— oo.

Let K be the norming set of X. Then By.=co(K) where the closure is
in the topology of pointwise convergence. We shall show that for all f'€ By«
there is /e N such that Q,;(f) € 0, By+. By standard arguments it suffices to
prove this for fe K.

Let fe K. Let (f")°_, be a sequence in K converging pointwise to f. If
f"eK° for an infinite number of n, then there is nothing to prove So,
suppose that for every n there are k, €N, a set M,= {ml, .. } € M,
and vectors f7eK, i=1,..,d, such that f"=0, 1—1f mi =
min supp(f7), i=1, .., d, and supp(f ) nsupp(f7) = for i # j. If there is
a subsequence of (Hk”)n converging to 0, then f 0. So we may assume
that there is a k such that k,=k for all n, that is, 0, =0, and M,=
{mi, ..mjy} €.

Since .4, is compact, substituting { f”} with a subsequence we get that
there is a set M = {m,, .., m,} € .4, such that the sequence of indicator
functions of M, converges to the indicator function of M. So, for large n,
mi=m;, i=1,2,..,d and md+1—>oc as n— co. Since minsupp f%, =
ml, ; — oo, the sequence 7= 0, 3¢, f" tends to f pointwise and we may
assume that /"=0, 39, f;’ Passing again to a subsequence of {/”} we
have that, for each i=1, ..., d there exists f; € K with /7 — f; pointwise and
S=0f1+ -+ 12

Now, for each i=1, ..., d, either /7 =e¢}, for all n (eventually) or

”
n__ n,i P —
fi=00 Y gni.  i=l..d,
m=1

where for every neN and m=1, .., [, g’ € K and the family {g”"}% _, is
M-allowable. Let A = {1, ..., d} be the set of indices i for which /7 is of the
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second type for all n. As before, forgetting those i’s for which /7 — 0, we
may assume that, for each ie 4, there is k; such that k7=k, and a set
M;={m},..,m}} such that m!=minsupp(g”’) for all n=1,2,..,
r=1,..,1,, and min supp(gy),) — oo as n— . So, for i€ A, the sequence
fr= Or, Xt _1 &' tends to f; pointwise.

Let /=max({DX;c i} {m;:i=1---d}) and h%'=0,(gk")eK, i€ A,
m=1,..,1L, n=1,2,.. Then, the sequence 0,3,c 0> _, hy'=
0,0, X, J7) tends to Qy(f) as n— oo

On the other hand, since, for each n, #{h%', iecA, m=1, .., 1} <|,
I <min supp(h??’) for every i and m, and the sets supp(h?’), i€ A,
m=1,..,1; are mutually disjoint, we get that the family {AZ‘},, is
Schreier-allowable. Since the Schreier family % is contained in .4,
0<0, /0, <1, {hy'},;,, is S-allowable for every n and /)" € K, it is easy
to see that (1/0,) Q/(0, X7, f:l) = HI(ZieA (Hk,./el) 1 k) eco(K)
for all n. We conclude that Q,(0, 37_, ") €0, co(K), and so, Q,(f)e
0, co(K)<= 6, co(K). 1

We note that the 2-convexifications T@[(Z#,0,)7_,] and
Tglzl)(m)[(%m 011 of Tyl (F, 0)_1]1 and Tau[(F, 0)¢-,] are
weak Hilbert spaces. The proof of this is similar to the proof of the
analogous statement for the 2-convexifications T of the Tsirelson spaces
Ts as presented in [15, Lemma 13.5]. It is an immediate consequence of
Theorem 127 that TP[ (%, 0,)7-,1 (and TG, [ (Z, 0)7-11) does not
contain ¢,. Moreover, we can show that for sequences (6,), with
lim, 0" =1, no subspace of TE[(Z, 0)7-,1 (or TP [(Fis 0)7-11)
can be isomorphic to a subspace of 7. It suffices to prove the following.

1.28. PROPOSITION. Let 0<d<1 and let (0,), be a regular sequence
with im 0)"=1. Let X=Ty[(Z, 0011 or X=Taml (%, 011
Then the spaces X and Ty are totally incomparable.

Proof. Let X=Ty[(Z. 0071 of X =Tyl (Fi. 07,1 Suppose
on the contrary that there exist normalized block sequences {x,}; in X and
{y:};in Ts which are equivalent as basic sequences. Let /;=min supp y;,
i=1,2,.. From [5, Theorem 13] we get that {x;}, is equivalent to
{e)} r,- Let m;=min supp x;, i =1, 2, ... We choose a subsequence {i} of
indices such that either /; <m; <[ <m; < --- or m; <l; <m; <[ <---.
In either case, using Theorem 13 of [ 5] once more, we get that the basic
sequences {e,l_k} and {em,-k} are equivalent in T5. We conclude that {emik} T
is equivalent to {x, } x.

Let now jeN and let >, , Ao, be a (64, j)-special convex combi-
nation. As in Lemma 1.12 we get that HZkeAakemikHTé<5j+0jf. On the

other hand, since the sequence (x;)ic4 is #-admissible, we have that
k
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I hcsaix; | x=0, But the assumption lim 0}/ =1 leads to a contradic-
k J J
tion which completes the proof. ||

2. THE SPACE X, ,

We give an example of a boundedly modified mixed Tsirelson space of
the form T M(l)[(%(j, 0,);~ ] which is arbitrarily distortable.

DEFINITION OF X)) ,. We choose a sequence of integers (m;);2, such
that m; =2 and for j=2,3, .., m;>mJi5'.

We choose inductively a subsequence (g«;(j) 720 Of (%),

We set k; = 1. Suppose that k;, j=1, .., n — 1 have been chosen. Let 7, be
such that 2% >m?2. We set k,=1,(k,_,; +1)+ 1.

For j=0, 1, ..., we set %]:97,(]_. We define

1 o0
XM(I), u=— TM(I) [ (JMJ, m> 1} .
j/i=

Notation. Let Z be a family of finite subsets of N. We set

F'={AUB:AeF,BeF, AnB=}.

2.1. DErINITION. Given ¢ >0 and j=2, 3, ..., an (e, j)-basic special con-
vex combination ((&, j)-basic s.c.c.) relative to X, , is a vector of the form
Yierare;, such that Fe ,, a; >0, Y, pa,=1, {a;} ;. is decreasing,
and, for every GE?QI(@,I+ 1)> 2keg A <E&.

2.2. LEeMMA. Let j=2, €>0, D be an infinite subset of N. There
exists an (e, j)-basic special convex combination relative to X
X=Yrcpdre,, with F=supp x < D.

Proof. Since M=%,  +1y+1,» by Proposition 1.8 there exists a
j t](k] D+

convex combination x =3, raze, with Fe.#, FcD and such that

> kec @ <égf2 for all Ge%j(kj_lﬂ). It is clear that this x is an (e, j)-basic

s.c.c. relative to Xy - 1

In the sequel, when we refer to (e, j)-special convex combinations we
always imply “relative to Xy ,.”
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Notation. Let X,y = Ty [ (A}, 1/m;)7_,] and let K'(n) be the norm-
ing set of X{,,. We denote by |-|, the norm of X, and by || the corre-
sponding dual norm.

We set

1
Gy = {supp f: feK'(n)and for every k esupp f, f(ex) >mz}

n+1

Remark. Using lemma 1.2 it is easy to see that 4, _1) =%, «  +1)- It
follows that if x =3, c raze, is an (e, n)-basic s.c.c. then, for all Ge 9, ),
2kec A <é&

We give the definition of the set K of functionals that define the norm of
the space X, .-
We set K} ={+e,:neN} for j=1,2,..

Assume that the { K} | have been defined. Then, we set K" =), K7,

and for j=2, 3, ... we set
1
K7+1=K"U{m(f1+ v 4 fQ)supp fy < -+ <supp fy,
j

(f)¢{_, is M;-admissible and f;, .., f, belong to K"},

while for j=1, we set
K1t =Ky O{5(fi+ -+ fa): fieK" deN,
d < min supp f; < --- <min supp f,, and for i # j,
supp f; nsupp f;= I}
Set K={J;_ o K". Then, the norm |- | of X, , is

[ x| =sup { f(x): feK}.

Notation. For j=1,2, .., we denote by .o the set .=, (K/\K").
Then, Kzl(ou(U;’O:1 ;).

We will also consider the space Ty)[ (4}, 1/m;);72,]. We denote by K’
the norming set of this space and by K, K", ./ the subsets of K’ corre-
sponding to K", K7, and ¢/, respectively.

2.3. DEFINITION. (A) Let meN, ¢ e K™\K™~'. An analysis of ¢ is a
sequence {K*(¢p)} ", of subsets of K such that:

(1) For every s, K*(¢) consists of disjointly supported elements of
K*, and Uyc xy(y) SUPP f=Supp ¢.



72 ARGYROS ET AL.

(2) 1If fbelongs to K**!(¢), then either f € K*(¢) or there exists an
S-allowable family (f;)¢_, in K*(¢) such that f =1(f; + --- + f,), or, for
some j=> 2, there exists an .#;-admissible family ( f)?_, in K*(¢@) such that

S=/m)(fi+ - + fa).
(3) K"(p)=1{9}.
(B) For geK*"'(p)\K°(¢); the set of functionals {fi, .., f;} =
K*(¢p) such that g=(1 /mj)(Zf:l f:) is called the decomposition of g.

