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We study the modified and boundedly modified mixed Tsirelson spaces
TM[(Fkn

, %n)�
n=1] and TM(s)[(Fkn

, %n)�
n=1], respectively, defined by a subsequence

(Fkn
) of the sequence of Schreier families (Fn). These are reflexive asymptotic l1

spaces with an unconditional basis (ei) i having the property that every sequence
[xi]n

i=1 of normalized disjointly supported vectors contained in (ei) �
i=n is equiv-

alent to the basis of ln
1 . We show that if lim %1�n

n =1 then the space T[(Fn , %n)�
n=1]

and its modified variations TM[(Fn , %n)�
n=1] or TM(s)[(Fn , %n)�

n=1] are totally
incomparable by proving that c0 is finitely disjointly representable in every block
subspace of T[(Fn , %n)�

n=1]. Next, we present an example of a boundedly modified
mixed Tsirelson space XM(1), u=TM(1)[(Fkn

, %n)�
n=1] which is arbitrarily distortable.

Finally, we construct a variation of the space XM(1), u which is hereditarily indecom-
posable. � 1998 Academic Press
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INTRODUCTION

Given a sequence (Mk)�
k=1 of compact families of finite subsets of N and

a sequence (%k)�
k=1 of reals converging to zero, the mixed Tsirelson space

T[(Mk , %k)�
k=1] is defined as follows.

T[(Mk , %k)�
k=1] is the completion of the linear space c00 of the sequen-

ces which are eventually zero under the norm & }& defined by the following
implicit formula: For x # c00 ,

&x&={&x&� , sup
k

%k sup { :
n

i=1

&Eix& : n # N, (Ei)
n
i=1 is Mk -admissible== .

(1)

Here, for E/N, &Ex& is the restriction of the vector x on the set E and,
for a family M of subsets of N, an M-admissible sequence is a sequence
(Ei)

n
i=1 of successive subsets of N such that the set [min E1 , ..., min En]

belongs to M. Mixed Tsirelson spaces were introduced in [3]. However,
this class includes the previously constructed Schlumprecht's space [16]
which initiated a series of results answering fundamental and longstanding
problems of the theory of Banach spaces. The remarkable nonlinear trans-
fer by Odell and Schlumprecht [13] of the biorthogonal asymptotic sets
from Schlumprecht's space to lp , 1<p<�, which settled the distortion
problem, indicates the impact of the new spaces on the understanding of
the classical Banach spaces. On the other hand, these new norms led to the
discovery of the class of hereditarily indecomposable (H.I.) spaces [9], that
is, spaces with the property that no subspace can be written as a topologi-
cal direct sum of two infinite dimensional closed subspaces. As it was
proved by Gowers [8], the H.I. property is a consequence of the absence
of unconditionality in the sense that every Banach space which does not
contain any unconditional basic sequence has an H.I. subspace. Gowers
and Maurey [9] have proved that the H.I. spaces have small spaces of
operators; it is a fundamental open problem whether there exists such a
space with the property that every bounded linear operator T : X � X is of
the form T=*I+K where K is a compact operator. On the other hand, a
recent result of Argyros and Felouzis [4] shows that a large class of
Banach spaces that includes lp , 1<p<�, are quotients of H.I. spaces.

In the present paper we study variations of mixed Tsirelson spaces which
we call modified mixed Tsirelson spaces. Given a family M of finite subsets
of N, a sequence (Ei)

n
i=1 of subsets of N is called M-allowable if the sets

Ei are disjoint and the set [min E1 , ..., min En] belongs to M. The modified
mixed Tsirelson space XM corresponding to the mixed Tsirelson space
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X=T[(Mk , %k)�
k=1] is the Banach space whose norm & }& satisfies the

implicit equation

&x&=max {&x&� , sup
k

%k sup { :
n

i=1

&Eix& : n # N, (Ei)
n
i=1 is Mk-allowable== .

(2)

We also consider boundedly modified mixed Tsirelson spaces that lie
between X and XM . Such a space is denoted by XM(s) , for some s # N, and
its norm is given by an implicit formula analogous to (1) or (2) where the
inner ``sup'' is taken over all Mk -allowable families for 1�k�s and over
all Mk-admissible families for k�s+1. It is clear that the modified and
boundedly modified mixed Tsirelson spaces which are defined by a sub-
sequence Mk=Fnk

of the sequence of Schreier families (Fn)n have the
property that, for every n, every normalized sequence (xi)

n
i=1 of n disjointly

supported vectors with supports contained in [n, �) is %1 -equivalent to the
basis of ln

1 .
The modified Tsirelson space TM was introduced by W. B. Johnson [10]

shortly after Tsirelson's discovery [19]. Later, P. Casazza and E. Odell [6]
proved that the modified Tsirelson space is isomorphic to the original one.
The use of the modified version of the norm in the 2-convexification of T
is crucial for the proof of the fact that it is a weak Hilbert space. The rela-
tion between modified mixed Tsirelson norms and the corresponding mixed
Tsirelson norms is in general quite different from the one between T and
TM . To explain the situation we restrict our attention to the two main
examples of mixed Tsirelson norms.

The first is Schlumprecht's space S [16] defined by Mk=Ak=
[A/N: *A�k], and %k=1�log2 (k+1). The second is the space X intro-
duced by Argyros and Deliyanni in [3], defined by a certain subsequence
(Fnk

)k # N of the sequence of Schreier families (Fn)n # N and an appropriate
sequence (%k)k # N . It is known that c0 is finitely representable in every
infinite dimensional subspace of S and we show here that the same holds
true for X. From this we easily see that the modified versions SM , XM are
totally incomparable to S and X, respectively. Schlumprecht observed
further that although his space S is reflexive, the space SM contains l1

[17]. On the other hand, as we show here, the space XM remains reflexive
and contains no lp . This is the first property where we do not have an
analogy between S and X. The result is somehow unexpected since XM ,
being an asymptotic l1 space, has richer l1 structure than SM . These results
raise naturally certain questions related to the structure of SM and XM . For
example, it is not known if SM is l1 -saturated or if XM is arbitrarily distortable.

The results mentioned above are presented in Section 1. More precisely,
we prove that if lim %1�n

n =1, then c0 is finitely representable in every
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finite dimensional subspace of the space T[(Fn , %n)�
n=1]. Next, for an

arbitrary null sequence (%n)n , we show that the modified mixed Tsirelson
space TM[(Fn , %n)�

n=1] is reflexive. As a consequence we get that the
2-convexifications of such spaces yield weak Hilbert spaces not containing
l2 and totally incomparable to T (2).

In Section 2 we consider a boundedly modified mixed Tsirelson space of
the form XM(1), u=TM(1)[(Fkn

, %n)�
n=1] for a suitable choice of (Fkn

) and
(%n). We show that this space is arbitrarily distortable. This result is related
to the question: Does there exist a distortable Banach space of bounded
distortion? By [11, 12, 18] such a space must contain an asymptotic lp

subspace with an unconditional basis which contains ln
1 's uniformly; so the

search turns to asymptotic l1 spaces with an unconditional basis. By [3]
(also [2]), the class of spaces T[(Fn , %n)n] provides examples of such
spaces which are arbitrarily distortable. However, it is not known whether
the original representative of this class, Tsirelson's space T, is arbitrarily
distortable, or whether it contains an arbitrarily distortable subspace. The
space XM(1), u constructed here is closer to T than T[(Fn , %n)n], in the
sense that it has more homogeneous l1 structure.

In Section 3 we construct a space X based on XM(1), u which is
hereditarily indecomposable. The basic idea for the definition of X comes
from [9].

The strategy in proving these results is similar to the one followed in
[3]. We briefly explain the idea. In order to prove that XM(1), u is
arbitrarily distortable, we start with a set K=��

j=1 Aj of functionals which
define the norm of the space. Each set Aj contains functionals of the
form %j �n

l=1 f l where the [ fl]n
l=1 are disjointly supported functionals

in the dual ball and the family [supp fl]n
l=1 is Fkj

-allowable if j=1 or
Fkj

-admissible if j>1. Our goal is to show the following.
There exists c>0 such that for every block subspace Y of XM(1), u and for

large j there exists yj # Y with &yj&=1 satisfying

&yj &rsup [ f ( yj): f # Aj], (3)

| f ( yj)|�c%i for all i< j, f # Ai . (4)

These two conditions imply that XM(1), u is an arbitrarily distortable space.
The fundamental objects that we use in order to find such vectors yj are

the (=, j)-basic special convex combinations. The (=, j)-basic s.c.c. are convex
combinations of the basis (en)n # N of the space XM(1), u whose normaliza-
tions satisfy conditions (3) and (4) if = is small enough. The choice of (%n)n ,
(Fkn

)n ensures that for every j�2 and for every infinite D�N, there exists
an (=, j)-basic special convex combination supported in D.

Next we show that in every block subspace Y of XM(1), u and for every
j�2 we can choose a normalized vector yj in Y with the following: for
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every i and every f # Ai , there exist an (=, j)-basic special convex combina-
tion xf and a functional gf # Ai such that

| f ( yj)|�Cgf (xf)

for some constant C. Thus, we reduce the estimation of the action of Ai on
yj to the estimation of the action of Ai on basic special convex combina-
tions. Our basic tool for this proof is the analysis of a functional
f # ��

i=1 Ai which is the array of functionals used for the inductive
construction of f.

In the case of the space X with no unconditional basic sequence which
is constructed in the third section, the scheme of ideas is similar with some
additional difficulties coming from the existence of the dependent chains of
functionals.

1. MIXED TSIRELSON SPACES AND
THEIR MODIFIED VERSIONS

A. Preliminaries

Notation. Let (ei)
�
i=1 be the standard basis of the linear space c00 of

finitely supported sequences. For x=��
i=1 aiei # c00 , the support of x is the

set supp x=[i # N: ai {0]. For E, F finite subsets of N, E<F means
max E<min F or either E or F is empty. For n # N, E/N, n<E (resp.
E<n) means n<min E (resp. max E<n). For x, y in c00 , x< y means
supp x<supp y. For n # N, x # c00 we write n<x (resp. x<n) if n<supp x
(resp. supp x<n). We say that the sets Ei /N, i=1, ..., n are successive if
E1<E2 } } } <En . Similarly, the vectors x i , i=1, ...n are successive if
x1<x2< } } } <xn . For x=��

i=1 a iei and E a subset of N, we denote by Ex
the vector Ex=�i # E ai ei .

The Schreier Families F: . Let M be a family of finite subsets of N. We
say that M is compact if it is closed in the topology of pointwise con-
vergence in 2N. M is hereditary if whenever B/A and A # M then B # M.
M is spreading if whenever A=[m1 , ..., mk] # M and B=[n1 , ..., nk] is
such that mi�ni , i=1, ..., k, then B # M.

Notation. Let M, N be families of finite subsets of N. We denote by
M[N] the family

M[N]={.
n

i=1

Ai : n # N, Ai # N, A1<A2< } } } <An and

[min A1 , ..., min An] # M= .
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The Schreier family S is defined as

S=[A/N: *A�min A].

The generalized Schreier families F: , :<|1 , were introduced in [1]:

1.1. Definition.

F0=[<] _ [[n]: n # N]

F:+1=[<] _ {.
n

i=1

Ai : n # N, A i # F: , n�A1<A2< } } } <An=
and for a limit ordinal : we choose a sequence (:n)n , :n A : and set

F:=[<] _ [A: there exists n # N such that A # F:n
and n�A].

Notice that F1=S. Also, for n, m<|, Fn[Fm]=Fn+m .
It is easy to see that each F: is a compact, hereditary, and spreading

family.

1.2. Lemma. For n<| define the family FM
n inductively as follows:

FM
0 =F0 .

FM
n+1=[�k

i=1 A i : k # N, A i # FM
n for i=1, ..., k, Ai & Aj=< for i{ j

and k�min A1<min A2< } } } <min Ak].
Then, for all n, FM

n =Fn .

Proof. The proof is an immediate consequence of the following.

Claim. Let n # N and let Ai # Fn , i=1, ..., k be such that Ai & Aj=<
for i{ j and min A1<min A2< } } } <min Ak . Then, there exist sets
A$i # Fn , i=1, ..., k such that A$1<A$1< } } } <A$k , min Ai�min A$i for
i=1, ..., k, and �k

i=1 A$i=�k
i=1 Ai .

Proof of the Claim. It is done by induction on n. For n=0 it is trivial.
Suppose it is true for n.

Let Ai , i=1, ..., k be sets in Fn+1 such that Ai & Aj=< for i{ j and
min A1<min A2< } } } <min Ak . Each A i is of the form Ai=�mi

j=1 B i
j

where B i
j # Fn and, for each i, m i�B i

1<B i
2< } } } <B i

mi
. Let [Bj]m1+ } } } +mk

j=1

be a rearrangement of the family [B i
j : i=1, ..., k, j=1, ..., mi], which

satisfies min B1<min B2< } } } <min Bm1+ } } } +mk
. It is easy to see that, for

each i,

min Ai=min B i
1�min Bm1+ } } } +mi&1+1 . (V)
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By the inductive assumption, there exist sets B$j , j=1, ..., m1+ } } } +mk ,
with B$j # Fn , �m1+ } } } +mk

j=1 B$j=�m1+ } } } +mk
j=1 Bj and such that B$1<B$2< } } }

<B$m1+ } } } +mk
and min Bj�min B$j for all j=1, ..., m1+ } } } +mk . For

i=1, ..., k, we set

A$i= .
m1+ } } } +mi

j=m1+ } } } +mi&1+1

B$j .

Then, A$1<A$2< } } } <A$k , �k
i=1 A$i=�k

i=1 A$i , and for each i=1, ..., k we
have by (V)

mi�min Bm1+ } } } +mi&1+1�min B$m1+ } } } +mi&1+1

so A$i # Fn+1 . Moreover, using (V) again, we see that

min Ai�min B$m1+ } } } +mi&1+1=min A$i .

This completes the proof of the Claim. The lemma follows. K

Distortion. Let *>1. A Banach space X is *-distortable if there exists an
equivalent norm | } | on X such that, for every infinite dimensional subspace
Y of X,

sup { | y|
|z|

: y, z # Y, &y&=&z&=1=�*.

X is arbitrarily distortable if it is *-distortable for every *>1.

B. Mixed Tsirelson Spaces

A Banach space X with a basis (ei)
�
i=1 is an asymptotic l1 space if there

exists a constant C such that, for all n and all block sequences (xi)
n
i=1 in

X with n�x1<x2< } } } <xn ,

1
C

:
n

i=1

&xi&�" :
n

i=1

x i".

The first example of an asymptotic l1 space not containing l1 was con-
structed by Tsirelson [19]. Tsirelson's space is the completion of the vector
space c00 of all eventually zero sequences under the norm & }&T defined
implicitly as

&x&T=max {&x&� , sup { 1
2 :

n

i=1

&Eix&T : n # N and

n�E1<E2< } } } <En== .
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A sequence (Ei)
n
i=1 of finite subsets of N with n�E1<E2< } } } <En is

called Schreier admissible (or S-admissible). In other words, a sequence
(Ei)

n
i=1 is Schreier admissible if the Ei 's are successive and

[min E1 , ..., min En] # S. More generally, we give the following definition.

1.3. Definition. Let M be a family of finite subsets of N.

(a) A finite sequence (E i)
n
i=1 of subsets of N is M-admissible if

E1<E2< } } } <En and [min E1 , ..., min En] # M.

(b) A finite sequence (xi)
n
i=1 of vectors in c00 is M-admissible if the

sequence (supp xi)
n
i=1 is M-admissible.

The mixed Tsirelson spaces are defined as follows:

1.4. Definition. Let [Mn]�
n=1 be a sequence of compact families of

finite subsets of N and let (%n)�
n=1 be a sequence of numbers in (0, 1) with

%n � 0. The mixed Tsirelson space T[(Mn , %n)�
n=1] is the completion of c00

under the norm & }& defined implicitly by

&x&=max {&x&� , sup
k

sup {%k :
n

i=1

&Ei x&: n # N and

(Ei)
n
i=1 is Mk-admissible== .

The mixed Tsirelson spaces T[(Mn , %n)�
n=1] where (Mn)n is a sub-

sequence of the sequence of Schreier families (Fj)
�
j=1 were introduced

in [3] and further studied in [2, 14]. Every such space is a reflexive
asymptotic l1 Banach space and the natural basis (ei) i is a 1-unconditional
basis for it. The first example of an arbitrarily distortable asymptotic l1

Banach space was a space of this type [3]. More generally, Androulakis
and Odell have proved the following:

1.5. Theorem [2]. Suppose that the sequence (%n)n satisfies
%n+m�%n%m for all n, m and let %=lim %1�n

n . If %n �%n � 0 then the space
T[(Fn , , %n)�

n=1] is arbitrarily distortable.

In particular, this is the case if lim %1�n
n =1. The first result of this section

concerns mixed Tsirelson spaces T[(Fn , %n)n] corresponding to such
sequences (%n)n . Following [2] we call a sequence (%n)n regular, if
%n # (0, 1) for all n, %n a 0 and %n+m�%n%m for all n, m # N.
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1.6. Theorem. Let (%n)�
n=1 be a regular sequence with lim %1�n

n =1. Let
X=T[(Fn , %n)�

n=1]. For every =>0, every infinite dimensional block sub-
space Y of X contains for every n a sequence of disjointly supported vectors
( yi)

n
i=1 which is (1+=)-equivalent to the canonical basis of ln

� .