2.4. LEMMA. Let j=2, 0<e< l/mj?, M=>0, and let x=37}_, be, be
an (&, j)-basic s.c.c.

Suppose that the vectors x, =% a; ey, , are such that a; =0 for all
i k, Xk 1a, <M, k=1,2,...,m, and n1<n1,1<n2,1< s <ny<ny<
Ny <Ny ,< - <n3< -+ <ny . Then

(a) ForpelYy2, o
()
k=1
()
k=1

(b) If @ belongs to the norming set K'(j—1) of Tpuq)[ (A},

1/m;)jZ 11, then
2M
b(zne)

M
<—, if peds, s=]j
m

s

M
—, If e, s<]

st

S 2
J

Proof. (1) 1If s> j, then the estimate is obvious.
Let s<j and ¢ =(1/m,) ¥¢_, f;. Without loss of generality we assume
that (e, ) =0 for all n; ,. We set

p={nsi ¥ fiten, >
We set g,=f;lp. Then, (1/my) Y%, g,€K(j—1), and for every
kesupp((1/m,) X{_, g) we have (1/m;) X7 , g/(ex)>1/mm;>1/m;.
Therefore, D =supp((1/m,) X{_, g) €% _,). Let B={k: there exists i with
n,,€D}. Then Be%, ;, and so, by the Remark after Lemma 2.2,
Ykepbr<e<l/m;. We get

niz (§ b )< Zbk<z 0 ) <M Y b

k=1 keB i=1 keB j
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On the other hand,

(o )2 000 ) <,

s

Hence,

M M _2M

W(Z bkxk><m+ 2<7.

sy My Mg,

(b) We assume again that ¢ is positive. We set L={n,,:
(e, )>1/m7}. Then,

M
c b <7.
ol <Z kxk> m2

J

On the other hand, Supp(go | L) € g(j_ 1) and as before we get
Pl (X bexy) < M/mj?. Hence,

(g

2.5. DEFINITION.  (a) Given a block sequence (x3)gcn in Xy, and
J=2, a convex combination 3.7_; a;x, is said to be an (¢, j)-special com-
bination of (x)rcn ((& j)-s.c.c.), if there exist /; </, < --- <[, such that
2 <supp x;, <1y <supp x, <[, < -+ <supp x; </,, and }7_; a;e, is an
(&, j)-basic s.c.c.

2M
<— 1
m;j

(b) An (¢ j)scce X7y a;x, is called seminormalized if |x; | =1,
i=1,..,nand

2.6. LEMMA. Let (x;)7_, be a block sequence in Xy, , and j=2,3, ...,
e>0. Then, there exists a normalized finite block sequence {y,}?_, of

{xi} &y and a convex combination Y} _, a,y, which is a seminormalized
(& j)-s.c.c.

Proof. Using that ./, = 97,] Gy 41D +1 where 2’/>mj?, the proof is similar
to the proof of Lemma 1.11. ||
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2.7. LEMMA. Let j=3 and let x=37_, a;x; be a (l/m]‘.‘, J)-s.c.c. where
Ixell <1, k=1, .., n. Suppose ¢ =(1/m,) Y%, fied, 2<r<j. Let

L={ke{l,2,..n}: there exist at least two i, #i, € {1, ..., d}
with supp f; 0supp x; # &, [=1,2}.
Then,

(@) 19(Zker axxp)l <1/m7.
(b) (ko y arxi)| <2/m,.
Proof. (a) Let {l;,..l,}e.#; be such that 2<x,</; <x,<
ly< .- <l, Let n=minsupp f;, i=1,..,d. Then {n;:i=1,..d}eM,.
For each ke L, let ik—min{i supp f; intersects supp x,}. The map k — n;

from L to {n;:i=1,...d} is 1 =1, so #L<d. Moreover, n, <lk for each
keL,so {l,:kelL} belongs to ./,. It follows that 3, ., a; < l/m and so,

(5o
kelL

(b) Let P={l,.,n}\L and, for each i=1,.,d, let P,=
{k € P: supp x, nsupp f; # &}. Then

(o)<

1
Z ar | xell <—5
kelL mj

+ ) ag x|l
keL

w2 (Z )

1 1 2
<7+74<7. I

r J r

In the sequel we shall write K< K if K is a subset of K satisfying the
following.

(1 For every feK there exists an analysis {K*(f)} such that

c K

)

UK (f)
(i1) IffeKthen —feKand f|[m,n] ek for all m<neN.

1)

v)

(i
(i

For K< K we denote by |||z the norm induced by K:

=

ii) If(f;)%_,isan Z-allowable family in K then 1 >¢_, f;belongs to K.

For every neN, e, e K.

x|l g =sup { f(x): feK}.

The results that follow involve a subset K of K having the properties
mentioned above. For the purposes of this section we only need these
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results with K = K. However, we find it convenient to present them now in
the more general formulation that we will need in Section 3.

2.8. DerINITION.  Let K< K. A finite block sequence (x;)7_, is said to
be a rapidly increasing sequence (R.I.S.) with respect to K if there exist
integers ji, ..., j, satisfying the following:

(1) 2<1<j2<- <Jp

(i1) Each xk is a seminormalized (1 /m] , jx)-s.c.c. with respect to K.
That is, x; is (1/m] , Jr)-s.c.c. of the form Xp=2,04 nXx ) Where
X, o llg=1 for each ¢, and Xkl g= 3.

(i) For k=1,2,..,n let [, =max supp x; and let n, e N be such
that

/ 1
2k
2" m;
We set

1
{feK supp f<[1,1,] and |f(e,, |>27for everymesuppf}

Then j; ., is such that m;, > #0, and x,, satisfies minsupp x
>#0,,
(iv) Xk, <mjk+1/mjk+171'
Notation. 1If ¢ € K\K° then ¢ is of the form ¢ = (1/m,) Y¢_, f;, where
either r=1 and (f;)%_, is an S-allowable family of functionals in K, or
r>2 and (f,)?_, is a ./,-admissible family of functionals in K. In either

case we set w(@)=(1/m,) (the weight of ¢). That is, w(¢)=1/m, if and
only if ¢ € .oZ.

The following proposition is the central result of this section.

2.9. PROPOSITION. Let K< K. Let (x;)_, be a RLS. with respect to K
and let ¢ € K. There exists a functional y € K' with w(¢@)=w({) and vectors
U, k=2, .., n, with |luy |, <16 and supp u;, =supp x, for each k, such that

(2,700,

for every choice of coefficients A, ..., A, € R.

n n 1
< max ww(z |ﬂ»k|uk>+6 A
k=1 m

<k<n k=2 i
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As it follows from the above statement, we reduce the estimation of the
action of ¢ on the R.LS. {x,}, to the estimation of the action of the func-
tional  on a finite block sequence {u,}, of subconvex combinations of the
basic vectors. The construction of the functional  and the finite block
sequence {u;}, will be done in several steps. We describe this process
briefly:

We fix an analysis {K*(¢)} of the functional . We first replace each
vector x, by its “essential part” relative to ¢, denoted by x,. Next, for each
X, we consider certain families of functionals in () K*(¢) which fall under
two types (families of type I and type II, Definition 2.11). These families
yield a partition of the support of x,. The restriction from x, to x, gives
us a control on the number of families of type I and type II which act on
each X, (Lemma 2.13). Fixing k, to each such family of functionals acting
on X, we correspond a subconvex combination of the basis and the sum
of these combinations is the vector u,. The functional y is defined induc-
tively, following the analysis of the functional ¢.

From now on we fix the R.L.S. (x;)%_, and the functional ¢ of Proposi-
tion 2.9. We also fix an analysis {K*(¢)} of ¢ contained in K. We first
partition each vector x, into three disjointly supported vectors x;., xj, and
Xi; this partition depends on the analysis {K*(¢)}.

DEFINITION OF X}, Xy, X;. Let

Fy={fe€ UK*(p): supp fsuppx, # &, supp fnsupp x; # &

for some j>k and w(f)<1/m;_ }.

We set A, =Usecp supp fand xp=x; [ Ay
Let now

Fi.={fe UK*(p): |f(e,)| <1/2™for every m € supp f N supp(x; — x})

and supp fnsupp(x; — x;) # J for some j > k}.

We set Aj =y psupp fand xg = (x,—x5) | 4.
Finally, X, = x;, — X} — x}.

2.10. LEMMA. For ¢(xy) and @(x},) we have the following estimates:

and (2) |e(xp)< l/mjk.
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Proof. To see (1), let us call an f e F, maximal if there is no f’ # f in

F, such that supp f<supp f'. The maximal elements of F) have disjoint
supports. So

1
lp(x)l< X <Y — Ixelaupp £,

fmaximal in Fj, ks
< 1 My _ 1
X - B
Moy My —1 My 1

by property (iv) of the R.LS.
For (2), we notice that for every nesupp xj we have |p(e,)| <1/2
Also, since |x ||, <1, we have [|x. ||, <max supp x,. Hence

llxkll, max supp x
1 pp ko

1
2me 27 m;’

”

lp(x7)] <

Remarks. (1) By the definition of x}, and x} we have x,, = x/, =0, since
x, is the last element of (x;)7.