Given a block subspace Y of X and n # N we shall construct a sequence
(xi)

n
i=1 if disjointly supported normalized vectors in Y such that

&�n
i=1 x i&�36. Since the basis (en)n of X is 1-unconditional this implies

that (xi)
n
i=1 is 36-equivalent to the canonical basis of ln

� . From this the
theorem follows by a standard argument due to R. C. James. The building
blocks of our construction are the (=, j)-rapidly increasing special convex
combinations, the prototypes of which were used in [3]. Before proceeding
to the construction we need to establish some preliminary results most of
which also have their analogues in [3].

Notation. Let X=T[(Fn , %n)�
n=1].

(A) Inductively, we define a subset K=��
n=0 K n of BX* as follows:

For j=1, 2, ...,

K0
j =[\en : n # N].

Assume that K n
j , j=1, 2, ... have been defined. We set Kn=��

j=1 K n
j and,

for j=1, 2, ..., we set

K n+1
j =K n

j _ [%j ( f1+ } } } fd): d # N, fi # K n, i=1, ..., n,

supp f1< } } } <supp fd and ( f i)
d
i=1 is Fj-admissible].

Let K=��
n=0 Kn.

Then K is a norming set for X, that is, for x # X

&x&=sup [ f (x): f # K].

(B) For j=1, 2, ..., we denote by Aj the set Aj=��
n=1 (Kn

j "K0).

(C) Let m # N, . # Km"K m&1. An analysis of . is a family
[K s (.)]m

s=0 of subsets of K such that

(1) For every s�m, K s (.)/K s, the elements of K s (.) are dis-
jointly supported and �f # Ks(.) supp f=supp ..

(2) If f belongs to K s+1 (.) then either f # K s (.) or, some j�1,
there exists a Fj -admissible family ( f i)

d
i=1 in K s (.) such that

f =%j ( f1+ } } } + fd).

(3) Km (.)=[.].

It is easy to see that every . # K as an analysis.
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1.7. Definition. Let n�1, =>0, and F�N, F # Fn . A convex com-
bination �k # F akek is called an (=, n)-basic special convex combination
(basic s.c.c.) if, for every G # Fn&1 , �k # G ak<=.

1.8. Proposition. Let D be an infinite subset of N. Then, for every n�1
and =>0, there exists an (=, n)-basic special convex combination
x=�k # F akek with F=supp(x)/D.

Proof. For n=1, we choose m0>1�= and A/D with m0<A and
|A|=m0 . Then, x=(1�m0) �k # A ek is an (=, 1)-basic s.c.c.

For n>1 the proof is by induction based on the following:

1.9. Lemma. Let n�1 and suppose that the integers m0 , m1 , ..., mm0
and

the block vectors x1 , x2 , ..., xm0
satisfy the following: For every

k=1, 2, ..., m0&1,

(a) 2mk&1<mk .

(b) supp(xk)/(mk&1 , mk].

(c) xk is a (1�2mk&1 , n)-basic s.c.c.

Then, the vector x=(1�m0) �m0
k=1 xk is a (2�m0 , n+1)-basic s.c.c.

Proof. The proof is straightforward (see also Lemma 1.6 of [3]). K

1.10. Definition. Let =>0, j # N, and suppose that [zk]n
k=1 is a finite

block sequence with the property that there exist integers [lk]n
k=1 with

2<z1�l1<z2�l2< } } } �ln&1<zn�ln , and such that a convex combina-
tion �n

k=1 akelk
is an (=, j)-basic s.c.c. Then, the corresponding convex

combination of the zk 's, x=�n
k=1 ak zk , is called an (=, j)-s.c.c. of [zk]n

k=1 .
An (=, j)-s.c.c. x=�n

k=1 akzk of unit vectors [zk]n
k=1 is said to be semi-

normalized if &x&� 1
2 .

Remark. It is easy to see that if x=�n
k=1 akzk is an (=, j)-s.c.c. and

&zk&=1, k=1, ..., n, then &x&�%j+1 . Indeed, if fk # BX* are chosen so
that fk (zk)=&zk&=1, supp( f1)/(2, l1], and supp fk /(lk&1 , lk] for
k=2, ..., n, then the family [ fk]k is Fj+1 -admissible. This implies that the
functional .=%j+1 � fk belongs to BX* , hence &x&�.(x)�%j+1 .

The following lemma states that every block subspace Y of X contains
for any = and j a seminormalized (=, j)-s.c.c. The condition lim %1�j

j =1 is
essential at this point.

1.11. Lemma. Let j # N, =>0, and let [zk]�
k=1 be a block sequence in X.

There exists n # N and normalized blocks yk , k=1, ..., n of the sequence
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[zk]�
k=1 such that a convex combination x=�n

k=1 ak yk is a seminormalized
(=, j)-s.c.c.

Proof. We may assume that the vectors zk , k=1, 2, ... are normalized.
Choose an infinite block sequence [x1

l ]�
l=1 of [zk]�

k=1 such that, for each
l, x1

l =�k # Al
ak zk is an (=, j)-s.c.c. of [zk]k # Al

.
If for some l, &x1

l &� 1
2 , then we are done. If not, we set y1

l =x1
l �&x1

l & and,
as before, choose an infinite sequence [x2

l ] l of (=, j)-s.c.c. of [ y1
l ]�

l=1 .
Notice that, for each l, the family [zk : supp(zk)/supp(x2

l )] is F2 j+2 -
admissible (since F2 j+2=Fj+1[Fj+1]), and so x2

l is a combination of
the form x2

l =� bk (*kzk) where � bk=1, *k�2, and [zk] is an F2 j+2 -
admissible family. This gives that &x2

l &�2%2 j+2 .
If, for some l, &x2

l &� 1
2 then we are done. If not, then we set y2

l =x2
l �&x2

l &
and continue as before.

Continuing in this manner, if we never get some (=, j)-s.c.c. xk
l with

&xk
l &� 1

2 , then we can repeat the same procedure for as many steps s as we
wish and always get 1�&xs

l &�2s&1%s( j+1) .
But the assumption that limn %1�n

n =1 implies that lims � � 2s&1%s( j+1)=�.
This leads to a contradiction which completes the proof. K

1.12. Lemma. Let x=�l # F alel , where F # Fj , be an (=, j)-basic s.c.c.
Then, %j�&x&<%j+=.

Proof. It is obvious that .=% j (� l # F e*l ) belongs to BX* and .(x)=%j .
This yields the lower estimate for &x&.

It remains to prove that, for all � # K, |�(x)|<%j+=. Let � # K; we may
assume that � is positive. Set

J=[l # F: �(el)�%j].

and

L=F"J=[l # F: �(el)>% j].

We shall prove that L # Fj&1 and so �k # L ak<=. This is a consequence of
the following:

Claim. Let r=1, 2, ..., f # K and suppose that f (ek)>%r for all
k # supp( f ). Then, supp( f ) # Fr&1 .

Proof of the Claim. The proof is by induction on s, for f # K s,
s=1, 2, ....

For s=1, let f # K 1, with f =%i �k # A e*k , A # Fi . Since % i>%r , we get
i�r&1 and so A=supp( f ) # Fr&1 .
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Suppose that the claim is true for all g # K s and let f # K s+1. Then,
f =%i (�m

l=1 f l) where the set ( fl)
m
l=1 is Fi -admissible and, for each l,

fl # K s. Suppose that f (ek)>%r for all k # supp( f ). Then, r>i and, for each
l=1, ..., m, fl (ek)>%r �%i�%r&i . It follows from the inductive hypothesis
that supp( fl) # Fr&i&1 , l=1, ..., m. So, supp( f ) # Fi[Fr&i&1]=Fr&1 . This
completes the proof of the claim.

We conclude that L # Fj&1 and so

}� \ :
l # F

a lel+}�� \ :
l # J

alel++ :
l # L

a l<% j+=. K

1.13. Lemma. Let x=�n
k=1 ak yk be an (=, j)-s.c.c. of [ yk]n

k=1 , where
=<%j . Let i< j and suppose that (Er)

s
r=1 is an Fi -admissible family of

intervals. Then,

:
s

r=1

&Er x&�\1+
=
% i+ max

1�k�n
&yk &�2 max

1�k�n
&yk &.

Proof. We can assume that the Er's are adjacent intervals. Set

L=[k: k=1, ..., n and supp( yk) is intersected by at least two different Er 's].

For each r=1, ..., s, define

Br=[k: k=1, ..., n and supp( yk)/Er].

The sets Br are mutually disjoint and [1, 2, ..., n]=(� s
r=1 Br) _ L. So,

:
s

r=1

&Erx&� :
s

r=1
"Er \ :

k # Br

ak yk+"+ :
k # L

ak :
s

r=1

&Er yk &

� :
n

k=1

ak &yk &+ :
k # L

ak
&yk&

%i
.

Suppose now that 2< y1�l1< y2� } } } �lk&1< yk�lk and �n
k=1 ak elk

is the basic s.c.c. which defines the s.c.c. x=�n
k=1 ak yk . We shall show

that [lk : k # L] # Fi /Fj&1 . This will imply that �k # L ak<= and hence
complete the proof.

To see that [lk : k # L] # Fi , for each k # L let rk=min[r: Er intersects
supp( yk)]. The map k � rk from L to [1, 2, ..., s] is one to one. This gives
that *L�s. Consider now, for each k # L, mrk

=min Erk
. Then, mrk

�lk ,
k # L. Since the set [mrk

: k # L] belongs to Fi , we conclude (by the spread-
ing property of Fi) that [lk : k # L] # Fi as well. K
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1.14. Definition. (A) A finite or infinite sequence [zk]k is called a
rapidly increasing sequence if there exists an increasing sequence of positive
integers [tk]k such that the following are satisfied:

(a) The sequence [%tk
�%tk+1

]k is increasing, 2<%tk
�%tk+1

for each k,
and limk � � (%tk

�%tk+1
)=� if the sequence is infinite.

(b) Each zk is a semi-normalized (%2
tk

, tk)-s.c.c.

(c) For each k, &zk&l1
�%tk

�%tk+1
.

(B) Let k # N, =>0. Let [zk]n
k=1 be a rapidly increasing sequence,

where each zk is a semi-normalized (%2
tk

, tk)-s.c.c. and 2<%j+1 �%t1
<%t1

�%t2
.

Suppose also that there exist coefficients [ak]n
k=1 such that the vector

x=�n
k=1 akzk is an (=, j)-s.c.c. of [zk]n

k=1 . Then x is called an
(=, j)-rapidly increasing special convex combination ((=, j)-R.I.s.c.c.).

1.15. Proposition. Let j # N, 0<=<%2
j , and let x=�n

k=1 akzk be an
(=, j)-R.I.s.c.c. of the zk 's where each zk is a seminormalized (%2

tk
, tk)-s.c.c.

Let t0 be any integer such that j+1�t0<t1 and 2<%t0
�%t1

.
Then, for every . in the norming set K of X, we have the following

estimates:

(i) |.(x)|�8%j , if . # Ai , i< j.

(ii) |.(x)|�4%i , if . # Ai , j�i<t1 .

(iii) |.(x)|�4(%tp&1
+atp

), if . # Ai , tp�i<tp+1 , p�1.

In particular, %j+1 �2�&x&�8%j .

Proof. The lower estimate for &x& follows by the remark after Defini-
tion 1.10 and the fact that &zk &� 1

2 . The upper estimate follows from the
first part of the proposition. The proof of this is similar to the one of
Proposition 2.12 in [3]. Let [lk]n

k=1 be such that 2<z1�l1< } } } �
ln&1<zn�ln and �n

k=1 ak elk
is an (=, j)-basic s.c.c.

Given . # K, we shall construct � # co(K) such that

(a) .(�n
k=1 ak zk)�4�(�n

k=1 ake lk
).

(b) If . # Ai , i<t1 , then � # co(Ai).

(c) If . # Ai , tp�i<tp+1 for some p�1, then �= 1
2(�1+e*lp

), where
�1 # co(Atp&1

).

Since, for � # co(Ai) we have �(� zkelk
)�%i , estimates (ii) and (iii) will

follow immediately. For (i) we apply Lemma 1.12.
We consider an analysis [K s (.)]m

s=1 of ., and we cut each zk into two
parts, z$k and z"k , with the following property:
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(V) For each level K s (.) of the analysis of ., and for each z$k , either
there exists a unique f # K s (.) with supp(z$k) & supp( f ){< or there exists
f # K s (.) such that max supp(z$k&1)<supp( f )<min supp(z$k+1).

The same is true for z"k . This partition of the zk 's is possible, as done in
[3, Definition 2.4].

We shall see that using property (V) we can build �$ and �" such that
|.(z$k)|��$(elk

) and |.(z"k)|��"(elk
) for all k. So we may assume that the

zk 's have property (V) and then multiply our estimate by 2.
For each f # �m

s=0 K s (.) we set

Df=[k: supp(.) & supp(zk)=supp( f ) & supp(zk){<].

By induction on s=0, ..., m we shall define a function gf # co(K), supported
on [lk : k # Df] and such that:

(a) | f (zk)|�2gf (e lk
) for all k # Df .

(b) If f # Aq , q<t1 , then gf # co(Aq). If f # Aq , tp�q<tp+1 , then
gf=

1
2 (g1

f +e*lp), where g1
f # co(Atp&1

).

For s=0, f =e*r , if Df=[k] we set gf=e*lk .
Let s>0. Suppose that gf has been defined for all f # �s&1

t=0 K t (.). Let

f =%q ( f1+ } } } + fd) # K s (.)"K s&1 (.).

We set I=[i: 1�i�d, Dfi
{<] and T=Df"�i # I Dfi

.

Case 1. q<t1 . Then, we set

gf=%q \:
i # I

gfi
+ :

k # T

e*lk+ .

Property (a) for the case k # �i # I Dfi
follows from the inductive assump-

tion. For k # T we get, by Lemma 1.13, since q<tk , that

| f (zk)|�%q :
d

i=1

| fi (zk)|�2%q=2gf (elk
).

To prove that gf # co(Aq) we need to show that the set [gfi
: i # I] _

[lk : k # T] is Fq -admissible.
Here we use property (V). According to (V), for each k # T there exists an

ik # [1, ..., d] such that max supp(zk&1)<supp( fik
)<min supp(zk+1).
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This means that ik {il for k{l # T and ik � I. It follows that
|T |+|I |�d. Since also, for each k # T, min supp( fik

)�lk , by the spreading
property of Fq we get that

[min supp( fi): i # I] _ [lk : k # T] # Fq ,

hence the family [gfi
] i # I _ [e*lk]k # T is Fq -admissible.

Case 2. q�t1 . Suppose that tp�q<tp+1 . If p � Df or p # �i # I Dfi
, then

we set

gf=%tp&1 \:
i # I

gfi
+ :

k # T

e*lk+ .

Since supp(gf)/[lk : k=1, ..., n] # Fj and j<tp&1 , it is clear that
gf # co(Atp&1

).
For k # �i # I Dfi

we get

| f (zk)|=%q | fi (zk)|<2%q gfi
(elk

)<%tp&1
gfi

(elk
)= gf (e lk

)

by the inductive assumption and the fact that 2%tp
<%tp&1

.
For k # T, k<p, we have

| f (zk)|�%q :
d

i=1

| f i (zk)|�%q &zk&l1
�%q

%tk

%tk+1

�%tp

%tp&1

%tp

=%tp&1
= gf (e lk

)

by the property of the R.I.S. [zk]k .
For k # T, k>p, we have q<tp+1�tk , so

| f (zk)|=%q :
d

i=1

| f i (zk)|�2%q<%tp&1
= gf (elk

)

by Lemma 1.13.
Suppose now that p # T. Then we set

gf=
1
2 _%tp&1 \:

i # I

gfi
+ :

k # T"[ p]

e*lk++e*lp& .

As before, we get

| f (zk)|<2gf (elk
)
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for k{ p, and

| f (zp)|�1=2gf (elp
).

This completes the inductive step of the construction and the proof of the
proposition. K

In what follows, a finite tree of sequences T will be a finite set of finite
sequences of positive integers, partially ordered by the relation :O; iff :
is an initial part of ;, and satisfying the following properties:

(a) For each : # T, the set [;: ; is an initial part of :] is a subset
of T.

(b) If :=(k1 , ..., km&1 , km) # T and 1�l�km , then (k1 , ...,
km&1 , l ) # T.

(c) The maximal (under O ) elements of T are all of the same
length.

It follows that T has a unique root, the empty sequence which we denote
by 0. The length of the sequence : is denoted by |:|. The height of T is the
length of the maximal elements of T. For each : # T which is not maximal
we set S:=[; # T: :O; and |;|=|:|+1]. We also consider the
lexicographic order, denoted by <, on T. For :=(k1 , ..., km&1 , km) # T

we denote by :+ the sequence :+=(k1 , ..., km&1 , km+1).

1.16. Definition. Let r # N. Let j1 , ..., jr be positive integers, and =>0.
An (=, ( j1 , ..., jr))-tree in X is a set of vectors TX=[u#]# # T indexed by a
finite tree T of height r, and satisfying the following properties:

(a) The terminal nodes [u:] |:|=r of the tree are elements of the basis
[en]�

n=1 , i.e., for |:|=r, : # T, u:=el:
. Moreover, for :, ; # T with

|:|= |;|=r, if :<; (in the lexicographic order), then l:<l; .

(b) There exist positive coefficients [a;]; # T"[0] such that, for each
# # T, |#|=t<r, we have �; # S#

a;=1 and u#=�: # T, |:|=r, #O:

(>#O;P: a;) el:
is an (=, jt+1+ jt+2+ } } } + jr)-basic s.c.c. of [el:

]: # T, |:|=r .

It is clear that, given an infinite subset L of N, j1 , ..., jr positive integers,
and =>0, one can construct an (=, ( j1 , ..., jr))-tree in X, supported in L, by
repeatedly applying Lemma 1.9. It is also not hard to see in the same man-
ner that the following construction is possible.

1.17. Lemma. Let L be an infinite subset of N, n # N, =>0, and j1 , ..., jn

be positive integers. There exist a tree of sequences T, subsets TX
1 , ..., TX

n

of X, and positive coefficients [a;]; # T"[0] such that:
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(a) For r�n, set Tr=[: # T: |:|�r]. Then, TX
r =[u r

:]: # Tr
is an

(=, ( j1 , ..., jr))-tree in X with coefficients [a;]; # Tr"[0] , supported in L.

(b) Let [elr:
, : # T, |:|=r] be the terminal nodes of the tree TX

r .
Then, if :, ; # T, |:|=r<n, and ; # S: , we have lr

:<lr+1
; <lr

:+ .

1.18. Definition. A finite family TX
1 , ..., TX

n as described in
Lemma 1.17 is called an (=, ( j1 , ..., jn)) family of nested trees in X.

Proof of Theorem 1.6. Given n # N, and a block subspace Y of X we
shall construct a sequence x1 , ..., xn of disjointly supported unit vectors in
Y which is 36-equivalent to the canonical basis of ln

� .
The construction is as follows.
First, choose '>0 with '<1�60n. Choose j0 such that 64% j0

<'. Let
s0 # N be such that %s0

1 <'. Choose j1 such that

s0 j0< j1 and
% j1+1

%j1

�
1

1+'
.

Inductively, choose j2 , ..., jn so that, for each k=2, ..., n,

j1+ } } } + jk&1 < jk ,
8% jk

%j1+ } } } + jk&1+1

<', and
%j1+ } } } + jk+1

%jk

�
1

1+'
.

The latter is possible, since limn � � %1�n
n =1.

Next, we choose an infinite R.I.S. [zi]�
i=1 in Y where each zi is a (%2

ti
, ti)-

seminormalized s.c.c. For each i, let li=max(supp zi). Let i0 be such that

ti0
> j1+ } } } + jn+1 and

%ti0

%j1+ } } } + jn+1

<
'

16
.

We set L0=[li] i>i0
.

Now let 0<=<min[%2
j1+ } } } + jn+1 , '(1&%1)].

We choose an (=, ( j1 , ..., jn))-family of nested trees (TX
1 , ..., TX

n ) in X,
indexed by a tree T, supported in L0 . Let [a;]; # T be the corresponding
coefficients. Then, for each r�n, there exists a set [l r

:]: # T, |:|=r , contained
in L0 , and such that for all t<r and # # T with |#|=t,

ur
#= :

#O:, |:| =r \ `
#O;P:

a;+ el r
:

is an (=, jt+1+ } } } + jr)-basic s.c.c. of [el r
:
]: # T, |:|=r .
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For each : # T with |:|=r, denote by zr
: the element of [zi] i # N with

max supp(zr
:)=l r

: . Then, for # # T with |#|=t<r, the vector

yr
#= :

#O:, |:| =r \ `
#O;P:

a;+ z r
:

is an (=, jt+1+ } } } + jr)-R.I.s.c.c.
For each r=1, ..., n, we set xr= y r

0 �&yr
0&. If r�2 then for each : # T,

1�|:|�r&1, we set xr
:=(1�&yr

0&) yr
: , so that, for each t�r&1,

xr=
1

&y r
0&

:
: # T, |:| =r \ `

0O;P:

a;+ z r
:= :

: # T, |:|=t \ `
0O;P:

a;+ xr
: .

1.19. Lemma. For each r�n, t<r, and : # T with |:|=t,

1
16

�&xr
:&�16(1+').

Proof. By the construction, for each t�r&1 and : # T with |:|=t, yr
:

is an (=, jt+1+ } } } + jr)-R.I.s.c.c. It follows from Proposition 1.15 that

%jt+1+ } } } + jr+1

2
�&yr

: &�8%jt+1+ } } } + jr
.

Hence, for 0<|:|=t,

1
16

�
1

16

%jt+1+ } } } + jr+1

%j1+ } } } + jr

�&xr
:&=

&yr
:&

&y r
0&

�
16% jt+1+ } } } + jr

%j1+ } } } + jr+1

�16(1+'). K

1.20. Lemma. Let r�2 and : # T with |:|=t<r&1. If i<
jt+1+ } } } + jr&1 and (Ep)k

p=1 is an Fi -admissible family of sets, then

:
k

p=1

&Epxr
: &�32(1+').

Proof. By the construction,

yr
:= :

|#| =r&1, :O# \ `
:O;P#

a;+ yr
# ,

where l r&1
# < yr

#<l r&1
#+ for every # # T with |#|=r&1 and :O#. (Recall

that yr
# is a convex combination of (z r

;) |;|=r and that max supp(zr
;)=l r

; . By
the definition of (TX

1 , ..., TX
n ), we have l r&1

# <l r
;<l r&1

#+ .)
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Also, the corresponding basic convex combination

ur&1
: = :

|#|=r&1, :O# \ `
:O;P#

a; + el #
r&1

is an (=, jt+1+ } } } + jr1
)-basic s.c.c.

An argument similar to the one in Lemma 1.13 yields

:
k

p=1

&Ep yr
: &�2 max

|#|=r&1, :O#
&yr

#&.

Dividing by &yr
0 & we obtain the conclusion. K

1.21. Proposition. The sequence [xr]n
r=1 is 36-equivalent to the

standard basis of ln
� .

Proof. We need to prove that

" :
n

r=1

xr"�36.

To do this we estimate .(�n
r=1 xr) for . # K, distinguishing two cases

for .:

Case I. . # Ai , i� j0 . Let r0 # [0, ..., n] be such that

jr0
�i< jr0+1 .

Then

(a) For r�r0+2 we get i< jr1
< j1+ } } } + jr&1 . Using Lemma 1.20,

we see that

|.(xr)|�32%i (1+')�64% j0
<'.

(b) Let now 1�r�r0&1. We know that yr
0 is an

(=, j1+ j2+ } } } + jr)-R.I.s.c.c. of the z i 's. Also, . # Ai , where
j1+ j2+ } } } + jr< jr+1�i.

Let zi1
, ..., zik

be the semi-normalized s.c.c.'s which compose y r
0 where,

for p=1, ..., k, zip
is a (%2

tr
p
, tr

p)-seminormalized s.c.c. Set tr
0=t i0

where by
construction t i0

is such that %ti0
�%j1+ } } } + jn+1<'�16 and t i0

=tr
0<tr

p for
all p=1, ..., k.

From Proposition 1.15 we get

|.( yr
0)|�4%i�4%jr+1

if i<tr
1 ,
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and

|.( yr
0)|�4(%tr

0
+=) if i�tr

1 .

Dividing by &yr
0 & and by the choice of the jk 's we obtain

|.(xr)|�
8%jr+1

%j1+ } } } + jr+1

<' if i<tr
1 ,

and

|.(xr)|�8
%ti0

%j1+ } } } + jr+1

+8
%2

j1+ } } } + jr+1

%j1+ } } } + jr+1

<
'
2

+8%j1+ } } } + jr+1<' if i�tr
1 .

We conclude that, in this case,

}. \ :
n

r=1

xr+}� }. \ :
r{r0, r0+1

xr+}+|.(xr0)|+|.(xr0+1)|�n'+2<3.

Case II. . # Ai , i< j0 . Consider an analysis [K s (.)]q
s=1 of .. For

s�q and f # K s (.), let f + # K s (.) be the successor of f in K s (.); that is,
f + is such that supp f<supp f + and if g # K s (.) with supp f<supp g
then either g= f + or supp f +<supp g.

For f # �s K s (.), we set

E f=[min(supp f ), min(supp f +))/N

(E f=[min(supp f ), max(supp xn)] if f does not have a successor).
Recall that x1=�m

k=1 ak z1
k and, for k=1, ..., m, l1

k=max(supp z1
k). We

set

Ik=[l1
k , l1

k+1)/N, k=1, ..., m&1 and

Im=[l1
m , max(supp xn)].

Notice that for r�2 we have supp(xr
k)/Ik .

For k=1, ..., m and f # �s K s (.), we say that f covers Ik if Ik /E f.
We may assume without loss of generality that min(supp .)�l1

1 . There-
fore, for fixed s, any Ik is either covered by some f in K s (.) or intersected
by E f for at least two different f's in K s (.). Also, every Ik is covered by ..

62 ARGYROS ET AL.



Set now

J1=[k=1, ..., m: Ik is covered by some functional

in _ K s (.) belonging to some class Al with l� j0],

and

J2={k=1, ..., m: Ik is covered only by functionals

in _ K s (.) which belong to .
l< j0

Al= .

Consider any k # J1 . Let f # _ K s (.) be a functional which covers Ik and
such that f # Al for some l� j0 . Then, exactly as in Case I we can get

|.(xr
k)|�| f (xr

k)|<'

for all but two r # [2, ..., n]. This gives |.(�n
r=2 xr

k)|�n'+32(1+')<34,
and we conclude that

}. \ :
n

r=2

:
k # J1

ak xr
k+}<34.

We turn now to J2 . Let .=%i �s
p=1 fp where i< j0 . Consider the set

R1=[k # J2 : Ik is intersected by at least two fp 's].

Since the family ( fp) s
p=1 is Fi -admissible, the set [l1

k : k # R1 "[min R1]]
belongs to Fi /Fj0

and so, [l1
k : k # R1] # Fj1&1 . Therefore, �k # R1

ak<=.
Let L1=J2 "R1 and, for p=1, ..., s, let

L p
1 =[k # L1 : Ik /E fp].

For any r�2, we get

}. \ :
k # J1

akx r
k+}�%i \ :

s

p=1
} fp \ :

k # Lp
1

akxr
k +}++\ :

k # R1

ak+ max
k

&xr
k&

�%1 \ :
s

p=1 } fp \ :
k # Lp

1

akxr
k+}++= max

k
&xr

k&.

Consider now any p, 1�p�s, with L p
1 {<. By the definition of J2 this

implies that fp=%ip
� lp

t=1 g p
t where ip< j0 and (g p

t )
lp
t=1 is Fip

-admissible. (It
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is clear that we cannot have fp # K0 and L p
1 {<.) We will partition L p

1 in
the same way that we partitioned J2 : We set

R p
2 =[k # L p

1 : Ik is intersected by at least two g p
t 's]

and for each t=1, ..., lp ,

Lt
2( p)=[k # L p

1 : Ik /E gt
p
].

The family [g p
t : p such that L p

1 {<, t=1, ...lp] is Fi+ j0
-admissible and so

the set [l1
k=k # �s

p=1 R p
2 ] belongs to Fi+ j0+1 /F2 j0

/Fj1&1 . We conclude
that

:
k # �p Rp

2

ak<=.

So, for each r�2 we get the estimate

}. \ :
k # J2

akxr
k+}

�%1 :
p

% ip
:
t } g

p
t \ :

k # Lt
2( p)

ak xr
k+}+%1 :

p

fp \ :
k # Rp

2

akxr
k++= max

k
&xr

k &

�%2
1 :

p, t } g
p
t \ :

k # Lt
2( p)

akxr
k+}+%1 \ :

k # �p Rp
2

ak + max
k

&xr
k &+= max

k
&xr

k &

�%2
1 :

p, t } g
p
t \ :

k # Lt
2( p)

akxr
k+}+(%1+1) =.

We can now partition each Lt
2( p) and continue in this manner for s0 steps,

where %s0
1 <'. By the choice of j1 , j0s0< j1 . Recall that . # K q. If q>s0 then

for r�2,

}. \ :
k # J2

ak xr
k+}�%s0

1 :
f # Kq&s0(.)

f \ :
Ik/E f

akxr
k +

+(1+%1+ } } } +%s0&1
1 ) = max

k
&xr

k &.

Of course, if q�s0 then we have only the second term at the right hand
side. Finally, for r�2, we get

}. \ :
k # J2

akxr
k +}<max

k
&xr

k & \'+
=

1&%1+<60'.
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We conclude that

}. \ :
n

r=1

xr+}�|.(x1)|+ }. \ :
n

r=2

:
k # J1

akxr
k+}+ :

n

r=2
}. \ :

k # J2

akxr
k+}

�1+34+60n'<36.

This completes the proof of the proposition. Theorem 1.6 now follows. K

C. Modified Mixed Tsirelson Spaces

The modified Tsirelson space TM was introduced by W. B. Johnson in
[10]. Later, P. Casazza and E. Odell [6] proved that TM is naturally
isomorphic to T. Analogously, given a sequence of compact families
[Mk]�

k=1 in [N]<| and a sequence of positive reals [%k]�
k=1 , we define

the modified mixed Tsirelson space TM[(Mk , %k)�
k=1].

1.22. Definition. Let M be a family of finite subsets of N.

(a) A finite sequence (Ei)
k
i=1 of finite non-empty subsets of N is said

to be M-allowable if the set [min E1 , min E2 , ..., min Ek] belongs to M

and Ei & Ej=< for all i, j=1, ..., k, i{ j.

(b) A finite sequence (xi)
k
i=1 of vectors in c00 is M-allowable if the

sequence (supp(xi))k
i=1 is M-allowable.

1.23. Definition of the Space TM[(Mk , %k)�
k=1]. Let (Mk)k be a

sequence of compact, hereditary and spreading families of finite subsets of
N and let (%k)k be a sequence of positive reals with %k<1 for every k and
limk %k=0. Inductively, we define a subset K of Bl� as follows.

We set K0=[\en : n # N].
For s�0, given K s we define for each k�1,

K s+1
k ={%k \ :

n

i=1

fi+ : n # N, fi # K s, i�n,

and the sequence ( fi)
n
i=1 is Mk -allowable= .

We set

K s+1=K s _ \ .
�

k=1

K s+1
k +
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Finally, we define

K= .
�

s=0

K s.

Note that K is the smallest subset of Bl� which contains \en for all n # N
and has the property that %k ( f1+ } } } + fn) is in K whenever f1 , ..., fn # K
and the sequence ( fi)

n
i=1 is Mk -allowable.

We now define a norm on c00 by

&x&=sup
f # K

(x, f) for all x # c00 .

The space TM[(Mk , %k)�
k=1] is the completion of (c00 , & }&). We call K the

norming set of TM[(Mk , %k)�
k=1].

The following proposition is an easy consequence of the definition:

1.24. Proposition. Let X=TM[(Mk , %k)�
k=1].

(a) The norm of X satisfies the following implicit equation: For all
x # X,

&x&=max {&x&� , sup
k

%k sup { :
n

i=1

&Eix& : (Ei)
n
i=1 is Mk-allowable== .

(b) The sequence (en)�
n=1 is a 1-unconditional basis for X.

We also consider boundedly modified mixed Tsirelson spaces denoted by

TM(m)[(Mk , %k)�
k=1],

for some m # N. The definition of TM(m)[(Mk , %k)�
k=1] is similar to that of

TM[(Mk , %k)�
k=1], the only difference being that at the inductive step s+1

we set

K s+1
k ={%k \ :

n

i=1

f i+ : n # N, fi # K s, i�n,

and the sequence ( fi)
n
i=1 is Mk-allowable= .
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for k�m, while

K s+1
k ={%k \ :

n

i=1

f i+ : n # N, f i # K s, i�n,

and the sequence ( fi)
n
i=1 is Mk-admissible= .

for k�m+1.

1.25. Proposition. Let Y=TM(m)[(Mk , %k)�
k=1].

(a) The norm & }& of Y satisfies the following implicit equation:

&x&=max {&x&� , max
k�m

%k sup { :
n

i=1

&Eix& : (Ei)
n
i=1 is Mk-allowable= ,

sup
k�m+1

%k sup { :
n

i=1

&Ei x& : (Ei)
n
i=1 is Mk-admissible== .

(b) The sequence (en)n is a 1-unconditional basis for Y.

In the sequel we consider spaces TM[(Mk , %k)�
k=1] or

TM(m)[(Mk , %k)�
k=1] where (Mk)k is a subsequence of the Schreier sequence

(Fn)�
n=1 . In this case, by Proposition 1.24(a) (resp. Proposition 1.25(a)) we

have that for all sequences (xi)
n
i=1 of disjointly supported vectors with

supp xi /[n, �),

" :
n

i=1

xi"�%1 :
n

i=1

&xi&

in TM[(Mk , %k)�
k=1] (resp. TM(m)[(Mk , %k)�

k=1]). It is clear from this
inequality that c0 is not finitely disjointly representable in any block sub-
space of TM[[(Mk , %k)�

k=1] or TM(m)[(Mk , %k)�
k=1]. Combining this with

Theorem 1.6 we get the following.