2) If feuK’(p) and 1<k</I/<n are such that supp fn
supp X, # & and supp fosupp X, # & then w(f)> l/mjk+1 and there
exists m € supp X, such that |f(e,,)| > 1/2".

2.11 DrrFINiTION (Families of Type I and Type II w.r.t. X;).
Without loss of generality, we assume that supp ¢ nsupp x; # . Let
ke{2, .. n} be fixed.

(A) A set of functionals F={fi, .., f;} contained in some level
K?(¢) of the analysis of ¢ is said to be a family of type I with respect to
Xy if

(A1) supp f; nsupp X, # & and supp f; nsupp X;= & for every
j#k and every i=1,2, .., L
(A2) There exists ge K**!(¢) such that fi, .., f; belong to the
decomposition of g and supp g nsupp X; # & for some j < k. Moreover, F
is the maximal subset of the decomposition of g with property (Al); that
is, g=(1/m)X h;+X!_, f), where, for each i=1,..,d, either
supp h; Nsupp X = & or supp h; nsupp X; # (& for some j# k.
(B) A set of functionals F={fi, .. f,} contained in some level

K*(¢) of the analysis of ¢ is said to be a family of type II with respect to
X if
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(B1) supp f; nsupp Xz # O, supp f; nsupp X;= J for every j<k
and every i=1, 2, ..., m, and for every i=1, 2, ..., m we can find j,> k such
that supp f; N supp x; # .

(B2) There exists ge K**!(¢p) such that f,, .., f,, belong to the
decomposition of g and supp g N supp X; # (& for some j <k. Moreover, F
is the maximal subset of the decomposition of g with property (BIl);
that is, g=(1/m,) (X%, h;+X"™ , f,), where, for each i=1, .., d, either
supp h; nsupp X, = or supph, nsupp X;# (J for some j<k or
supp h; nsupp X; = J for all j#k.

Remarks. (1) 1t is easy to see that for k=2, 3, ..., n,
supp X Nsupp @

= supp 5, N [ { (J supp f: Fis a family of type I or type II w.r.t. )Ek}.

feF

(2) Let k be fixed. If each of the families { f}, ..., f;} and {f", .., fi.}
is of type I or of type II w.r.t. X, and they are not identical, then, for all
i<l j<m, supp f; nsupp f;= .

(3) Let F be a family of type I or type II w.r.t. X, and let g be the
functional in (J K*(¢) which contains F in its decomposition. Then g
intersects x; for some j<k. By Remark (2) after Lemma 2.10 this implies
that w(gp) > 1/m;, .

2.12. LemMA. Let 2<k<n. If f is a member of a family of type I or
type II with respect to Xy, then there exist sets Ay r, Ay ,<=supp f satisfying

1
|fOe < —— lIxela, e,
jk+l

and

1
0 <5 15l L

Moreover, if fand f" are two distinct such functionals then Ay N Ay p= &
and Ay, ;N Aj, p=D.

Proof. Let F, be the subset of ) K*(¢) introduced in the definition of
Xi. If f(x}) #0 then, by the definition of x}, either there exists g € F), with
supp f<supp g or there exists g€ F, with supp g =supp f. But the first
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case is impossible because then we would have supp fn supp x, < supp x}
and so supp fnsupp X, = . So, if we set

Ay = {supp g nsupp x;: g€ F; and supp g <supp f},

then f(x}) = f(x; | Ax, ;). This gives

|/l <

[l xx |Ak,fo1-
Jk+1

In the same way, if f(x7)#0 we set
Ay, y= U {supp g nsupp(x; —xy): g € F and supp g < supp f7}.

Then f(xt) = f(xx [ Ay, ), s0
" 1 ’
|/ (x5l <ﬁ Xk |Ak,fH/l-

The disjointness follows from the preceding Remark (2). ||

2.13. LEMMA. Let k=2,3, .., n. Then:

(a) The number of families of type I w.r.t. X, is less than min supp x;.

(b) The number of families of type II wr.t. X, is less than
min supp xy.

Proof. (a) For each family F of type I w.r.t. X, let g be the (unique)
functional in () K*(¢) which contains F in its decomposition.

By the maximality of F in the decomposition of g, it is clear that if
F#F' are two families of type I then g, # g5 . Since both g, and g, are
elements of the analysis of ¢, it follows that either supp g < supp gz or
SUpp gp SSuUpp gF Or supp g N supp g = . In either case gg(e,)#
gr (ey) for all k. Moreover, for each F, g, has the property that supp g N
supp X; # & for some i<k. Let ip=min{isupp g, nsupp X, # J}. It
follows from Remark 2 after Lemma 2.10 that there exists my in supp X,
with [gp(e,, )| > 1/2">1/2"1

So, for each family F of type I w.r.t. xX;, we set ip= g|,,, € K. The map
F— hy is one to one; moreover, each iy belongs to O (see Defini-
tion 2.8).

It follows that

Xk—1

#{F:Fis a family of type I w.r.t. X} < #0, <min supp x,.

Xk—1

(b) The proof is the same as that of part (a). ||
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Notation. For each k=2, 3, ..., n, we classify the families of type I and
type II into four classes according to the weight w(gg) of the functional g
which contains each family F in its decomposition. We set

Ay, ={F:Fis a family of type I w.r.t. X, and w(gp) = 3},
B, = {F: Fis a family of type I w.rt. X, and w(g) <3},
C;, = {F: Fis a family of type IT w.r.t. X, and w(g) = 5},
D, ={F: Fis a family of type IT w.r.t. X, and w(gy) < 3}.

Remarks. (1) 1If Fe Dy, then Fis a singleton, ie., F= {f}. Indeed, if

gr=1/m)X h;+>7 ,f;) where s>1 and F={fy,.., f,}, then

Ji<fp< - <[ and each supp f; intersects supp X, and supp x;, for
some j;> k. This is impossible unless m = 1.

(2) If f'<f<f" belong to [J K*(¢) and there exists a family of
type II wrt X, which is contained in the analysis of f, then
supp f* nsupp X, = J and supp f" nsupp X, = .

Notation. (A) Each x, is a seminormalized (l/m]‘.tf, Jx)-s.c.c. of the
form

Tk
X = Z Ak, )X (K, t)>
t=1
where ag =0, X, a4, ,=1, and |xu »llz=1.
Foreach k=1,...n t=1, ., r,, we set

x(k, n= x(k, ) |supp Xt

(B) Fix ke{2,..n}. If fe UK*(p) is a member of a family of
type I or type II w.r.t. X, we set

ne=min(supp x; N supp f) and er=e,.

Also, if F={f, .., f;} is a family of type I or type II w.r.t. x,, then we set

1
np=min <supp ka<U suppf,->> and ep=e,.

i=1

For F={fy, ... fij e A5 L C;_we set

% (fit+ -+ 1) and ap=2hp(x;)|.
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For { f} € Dy, we set
dr= |f(x0)l.
Finally, if Fe B, , for every f'€ F we set

Q= {t: supp fnsupp Xk, 1) # & and supp h nsupp X ,) = &
for every h # fin F}

and

ap= Y ag o |f(Xx o)l
te.Qf

(C) For each k=2, 3, .., n we define

=y, ae+ Y agep+ Y, Y, aen
{f}erk Fedg v Cq FeBy feF

2.14. LEMMA. For k=2,3, ... n,

luley=" 2 at X apt ) ) <16

{f}eka Fedg v Cg FeBy feF
Proof. For each f with { f} € Dy, set e,=sign(f(¥;)). Then,

Z ar= Z | (X)) = z erf(Xx)

{f}Eka {f}EDik {f}ED)?k
= Y eflx)— X eflxi)— Y ef(xk)
{3 €Dy, {3 €Dy, {3 €Dy,
< Y aflx)+ X Il + Y 1A
{3 Eka {3 Eka {1} Eka
1

< Y epfl)+— ) ”xk|Ak‘/HZI
{f}EDik Jre+1 {f}EDik

1
+ﬁ z ka|A;{,/.H/1’

{f}Eka

where the last inequality follows from Lemma 2.12. From the same lemma
and Definition 2.8 we get

1 1
— Y il g <Xl <—
Jir1 {Sf} €Dy Jr+1 Tk
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and

1 1 li
S 2wl o <5 Xl <5 <—
e {f}eDy R P2 m;,

For every fe K we have that &7/ | {min supp x,, c0) e K. Also, by Remark (2)
following Definition 2.11, we have that if /% f’ and both { f} and { '} are
families of type II w.r.t. X, then supp fnsupp f' = . By Lemma 2.13 we
have # Dy <min supp x,. It follows that the set

{24/ tmin(supp x), o) - 1./} €D}
is #-allowable, and so the functional 3" (fleD keff | min(supp x,). o) DElONES
to K. We conclude that |1 Depf(xp)l < x| g <1, and so,
2
Y a,<2+—<3. (1)
{f} eDik Ti

For Fe C; we set ¢p=sign hp(x;). Then,

Z adp= Z [2h (%) =2 Z ephp(Xy)

FeCXk Fe ka Ferk

2 (z erhp(r) — X exhp(x)) — 3 thF<x;;)>

<2 Y ephp(x)+2 Y Y A2 Y Y A

FeC FeC; feF FeC; feF
<2 Z erhp(x;) + Z Z ka|Aij(’1
FEC ]k+1FeC feF

2
+ﬁ > kalA,'c’th’l
FeCik

4
<2 Z Sphp(xk)‘i‘i,

Fe Cik mjk
again by Lemma 2.12. On the other hand, for F={fi,.. f;} €Cy,
hp=X(fi+ - +f)ekK and ezheK By Lemma 2.13 we have that
#ka<m1n supp x, and by Remark (2) after 2.11 we have that the func-
tionals hp, FeCg, are disjointly supported. We conclude that the
set {7 | prmin supp x,, 00y * F € Cx,} s S -allowable and so, the functional
2 ZFEC 8F F|[mm supp x, ) belongs to K and

z erhp(xy)

FeCik

<2 Ixgll <2
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We conclude that

4
Y ap<4+—<5. (2)
FeCy, my;,
In the same way we get
Y ap<5s. (3)
FeAik

Finally, we have

Yoo ar= ) Y Y un (R o)l

FeBik feF FEBXk SeF teQy

< Z Z Z a(k,z)(|f(x(k, z))| + |f(x,(k z))| + |f(x2’k, z))|)~

FGBX;( feF te.Q/
For each Fe B, and fe F we have
, 1
Z Ak, 1) |f(x(k, z))| < Hak|Aka”[1
zle Jie+1
and
14 1
Y Ao |/ (XG )l <ﬁ 1k |ag Ml -
tle
Since the sets Ay ,, feUre BxkF are disjoint, we get
, 1 1 .
YooY Y agy L/ (e, )l S —— Xl <— (1)
FeB; feF teQ Jk+1 mjk
In a similar way,
. 1 1 .
z Z Z e o) | (X, )] <ﬁ ka”:q <— (ii)
FeBy feF te®y lek

It remains to estimate

XX X ey (X )l

FeBik feF teQy



84 ARGYROS ET AL.

For each Fe By, and teJ,cr €, let fF be the unique element of F with
SH(X k. ) #0. Let also, Qp=J);.rQ2,and Q= UFeng Q.. Then,

Z Z Z age oy | (X, ) = z z ) |ff(x(k,t))|

FEB)?k feF teQy FEBXk teQp

= Z Ak, 1) z |ff(x(k,t))|'

te Q2 FeBik

Fi.x teQ. For each Fe By, we set g¢p=sign Sf(x@ ). Since # By, <
min supp Xy, the functional

h= % Z 8Fff' [min supp x;, o0)
FeBik

belongs to K. So, we get

Z |ff(x(k, D =2h(xq, ») <2 | x@ pll =2

Fe B)Ek

We conclude that

Yoy Y T ) <2 ) ag ) <2. (iii)

teQ FeBik teQ

Finally, by (i), (ii), and (iii),

> o af<2+%<3. (4)

FeBik feF Jk

Combining (1), (2), (3), (4) we get the desired estimate for [lu(, . |1

2.15. LEMMA. There exists a functional € K' with w(y)=w(¢@) and
such that, for k=2, ..., n,

2
[p(xXp)| < Ylug) +—

Jk

Proof. We build the functional ¢ inductively, following the way ¢ is
built by the analysis () K*(¢).
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We first introduce some more notation: For fe U K*(¢), we set

K(f)={f"e UK’(¢p) :supp f =supp f},

that is, K(f) is the analysis of f induced by | K*(¢).
For f=(1/m,) ¥%_, f; and each k=2, .., n, we set

I[={ie{l,..,d} : f;is an element of a family of type I w.r.t. X},

JI={ie{l, .., d} : f;is an element of a family of type Il w.r.t. X},
and
A{={ie{l, .. d} : K(f; contains a family of type I or type II w.r.t. X.}.

We also set
If=UI{, Jf=UJf, Af=U/1£
k=2 k=2 k=2
and

D=1 U { (J supp f': Fis a family of type I or type II
f

k=2 'eF

w.r.t. X, and Fc K(f)}.

Let k=2,..,n and let F be a family in B, . We set

L= {1 there exist at least two functionals A, 4’ € F such that
supp & " supp X, # & and supp A’ nsupp X, # &}

Let g be the functional in () K*(¢) which contains the family F in its
decomposition. We set

Cr=w(gr) Z Ak, 1) Z f(f(k,z))~

teLp feF

Finally, for f'e U K*(¢) we set Bi(f)={Fe B;: F<K(f)}.
By induction on s=0, .., m, for every fe K*(¢) we shall construct a
functional € K’ such that:

If D,+# (&, then , has the following properties:
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(a) suppy,cD,csupp f.
(b) For each k=2, .., n,

f(Felp)l <¥p(uw)+ 3 Cp

FeB(f)

(c) wlyy) =w(f).

Suppose that , has been defined for all fe USZIK' (). Let
f=(1/m) X% | f; e K*(9)\K*~'(¢) be such that D, # (.

Case 1. w(f)=1/m,<3. Then we set

mq(Z l/ff+Ze/+Z e/>

icedl iel/ ieJ/

By the inductive assumption, property (a) is satisfied.

We note that the sets 4/ and J/ are not disjoint. If i e J/ then ie A7, for
some m>k. In this case, suppy, ch < [min supp X ., 00), while
supp eff = {n,} <supp ;. It follows that eF<iy.

Fix now k € {2, ..., n}. Since w(f) < 3, we hdvefl <fy< .-+ <fy, 80 each
of the sets J{ and Af is either empty or a singleton. Suppose that A]={i,}
and J{={i,}. Then,

1
el )l ==y (Fel o)+ T i) + £, (50)

telk

1 _ 1 _
<— /5, (Xl p )| + Z Ji(x)| +— 1/, (X))
mq 4 q lEIk mq
We have
1
— |le(xk|Df)| l//f (ug) + Z Cr (1)
my FeBy(f;)
by the inductive assumption. Also,
v 1 v % 1 %
7 |fzz(xk)| ZWTq |fi2(xk)| ej;z(afizefiz) =m7q efiz(uk)- (2)

Finally, let G={f;: ie I{} be the family of type I w.r.t. X, contained in
the decomposition of f. Then,
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— Y fi(x)
Mg lier
| T (T )
— ; Ao n X
mq Z ke, )X (k, 1)
1
— 1Y X awnfilFen)t X dun| X fi ) (Fwn)
m fi€G 1e9, teLg fieG
1 _ _
<— Y Y apnlfilZe )l +—1| > an t)<z fi(x(k,t))>
My jec e, My lierg f;€G
1 1
= Y ap+ Co= Y agef(er) + Co=— 3 ef(u) + Co.
mq iely q ite;c mq zeI{c
So,
1 N .
— Z Si(xX)|<— efi(uk)""CG- (3)
My iy m A

From (1), (2), and (3) we conclude that property (b) holds for v, that
18,

f(Elp) <Y )+ Y Cr.

FeBi(f)

It remains to show that i/,€ K’. We have to show that the set
Wyied’y ulefiel’vJ/}

is ./ -admissible. For i=1,..,d, let r,=min(supp f;). Then, {r;:i=
1,..d} e,

To each ie I/ corresponds the vector ef with r;<ef<r, .

If ieJ/, then ie A7 also, so to it correspond two vectors ef and Y, with

Sef<y,<riiq

Fmally, if ie A/\J/, then to it corresponds the vectors iy, with
S Y <riiq.

It follows from these relations that the family

Wyied?y Ulefiel’vJ/}
is ./ ;-admissible, and since Y., ef € K', we get Y €./,

Case 2. w(f)=1/m,=3. For each k=2,..n, let F{={f:iel]} be
the family of type I w.r.t. X, contained in the decomposition of f, and let
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={f;:ieJ]} be the family of type Il w.r.t. X, contained in the decom-
position of /. We set

<z v z Fk+e;§)>.

iedl

Then, for each k,

= 1
VEAPSIEE

Y Silxdp)+ X fix)+ X Sl

teAk telk teJk
We have
z Ji(Xelp) )| <3 xlef|<% l//f, UAREDY Y Cr
teAk teA teA teAf FeBi(f)
Also,

2| L Silx

teIk

|hF Xk |€F (eF )= %e;"]{(aerFk):%e}"I;(uk)a

and

3| X Silx

lle

We conclude that

Ao <3| T ) eyl +ensud |+ ¥

lGAk Fe Bi(f)

=Y (uy) + Y Cp

FeBi(f)

It remains to show that i, belongs to K'. We need to show that the
family

B={yried’} lefk=2 ..n} Ulefs k=2 .. n}

is 9'-allowable.

We have supp l//f < D, =supp f; for each ie A7 and supp efr= {nF } <
U {supp f;: f;€F }r\supp X, and the same is true for ef:2. Also, 1ff,
belongs to a family F2, then Df N supp X, = ¢, while an € supp Xy.
Finally, we clearly have e Fk # ek P
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The above remarks imply that the functionals in B are disjointly sup-
ported. Moreover, it is easy to see that

#B<2d=2(#{fi1i=1,..,d}).

We conclude that the family B is ”-allowable, and thus ¥, € K'.

This completes the inductive step. We set yy =,,.