1.26. Corollary. Let (%n)�
n=1 be a regular sequence with lim %1�n

n =1.
Let X=TM[(Fk , %k)�

k=1] or X=TM(m)[(Fk , %k)�
k=1]. Then the spaces X

and T[(Fk , %k)�
k=1] are totally incomparable.

1.27. Theorem. Suppose that the sequence (%k)k decreases to 0 and
that the Schreier family S is contained in M1 . Then, the spaces
TM[(Mk , %k)�

k=1] and TM(m)[(Mk , %k)�
k=1], m=1, 2, ... are reflexive.
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Proof. Let X=TM[(Mk , %k)�
k=1]. The proof for TM(m)[(Mk , %k)�

k=1] is
the same. We shall prove that the basis (en)�

n=1 is boundedly complete and
shrinking in X.

(a) (en)�
n=1 is boundedly complete. Suppose on the contrary there

exist =>0 and a block sequence [xi]�
i=1 of [en]�

n=1 such that
supn &�n

i=1 x i &�1 while &xi&�= for i=1, 2, ....
Choose n0 # N such that n0%1>=. Then, the finite sequence (x i)

2n0
i=n0+1

s S-allowable and since S�M1 it is M1-allowable. Using Proposi
tion 1.24(a) (resp. Proposition 1.25(a)) we get

" :
2n0

i=n0+1

xi"�%1 :
2n0

i=n0+1

&x i&�n0%1=>1,

a contradiction which completes the proof.
(b) (en)�

n=1 is a shrinking basis. For f # X*, m # N, we denote by
Qm ( f ) the restriction of f to the space spanned by (ek)k�m . We need to
prove that, for every f # BX* , Qm ( f ) � 0 as m � �.

Let K be the norming set of X. Then BX*=co(K) where the closure is
in the topology of pointwise convergence. We shall show that for all f # BX*

there is l # N such that Ql ( f ) # %1BX* . By standard arguments it suffices to
prove this for f # K� .

Let f # K� . Let ( f n)�
n=1 be a sequence in K converging pointwise to f. If

f n # K0 for an infinite number of n, then there is nothing to prove. So,
suppose that for every n there are kn # N, a set Mn=[mn

1 , ..., mn
dn

] # Mkn

and vectors f n
i # K, i=1, ..., dn such that f n=%kn

�dn
i=1 f n

i , mn
i =

min supp( f n
i ), i=1, ..., dn and supp( f n

i ) & supp( f n
j )=< for i{ j. If there is

a subsequence of (%kn
)n converging to 0, then f =0. So we may assume

that there is a k such that kn=k for all n, that is, %kn
=%k and Mn=

[mn
1 , ..., mn

dn
] # Mk .

Since Mk is compact, substituting [ f n] with a subsequence we get that
there is a set M=[m1 , ..., md] # Mk such that the sequence of indicator
functions of Mn converges to the indicator function of M. So, for large n,
mn

i =mi , i=1, 2, ..., d and mn
d+1 � � as n � �. Since min supp f n

d+1=
mn

d+1 � �, the sequence f� n=%k �d
i=1 f n

i tends to f pointwise and we may
assume that f n=%k �d

i=1 f n
i . Passing again to a subsequence of [ f n] we

have that, for each i=1, ..., d there exists f i # K� with f n
i � fi pointwise and

f =%k ( f1+ } } } + fd).
Now, for each i=1, ..., d, either f n

i =e*mi
for all n (eventually) or

f n
i =%ki

n :
l i

n

m=1

gn, i
m , i=1, ..., d,

where for every n # N and m=1, ..., li , gn, i
m # K and the family [gn, i

m ] l i
n

m=1 is
Mki

n-allowable. Let A/[1, ..., d] be the set of indices i for which f n
i is of the
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second type for all n. As before, forgetting those i's for which f n
i � 0, we

may assume that, for each i # A, there is ki such that kn
i =ki and a set

Mi=[m i
1 , ..., m i

li
] such that m i

r=min supp(gn, i
r ) for all n=1, 2, ...,

r=1, ..., li , and min supp(gn, i
li+1) � � as n � �. So, for i # A, the sequence

f� n
i =%ki

� li
m=1 gn, i

m tends to f i pointwise.
Let l=max([�i # A li] _ [mi : i=1 } } } d]) and hn, i

m =Ql (gn, i
m ) # K, i # A,

m=1, ..., li , n=1, 2, .... Then, the sequence %k � i # A %ki
� li

m=1 hn, i
m =

Ql (%k �d
i=1 f� n

i ) tends to Ql ( f ) as n � �.
On the other hand, since, for each n, *[hn, i

m , i # A, m=1, ..., li]�l,
l�min supp(hn, i

m ) for every i and m, and the sets supp(hn, i
m ), i # A,

m=1, ..., li are mutually disjoint, we get that the family [hn, i
m ] i, m is

Schreier-allowable. Since the Schreier family S is contained in M1 ,
0<%ki

�%1�1, [hn, i
m ] i, m is S-allowable for every n and hn, i

m # K, it is easy
to see that (1�%k) Ql (%k �d

i=1 f� n
i )=%1 (� i # A (%ki

�%1) � li
m=1 hn, i

m ) # co(K)
for all n. We conclude that Ql (%k �d

i=1 f� n
i ) # %k co(K), and so, Q l ( f ) #

%k co(K)�%1 co(K). K

We note that the 2-convexifications T (2)
M [(Fk , %k)�

k=1] and
T (2)

M(m)[(Fk , %k)�
k=1] of TM[(Fk , %k)�

k=1] and TM(m)[(Fk , %k)�
k=1] are

weak Hilbert spaces. The proof of this is similar to the proof of the
analogous statement for the 2-convexifications T (2)

$ of the Tsirelson spaces
T$ as presented in [15, Lemma 13.5]. It is an immediate consequence of
Theorem 1.27 that T (2)

M [(Fk , %k)�
k=1] (and T (2)

M(m)[(Fk , %k)�
k=1]) does not

contain l2 . Moreover, we can show that for sequences (%n)n with
limn %1�n

n =1, no subspace of T (2)
M [(Fk , %k)�

k=1] (or T (2)
M(m)[(Fk , %k)�

k=1])
can be isomorphic to a subspace of T (2)

$ . It suffices to prove the following.

1.28. Proposition. Let 0<$<1 and let (%n)n be a regular sequence
with lim %1�n

n =1. Let X=TM[(Fk , %k)�
k=1] or X=TM(m)[(Fk , %k)�

k=1].
Then the spaces X and T$ are totally incomparable.

Proof. Let X=TM[(Fk , %k)�
k=1] or X=TM(m)[(Fk , %k)�

k=1]. Suppose
on the contrary that there exist normalized block sequences [x i]i in X and
[ yi] i in T$ which are equivalent as basic sequences. Let li=min supp y i ,
i=1, 2, .... From [5, Theorem 13] we get that [xi]X is equivalent to
[eli

]T$
. Let mi=min supp x i , i=1, 2, .... We choose a subsequence [ik]k of

indices such that either li1
�mi1

<li2
�mi2

< } } } or mi1
<li1

<m i2
<li2

< } } } .
In either case, using Theorem 13 of [5] once more, we get that the basic
sequences [elik

] and [emik
] are equivalent in T$ . We conclude that [emik

]T$

is equivalent to [xik
]X .

Let now j # N and let �k # A akemik
be a (% j

j , j)-special convex combi-
nation. As in Lemma 1.12 we get that &�k # A ak emik

&T$
�$ j+% j

j . On the
other hand, since the sequence (xik

)k # A is Fj -admissible, we have that

69MODIFIED MIXED TSIRELSON SPACES



&�k # A ak xik
&X�%j . But the assumption lim %1�j

j =1 leads to a contradic-
tion which completes the proof. K

2. THE SPACE XM(1), u

We give an example of a boundedly modified mixed Tsirelson space of
the form TM(1)[(Fkj

, %j)
�
j=1] which is arbitrarily distortable.

Definition of XM(1), u . We choose a sequence of integers (mj)
�
j=1 such

that m1=2 and for j=2, 3, ..., m j>mmj &1
j&1 .

We choose inductively a subsequence (Fkj
)�

j=0 of (Fn)n .
We set k1=1. Suppose that kj , j=1, ..., n&1 have been chosen. Let tn be

such that 2tn�m2
n . We set kn=tn (kn&1+1)+1.

For j=0, 1, ..., we set Mj=Fkj
. We define

XM(1), u=TM(1) _\Mj ,
1

m j+
�

j=1& .

Notation. Let F be a family of finite subsets of N. We set

F$=[A _ B : A # F, B # F, A & B=<].

2.1. Definition. Given =>0 and j=2, 3, ..., an (=, j)-basic special con-
vex combination ((=, j)-basic s.c.c.) relative to XM(1), u is a vector of the form
�k # F ak ek such that F # Mj , ak�0, �k # F ak=1, [ak]k # F is decreasing,
and, for every G # F$tj (kj &1+1) , �k # G ak<=.

2.2. Lemma. Let j�2, =>0, D be an infinite subset of N. There
exists an (=, j)-basic special convex combination relative to XM(1), u ,
x=�k # F akek , with F=supp x/D.

Proof. Since Mj=Ftj (kj &1+1)+1 , by Proposition 1.8 there exists a
convex combination x=�k # F akek with F # Mj , F/D and such that
�k # G ak<=�2 for all G # Ftj (kj &1+1) . It is clear that this x is an (=, j)-basic
s.c.c. relative to XM(1), u . K

In the sequel, when we refer to (=, j)-special convex combinations we
always imply ``relative to XM(1), u .''
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Notation. Let X$(n)=TM(1)[(M$l , 1�ml)
n
l=1] and let K$(n) be the norm-

ing set of X$(n) . We denote by | } | n the norm of X(n) and by | } |*n the corre-
sponding dual norm.

We set

G(n)={supp f : f # K$(n) and for every k # supp f, f (ek)>
1

m2
n+1= .

Remark. Using lemma 1.2 it is easy to see that G(n&1) /Ftn(kn&1+1) . It
follows that if x=�k # F ak ek is an (=, n)-basic s.c.c. then, for all G # G$(n&1) ,
�k # G ak<=.

We give the definition of the set K of functionals that define the norm of
the space XM(1), u .

We set K 0
j =[\en : n # N] for j=1, 2, ....

Assume that the [K n
j ]�

j=1 have been defined. Then, we set K n=��
j=1 K n

j ,
and for j=2, 3, ... we set

K n+1
j =Kn _ { 1

mj
( f1+ } } } + fd): supp f1< } } } <supp fd ,

( fi)
d
i=1 is Mj -admissible and f1 , ..., fd belong to Kn= ,

while for j=1, we set

K n+1
1 =K n

1 _ [ 1
2 ( f1+ } } } + fd): fi # Kn, d # N,

d�min supp f1< } } } <min supp fd , and for i{ j,

supp fi & supp fj=<].

Set K=��
n=0 Kn. Then, the norm & }& of XM(1), u is

&x&=sup [ f (x): f # K].

Notation. For j=1, 2, ..., we denote by Aj the set Aj=��
n=1 (K n

j "K0).
Then, K=K0 _ (��

j=1 Aj).
We will also consider the space TM(1)[(M$j , 1�m j)

�
j=1]. We denote by K$

the norming set of this space and by K$n, K$n
j , A$j the subsets of K$ corre-

sponding to Kn, K n
j , and Aj , respectively.

2.3. Definition. (A) Let m # N, . # Km"Km&1. An analysis of . is a
sequence [K s (.)]m

s=0 of subsets of K such that:

(1) For every s, K s (.) consists of disjointly supported elements of
K s, and �f # Ks(.) supp f=supp ..
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(2) If f belongs to K s+1 (.), then either f # K s (.) or there exists an
S-allowable family ( fi)

d
i=1 in K s (.) such that f = 1

2 ( f1+ } } } + fd), or, for
some j�2, there exists an Mj -admissible family ( fi)

d
i=1 in K s (.) such that

f =(1�mj)( f1+ } } } + fd).

(3) Km (.)=[.].

(B) For g # K s+1 (.)"K0 (.); the set of functionals [ f1 , ..., f l]/
K s (.) such that g=(1�mj)(� l

i=1 fi) is called the decomposition of g.

2.4. Lemma. Let j�2, 0<=�1�m2
j , M>0, and let x=�m

k=1 bkenk
be

an (=, j)-basic s.c.c.
Suppose that the vectors xk=� lk

i=1 ai, k eni, k
are such that a i, k�0 for all

i, k, � lk
i=1 ai, k�M, k=1, 2, ..., m, and n1�n1, 1<n2, 1< } } } <nl1, 1<n2�

n1, 2<n2, 2< } } } <n3� } } } <nlm, m . Then

(a) For . # ��
s=1 A$s ,

}. \ :
m

k=1

bkxk +}� M
ms

, if . # A$s , s� j

}. \ :
m

k=1

bkxk +}� 2M
msmj

, if . # A$s , s< j.

(b) If . belongs to the norming set K$( j&1) of TM(1)[(M$l ,
1�ml)

j&1
l=1 ], then

}. \: bk xk +}�2M
m2

j

.

Proof. (1) If s� j, then the estimate is obvious.
Let s< j and .=(1�ms) �d

l=1 fl . Without loss of generality we assume
that .(eni, k

)�0 for all ni, k . We set

D={ni, k : :
d

l=1

fl (eni, k
)>

1
m j= .

We set gl= fl |D . Then, (1�ms) �d
l=1 gl # K$( j&1), and for every

k # supp((1�ms) �d
l=1 gl) we have (1�ms) �d

l=1 gl (ek)>1�msm j>1�m2
j .

Therefore, D=supp((1�ms) �d
l=1 gl) # Gj&1). Let B=[k: there exists i with

ni, k # D]. Then B # G$( j&1) and so, by the Remark after Lemma 2.2,
�k # B bk<=�1�m2

j . We get

1
ms

:
d

l=1

gl \ :
m

k=1

bk xk +� :
k # B

bk \ :
lk

i=1

ai, k+�M :
k # B

bk�
M
m2

j

.
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On the other hand,

\ 1
ms

:
d

l=1

f l |Dc+\: bkxk+�
M

msmj
.

Hence,

. \: bkxk +�
M

msm j
+

M
m2

j

�
2M

msmj
.

(b) We assume again that . is positive. We set L=[ni, k :
.(eni, k

)>1�m2
j ]. Then,

.|Lc \: bkxk+�
M
m2

j

.

On the other hand, supp(.|L) # G( j&1) and as before we get
.|L (� bk xk)�M�m2

j . Hence,

}. \: bkxk +}�2M
m2

j

. K

2.5. Definition. (a) Given a block sequence (xk)k # N in XM(1), u and
j�2, a convex combination �n

i=1 aixki
is said to be an (=, j)-special com-

bination of (xk)k # N ((=, j)-s.c.c.), if there exist l1<l2< } } } <ln such that
2<supp xk1

�l1<supp xk2
�l2< } } } <supp xkn

�ln , and �n
i=1 a ieli

is an
(=, j )-basic s.c.c.

(b) An (=, j)-s.c.c. �n
i=1 aixki

is called seminormalized if &xki
&=1,

i=1, ..., n and

" :
n

i=1

ai xki"� 1
2 .

2.6. Lemma. Let (xk)�
k=1 be a block sequence in XM(1), u and j=2, 3, ...,

=>0. Then, there exists a normalized finite block sequence [ yk]n
k=1 of

[xk]�
k=1 and a convex combination �n

k=1 ak yk which is a seminormalized
(=, j)-s.c.c.

Proof. Using that Mj=Ftj (kj&1+1)+1 where 2tj�m2
j , the proof is similar

to the proof of Lemma 1.11. K
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2.7. Lemma. Let j�3 and let x=�n
k=1 akxk be a (1�m4

j , j)-s.c.c. where
&xk&�1, k=1, ..., n. Suppose .=(1�mr) �d

i=1 f i # Ar , 2�r< j. Let

L=[k # [1, 2, ..., n]: there exist at least two i1 {i2 # [1, ..., d]

with supp f il
& supp xk {<, l=1, 2].

Then,

(a) |.(�k # L akxk)|�1�m4
j .

(b) |.(�n
k=1 akxk)|�2�mr .

Proof. (a) Let [l1 , ..., ln] # Mj be such that 2�x1<l1<x2�
l2< } } } �ln . Let ni=min supp f i , i=1, ..., d. Then [n i : i=1, ..., d] # Mr .
For each k # L, let ik=min[i: supp f i intersects supp xk]. The map k � nik
from L to [ni : i=1, ..., d] is 1&1, so *L�d. Moreover, nik

�lk for each
k # L, so [lk : k # L] belongs to Mr . It follows that �k # L ak<1�m4, and so,

}. \ :
k # L

akxk +}� :
k # L

ak &xk &<
1

m4
j

.

(b) Let P=[1, ..., n]"L and, for each i=1, ..., d, let Pi=
[k # P: supp xk & supp f i {<]. Then

}. \ :
n

k=1

akxk+}� 1
mr

:
d

i=1
} f i \ :

k # Pi

akxk +}+ :
k # L

ak &xk&

<
1

mr
+

1
m4

j

<
2

mr
. K

In the sequel we shall write K� OK if K� is a subset of K satisfying the
following.

(i) For every f # K� there exists an analysis [K s ( f )] such that
� K s ( f )/K� .

(ii) If f # K then & f # K� and f | [m, n] # K� for all m<n # N.