Then, D, =supp ¢ N (Uy_, supp ¥;) (see Remark (1) following Defini-
tion 2.11), and by the inductive assumption (b) we get that for each
k=2, ..n,

lp(x)| <Y(u) + Y. Cp.

FEB;k

To complete the proof of the lemma it remains to show that, for each
k=2 ..,n,

Y CF<i.

FeBg Tk

For each Fe By, setting x{y, ;)= X, 1) | Supp X and X =X, ) | Supp xz,
we have

Y A 2 S(F )

teLp feF
<Y a2 S )+ Y Y 1 faw nXik )l
teLyp feF teLp feF
+ > ) |/ (@, Xk, o)l
teLp feF

Using Lemma 2.12 we get

Z Ak, 1) Z S(Xk, )

teLp feF
1
< Z Ak, 1) Z Sx e )| + Z Z ”a(k,t)x(k,t)lAk’fol
teLp feF teLp feF ksl

1
+ 3 ) ﬁHa(k,z)x(k,t)|A,;J”zl

teLp fekF

<

Z ) z f(x(k,t))

teLyp feF

1 1
+— ka|Ak‘fol+ﬁ ) ka|A;('fo,-
feF

Jk+1 feF



90 ARGYROS ET AL.

To estimate

Z Ak, 1) Z f(x(k, t)) s

teLp feF

we use Remark (3) after 2.11. According to this remark, w(gp) <1/m;
and so, gre.o for some 1<r<j,. Let gr=w(gs) X! |, f; where
fi<fa<---<f; and suppose i, =min{i: f; € F} and i,=max{i: f;€F}.
We set F={f;:i, <i<i,}. The family F contains F but might also contain
some functionals f; with f;(x;) #0 but £;(x,) =0. Since K is closed under
projections onto intervals, the functional w(gz) 3., 7 f belongs to .7, N K.
Applying Lemma 2.7(a) (in fact, since our assumption is |xq ,[lg<1, we
use the analogue of this lemma for the space with norm |-||z) we get that

1
<

Z Ak, 1) Z fx(k £

teLp feF

Notice that Cp:=w(gp) |ZteLF A, 1) ZfeFf(X(k, z))| =w(gr) |~ZteLFa(k, 7)
Y rer f(X@, )| and also that Lemma 2.12 remains true for f'e F.
We conclude that for each Fe B,

xka

Cr=w(gr)

Z Ak, 1) Z fx(k 1)

teLp feF

1 1 1
Soat o — > Ixela I +om > xilg N
Tk Jk+1 f€F feF

Now, we add over all FeB,. By Lemma 2.13, #Bg <m;. Also, by
Lemma 2.12 we have that the sets 4, ,, for fe )z B, F are mutually

disjoint, and the same is true for the sets 4; . We conclude that

m; 1 1
Y Cp<—F+— kaHfl‘f‘ﬁ Ixe s,

Feng Jr Jk+1
1 1 1 2
<}’7’!3 +m m; m;
Tk Jev1—1 T e

by Definition 2.8. This completes the proof of the lemma. ||

Proof of Proposition 2.9. Recall (Definition 2.11) that for our inter-
mediate lemmas we have assumed that supp ¢ nsupp x; # . If this is not
true, then we can set ko =min{k: supp ¢ nsupp ¥, # &} and construct in
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the same way u,’s, k=ky+ 1, ..., n, and { supported on UZ:,%H supp uy,
such that

_ 2
[p(xi)] S'//(“k)‘i‘m*, k=ko+1,...n

Jk

Setting u, =0, for k=2, ..., k, we have

@ < > ;“kxk>
k=1

for any choice of coefficients (4;)% _,.
For ¢(X 7 _, Axx;) we have

<Z Akxk> ‘ <k§12kx;c>

Using the previous estimate and Lemma 2.10 we get

(2, 70%)

<V | 10(52,) |+w<z uk|uk>+4 S 1l

k=2 =1 Jk

n n 2
<l 10Gaig 0 ( 3 Vel )+ 3 1l

k=2 k=2 Tk

Y Pl (o] + o).
k=1

<L | (1) + Lot )] + |<p(xzo>|)+w< S 1] uk>
k=2

n . 1
+4 ) |/“k|m7
k=1 i

n . "
<1 |xko|g+w<z |Ak|uk>+6 A
k=1

k=2 m;,

. . "
< max ww(z |Ak|uk>+6 S el 1
k=2 k=1 m

1<k<n n

2.16. DEFINITION. Let j =2, ¢>0. An (¢, j)-special convex combination
S brxy is called an (e, j)-RIscc. wrt K if the sequence (x;)7_,
is a RIS. wrt K and the corresponding integers (j,)7_, satisfy
JH2<ji1< o <Jpe

2.17. COROLLARY. If X% _ byx; is a (l/mf,j)-R.I.s.c.c. wrt. K and
@ € K with w(@)=1/m,, then
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16

o (3 boxe )| <2420, Y (a)
k=1 K
" 33
(/7<Z bkxk>< , if s<j.
k=1 mym;
1 " 17
—< b <—. b
4m,- kz=:1 Xk % om (b)

Proof. (a) Recall that the sequence (b;)} _, is decreasing. By Proposi-
tion 2.9,

n n b
<b1+1ﬁ<z bk“k>+6 Y mik’
k=1""%

k=2 'k

(£, 0)

where y € K with w(yy) =w(¢p)=s and |[u||, <16. By Lemma 2.4 we get

n 16
’(p(Z bkxk> <2by+—
k=1 s
for s> j, and
i 32 33
@(Z bkxk> <2b +——<——
k=1 ! Smj msmj

for s < j.

(b) The upper estimate follows from (a). The lower estimate is a
consequence of the fact that |x.|z>21 and the sequence (x;)7_, is
M;-admissible. ||

2.18. THEOREM. The space X,z , is arbitrarily distortable.

Proof. It follows from Lemmas 2.2 and 2.6 that for every j>2 every
block subspace Y contains a (1 /m}, j)-R.lscc. wr.t. K.
Fix iy € N large and define an equivalent norm ||-[| on X, , by

1
Il == llx]l +sup {@(x): @ € .
i
Let Y be a block subspace and let y=>a, v, €Y be a (1/m]?, j)-R.Ls.c.c.
for some j>i,, and z=>b;z;€eY be a (l/mﬁ), ip)-R.Ls.c.c. Then, by
Corollary 2.17,

Il st 2220 and ) >
myl<—+—=— . >—.
’ my, i i ’ 4
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On the other hand,

1
Izl =5 and 2 <17
This shows that ||-||| is a (1/10%) m; -distortion. Since i, was arbitrary,

this completes the proof. ||

The following remarks on the proof of Proposition 2.9 will be used in the
next section.

2.19. Remarks. Let ¢, X, ¥, u; be as in Proposition 2.9. It follows
from the proof of Lemma 2.15 that the functional y which is constructed
inductively following the analysis {K*(¢)} of ¢ satisfies the following
properties.

(a) There exists an analysis {K*(y)} of  contained in K’ such that,
for every ge UK*(y) there exists a unique fe UK*(p) with g=1i
moreover, if g ¢ K° then w(f)=w(g).

(b) The functional y is supported in the set
L={e; fe U{F:Fis a family of type I or II w.r.t. some X} }.

Moreover, for k=2, ..., n and for every family F of type I or Il w.r.t. x,, if
we set Vip=),cpsupp fand Wy={es feF} we have

@]y (X <¥lw,(ug) + Cr,

where we have set Cp=0 if F¢ By, .

(c) Let @p,=¢|J for some J=N. Assume further that ¢, has
the following property: For every k=2,.,n and every family
S={f1s f1i} € OK*(@) of type I or II w.r.t. Xy, either f;] ;(x;) =0 for all
i=1,.,0or f;|,(Xe) = fi(X) for all i=1, .., L

For k=2, ..., n, we let

L, ={es: fbelongs to some family of type I or II
w.r.t. X, and supp f nJ # &}

and we set Y, =y | JZ_, Li. Then it follows from (b) that

_ 1
lp2 ()| < Yo (ug) +—, k=2, .. n.

Jk
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3. THE SPACE X

We pass now to the construction of a space X not containing any
unconditional basic sequence. It is based on the modification X,y ,. Let
K=U,U; K} be the norming set of the space X, ,. Consider the
countable set

G={(xf,x} .. x}rkeN,x}eK,i=1,.,kand x{ <x¥< .- <x}}.

There exists a one to one function @: G — {2/} 72, such that for every

(x{, ..., x§) € G, if j; is minimal such that x{ € o/ and j,= D(x{, ..., X/ 1),
[=2,3, .., k, then
D(xf, oy xF)>max{j, .., ji}-
DEFINITION OF THE SPACE. Forn=0, 1, 2, ..., we define by induction sets
{L}} 2, such that L7 is a subset of K.
For j=1,2,.., we set L}={+e,:neN}. Suppose that the {L}}*,
have been defined. We set L"= )72, L7 and

Lit'= + LT o{5(xf+ - +x)):deN,xFel",
d<min supp x{ < --- <min supp xJ,
supp x;* nsupp xj = ¢ fori#1},

and for j> 1,

1
L’;j“ = iL'z’ju{m(x{"—i- e+ xX)rdeN, xFel”
2j

(supp x§, ..., supp x¥) is %2j-admissible},

1

22j+1

L/n+l_ iL,zlj+1 U{

= (xf+ - +xk)deN,
xfFell forsomek>2j+1,

xXF€Lgn . x yforl<i<d

s

and (supp X{*, ..., supp xJ) is .4y, , -admissible},

Lo ={Ex* x*eLy*! seN, E,={s,s+1,..}}.

2j+17 2j+1>

This completes the definition of L}, n=0, 1,2, .., j=1,2,... It is obvious
that each L7 is a subset of the corresponding set K7.
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We set #,=),_, (L" \L®) and we consider the norm on c,, defined by
the set L = LO (U1 %;). The space X is the completion of ¢y, under this
norm. It is easy to see that {e,} 2, is a bimonotone basis for X.

Remark. The norming set L is closed under projections onto intervals,
and has the property that for every j and every .#,;-admissible family
1> f25 - fq contained in L, (1/my;)(f1+ --- + f;) belongs to L. It follows
that for every j=1, 2, ... and every .#,;-admissible family x; <x, < --- <X,
1 Co,

— Z X -

My =1

n
Z Xk
k=1

For the same reason, for &-admissible families x; <x, < --- <x,, we have

n

2 X

k=1

n
>3 Z e -

We note however that such a relation is not true for &-allowable families
(x;). Of course, if it were true, it would immediately imply that the basis
{e,} is unconditional.

For ¢>0, j=2, .., (& j)-special convex combinations are defined in X
exactly as in X, , (Definition 2.5). Rapidly increasing sequences and
(&, j)-R.I. special convex combinations in X are defined by Definitions 2.8
and 2.16, respectively, with K= L.

By the previous remark we get the following.

3.1. LeMMA. For j=2,3,.. and every normalized block sequence
{xx} &y in X, there exists a finite normalized block sequence {y }"_, of
{xx} such that 7_, a,y, is a seminormalized (1/m}, j)-s.c.c.

By Corollary 2.17, we have:

3.2. PROPOSITION.  Let Y} _, byxy be a (1/m3, j)-RAs.cc. in X. Then,
for ie N, @ e B, we have the following:

” 33
o(S b )< i< (a)
‘ k=1 o m;m;
16 .
‘ (Z bkxk> +2b1, if i=] (b)

In particular, | Y5 _ bex, || <17/m;.
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3.3. PROPOSITION. Let j>100. Suppose that {j}i_i» {Veli_i
{yiE}i_y, and {0} % _, are such that

(1) There exists a rapidly increasing sequence (w.r.t. X)
(X k=1, ni=1,.,n}

With Xg 5 <X iv1) <X@ 41, for all k<n, i<ng, [<ng,, such that:

(a) Each xy ;) is a seminormalized (l/m;.tk 2 Jik p)-s-c.c. where, for
each k&, 2j, +2 < ju o, i=1, ..., ng. '
(b) Each y, is a (l/mgjk,2jk)-R.I.s.c.c. of {X. 0} of the form
Yie= 2051 D,y Xk iy
(c) There exists a decreasing sequence {b;}%_, such that
Sioybeyiisa (1/mj, . 2j+1)-s.c.c.
(1) & €Ly, yi(yi) = 1/4m,; and

supp ¢ < [min supp yy, max supp y;].
(i) 1/17<0, <4 and yj(my; 0, y,) = 1.
(iv) j1>2j+1 and 2j,=P(y§, .., yE_1), k=2, .., n.
Let e, =(—1)**' k=1, .., n. Then

Z Skbkakmzjkyk
k=1

300
2
2j+1

<

Before presenting the proof of Proposition 3.3 let us show how from it
the main result of this section follows.

3.4. COROLLARY. The space X is Hereditarily Indecomposable.

Proof. 1t is clear by the choice of the sequences { y;} ¢ _1, {¥&} i, in
Proposition 3.3 that the functional ¢ = 1/m,; ,; 37 _, yi belongs to L and

that y(3% _ bemy; Or yi) = 1/my; . 1t follows that

1
=

Z bkajkOkyk .
k=1 2j+1

To conclude that X is Hereditarily Indecomposable, it remains to show
that, for every j> 100 and every block subspaces U and V of X, one can
choose {y.} and {yj} satisfying the assumptions of Proposition 3.3 and
such that y, e U if k is odd, y, € V' if k is even. The proof of this is the same
as that of Proposition 3.12 of [3], so we omit it. |
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Proof of Proposition 3.3.  Our aim is to show that for every p e )2 | 4,,

i 300
@ ( Z gkbkekm2jkyk> S—>—.

k=1 2j+1

The proof is given in several steps. We give a brief description.

For k=1, .., n, set z;, =0, m,; y,. Then by the assumptions about y, and
Proposition 3.2 we have 1 = yF(z,) < ||z, || < 170, < 68.

We consider separately three cases for ¢:

Ist Case. w(p)=1/my; ;. Then ¢ has the form ¢ =(1/m,;,)(EVE
+ Y€t FYE+ZE 1+ - +2f) where E is an interval and
z¥ 41 # Vi 41 For the action of ¢ on the part Zflz_kllﬂ e bz, we have an
obvious conditional (i.e., depending on the signs) estimate using the
monotonicity of the sequence (b;)%_,;:

ky—1
‘(P< Z 8kbk2k>

k=k +1

<7

bk1+ 1+
Myj1

For the remaining part we get an unconditional estimate using Proposi-
tion 3.2. In particular, if kK >k, + 1 then, since @ is one to one, we have
Jky+1 # Jx and, for s=k, +2, ..., d, if 1, is such that z} € %,, then ¢, # j;. In
Lemma 3.5 we show that in this case |p(z,)| < 1/m§j+2.

Using now the trivial estimates |@(z,)| <68 for k=k,, k,,k,+1 and
¢(z;) =0 for k<k,, as well as the fact that max b, < 1/m‘2‘j+1, we obtain
the desired result.

2nd Case. w(¢p)<1/my;,,. Then we get an unconditional estimate for
QX7 _ exbrz;) directly, applying Proposition 3.2 (Lemma 3.7).

3rd Case. w(@)>1/my; . Fork=1,..,nwehavey, =37 bu sXu ;
where the sequence {x. ,:k=1,.,ni=1,.,n} is a RLS. wrt L.
We fix an analysis {K*(¢)} of ¢. It follows by Proposition 2.9 that there
exist a functional  eco(K’) and blocks of the basis uy ;, k=1,..n,
i=1,.,n with |ug,l, <16 for all (k, i), such that, setting
Ve =0imp;, 7% b Ui, 1y» k=1, ..., n, we have

’§0< Z gkbkzk>
k

=1

k=1 m2j+2
However, since the estimate that we get in this way is unconditional, it is
insufficient. So, we partition ¢ into two disjointly supported functionals ¢,
and ¢,, defined as follows.
For every fe uK*(p) of the form f=1/my; (EVE +yE 1t - +
yvitzh i+ - +zF) in JK°(p) where E is an interval, we set
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If =y 2+ -+ + yi, for an appropriate k’>k,. For the other functionals
fe UK (@), we set If =0. We define ¢ = @| ,quppir and @, =9 —¢@,. We
let s, be the projection of y corresponding to ¢, and vy, =y — ;.

In Lemma 3.9 we show that the pair ¢,, ¥/, satisfies the assumption of
Remark 2.19(c). It follows from this remark that

‘?2( z Skbkzk>

k=1

<lﬁ2<i bkvk>+

Myjy2

Further, in Lemma 3.11(a) we show that v, (X} _, byvy) <257/m3; .
Finally, in Lemma 3.11(b) we obtain a conditional estimate for

@135 _1 exbrzy), namely,

’(91 < Z ’gkbkzk>

k=1

S5
2j+1

3.5. LeMMA. Let j, { ji} 5 _1, and { y;} ¥ _, be as in Proposition 3.3. Sup-
pose that 2j+1<t,< --- <ty and let {z¥}9_, be such that z} < --- <z},

zy €y, and (1/my; 1) (2§ + - +25) €SBy . Assume that for some
k= 1, 2, e 1, jk ¢{t1, ceey td} T/’lel’l,

1
<——

2
my; 1

( 5 22 ) (a0

s=1

Proof. Each y,isa(1/m3; , 2j;)-R.Ls.cc. of the form y, =37 | b Xk, -
Let s, <d be such that s, =max{se {1, .., d}: 1,<j}.