(iii) If ( fi)
d
i=1 is an S-allowable family in K� then 1

2 �d
i=1 fi belongs to K� .

(iv) For every n # N, en # K� .

For K� OK we denote by & }&K� the norm induced by K� :

&x&K� =sup [ f (x): f # K� ].

The results that follow involve a subset K� of K having the properties
mentioned above. For the purposes of this section we only need these
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results with K� =K. However, we find it convenient to present them now in
the more general formulation that we will need in Section 3.

2.8. Definition. Let K� OK. A finite block sequence (xk)n
k=1 is said to

be a rapidly increasing sequence (R.I.S.) with respect to K� if there exist
integers j1 , ..., jn satisfying the following:

(i) 2� j1< j2< } } } < jn .

(ii) Each xk is a seminormalized (1�m4
jk

, jk)-s.c.c. with respect to K� .
That is, xk is a (1�m4

jk
, jk)-s.c.c. of the form xk=�t a(k, t)x(k, t) where

&x(k, t)&K� =1 for each t, and &xk&K� �
1
2 .

(iii) For k=1, 2, ..., n, let lk=max supp xk and let nk # N be such
that

lk

2nk
<

1
mjk

.

We set

Oxk
={f # K: supp f/[1, lk] and | f (em)|>

1
2nk

for every m # supp f= .

Then jk+1 is such that m jk+1
>*Oxk

and xk+1 satisfies min supp xk+1

>*Oxk
.

(iv) &xk&l1
�m jk+1

�mjk+1&1 .

Notation. If . # K"K0 then . is of the form .=(1�mr) �d
i=1 f i , where

either r=1 and ( f i)
d
i=1 is an S-allowable family of functionals in K, or

r�2 and ( fi)
d
i=1 is a Mr -admissible family of functionals in K. In either

case we set w(.)=(1�mr) (the weight of .). That is, w(.)=1�mr if and
only if . # Ar .

The following proposition is the central result of this section.

2.9. Proposition. Let K� OK. Let (xk)n
k=1 be a R.I.S. with respect to K�

and let . # K� . There exists a functional � # K$ with w(.)=w(�) and vectors
uk , k=2, ..., n, with &uk&l1

�16 and supp uk /supp xk for each k, such that

}. \ :
n

k=1

*kxk+}� max
1�k�n

|*k |+� \ :
n

k=2

|*k | uk++6 :
n

k=1

|*k |
1

mjk

for every choice of coefficients *1 , ..., *n # R.
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As it follows from the above statement, we reduce the estimation of the
action of . on the R.I.S. [xk]k to the estimation of the action of the func-
tional � on a finite block sequence [uk]k of subconvex combinations of the
basic vectors. The construction of the functional � and the finite block
sequence [uk]k will be done in several steps. We describe this process
briefly:

We fix an analysis [K s (.)] of the functional .. We first replace each
vector xk by its ``essential part'' relative to ., denoted by x� k . Next, for each
x� k we consider certain families of functionals in � K s (.) which fall under
two types (families of type I and type II, Definition 2.11). These families
yield a partition of the support of x� k . The restriction from xk to x� k gives
us a control on the number of families of type I and type II which act on
each x� k (Lemma 2.13). Fixing k, to each such family of functionals acting
on x� k , we correspond a subconvex combination of the basis and the sum
of these combinations is the vector uk . The functional � is defined induc-
tively, following the analysis of the functional ..

From now on we fix the R.I.S. (xk)n
k=1 and the functional . of Proposi-

tion 2.9. We also fix an analysis [K s (.)] of . contained in K� . We first
partition each vector xk into three disjointly supported vectors x$k , x"k , and
x� k ; this partition depends on the analysis [K s (.)].

Definition of x$k , x"k , x� k . Let

Fk=[ f # _ K s (.): supp f & suppxk {<, supp f & supp xj {<

for some j>k and w( f )�1�mjk+1
].

We set Ak=�f # Fk
supp f and x$k=xk | Ak .

Let now

F $k=[ f # _ K s (.): | f (em)|�1�2nk for every m # supp f & supp(xk&x$k)

and supp f & supp(xj&x$j){< for some j>k].

We set A$k=�f # F $k
supp f and x"k=(xk&x$k) | A$k .

Finally, x� k=xk&x$k&x"k .

2.10. Lemma. For .(x$k) and .(x"k) we have the following estimates:

(1) |.(x$k)|�
1

mjk+1&1

and (2) |.(x"k)|<1�mjk
.
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Proof. To see (1), let us call an f # Fk maximal if there is no f ${ f in
Fk such that supp f/supp f $. The maximal elements of Fk have disjoint
supports. So

|.(x$k)|� :
f maximal in Fk

| f (x$k)|�:
f

1
mjk+1

&xk | supp f &l1

�
1

mjk+1

m jk+1

mjk+1&1

=
1

mjk+1&1

,

by property (iv) of the R.I.S.
For (2), we notice that for every n # supp x"k we have |.(en)|�1�2nk.

Also, since &xk &��1, we have &xk &l1
�max supp xk . Hence

|.(x"k)|�
&xk &l1

2nk
�

max supp xk

2nk
<

1
m jk

.

Remarks. (1) By the definition of x$k and x"k we have x$n=x"n=0, since
xn is the last element of (xk)n

1 .

(2) If f # _ K s (.) and 1�k<l�n are such that supp f &
supp x� k {< and supp f & supp x� l {< then w( f )>1�mjk+1

and there
exists m # supp x� k such that | f (em)|>1�2nk.

2.11 Definition (Families of Type I and Type II w.r.t. x� k).
Without loss of generality, we assume that supp . & supp x� 1 {<. Let

k # [2, ..., n] be fixed.

(A) A set of functionals F=[ f1 , ..., f l] contained in some level
K s (.) of the analysis of . is said to be a family of type I with respect to
x� k if

(A1) supp fi & supp x� k {< and supp f i & supp x� j=< for every
j{k and every i=1, 2, ..., l.

(A2) There exists g # K s+1 (.) such that f1 , ..., fl belong to the
decomposition of g and supp g & supp x� j {< for some j<k. Moreover, F
is the maximal subset of the decomposition of g with property (A1); that
is, g=(1�mr)(�d

i=1 hi+� l
i=1 fi), where, for each i=1, ..., d, either

supp hi & supp x� k=< or supp hi & supp x� j {< for some j{k.

(B) A set of functionals F=[ f1 , ..., fm] contained in some level
K s (.) of the analysis of . is said to be a family of type II with respect to
x� k if
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(B1) supp fi & supp x� k {<, supp fi & supp x� j=< for every j<k
and every i=1, 2, ..., m, and for every i=1, 2, ..., m we can find ji>k such
that supp fi & supp x� ji

{<.

(B2) There exists g # K s+1 (.) such that f1 , ..., fm belong to the
decomposition of g and supp g & supp x� j {< for some j<k. Moreover, F
is the maximal subset of the decomposition of g with property (B1);
that is, g=(1�mr)(�d

i=1 hi+�m
i=1 fi), where, for each i=1, ..., d, either

supp hi & supp x� k=< or supp hi & supp x� j {< for some j<k or
supp hi & supp x� j=< for all j{k.

Remarks. (1) It is easy to see that for k=2, 3, ..., n,

supp x� k & supp .

=supp x� k & . { .
f # F

supp f : F is a family of type I or type II w.r.t. x� k= .

(2) Let k be fixed. If each of the families [ f1 , ..., f l] and [ f $1 , ..., f $m]
is of type I or of type II w.r.t. x� k and they are not identical, then, for all
i�l, j�m, supp fi & supp f $j=<.

(3) Let F be a family of type I or type II w.r.t. x� k and let gF be the
functional in � K s (.) which contains F in its decomposition. Then gF

intersects x� j for some j<k. By Remark (2) after Lemma 2.10 this implies
that w(gF)>1�m jk

.

2.12. Lemma. Let 2�k�n. If f is a member of a family of type I or
type II with respect to x� k , then there exist sets Ak, f , A$k, f /supp f satisfying

| f (x$k)|�
1

mjk+1

&xk | Ak, f
&l1

and

| f (x"k)|�
1

2nk
&xk |A$k, f

&l1
.

Moreover, if f and f $ are two distinct such functionals then Ak, f & Ak, f $=<
and A$k, f & A$k, f $=<.

Proof. Let Fk be the subset of � K s (,) introduced in the definition of
x$k . If f (x$k){0 then, by the definition of x$k , either there exists g # Fk with
supp f/supp g or there exists g # Fk with supp g/supp f. But the first
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case is impossible because then we would have supp f & supp xk /supp x$k
and so supp f & supp x� k=<. So, if we set

Ak, f=� [supp g & supp xk : g # Fk and supp g/supp f ],

then f (x$k)= f (xk | Ak, f). This gives

| f (x$k)|�
1

mjk+1

&xk | Ak, f&l1
.

In the same way, if f (x"k){0 we set

A$k, f=� [supp g & supp(xk&x$k): g # F $k and supp g/supp f ].

Then f (x"k)= f (xk | A$k, f), so

| f (x"k)|�
1

2nk
&xk | A$k, f&l1

.

The disjointness follows from the preceding Remark (2). K

2.13. Lemma. Let k=2, 3, ..., n. Then:

(a) The number of families of type I w.r.t. x� k is less than min supp xk .

(b) The number of families of type II w.r.t. x� k is less than
min supp xk .

Proof. (a) For each family F of type I w.r.t. x� k let gF be the (unique)
functional in � K s (.) which contains F in its decomposition.

By the maximality of F in the decomposition of gF , it is clear that if
F{F $ are two families of type I then gF { gF $ . Since both gF and gF $ are
elements of the analysis of ., it follows that either supp gF /supp gF $ or
supp gF $ /supp gF or supp gF & supp gF $=<. In either case gF (ek){
gF $ (ek) for all k. Moreover, for each F, gF has the property that supp gF &
supp x� i {< for some i<k. Let iF=min[i: supp gF & supp x� i {<]. It
follows from Remark 2 after Lemma 2.10 that there exists mF in supp x� iF
with | gF (emF

)|>1�2niF>1�2nk&1.
So, for each family F of type I w.r.t. x� k , we set hF= g |[mF] # K. The map

F � hF is one to one; moreover, each hF belongs to Oxk&1
(see Defini-

tion 2.8).
It follows that

*[F : F is a family of type I w.r.t. x� k]�*Oxk&1
<min supp xk .

(b) The proof is the same as that of part (a). K
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Notation. For each k=2, 3, ..., n, we classify the families of type I and
type II into four classes according to the weight w(gF) of the functional gF

which contains each family F in its decomposition. We set

Ax� k
=[F : F is a family of type I w.r.t. x� k and w(gF)= 1

2],

Bx� k
=[F : F is a family of type I w.r.t. x� k and w(gF)< 1

2],

Cx� k
=[F : F is a family of type II w.r.t. x� k and w(gF)= 1

2],

Dx� k
=[F : F is a family of type II w.r.t. x� k and w(gF)< 1

2].

Remarks. (1) If F # Dx� k
, then F is a singleton, i.e., F=[ f ]. Indeed, if

gF=(1�ms)(� hi+�m
i=1 fi) where s>1 and F=[ f1 , ..., fm], then

f1< f2< } } } < fm , and each supp f i intersects supp x� k and supp x� ji
, for

some ji>k. This is impossible unless m=1.

(2) If f $< f < f " belong to � K s (.) and there exists a family of
type II w.r.t. x� k which is contained in the analysis of f, then
supp f $ & supp x� k=< and supp f " & supp x� k=<.

Notation. (A) Each xk is a seminormalized (1�m4
jk

, jk)-s.c.c. of the
form

xk= :
rk

t=1

a (k, t)x(k, t) ,

where a(k, t)�0, �t a(k, t)=1, and &x(k, t)&K� =1.
For each k=1, ..., n, t=1, ..., rk , we set

x� (k, t)=x(k, t) | supp x� k
.

(B) Fix k # [2, ..., n]. If f # _ K s (.) is a member of a family of
type I or type II w.r.t. x� k , we set

nf=min(supp x� k & supp f ) and ef=enf
.

Also, if F=[ f1 , ..., f l] is a family of type I or type II w.r.t. x� k , then we set

nF=min \supp x� k & \.
l

i=1

supp f i++ and eF=enF
.

For F=[ f1 , ..., fl] # Ax� k
_ Cx� k

we set

hF= 1
2 ( f1+ } } } + fl) and aF=|2hF (x� k)|.
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For [ f ] # Dx� k
we set

af=| f (x� k)|.

Finally, if F # Bx� k
, for every f # F we set

0f=[t: supp f & supp x� (k, t) {< and supp h & supp x� (k, t)=<

for every h{ f in F]

and

af= :
t # 0f

a(k, t) | f (x� (k, t))|.

(C) For each k=2, 3, ..., n we define

uk= :
[ f ] # Dx� k

afef+ :
F # Ax� k

_ Cx� k

aFeF+ :
F # Bx� k

:
f # F

afef .

2.14. Lemma. For k=2, 3, ..., n,

&uk&l1
= :

[ f ] # Dx� k

af+ :
F # Ax� k

_ C x� k

aF+ :
F # Bx� k

:
f # F

af�16.

Proof. For each f with [ f ] # Dx� k
, set =f=sign( f (x� k)). Then,

:
[ f ] # Dx� k

af= :
[ f ] # Dx� k

| f (x� k)|= :
[ f ] # Dx� k

=f f (x� k)

= :
[ f ] # Dx� k

=f f (xk)& :
[ f ] # Dx� k

=f f (x$k)& :
[ f ] # Dx� k

=f f (x"k)

� :
[ f ] # Dx� k

=k f (xk)+ :
[ f ] # Dx� k

| f (x$k)|+ :
[ f ] # Dx� k

| f (x"k)|

� :
[ f ] # Dx� k

=f f (xk)+
1

mjk+1

:
[ f ] # Dx� k

&xk |Ak, f
&l1

+
1

2nk
:

[ f ] # Dx� k

&xk |A$k, f
&l1

,

where the last inequality follows from Lemma 2.12. From the same lemma
and Definition 2.8 we get

1
mjk+1

:
[ f ] # Dx� k

&xk | Ak, f
&l1

�
1

mjk+1

&xk&l1
<

1
mjk
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and

1
2nk

:
[ f ] # Dx� k

&xk |A$k, f
&l1

�
1

2nk
&xk &l1

�
lk

2nk
<

1
mjk

.

For every f # K� we have that =f f | [min supp xk, �) # K� . Also, by Remark (2)
following Definition 2.11, we have that if f{ f $ and both [ f ] and [ f $] are
families of type II w.r.t. x� k , then supp f & supp f $=<. By Lemma 2.13 we
have *Dx� k

<min supp xk . It follows that the set

[=f f | [min(supp xk), �) : [ f ] # Dx� k
]

is S-allowable, and so the functional 1
2 �[ f ] # Dx� k

=f f | [min(supp xk), �) belongs
to K� . We conclude that | 1

2 � =f f (xk)|�&xk &K� �1, and so,

:
[ f ] # Dx� k

af�2+
2

m jk

<3. (1)

For F # Cx� k
we set =F=sign hF (x� k). Then,

:
F # Cx� k

aF= :
F # C x� k

|2hF (x� k)|=2 :
F # C x� k

=FhF (x� k)

=2 \� =FhF (xk)&� =FhF (x$k)&� =F hF (x"K)+
�2 :

F # C x� k

=FhF (xk)+2 :
F # Cx� k

:
f # F

| f (x$k)|+2 :
F # Cx� k

:
f # F

| f (x"k)|

�2 :
F # C x� k

=FhF (xk)+
2

mjk+1

:
F # Cx� k

:
f # F

&xk |Ak, f
&l1

+
2

2nk
:

F # C x� k

&xk |A$k, f
&l1

�2 :
F # C x� k

=FhF (xk)+
4

mjk

,

again by Lemma 2.12. On the other hand, for F=[ f1 , ..., fl] # Cx� k
,

hF= 1
2 ( f1+ } } } + fl) # K� and =F hF # K� . By Lemma 2.13 we have that

*Cx� k
<min supp xk and by Remark (2) after 2.11 we have that the func-

tionals hF , F # Cx� k
, are disjointly supported. We conclude that the

set [hF | [min supp xk, �) : F # Cx� k
] is S-allowable and so, the functional

1
2 �F # Cx� k

=FhF | [min supp xk, �) belongs to K� and

} :
F # C x� k

=F hF (xk)}�2 &xk&�2.
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We conclude that

:
F # C x� k

aF�4+
4

mjk

<5. (2)

In the same way we get

:
F # Ax� k

aF<5. (3)

Finally, we have

:
F # Bx� k

:
f # F

af = :
F # Bx� k

:
f # F

:
t # 0f

a(k, t) | f (x� (k, t))|

� :
F # Bx� k

:
f # F

:
t # 0f

a(k, t) ( | f (x(k, t))|+| f (x$(k, t))|+| f (x"(k, t))| ).

For each F # Bx� k
and f # F we have

:
t # 0f

a(k, t) | f (x$(k, t))|�
1

mjk+1

&ak |Ak, f
&l1

and

:
t # 0f

a(k, t) | f (x"(k, t))|�
1

2nk
&xk |A$k, f

&l1
.