If s<s;, by Proposition 3.2(a) we get |zJ( )| <33/my, m,; and so,
using that 2j+ 1<, < --- <t, and that the sequence {m;} is increasing
sufficiently fast, we get

SRR I

2j s=1

(*)

@ 22 ) (0

=1

~ 2 .
My, 2my5;  ,Ny;

For every s>s; + 1 set

d
D,= {i: SUPP X4, ;) O SUPP ZF =Supp Xz 5 NSUPp Y. z;“}.

t=s1+1

The sets D, are disjoint. Put /= {s>s,+1: D, # &} and

d
T= {r: 1 <r<mng,supp X ,Osupp Y zi# @}\U D;.

t=s1+1 sel
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Then,

<y

sel

( 5 22 ) (3

s=s5+1

z:‘(Z b(k,r)x(k,r)>’

reD

+

S o (x b(k,,>x(k,,)>‘. (1)

s=s1+1 reT

It follows from Proposition 3.2 (b) that for every s€/,

16
Zs*< > b(k,r)x(k,r)>‘ <E+2b<k,m» (2)

reDy s

where ry=min D,. Since by the definition of D, we have that
{max supp X, .} ses € Ay 1, then

1
B ry <—5 (3)
sze:l (o) mgjk

Since (1/my; )(z{ + --- +zJ)€Hy;, 1, as in Lemma 2.7(a) we have

a * Myj41 1
Y 2 X bunXun || < <—5 4)

1
s=s;+1 reT my; 2j,

By (1), (2). (3), (4), using that j <t , 1, m,,,>m}, and that 2j+2 <2/,
we have that

Zs Vi) | S < BET
y s=s51+1 m2t§ m;jk mgjk 2m§j+2m2jk

s=s1+1

Therefore, by (x) and ( * = ), we get
1

2
2j+2

<

d
<Z ) (3, 32)

=1

3.6. LEMMA.  Let j, {jieti_1s {viticis (vt 05—, and
{ex} % _y be as in Proposition 3.3. For every ¢ € %,;,, we have

1

<— .
2j+1

’(P< Z Ekbkﬁkmzij’k>
k

=1

Proof.  Let @ =(1/my; JEYE + Vi 1+ - + Y&+ 260+ - +20),
where E = E| for some s and z} . # yf 1.
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100
For k=1,2,...,n we set z; = 0,m,; y;, hence yi(z;) =1. Since {b;} is
decreasing,
ky—1 1 ky—1
‘€0< Z Ekbkzk> = Z exbi YiE(ze)
k=k +1 Maji1 =t +1
1 k1 1
= Y. ehi| S ——bp 11s (a)
Maji1 lg—iy+1 2j+1
and
1 68
lp(ze,)| = |EVE (Zi)] S — Iz, | < : (b)
My i1 Myji1 Myji1
For z,, we have
o)l <o — e 4| T ) e
)| < vE(z z¥ ) (z)).
Ky " 2k, Myt \eZ0 k k,

2j+1

If k>k,+ 1, then zff € By, where 21, =P(yf, .., y§, ., zF_1). Since D is
one to one, 21, # D(y{, ., Vi, —1) =2jx,- Thus, by Lemma 3.5,

1 d 1 0, 1
2 Z/;k(zkz) < 2 < 5
Majt1 =ty +1 Mapjp1 My 0 My
and so,
2
|p(z1)| < ——. (c)
Myj41

In a similar way, for z; ., we have

1 69
(o)l S —— |2 1 (20 )] + < Y ot )| <
2j+1 2j+1 [ \k>ky+1 Myj1
(d)
If k <k,, then ¢(z;)=0. By Lemma 3.5, for k >k, + 1 we have
d 1 %) 1
(24| = Y zHz)| < <. (e)
2j+1 lp=ty+1 Mayjp1 My My

Putting (a)-(e) together and wusing that, since Y by, is a

(1/m3, 1, 2j+1)-scc., by <1/m3; |, we get the result.
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3.7. LEMMA. Under the assumptions of Proposition 3.3, let ¢ € A, for
r=2j+2. Then,

S5

2j+1

‘(ﬂ< Z 8kbk9km2jkyk>
k

=1

Proof. 1f ji,>r then, by Proposition 3.2(a), [¢p(0xny;, yi)l <
4(33/m,) < 132/my; 5.

If ji<r the, by Proposition 3.2(b), [@(0,m,;, y)l <64m2jk/m,+8/m§jk.
So, for jie=r, we have |p(0,m,; y,)| <65 and, for j,<r, using the
lacunarity of the sequence {mj};’o:l, we have |p(0,my; yi)| <
1m3, <1/m3; .

Since max b, < 1/m3,, ,, we get

132 1 65 1

< +

’ (P< Z gkbkekm2jk yk>
k

<
2 7 S3 -
—1 Myjio My;pq Myipy My

3.8. PROPOSITION.  Let j, {jiti_1s {Vetio1s {vEtioy, {0i_qs
{ex} % _, be as in Proposition 3.3. For every ¢ € %,, r<2j+ 1, we have

262
2

< .
2j+1

’(P< Z gkbkgkajkyk>
k

=1

The proof is based on Proposition 2.9. We first need to introduce new
notation and establish several lemmas. We have y, =37, b »X » and
the sequence {x . k=1,..,n,i=1,..,n} isa RLS. wrt. L. By Proposi-
tion 2.9 there exist a functional y € K’ and blocks of the basis uy ,,
k=1,.,n, i=1,..,n, with Y€ .o/}, supp u ;) =supp X s> Uyl <16
and such that

n ny
’? < Y exbilpmy; < > b X, i)>>’
. :

=1 i=1

n k, l
<91mzjlb1b(1,1)+lﬁ< Z bkgkaJ'k ( Z b, i)“(k,i)>> t—
k=1 i

i=1 2j+2

n k, 1
<y < Y by 0,my;, <Z b, U, i)>> +

k=1 i=1 Majt2

Recall that the construction of  and ug , is done via some analysis
{K*(¢)} of ¢ and some restriction on the support of x; ,, which we denote
by X - Let {K*(¢)} be the analysis of ¢ which we use to construct y.
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Let fe UK’ (@) be of the form f = (1/my; )(EyE +yE 1+ - +VE+
z§ 41+ -+ +zf), where E is an interval of integers {p, p+1,..}. For each
t=1, .0,y =27 by nXqy- Put

k/’=min{re{k,, .., k,—2}:supp Eyfnsupp X, ; #
for someie{l,2, .., n}}.

Set

If = (V& 42t - +VE),

Myj41

while for the other functionals in |J K*(¢) set If =0.
We set

(plz(p|usupp1f and Pr=¢Q —@;q.

Recall that, for f'e U K*(¢p) which is a member of a family of type I or
type II w.rt. X ,, we have defined e,=min{m: mesupp fnsupp X ,}.
Let

P= U{Fc UK*(p): Fis a family of type I or type II w.r.t. some X ,}.
The functional  is supported in the set {e,: fe P}. We set

lplzlp|{ef:fEPandfis in the analysis of ¢} and ¢2:l//7lpl'

As in the previous section without loss of generality we assume that
Supp @ N supp X, 1y # .

3.9. LEMMA. (a) For every f, ge U K*(¢@) with f# g and If #0, Ig #0,
we have supp If nsupp Ig = .

(b) Let F={f1,... f;} =€ UK*(p) be a family of type I or type II
w.rt. X, . Suppose that for some pe{l,.. 1}, supp f, Ssupp @,. Then,
supp f, Ssupp ¢, for every re {1, .., [}.

(c) Let F={f1,... [i} = UK*(¢@) be a family of type I or type II
w.rt. X . Suppose that for some p=1,..,1, supp f, Zsupp ¢,. Then
fp |supp (pz(f(k, i)) :fp(f(k, i))‘

(d) Let F={f1,... i} =€ UK*(¢@) be a family of type I or type II
w.rt. X - If supp f, &supp @, for some p=1, ..., I, then, for all r =1, ..., I,
fr|supp¢2(f(k, i)):fr(x(k, i))'

Proof. (a) Let f=(1/my((EVE+ - +yE+zi 1+ - +25) and
g=(my )(EyF+ - +yE+zf g+ - +2f). If supp frsupp g # ,
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then either supp f<supp g or supp g =supp f. Suppose that the first is
true. Since supp yF< [min supp y,, max supp y,], it is impossible to have
supp f<supp yif for any ¢, </<t,. It follows that supp f<supp zF for
some t, + 1 << t;. This implies that supp If nsupp Ig = .

(b) Let F={f), .., f;} be a family of type I or type II w.r.t. X, , and
suppose that supp f, =supp ¢, for some p. If #F=1 there is nothing to
prove. So assume that # F>2. Let gz be the functional in () K*(¢) which
contains F in its decomposition. Since f, € UK*(¢;), we have that f,
belongs to the analysis of If for some If = (1/my; (Y} o+ - + yi)- It
follows that k/+2 <k <k, and /, belongs to the analysis of y. We have
to show that supp g =supp y7 or equivalently that g, does not coincide
with f. If w(gp) =21 then we get supp g Ssupp y¥, since w(f)<3i. If
w(gp) <3 then, since #F>2, F is of type 1 and again we get
supp gz Ssupp y;, since (J,. rsupp f intersects only supp X ;.

(¢) Suppose that supp f, Nsupp Ig # J for some g = (1/my;, )(Ey;
+ o+ yE Azt - +2E)e UK (@) Then either supp f, =supp g
strictly or supp g Ssupp f,. In the first case we get that supp f, =supp yf
for some k¢ +2<I/<k, and so supp f, Ssupp ¢,, a contradiction. In the
case supp g Ssupp f,, since supp g N supp X e ,) 7 & for some ¢, we get
by the definition of families of type I and type II w.r.t. X ; that k <k®. So
Ig=(1/my; 1)Vl 2+ -+ + pi) does not intersect X . It follows that
(fy 1y lsupp 1) (¥et. ) = £, (X, ). Since supp @, = U, supp Ig. we conclude
that (f, | supp qoz)(x(k, ) =J1p (X i)

(d) It follows from (b) and (c). |

3.10. LEmMmA. For ¢, we have

n nk
‘(/)2< Z Skbkekm2jk ( Z b(k, )Xk, i)>>‘

k=1 i=1

n ny 1
<Y, < Y b0, my;, <Z b, Uk, i)>> +

k=1 i=1 2j+2

Proof. By Lemma 3.9(d) we have that ¢, satisfies the assumptions of
Remark 2.19(c). The proof follows from this remark. [i

3.11. LEMMA.

" 257

‘@2( > gkbkekaJkyk> S (a)
k=1 2j+1
” 4

@1 Z 8kbk9km2]kJ’k <— . (b)
k=1 my; 1
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Proof. (a) By Lemma 3.10 it suffices to estimate

n e
28 < Y bilOpmy,, (Z b, nUix, i>>>-

k=1 i=1

Recall that u ; is of the form uy =3 ,.c, ) @m€m>, Where a,,>0 and
Smedq ) dm<16. Let {K°(1,)} be the corresponding analysis of 1/,. For
k=1,2,..nset

e
D¥ = {me (J A »: forall fe () K*(¢,) such that

i=1 K}

1
mesupp £, w(f)> }

mzjk

My
D% = {m € |J A, i there exists f € () K*(,) such that

i=1 s

m
My, ’

My
Dk = {me J A »: m¢ D5, there exists fe () K*(¢5)

i=1

mesupp fand w(f) <

1

ijk

with m e supp f, w(f) =

and there exists g € () K*(,) with

supp f < supp g strictly and w(g) <

1
b
Mmyjio

3
Dk= {me U 4w m ¢ D%, there exists f'e () K*(¢,)

i=1

1

with mesupp f, w(f) =

2j

and for every ge () K*(,) with

1
supp f=supp g, w(g) = }

Myj41
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Then, Uy _, D=7, supp ugy, ;) N supp ¥,. For every k,

16 1
2 |D’2‘<bk0km2jk <Z byt i)>> < biOmy, <
- Maj+1  Maj,
thus
1
b0, 1. T . 1
Vol o, ot <§ K 0rmaj, <Zl: (k, D Uik, z)>> %mz]k — (1)
Also,
16 64
sl U, DE (Z by, ms;, <Z b, U, i)>> <Y bty S - (2)
% f P Myjio  Myjgn

For k=1,2, .., n, |l//2|Dk|21k_1 <1 (see Notation after Lemma 2.2). So,
by Lemma 2. 4(b)

32 128
¢2|D’1‘ <bk9km2jk <Z bk, Uk, i) >> <bplpmy;, ——<by
i m2fk ijk

Hence,

128 1

my;, m2j+2

123 v, D <Z bkgkajk <z b(k, DUk, i)>> <Z by (3)
k i

For every k=1,..,n, i=1,.., 1, and every mesupp ug ; N D%, there
exists a unique functional f%:™el|) K5(y,) with mesupp f,
w(f)=1/m,; and such that, for all gelJ, K*(y,) with supp f<supp g
strictly, w(g)>1/m,;,,. By definition, for k#p and i=1,..,n,,
mesupp ug, ,, we have supp f*>™ Dy = Also, if f&rm £ florm
then supp f®& 4™ ~supp f%rm = .

For each k=1, .., n, let { %"} | = UK*(p) be a selection of mutually

disjoint such functionals with D%= )% , supp f*". For each such func-
tional /%, we set H* =supp f** and

afk t= Z b(k i) Z a

meH

Then,

e <bk9km2jk <Z bk, U, i)>> <biOrag:. ()
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Cram.  Let Dy=U%_, Df. Then y, | p,(2k DrOrcm), (2i D, iyt 1)) <
256/m§j+1.

Proof of the Claim. We shall define a functional ge K’ with |g|3;<1
and blocks u, of the basis so that |u ||, <16, supp u, = U; supp u, ; and

¥2lp, (Z b 0,my;, (Z b e, Uk, 1) >> <g <2 > bkek”k>a
K i k

hence by Lemma 2.4(b) we shall have the result.
For f=(1/m,) Z=1 1 €Uy K5 (Y2 p,) we set
J={1<p<d: f,=f""forsomek=1,..,nt=1,..r.,
T={1<p <d: there exists /* with supp f**<supp f, strictly}.
For every fe U, K*({|p,) such that JuT= we set g,=0, while if

Ju T# & we shall define a functional g, with the following properties: Let
Dy=\,csorsupp f, and u, =3 apmepm:, Where e = Comin #*- Then,

(a) supp g,<Ssupp f.
(b) greK and w(g,) =w(f),
(c) f|Df(Zk b Orcmy; (325 b nythie, ) < 8p(2 2k breOreuy).

Let s>0 and suppose that the g, have been defined for all fe

UiZo K (Y2l p,) and let f=(1/my)(f1+ -+ + fa) € K* (Y2 | p )\K* ' (V2] p,)
where the family (j;,)jzl is ./ ;-admissible if g > 1, or .¥"-allowable if g = 1.
We consider three cases:

Case (i). 1/m,= l/mzjko for some k,, 1 <k, <n. Then f =% for some
t and we set g, = efi... By (x) we get

f<z by Orms,, <Z b, iUk, >> = bk00k0m2jk0f<z by, iUk, i)>
k i i
<bk00koafk0,t
- bkoakoafko, te’;lfko, t(efko, t)

= gf(bk0 ekouko)-

Case (ii). 1/m,>1/m,; ;. Then if JU T # &, set

1
S
q

<z g+ Y gfp>.

peJ peT
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For peJ, f,= f* " for some (k,, 1) and by (),

k i
For pe T we obtain by the inductive hypothesis

f;; <Z kakajk <Z b(k, DUk, i)>> < 28]}, <Z bkgkuk>-
k i k

Therefore,

f<Z b0, my;, <Z b, iy Ui, i >>
k i

1

=— X / <Z bylrmsy,;, <Z bue e, 1)>>

q peJuT
< gf<2 > bkﬁkuk>.
k

Since supp gy, Ssupp S ey €supp f, and JnT=(J, we have that the
family {e}: pelJ}u {gr:pe LT s M ';-admissible if ¢ > 1, or ¥"-allowable
ifg=1, therefore gr€. sz/’

Case (iii). 1/m,=1/my;, . Suppose that f, € T. Then, by the definition
of f&*and T, w(f,) = 1/m,; . On the other hand, recall (Remark 2.19(a))
that  is defined through ¢, so that every functional in () K*(y) has the
same weight as the corresponding functional in (J K*(¢). So, in this case,
by the definition of Lj;,,, we get that w(f,) <1/m,; , for every p. It
follows that T'= (.

Recalling also the definition of If'and /,, we get that in this case #J < 3.
Let J={pi, ps. ps} and f, = f*% 4=1,2,3. Set g,= %(e}’;l +ef +ef).
By (%), fpi(zk bkgkmzjk(Zi b(k, Uk, i))) <bk20kﬂfpls A=1,2,3. Thus,

lef <Z bkekajk <z b, iyt i, >> z bkﬁklaf
k i —

||Mw

k)gkﬂf (e }k)

k

This completes the proof of the Claim. By the Claim and relations (1), (2),
(3), statement (a) follows.
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(b) We have from Lemma 3.9(a) that for f, e U, K*(p), f# [,
supp If nsupp If' = . ()

For f with If#0, let If =(1/my | )(yF+ -~ + y},,). Since {b;} is
decreasing,

b

‘U(Z gkbkekm2jkyk> <—F—. (%)
* Myj41
Set
I, = {If: there exists 1€ () K*(¢) with
. 1
supp If < supp 4 strictly and w(h) < },
Myji1
I,= {If: for every he () K*(¢) with
) 1
supp If = supp h strictly, w(h) = }
mzj
Set also

A;= ) suppIlf and A,= ) suppIf.

Ifel; Ifel,
Then, by ( # ) and ( * * * ),

1
<

.
2j+1

’(Pl |A1 <Z Ekbkekmzij’k>
K

For If eI,, we set
k(f)=min{l y}is in the decomposition of If},
T={k=1,.,nk=k(f)for some If € I,}

and, for k=k(f)e T, [, =min(supp y, nsupp If).
Using (#*) and (*#%) we construct in a similar way as in part (a) a func-
tional ge K’, |g|3;<1 such that

<g< 2 bkelk>~

keT

’(Pl |A2 <z ’gkbkgkajkyk>
k
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Then by Lemma 2.4(b) we have the result. This completes the proof of the
lemma. Proposition 3.8 follows. |

Proposition 3.3 follows from Lemmas 3.6, 3.7, and Proposition 3.8.
3.12. Remark. The space X is reflexive.

The proof of this is similar to the proof of Theorem 1.27. We need to
prove that: (a) The basis (e,), is boundedly complete. (b) The basis
(e,), 1s shrinking. The proof of (a) is exactly the same as that of
Theorem 1.27(a). For (b) we also follow the proof of Theorem 1.27(b). We
just need to notice that the norming set L of X satisfies the properties of
the set K which are used in that proof.
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