Since the sets Ak, f , f # �F # Bx� k
F are disjoint, we get

:
F # Bx� k

:
f # F

:
t # 0f

a(k, t) | f (x$(k, t))|�
1

mjk+1

&xk&l1
<

1
mjk

. (i)

In a similar way,

:
F # Bx� k

:
f # F

:
t # 0f

a(k, t) | f (x"(k, t))|�
1

2nk
&xk&l1

<
1

mjk

. (ii)

It remains to estimate

:
F # Bx� k

:
f # F

:
t # 0f

a(k, t) | f (x(k, t))|.
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For each F # Bx� k
and t # �f # F 0f , let f F

t be the unique element of F with
f F

t (x� (k, t)){0. Let also, 0F=�f # F 0f and 0=�F # Bx� k
0F . Then,

:
F # Bx� k

:
f # F

:
t # 0f

a(k, t) | f (x(k, t))|= :
F # Bx� k

:
t # 0F

a(k, t) | f F
t (x(k, t))|

= :
t # 0

a(k, t) :
F # Bx� k

| f F
t (x (k, t))|.

Fix t # 0. For each F # Bx� k
, we set =F=sign f F

t (x (k, t)). Since *Bx� k
<

min supp xk , the functional

h= 1
2 :

F # Bx� k

=F f F
t | [min supp xk, �)

belongs to K� . So, we get

:
F # Bx� k

| f F
t (x (k, t))|=2h(x(k, t))<2 &x(k, t) &=2.

We conclude that

:
t # 0

a(k, t) :
F # Bx� k

| f F
t (x(k, t))|�2 :

t # 0

a(k, t)�2. (iii)

Finally, by (i), (ii), and (iii),

:
F # Bx� k

:
f # F

af�2+
2

m jk

<3. (4)

Combining (1), (2), (3), (4) we get the desired estimate for &uk&l1
. K

2.15. Lemma. There exists a functional � # K$ with w(�)=w(.) and
such that, for k=2, ..., n,

|.(x� k)|��(uk)+
2

mjk

.

Proof. We build the functional � inductively, following the way . is
built by the analysis � K s (.).
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We first introduce some more notation: For f # _ K s (.), we set

K( f )=[ f $ # _ K s (.) : supp f $/supp f ],

that is, K( f ) is the analysis of f induced by � K s (.).
For f =(1�ms) �d

i=1 f i and each k=2, ..., n, we set

I f
k=[i # [1, ..., d] : fi is an element of a family of type I w.r.t. x� k],

J f
k=[i # [1, ..., d] : fi is an element of a family of type II w.r.t. x� k],

and

4 f
k=[i # [1, ..., d] : K( f i) contains a family of type I or type II w.r.t. x� k].

We also set

I f= .
n

k=2

I f
k , J f= .

n

k=2

J f
k , 4 f= .

n

k=2

4 f
k

and

Df= .
n

k=2

. { .
f $ # F

supp f $ : F is a family of type I or type II

w.r.t. x� k and F/K( f )= .

Let k=2, ..., n and let F be a family in Bx� k
. We set

LF=[t : there exist at least two functionals h, h$ # F such that

supp h & supp x� (k, t) {< and supp h$ & supp x� (k, t) {<].

Let gF be the functional in � K s (.) which contains the family F in its
decomposition. We set

CF=w(gF) } :
t # LF

a(k, t) :
f # F

f (x� (k, t))} .
Finally, for f # � K s (.) we set Bk ( f )=[F # Bx� k

: F/K( f )].
By induction on s=0, ..., m, for every f # K s (.) we shall construct a

functional �f # K$ such that:

If Df=<, then �f=0.

If Df {<, then �f has the following properties:
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(a) supp �f /Df /supp f.

(b) For each k=2, ..., n,

| f (x� k |Df
)|��f (uk)+ :

F # Bk( f )

CF .

(c) w(�f)=w( f ).

Suppose that �f has been defined for all f # �s&1
t=1 K t (.). Let

f =(1�mq) �d
i=1 fi # K s (.)"K s&1 (.) be such that Df {<.

Case 1. w( f )=1�mq< 1
2 . Then we set

�f=
1

mq \ :
i # 4 f

�fi
+ :

i # I f

e*fi
+ :

i # J f

e*fi+ .

By the inductive assumption, property (a) is satisfied.
We note that the sets 4 f and J f are not disjoint. If i # J f

k then i # 4 f
m for

some m>k. In this case, supp �fi
/Dfi

/[min supp x� k+1 , �), while
supp e*fi

=[nfi
]/supp x� k . It follows that e*fi

<�fi
.

Fix now k # [2, ..., n]. Since w( f )< 1
2 , we have f1< f2< } } } < fd , so each

of the sets J f
k and 4 f

k is either empty or a singleton. Suppose that 4 f
k=[i1]

and J f
k=[i2]. Then,

| f (x� k |Df
)|=

1
mq } f i1

(x� k |Df
)+ :

i # I f
k

fi (x� k)+ f i2
(x� k)}

�
1

mq
| f i1

(x� k |Df
)|+

1
mq } :

i # I f
k

f i (x� k)}+ 1
mq

| fi2
(x� k)|.

We have

1
mq

| fi1
(x� k |Df

)|�
1

mq \�fi1
(uk)+ :

F # Bk( fi1
)

CF+ (1)

by the inductive assumption. Also,

1
mq

| fi2
(x� k)|=

1
mq

| f i2
(x� k)| e*fi2

(afi2
efi2

)=
1

mq
e*fi2

(uk). (2)

Finally, let G=[ fi : i # I f
k] be the family of type I w.r.t. x� k contained in

the decomposition of f. Then,
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1
mq } :

i # I f
k

fi (x� k)}
=

1
mq } :

i # I f
k

f i \:
t

a(k, t) x� (k, t)+}
=

1
mq } :

fi # G

:
t # 0fi

a(k, t) fi (x� (k, t))+ :
t # LG

a(k, t) \ :
fi # G

fi + (x� (k, t)) }
�

1
mq

:
fi # G

:
t # 0fi

a(k, t) | f i (x� (k, t))|+
1

mq } :
t # LG

a (k, t) \ :
fi # G

fi (x� (k, t))+}
=

1
mq

:
i # I f

k

afi
+CG=

1
mq

:
i # I f

k

afi
e*fi

(efi
)+CG=

1
mq

:
i # I f

k

e*fi
(uk)+CG .

So,

1
mq } :

i # I f
k

fi (x� k) }� 1
mq

:
i # I f

k

e*fi
(uk)+CG . (3)

From (1), (2), and (3) we conclude that property (b) holds for �f , that
is,

| f (x� k |Df
)|��f (uk)+ :

F # Bk( f )

CF .

It remains to show that �f # K$. We have to show that the set

[�fi
: i # 4 f] _ [e*fi

: i # I f _ J f]

is M$q-admissible. For i=1, ..., d, let r i=min(supp f i). Then, [ri : i=
1, ..., d] # Mq .

To each i # I f corresponds the vector e*fi
with ri�e*fi

<r i+1 .
If i # J f, then i # 4 f also, so to it correspond two vectors e*fi

and �fi
with

ri�e*fi
<�fi

<r i+1 .
Finally, if i # 4 f"J f, then to it corresponds the vectors �fi

with
ri��fi

<r i+1 .
It follows from these relations that the family

[�fi
: i # 4 f] _ [e*fi

: i # I f _ J f]

is M$q-admissible, and since �fi
, e*fi

# K$, we get �f # A$q .

Case 2. w( f )=1�mq= 1
2 . For each k=2, ..., n, let F k

1=[ f i : i # I f
k] be

the family of type I w.r.t. x� k contained in the decomposition of f, and let
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F k
2=[ f i : i # J f

k] be the family of type II w.r.t. x� k contained in the decom-
position of f. We set

�f=
1
2 \ :

i # 4 f

�fi
+ :

n

k=2

(e*F
1
k+e*F

2
k)+ .

Then, for each k,

| f (x� k |Df
)|= 1

2 } :
i # 4 f

k

fi (x� k |Df
)+ :

i # I f
k

f i (x� k)+ :
i # J f

k

f i (x� k)} .
We have

1
2 } :

i # 4f
k

fi (x� k | Df
)}� 1

2 :
i # 4 f

k

| fi (x� k |Df
)|� 1

2 :
i # 4 f

k

�fi
(uk)+ :

i # 4 f
k

:
F # Bk( fi)

CF .

Also,

1
2 } :

i # I f
k

f i (x� k)}=|hF
1
k (x� k)| e*F

1
k (eF

1
k)= 1

2e*F
1
k (aF

1
k eF

1
k)= 1

2e*F
1
k (uk),

and

1
2 } :

i # J f
k

fi (x� k)}=|hF
2
k (x� k)| e*F

2
k (eFk

)= 1
2eF

2
k (uk).

We conclude that

| f (x� k | Df
)|� 1

2 _ :
i # 4 f

k

�fi
(uk)+e*F

1
k (uk)+eF

2
k (uk)&+ :

F # Bk( f )

CF

=�f (uk)+ :
F # Bk( f )

CF .

It remains to show that �f belongs to K$. We need to show that the
family

B=[�fi
: i # 4 f] _ [e*F

1
k : k=2, ..., n] _ [e*F

2
k : k=2, ..., n]

is S$-allowable.
We have supp �fi

/Dfi
/supp f i for each i # 4 f and supp e*F

1
k=[nF

1
k]/

_ [supp fi : fi # F k
1] & supp x� k and the same is true for e*F 2

k
. Also, if fi

belongs to a family F k
2 , then Dfi

& supp x� k=<, while nF
2
k # supp x� k .

Finally, we clearly have e*F
1
k {e*F

2
k .
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The above remarks imply that the functionals in B are disjointly sup-
ported. Moreover, it is easy to see that

*B�2d=2(*[ fi : i=1, ..., d]).

We conclude that the family B is S$-allowable, and thus �f # K$.
This completes the inductive step. We set �=�. .
Then, D.=supp . & (�n

k=2 supp x� k) (see Remark (1) following Defini-
tion 2.11), and by the inductive assumption (b) we get that for each
k=2, ..., n,

|.(x� k)|��(uk)+ :
F # Bx� k

CF .

To complete the proof of the lemma it remains to show that, for each
k=2, ..., n,

:
F # Bx� k

CF<
2

m jk

.

For each F # Bx� k
, setting x$(k, t)=x(k, t) | supp x$k and x"(k, t)=x(k, t) | supp x"k ,

we have

} :
t # LF

a(k, t) :
f # F

f (x� (k, t))}
� } :

t # LF

a(k, t) :
f # F

f (xk, t)}+ :
t # LF

:
f # F

| f (a(k, t)x$(k, t))|

+ :
t # LF

:
f # F

| f (a(k, t) x"(k, t))|.

Using Lemma 2.12 we get

} :
t # LF

a(k, t) :
f # F

f (x� (k, t))}
� } :

t # LF

a(k, t) :
f # F

f (x(k, t))}+ :
t # LF

:
f # F

1
mjk+1

&a(k, t) x(k, t) |Ak, f
&l1

+ :
t # LF

:
f # kF

1
2nk

&a(k, t)x(k, t) |A$k, f
&l1

� } :
t # LF

a(k, t) :
f # F

f (x(k, t))}+ 1
mjk+1

:
f # F

&xk |Ak, f
&l1

+
1

2nk
:

f # F

&xk |A$k, f
&l1

.
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To estimate

w(gF) } :
t # LF

a(k, t) :
f # F

f (x(k, t)) },
we use Remark (3) after 2.11. According to this remark, w(gF)<1�mjk

and so, gF # Ar for some 1�r< jk . Let gF=w(gF) � l
i=1 f i where

f1< f2< } } } < fl and suppose i1=min[i: f i # F] and i2=max[i: fi # F].
We set F� =[ f i : i1�i�i2]. The family F� contains F but might also contain
some functionals fi with f i (xk){0 but fi (x� k)=0. Since K� is closed under
projections onto intervals, the functional w(gF) �f # F� f belongs to Ar & K� .
Applying Lemma 2.7(a) (in fact, since our assumption is &x(k, t) &K� �1, we
use the analogue of this lemma for the space with norm & }&K� ) we get that

w(gF) } :
t # LF

a(k, t) :
f # F�

f (x (k, t)) }� 1
m4

jk

.

Notice that CF :=w(gF) |�t # LF
a(k, t) �f # F f (x� (k, t))|=w(gF) |�t # LF

a(k, t)

�f # F� f (x� (k, t))| and also that Lemma 2.12 remains true for f # F� .
We conclude that for each F # Bx� k

,

CF =w(gF) } :
t # LF

a(k, t) :
f # F�

f (x� (k, t))}
�

1
m4

jk

+
1

mjk+1

:
f # F�

&xk |Ak, f
&l1

+
1

2nk
:

f # F�

&xk |A$k, f
&l1

.

Now, we add over all F # Bx� k
. By Lemma 2.13, *Bx� k

<mjk
. Also, by

Lemma 2.12 we have that the sets Ak, f , for f # �F # Bx� k
F� , are mutually

disjoint, and the same is true for the sets A$k, f . We conclude that

:
F # Bx� k

CF �
mjk

m4
jk

+
1

mjk+1

&xk &l1
+

1
2nk

&xk &l1

�
1

m3
jk

+
1

mjk+1&1

+
1

mjk

<
2

mjk

by Definition 2.8. This completes the proof of the lemma. K

Proof of Proposition 2.9. Recall (Definition 2.11) that for our inter-
mediate lemmas we have assumed that supp . & supp x� 1 {<. If this is not
true, then we can set k0=min[k: supp . & supp x� k {<] and construct in
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the same way uk 's, k=k0+1, ..., n, and � supported on �n
k=k0+1 supp uk ,

such that

|.(x� k)|��(uk)+
2

mjk

, k=k0+1, ..., n.

Setting uk=0, for k=2, ..., k0 we have

}. \ :
n

k=1

*kx� k+}�|*k0
| |.(x� k0

)|+� \ :
n

k=2

|*k | uk++ :
n

k=2

|*k |
2

mjk

for any choice of coefficients (*k)n
k=1 .

For .(�n
k=1 *kxk) we have

}. \ :
n

k=1

*kxk+}� }. \ :
n

k=1

*kx� k+}+ :
n

k=1

|*k | ( |.(x$k)|+|.(x"k)| ).

Using the previous estimate and Lemma 2.10 we get

}. \ :
n

k=1

*kxk+}
�|*k0

| |.(x� k0
)|+� \ :

n

k=2

|*k | uk ++4 :
n

k=1

|*k |
1

mjk

�|*k0
| ( |.(xk0

)|+|.(x$k0
)|+|.(x"k0

)| )+� \ :
n

k=2

|*k | uk+
+4 :

n

k=1

|*k |
1

m jk

�|*k0
| &xk0

&K� +� \ :
n

k=2

|*k | uk++6 :
n

k=1

|*k |
1

mjk

� max
1�k�n

|*k |+� \ :
n

k=2

|*k | uk ++6 :
n

k=1

|*k |
1

mjk

. K

2.16. Definition. Let j�2, =>0. An (=, j)-special convex combination
�n

k=1 bk xk is called an (=, j )-R.I.s.c.c. w.r.t. K� if the sequence (xk)n
k=1

is a R.I.S. w.r.t. K� and the corresponding integers ( jk)n
k=1 satisfy

j+2< j1< } } } < jn .

2.17. Corollary. If �n
k=1 bk xk is a (1�m2

j , j)-R.I.s.c.c. w.r.t. K� and
. # K� with w(.)=1�ms , then
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}. \ :
n

k=1

bkxk +}�2b1+
16
ms

, if s� j. (a)

}. \ :
n

k=1

bkxk +}� 33
msmj

, if s< j.

1
4mj

�" :
n

k=1

bkxk"K�
�

17
m j

. (b)

Proof. (a) Recall that the sequence (bk)n
k=1 is decreasing. By Proposi-

tion 2.9,

}. \ :
n

k=1

bkxk+}�b1+� \ :
n

k=2

bkuk++6 :
n

k=1

bk

mjk

,

where � # K$ with w(�)=w(.)=s and &uk &l1
�16. By Lemma 2.4 we get

}. \ :
n

k=1

bkxk+}�2b1+
16
ms

for s� j, and

}. \ :
n

k=1

bkxk+}�2b1+
32

ms mj
<

33
msmj

for s< j.
(b) The upper estimate follows from (a). The lower estimate is a

consequence of the fact that &xk&K� �
1
2 and the sequence (xk)n

k=2 is
Mj -admissible. K

2.18. Theorem. The space XM(1), u is arbitrarily distortable.

Proof. It follows from Lemmas 2.2 and 2.6 that for every j�2 every
block subspace Y contains a (1�m2

j , j)-R.I.s.c.c. w.r.t. K.
Fix i0 # N large and define an equivalent norm _ }_ on XM(1), u by

_x_=
1

mi0

&x&+sup [.(x): . # Ai0
].

Let Y be a block subspace and let y=� ak yk # Y be a (1�m2
j , j)-R.I.s.c.c.

for some j>i0 , and z=� blzl # Y be a (1�m2
i0

, i0)-R.I.s.c.c. Then, by
Corollary 2.17,

_mj y_�
17
mi0

+
33
mi0

=
50
mi0

and &mj y&�
1
4

.
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On the other hand,

_mi0
z_�

1
4

and &mi0
z&�17.

This shows that _ }_ is a (1�103) m i0
-distortion. Since i0 was arbitrary,

this completes the proof. K

The following remarks on the proof of Proposition 2.9 will be used in the
next section.

2.19. Remarks. Let ., x� k , �, uk be as in Proposition 2.9. It follows
from the proof of Lemma 2.15 that the functional � which is constructed
inductively following the analysis [K s (.)] of . satisfies the following
properties.

(a) There exists an analysis [K s (�)] of � contained in K$ such that,
for every g # _ K s (�) there exists a unique f # _ K s (.) with g=�f ;
moreover, if g � K0 then w( f )=w(g).

(b) The functional � is supported in the set

L=[ef : f # _ [F: F is a family of type I or II w.r.t. some x� k]].

Moreover, for k=2, ..., n and for every family F of type I or II w.r.t. x� k , if
we set VF=�f # F supp f and WF=[ef : f # F] we have

|.|VF
(x� k)|��| WF

(uk)+CF ,

where we have set CF=0 if F � Bx� k
.

(c) Let .2=. | J for some J/N. Assume further that .2 has
the following property: For every k=2, ..., n and every family
f =[ f1 , ..., fl]/ _ K s (.) of type I or II w.r.t. x� k , either fi |J (x� k)=0 for all
i=1, ..., l or f i |J (x� k)= fi (x� k) for all i=1, ..., l.

For k=2, ..., n, we let

Lk=[ef : f belongs to some family of type I or II

w.r.t. x� k and supp f & J{<]

and we set �2=� | �n
k=2 Lk . Then it follows from (b) that

|.2 (x� k)|��2 (uk)+
1

m jk

, k=2, ..., n.
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3. THE SPACE X

We pass now to the construction of a space X not containing any
unconditional basic sequence. It is based on the modification XM(1), u . Let
K=�n �j K n

j be the norming set of the space XM(1), u . Consider the
countable set

G=[(x1* , x*2 , ..., x*k ); k # N, xi* # K, i=1, ..., k and x1* <x*2 < } } } <x*k ].

There exists a one to one function 8: G � [2 j]�
j=1 such that for every

(x1* , ..., x*k ) # G, if j1 is minimal such that x1* # Aj1
and jl=8(x1*, ..., x*l&1),

l=2, 3, ..., k, then

8(x1*, ..., x*k )>max[ j1 , ..., jk].

Definition of the Space. For n=0, 1, 2, ..., we define by induction sets
[Ln

j ]�
j=1 such that Ln

j is a subset of K n
j .

For j=1, 2, ..., we set L0
j =[\en : n # N]. Suppose that the [Ln

j ]�
j=1

have been defined. We set Ln=��
j=1 Ln

j and

Ln+1
1 =\Ln

1 _ [ 1
2(x1*+ } } } +xd*): d # N, xi* # Ln,

d�min supp x1*< } } } <min supp xd*,

supp xi* & supp x*l =< for i{l],

and for j�1,

Ln+1
2 j =\Ln

2 j _ { 1
m2 j

(x1*+ } } } +xd*): d # N, xi* # Ln,

(supp x1* , ..., supp xd*) is M2 j -admissible= ,

L$n+1
2 j+1=\Ln

2 j+1 _ { 1
22 j+1

(x1*+ } } } +xd*): d # N,

x1* # Ln
2k for some k>2 j+1,

xi* # Ln
8(x*1, ..., x*i&1) for 1<i�d

and (supp x1*, ..., supp xd*) is M2 j+1-admissible= ,

Ln+1
2 j+1=[Es x*: x* # L$n+1

2 j+1 , s # N, Es=[s, s+1, ...]].

This completes the definition of Ln
j , n=0, 1, 2, ..., j=1, 2, .... It is obvious

that each Ln
j is a subset of the corresponding set K n

j .
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We set Bj=��
n=1 (Ln

j "L0) and we consider the norm on c00 defined by
the set L=L0 _ (��

j=1 Bj). The space X is the completion of c00 under this
norm. It is easy to see that [en]�

n=1 is a bimonotone basis for X.

Remark. The norming set L is closed under projections onto intervals,
and has the property that for every j and every M2 j -admissible family
f1 , f2 , ..., fd contained in L, (1�m2 j)( f1+ } } } + fd) belongs to L. It follows
that for every j=1, 2, ... and every M2 j -admissible family x1<x2< } } } <xn

in c00 ,

" :
n

k=1

xk"�
1

m2 j
:
n

k=1

&xk&.

For the same reason, for S-admissible families x1<x2< } } } <xn , we have

" :
n

k=1

xk"� 1
2 :

n

k=1

&xk&.

We note however that such a relation is not true for S-allowable families
(xi). Of course, if it were true, it would immediately imply that the basis
[en] is unconditional.

For =>0, j=2, ..., (=, j)-special convex combinations are defined in X
exactly as in XM(1), u (Definition 2.5). Rapidly increasing sequences and
(=, j)-R.I. special convex combinations in X are defined by Definitions 2.8
and 2.16, respectively, with K� =L.

By the previous remark we get the following.

3.1. Lemma. For j=2, 3, ... and every normalized block sequence
[xk]�

k=1 in X, there exists a finite normalized block sequence [ ys]n
s=1 of

[xk] such that �n
s=1 as ys is a seminormalized (1�m4

j , j)-s.c.c.

By Corollary 2.17, we have:

3.2. Proposition. Let �n
k=1 bkxk be a (1�m2

j , j)-R.I.s.c.c. in X. Then,
for i # N, . # Bi , we have the following:

}. \ :
n

k=1

bkxk +}� 33
m imj

, if i< j (a)

}. \ :
n

k=1

bkxk +}�16
m i

+2b1 , if i� j. (b)

In particular, &�n
k=1 bkxk&�17�mj .
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3.3. Proposition. Let j>100. Suppose that [ jk]n
k=1 , [ yk]n

k=1 ,
[ yk*]n

k=1 , and [%k]n
k=1 are such that

(i) There exists a rapidly increasing sequence (w.r.t. X)

[x(k, i) : k=1, ..., n, i=1, ..., nk]

with x(k, i)<x (k, i+1)<x(k+1, l) for all k<n, i<nk , l�nk+1 , such that:
(a) Each x(k, i) is a seminormalized (1�m4

j(k, i)
, j(k, i))-s.c.c. where, for

each k, 2 jk+2< j(k, i) , i=1, ..., nk .

(b) Each yk is a (1�m4
2 jk

, 2 jk)-R.I.s.c.c. of [x(k, i)]nk
i=1 of the form

yk=�nk
i=1 b(k, i)x (k, i) .

(c) There exists a decreasing sequence [bk]n
k=1 such that

�n
k=1 bk yk is a (1�m4

2 j+1 , 2 j+1)-s.c.c.

(ii) yk* # L2 jk
, yk*( yk)�1�4m2 jk

and

supp yk* /[min supp yk , max supp yk].

(iii) 1�17�%k�4 and yk*(m2 jk
%k yk)=1.

(iv) j1>2 j+1 and 2 jk=8( y1* , ..., y*k&1), k=2, ..., n.

Let =k=(&1)k+1, k=1, ..., n. Then

" :
n

k=1

=k bk %km2 jk
yk"�

300
m2

2 j+1

.

Before presenting the proof of Proposition 3.3 let us show how from it
the main result of this section follows.

3.4. Corollary. The space X is Hereditarily Indecomposable.

Proof. It is clear by the choice of the sequences [ yk]n
k=1 , [ yk*]n

k=1 in
Proposition 3.3 that the functional �=1�m2 j+1 �n

k=1 yk* belongs to L and
that �(�n

k=1 bkm2 jk
%k yk)=1�m2 j+1 . It follows that

" :
n

k=1

bk m2 jk
%k yk"�

1
m2 j+1

.

To conclude that X is Hereditarily Indecomposable, it remains to show
that, for every j>100 and every block subspaces U and V of X, one can
choose [ yk] and [ yk*] satisfying the assumptions of Proposition 3.3 and
such that yk # U if k is odd, yk # V if k is even. The proof of this is the same
as that of Proposition 3.12 of [3], so we omit it. K
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Proof of Proposition 3.3. Our aim is to show that for every . # ��
i=1 Bi ,

. \ :
n

k=1

=kbk%km2 jk
yk +�

300
m2

2 j+1

.

The proof is given in several steps. We give a brief description.
For k=1, ..., n, set zk=%k m2 jk

yk . Then by the assumptions about yk and
Proposition 3.2 we have 1= yk*(zk)�&zk&�17%k�68.

We consider separately three cases for .:

1st Case. w(.)=1�m2 j+1 . Then . has the form .=(1�m2 j+1)(Ey*k1

+y*k1+1+ } } } + y*k2
+z*k2+1+ } } } +zd*) where E is an interval and

z*k2+1 { y*k2+1 . For the action of . on the part �k2&1
k=k1+1 =kbk zk we have an

obvious conditional (i.e., depending on the signs) estimate using the
monotonicity of the sequence (bk)n

k=1 :

}. \ :
k2&1

k=k1+1

=k bkzk+}� 1
m2 j+1

bk1+1 .

For the remaining part we get an unconditional estimate using Proposi-
tion 3.2. In particular, if k>k2+1 then, since 8 is one to one, we have
jk2+1 { jk and, for s=k2+2, ..., d, if ts is such that zs* # B2ts

then ts { jk . In
Lemma 3.5 we show that in this case |.(zk)|�1�m2

2 j+2 .
Using now the trivial estimates |.(zk)|�68 for k=k1 , k2 , k2+1 and

.(zk)=0 for k<k1 , as well as the fact that max bk<1�m4
2 j+1 , we obtain

the desired result.

2nd Case. w(.)�1�m2 j+2 . Then we get an unconditional estimate for
.(�n

k=1 =kbk zk) directly, applying Proposition 3.2 (Lemma 3.7).

3rd Case. w(.)>1�m2 j+1 . For k=1, ..., n we have yk=�nk
i=1 b (k, i) x(k, i)

where the sequence [x(k, i) : k=1, ..., n, i=1, ..., nk] is a R.I.S. w.r.t. L.
We fix an analysis [K s(.)] of .. It follows by Proposition 2.9 that there
exist a functional � # co(K$) and blocks of the basis u(k, i) , k=1, ..., n,
i=1, ..., nk with &u(k, i)&l1

�16 for all (k, i), such that, setting
vk=%k m2 jk

�nk
i=1 b(k, i) u(k, i) , k=1, ..., n, we have

}. \ :
n

k=1

=kbkzk+}�� \ :
n

k=1

bkvk ++
1

m2 j+2

.

However, since the estimate that we get in this way is unconditional, it is
insufficient. So, we partition . into two disjointly supported functionals .1

and .2 , defined as follows.
For every f # _ K s (.) of the form f =1�m2 j+1(Ey*k1

+ y*k1+1+ } } } +
y*k2

+z*k2+1+ } } } +zd*) in � K s (.) where E is an interval, we set
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If =y*kf +2+ } } } + y*k2
for an appropriate k f�k1 . For the other functionals

f # _ K s (.), we set If =0. We define .1=.| _ supp If and .2=.&.1 . We
let �1 be the projection of � corresponding to .1 and �2=�&�1 .

In Lemma 3.9 we show that the pair .2 , �2 satisfies the assumption of
Remark 2.19(c). It follows from this remark that

}.2 \ :
n

k=1

=kbkzk+}��2 \ :
n

k=1

bkvk ++
1

m2 j+2

.

Further, in Lemma 3.11(a) we show that �2 (�n
k=1 bk vk)�257�m2

2 j+1 .
Finally, in Lemma 3.11(b) we obtain a conditional estimate for

.1 (�n
k=1 =kbkzk), namely,

}.1 \ :
n

k=1

=kbk zk+}� 4
m2

2 j+1

.

3.5. Lemma. Let j, [ jk]n
k=1 , and [ yk]n

k=1 be as in Proposition 3.3. Sup-
pose that 2 j+1<t1< } } } <td and let [zs*]d

s=1 be such that z1*< } } } <zd* ,
zs* # B2ts

and (1�m2 j+1)(z1*+ } } } +zd*) # B2 j+1 . Assume that for some
k=1, 2, ..., n, jk � [t1 , ..., td]. Then,

}\ :
d

s=1

zs* + (m2 jk
yk) }� 1

m2
2 j+1

.

Proof. Each yk is a (1�m4
2 jk

, 2 jk)-R.I.s.c.c. of the form yk=�nk
i=1 b(k, i)x(k, i) .

Let s1�d be such that s1=max[s # [1, ..., d]: ts< jk].
If s�s1 , by Proposition 3.2(a) we get |zs*( yk)|�33�m2ts

m2 jk
and so,

using that 2 j+1<t1< } } } <td and that the sequence [mj] is increasing
sufficiently fast, we get

}\ :
s1

s=1

zs*+ ( yk) }� 33
m2 jk

:
s1

s=1

1
m2ts

�
1

2m2
2 j+2m2 jk

. (V)

For every s�s1+1 set

Ds={i: supp x(k, i) & supp zs*=supp x(k, i) & supp :
d

t=s1+1

z*t= .

The sets Ds are disjoint. Put I=[s�s1+1: Ds {<] and

T={r: 1�r�nk , supp x(k, r) & supp :
d

t=s1+1

z*t {<=>.
s # I

Ds .
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Then,

}\ :
d

s=s1+1

zs* + ( yk) }� :
s # I } zs* \ :

r # D

b(k, r)x (k, r)+}
+ } :

d

s=s1+1

zs* \ :
r # T

b(k, r)x (k, r) +}. (1)

It follows from Proposition 3.2 (b) that for every s # I,

} zs* \ :
r # Ds

b(k, r)x (k, r)+}� 16
m2ts

+2b(k, rs)
, (2)

where rs=min Ds . Since by the definition of Ds we have that
[max supp x(k, rs)

]s # I # M2 j+1 , then

:
s # I

b(k, rs)
�

1
m4

2 jk

. (3)

Since (1�m2 j+1)(z1*+ } } } +zd*) # B2 j+1 , as in Lemma 2.7(a) we have

}\ :
d

s=s1+1

zs*+\ :
r # T

b(k, r) x(k, r)+}�m2 j+1

m4
2 jk

<
1

m3
2 jk

. (4)

By (1), (2), (3), (4), using that jk<ts1+1 , m i+1�m i
i , and that 2 j+2<2 j1 ,

we have that

}\ :
d

s=s1+1

zs*+ ( yk) }�16 :
d

s=s1+1

1
m2ts

+
2

m4
2 jk

+
1

m3
2 jk

�
1

2m2
2 j+2m2 jk

. (VV)

Therefore, by (V) and ( V V ), we get

}\ :
d

s=1

zs* + (m2 jk
yk) }� 1

m2
2 j+2

.

3.6. Lemma. Let j, [ jk]n
k=1 , [ yk]n

k=1 , [ yk*]n
k=1 , [%k]n

k=1 , and
[=k]n

k=1 be as in Proposition 3.3. For every . # B2 j+1 we have

}. \ :
n

k=1

=kbk%k m2 jk
yk+}� 1

m2
2 j+1

.

Proof. Let .=(1�m2 j+1)(Ey*k1
+ y*k1+1+ } } } + y*k2

+z*k2+1+ } } } +zd*),
where E=Es for some s and z*k2+1 { y*k2+1 .
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For k=1, 2, ..., n we set zk=%km2 jk
yk , hence yk*(zk)=1. Since [bk] is

decreasing,

}. \ :
k2&1

k=k1+1

=kbkzk+}= 1
m2 j+1 } :

k2&1

k=k1+1

=k bk yk*(zk) }
=

1
m2 j+1 } :

k2&1

k=k1+1

=kbk }� 1
m2 j+1

bk1+1 , (a)

and

|.(zk1
)|=

1
m2 j+1

|Ey*k1
(zk1

)|�
1

m2 j+1

&zk1
&<

68
m2 j+1

. (b)

For zk2
we have

|.(zk2
)|�

1
m2 j+1

| y*k2
(zk2

)|+
1

m2 j+1 }\ :
d

k=k2+1

zk*+ (zk2
) }.

If k�k2+1, then zk* # B2tk
where 2tk=8( y1*, ..., y*k1

, ..., z*k&1). Since 8 is
one to one, 2tk {8( y1*, ..., y*k2&1)=2 jk2

. Thus, by Lemma 3.5,

1
m2 j+1 } :

d

k=k2+1

zk*(zk2
) }� 1

m2 j+1

%k

m2
2 j+2

<
1

m2 j+1

,

and so,

|.(zk2
)|�

2
m2 j+1

. (c)

In a similar way, for zk2+1 we have

|.(zk2+1)|�
1

m2 j+1

|z*k2+1 (zk2+1)|+
1

m2 j+1 }\ :
k>k2+1

zk*+ (zk2+1) }< 69
m2j+1

.

(d)

If k<k1 , then .(zk)=0. By Lemma 3.5, for k>k2+1 we have

|.(zk)|=
1

m2 j+1 } :
d

p=k2+1

z*p (zk) }� 1
m2 j+1

%k

m2
2 j+2

<
1

m2
2 j+2

. (e)

Putting (a)�(e) together and using that, since � bk yk is a
(1�m4

2 j+1 , 2 j+1)-s.c.c., bk<1�m4
2 j+1 , we get the result.
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3.7. Lemma. Under the assumptions of Proposition 3.3, let . # Br for
r�2 j+2. Then,

}. \ :
n

k=1

=kbk%k m2 jk
yk+}� 1

m3
2 j+1

.

Proof. If jk>r then, by Proposition 3.2(a), |.(%km2 jk
yk)|�

4(33�mr)�132�m2 j+2 .
If jk�r the, by Proposition 3.2(b), |.(%k m2 jk

yk)|�64m2 jk
�mr+8�m3

2 jk
.

So, for jk=r, we have |.(%km2 jk
yk)|�65 and, for jk<r, using the

lacunarity of the sequence [mj]�
j=1 , we have |.(%km2 jk

yk)|�
1�m2

2 jk
�1�m2

2 j1
.

Since max bk�1�m4
2 j+1 , we get

}.\ :
n

k=1

=kbk%km2 jk
yk+}� 132

m2 j+2

+
1

m2
2 j+1

+
65

m4
2 j+1

�
1

m2
2 j+1

. K

3.8. Proposition. Let j, [ jk]n
k=1 , [ yk]n

k=1 , [ yk*]n
k=1 , [%k]n

k=1 ,
[=k]n

k=1 be as in Proposition 3.3. For every . # Br , r<2 j+1, we have

}. \ :
n

k=1

=kbk%k m2 jk
yk+}� 262

m2
2 j+1

.

The proof is based on Proposition 2.9. We first need to introduce new
notation and establish several lemmas. We have yk=�nk

i=1 b(k, i)x(k, i) and
the sequence [x(k, i) , k=1, ..., n, i=1, ..., nk] is a R.I.S. w.r.t. L. By Proposi-
tion 2.9 there exist a functional � # K$ and blocks of the basis u(k, i) ,
k=1, ..., n, i=1, ..., nk with � # A$r , supp u(k, i) /supp x(k, i) , &u(k, i) &l1

�16
and such that

}. \ :
n

k=1

=kbk %k m2 jk \ :
nk

i=1

b(k, i) x(k, i)++}
�%1m2 j1

b1b(1, 1)+� \ :
n

k=1

bk %k m2 jk \ :
kn

i=1

b(k, i) u(k, i)+++
1

m2
2 j+2

�� \ :
n

k=1

bk %km2 jk \ :
kn

i=1

b(k, i) u(k, i)+++
1

m2 j+2

.

Recall that the construction of � and u(k, i) is done via some analysis
[K s (.)] of . and some restriction on the support of x (k, i) which we denote
by x� (k, i) . Let [K s (.)] be the analysis of . which we use to construct �.
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Let f # _ K s (.) be of the form f =(1�m2 j+1)(Ey*k1
+ y*k1+1+ } } } + y*k2

+
z*k2+1+ } } } +zd*), where E is an interval of integers [ p, p+1, ...]. For each
t=1, ..., n, yt=�nt

i=1 b(t, i)x(t, i) . Put

k f=min[t # [k1 , ..., k2&2]: supp Ey*t & supp x� (t, i) {<

for some i # [1, 2, ..., nt]].

Set

If =
1

m2 j+1

( y*kf +2+ } } } + y*k2
),

while for the other functionals in � K s (.) set If =0.
We set

.1=.| _ supp If and .2=.&.1 .

Recall that, for f # _ K s (.) which is a member of a family of type I or
type II w.r.t. x� (k, i) , we have defined ef=min[m: m # supp f & supp x� (k, i)].
Let

P= _ [F/ _ K s (.): F is a family of type I or type II w.r.t. some x� (k, i)].

The functional � is supported in the set [ef : f # P]. We set

�1=�| [ef : f # P and f is in the analysis of .1] and �2=�&�1 .

As in the previous section without loss of generality we assume that
supp . & supp x� (1, 1) {<.

3.9. Lemma. (a) For every f, g # _ K s (.) with f{ g and If{0, Ig{0,
we have supp If & supp Ig=<.

(b) Let F=[ f1 , ..., f l]/ _ K s (.) be a family of type I or type II
w.r.t. x� (k, i) . Suppose that for some p # [1, ..., l], supp fp �supp .1 . Then,
supp fr �supp .1 for every r # [1, ..., l].

(c) Let F=[ f1 , ..., f l]/ _ K s (.) be a family of type I or type II
w.r.t. x� (k, i) . Suppose that for some p=1, ..., l, supp fp �3 supp .1 . Then
fp | supp .2

(x� (k, i))= fp (x� (k, i)).

(d) Let F=[ f1 , ..., f l]/ _ K s (.) be a family of type I or type II
w.r.t. x� (k, i) . If supp fp �3 supp .1 for some p=1, ..., l, then, for all r=1, ..., l,
fr | supp .2

(x� (k, i))= fr (x� (k, i)).

Proof. (a) Let f =(1�m2 j+1 (Ey*k1
+ } } } + y*k2

+z*k2+1+ } } } +z*k3
) and

g=(1�m2 j+1)(Ey*t1
+ } } } + y*t2

+z*t2+1+ } } } +z*t3
). If supp f & supp g{<,
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then either supp f/supp g or supp g/supp f. Suppose that the first is
true. Since supp y*l �[min supp yl , max supp yl], it is impossible to have
supp f�supp y*l for any t1�l�t2 . It follows that supp f�supp z*t for
some t2+1�t�t3 . This implies that supp If & supp Ig=<.

(b) Let F=[ f1 , ..., f l] be a family of type I or type II w.r.t. x� (k, i) and
suppose that supp fp /supp .1 for some p. If *F=1 there is nothing to
prove. So assume that *F�2. Let gF be the functional in � K s (.) which
contains F in its decomposition. Since fp # _ K s (.1), we have that fp

belongs to the analysis of If for some If =(1�m2 j+1)( y*kf +2+ } } } + y*k2
). It

follows that k f+2�k�k2 and fp belongs to the analysis of yk*. We have
to show that supp gF /supp yk* or equivalently that gF does not coincide
with f. If w(gF)= 1

2 then we get supp gF �supp yk*, since w( f )< 1
2 . If

w(gF)< 1
2 then, since *F�2, F is of type I and again we get

supp gF �supp yk*, since �f # F supp f intersects only supp x� (k, i) .

(c) Suppose that supp fp & supp Ig{< for some g=(1�m2 j+1)(Ey*k1

+ } } } + y*k2
+z*k2+1+ } } } +z*ks

) # _ K s (.). Then either supp fp /supp g
strictly or supp g�supp fp . In the first case we get that supp fp �supp y*l
for some k g+2�l�k2 and so supp fp �supp .1 , a contradiction. In the
case supp g�supp fp , since supp g & supp x� (kg, q) {< for some q, we get
by the definition of families of type I and type II w.r.t. x� (k, i) that k�k g. So
Ig=(1�m2 j+1)( y*kg+2+ } } } + y*k2

) does not intersect x� (k, i) . It follows that
( fp& fp | supp Ig)(x� (k, i))= fp (x� (k, i)). Since supp .1=�g supp Ig, we conclude
that ( fp | supp .2

)(x� (k, i))= fp (x� (k, i)).

(d) It follows from (b) and (c). K

3.10. Lemma. For .2 we have

}.2 \ :
n

k=1

=kbk %km2 jk \ :
nk

i=1

b(k, i) x(k, i) ++}
��2 \ :

n

k=1

bk%km2 jk \ :
nk

i=1

b(k, i)u(k, i) +++
1

m2 j+2

.

Proof. By Lemma 3.9(d) we have that .2 satisfies the assumptions of
Remark 2.19(c). The proof follows from this remark. K

3.11. Lemma.

}.2 \ :
n

k=1

=k bk %km2 jk
yk+}� 257

m2
2 j+1

, (a)

}.1 \ :
n

k=1

=k bk %km2 jk
yk+}� 4

m2
2 j+1

. (b)
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Proof. (a) By Lemma 3.10 it suffices to estimate

�2 \ :
n

k=1

bk%km2 jk \ :
nk

i=1

b(k, i)u(k, i)++ .

Recall that u(k, i) is of the form u(k, i)=�m # A(k, i)
amem , where am>0 and

�m # A(k, i)
am�16. Let [K s (�2)] be the corresponding analysis of �2 . For

k=1, 2, ..., n set

Dk
1={m # .

nk

i=1

A(k, i) : for all f # .
s

K s (�2) such that

m # supp f, w( f )>
1

m2 jk
= ,

Dk
2={m # .

nk

i=1

A(k, i) : there exists f # .
s

K s (�2) such that

m # supp f and w( f )<
1

m2 jk
= ,

Dk
3={m # .

nk

i=1

A(k, i) : m � Dk
2 , there exists f # .

s

K s (�2)

with m # supp f, w( f )=
1

m2 jk

and there exists g # .
s

K s (�2) with

supp f/supp g strictly and w(g)�
1

m2 j+2 = ,

Dk
4={m # .

nk

i=1

A(k, i) : m � Dk
2 , there exists f # .

s

K s (�2)

with m # supp f, w( f )=
1

m2 jk

and for every g # .
s

K s (�2) with

supp f/supp g, w(g)�
1

m2 j+1= .
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Then, �4
p=1 Dk

p=�nk
i=1 supp u(k, i) & supp �2 . For every k,

�2 | D
2
k\bk%km2 jk \:

i

b(k, i) u(k, i)++�bk %km2 jk

16
m2 jk+1

<
1

m2 jk

,

thus

�2 | _ k D
2
k \:

k

bk%km2 jk \:
i

b(k, i) u(k, i)++�:
k

1
m2 jk

<
1

m2 j+2

. (1)

Also,

�2 | _ k D
3
k \:

k

bk %km2 jk \:
i

b(k, i) u(k, i)++�:
k

bk %k
16

m2 j+2

�
64

m2 j+2

. (2)

For k=1, 2, ..., n, |�2 | D
1
k |*2 jk&1�1 (see Notation after Lemma 2.2). So,

by Lemma 2.4(b),

�2 | D
1
k \bk%k m2 jk \:

i

b(k, i)u (k, i) ++�bk%km2 jk

32
m2

2 jk

�bk
128
m2 jk

.

Hence,

�2 | _ k D
1
k \:

k

bk %km2 jk \:
i

b(k, i) u(k, i)++�:
k

bk
128
m2 jk

<
1

m2 j+2

. (3)

For every k=1, ..., n, i=1, ..., nk and every m # supp u(k, i) & Dk
4 , there

exists a unique functional f (k, i, m) # �s K s (�2) with m # supp f,
w( f )=1�m2 jk

and such that, for all g # �s K s (�2) with supp f/supp g
strictly, w(g)�1�m2 j+1 . By definition, for k{ p and i=1, ..., nk ,
m # supp u(k, i) , we have supp f (k, i, m) & D p

4 =<. Also, if f (k, i, m){ f (k, r, n),
then supp f (k, i, m) & supp f (k, r, n)=<.

For each k=1, ..., n, let [ f k, t] rk
t=1 / _ K s (.) be a selection of mutually

disjoint such functionals with Dk
4=� rk

t=1 supp f k, t. For each such func-
tional f k, t, we set H k

t =supp f k, t and

af k, t= :
nk

i=1

b(k, i) :
m # H t

k
am .

Then,

f k, t \bk%km2 jk \:
i

b(k, i) u(k, i)++�bk%k af k, t . (V)
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Claim. Let D4=�n
k=1 Dk

4 . Then �2 | D4
(�k bk%km2 jk

(�i b(k, i) u(k, i)))�
256�m2

2 j+1 .

Proof of the Claim. We shall define a functional g # K$ with | g|*2 j�1
and blocks uk of the basis so that &uk &l1

�16, supp uk ��i supp u (k, i) and

�2 | D4 \:
k

bk %km2 jk \:
i

b (k, i)u(k, i)++�g \2 :
k

bk%kuk+ ,

hence by Lemma 2.4(b) we shall have the result.
For f =(1�mq) �d

p=1 fp # �s K s (�2 | D4
) we set

J=[1�p�d: fp= f k, t for some k=1, ..., n, t=1, ..., rk],

T=[1�p�d: there exists f k, t with supp f k, t/supp fp strictly].

For every f # �s K s (�2 |D4
) such that J _ T=< we set gf=0, while if

J _ T{< we shall define a functional gf with the following properties: Let
Df=�p # J _ T supp fp and uk=� af k, t ef k, t , where ef k, t=emin H t

k . Then,

(a) supp gf �supp f.

(b) gf # K$ and w(gf)�w( f ),

(c) f |Df
(�k bk%km2 jk

(�i b(k, i)u (k, i)))�gf (2 �k bk %kuk).

Let s>0 and suppose that the gf have been defined for all f #
�s&1

t=0 K t (�2 | D4
) and let f =(1�mq)( f1+ } } } + fd) # K s (�2 |D4

)"K s&1 (�2 | D4
)

where the family ( fp)d
p=1 is M$q-admissible if q>1, or S$-allowable if q=1.

We consider three cases:

Case (i). 1�mq=1�m2 jk0
for some k0 , 1�k0�n. Then f =f k0 , t for some

t and we set gf=e*f k0 , t . By (V) we get

f \:
k

bk %k m2 jk \:
i

b(k, i)u(k, i) ++=bk0
%k0

m2 jk0
f \:

i

b(k0 , i) u(k0 , i)+
�bk0

%k0
af k0 , t

=bk0
%k0

af k0 , t e*f k0 , t (ef k0 , t)

= gf (bk0
%k0

uk0
).

Case (ii). 1�mq>1�m2 j+1 . Then if J _ T{<, set

gf=
1

mq \ :
p # J

e*fp
+ :

p # T

gfp + .

106 ARGYROS ET AL.



For p # J, fp= f kp, t for some (kp , t) and by (V),

fp \:
k

bk%km2 jk \:
i

b(k, i) u(k, i)++�bkp
%kp

afp
e*fp

(efp
).

For p # T we obtain by the inductive hypothesis

fp \:
k

bk%k m2 jk \:
i

b(k, i) u(k, i)++�2gfp \:
k

bk%kuk+ .

Therefore,

f \:
k

bk %k m2 jk \:
i

b (k, i)u(k, i)++
=

1
mq

:
p # J _ T

fp \:
k

bk%km2 jk \:
i

b (k, i) u(k, i)++
� gf \2 :

k

bk%kuk+ .

Since supp gfp
�supp fp , efp

# supp fp and J & T=<, we have that the
family [e*fp

: p # J] _ [gfp
: p # T] is M$q-admissible if q>1, or S$-allowable

if q=1, therefore gf # A$q .

Case (iii). 1�mq=1�m2 j+1 . Suppose that fp # T. Then, by the definition
of f k, t and T, w( fp)�1�m2 j+1 . On the other hand, recall (Remark 2.19(a))
that � is defined through ., so that every functional in � K s (�) has the
same weight as the corresponding functional in � K s (.). So, in this case,
by the definition of L$2 j+1 , we get that w( fp)<1�m2 j+1 for every p. It
follows that T=<.

Recalling also the definition of If and �2 , we get that in this case *J�3.
Let J=[ p1 , p2 , p3] and fp*

= f k*, t*, *=1, 2, 3. Set gf=
1
2(e*fp1

+e*fp2
+e*fp3

).
By (V), fp*

(�k bk%km2 jk
(� i b(k, i) u(k, i)))�bk*

%k*
afp*

, *=1, 2, 3. Thus,

f |Df \:
k

bk %km2 jk \:
i

b(k, i) u(k, i) ++� :
2

*=1

bk*
%k*

afp*

= :
3

*=1

bk*
%k*

afp*
(e*fp*

)

= gf \2 :
k

bk %k uk+ .

This completes the proof of the Claim. By the Claim and relations (1), (2),
(3), statement (a) follows.
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(b) We have from Lemma 3.9(a) that for f, f $ # �s K s (.), f{ f $,

supp If & supp If $=<. (VV)

For f with If{0, let If =(1�m2 j+1)( yp*+ } } } + y*p+q). Since [bk] is
decreasing,

} If \:
k

=kbk%km2 jk
yk+}� bp

m2 j+1

. (VVV)

Set

I1={If : there exists h # .
s

K s (.) with

supp If/supp h strictly and w(h)�
1

m2 j+1= ,

I2={If : for every h # .
s

K s (.) with

supp If/supp h strictly, w(h)�
1

m2 j = .

Set also

A1= .
If # I1

supp If and A2= .
If # I2

supp If.

Then, by ( V V ) and ( V V V ),

}.1 |A1 \:
k

=k bk %k m2 jk
yk +}� 1

m2
2 j+1

.

For If # I2 , we set

k( f )=min[l: y*l is in the decomposition of If ],

T=[k=1, ..., n: k=k( f ) for some If # I2]

and, for k=k( f ) # T, lk=min(supp yk & supp If ).
Using (VV) and (VVV) we construct in a similar way as in part (a) a func-

tional g # K$, | g|*2 j�1 such that

}.1 |A2 \:
k

=k bk %k m2 jk
yk +}�g \ :

k # T

bkelk+ .
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Then by Lemma 2.4(b) we have the result. This completes the proof of the
lemma. Proposition 3.8 follows. K

Proposition 3.3 follows from Lemmas 3.6, 3.7, and Proposition 3.8.

3.12. Remark. The space X is reflexive.

The proof of this is similar to the proof of Theorem 1.27. We need to
prove that: (a) The basis (en)n is boundedly complete. (b) The basis
(en)n is shrinking. The proof of (a) is exactly the same as that of
Theorem 1.27(a). For (b) we also follow the proof of Theorem 1.27(b). We
just need to notice that the norming set L of X satisfies the properties of
the set K which are used in that proof.
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