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Abstract

We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the
boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equa-
tion. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of
solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux
boundary condition.
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1. Introduction

The purpose of this article is to address the Neumann boundary value problem for a nonlocal
diffusion equation.
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Let J : RN → R be a nonnegative, symmetric J (z) = J (−z) with
∫

RN J (z) dz = 1. Assume
also that J is strictly positive in B(0, d) and vanishes in R

N \ B(0, d). Equations of the form

ut (x, t) = (J ∗ u − u)(x, t) =
∫

RN

J (x − y)u(y, t) dy − u(x, t), (1.1)

and variations of it, have been recently widely used to model diffusion processes, see [1–3,
6,7,11,14]. As stated in [7] if u(x, t) is thought of as a density at the point x at time t and
J (x − y) is thought of as the probability distribution of jumping from location y to location x,
then

∫
RN J (y−x)u(y, t) dy = (J ∗u)(x, t) is the rate at which individuals are arriving at position

x from all other places and −u(x, t) = − ∫
RN J (y − x)u(x, t) dy is the rate at which they are

leaving location x to travel to all other sites. This consideration, in the absence of external or
internal sources, leads immediately to the fact that the density u satisfies Eq. (1.1).

Equation (1.1), so called nonlocal diffusion equation, shares many properties with the classical
heat equation ut = �u such as: bounded stationary solutions are constant, a maximum principle
holds for both of them and, even if J is compactly supported, perturbations propagate with
infinite speed.

Given a bounded, connected and smooth domain, Ω , one of the most common boundary
conditions that has been imposed to the heat equation in the literature is the Neumann boundary
condition, ∂u/∂η(x, t) = g(x, t), x ∈ ∂Ω .

Let us state our model equation. We study

ut (x, t) =
∫
Ω

J(x − y)
(
u(y, t) − u(x, t)

)
dy +

∫
RN\Ω

J(x − y)g(y, t) dy, (1.2)

for x ∈ Ω . In this model we have that the first integral takes into account the diffusion inside Ω .
In fact, as we have explained the integral

∫
J (x − y)(u(y, t) − u(x, t)) dy takes into account the

individuals arriving or leaving position x from other places. Since we are integrating in Ω , we
are imposing that diffusion takes place only in Ω . The last term takes into account the prescribed
flux (given by the data g(x, t)) of individuals from outside (that is individuals that enter or leave
the domain according to the sign of g). This is what is called Neumann boundary conditions.

Our first result for this problem is the existence and uniqueness of solutions and a comparison
principle.

Theorem 1.1. For every u0 ∈ L1(Ω) and g ∈ L∞
loc((0,∞);L1(RN \ Ω)) there exists a unique

solution u of (1.2) such that u ∈ C([0,∞);L1(Ω)) and u(x,0) = u0(x).
Moreover the solutions satisfy the following comparison property:

if u0(x) � v0(x) in Ω, then u(x, t) � v(x, t) in Ω × [0,∞).

In addition the total mass in Ω satisfies

∫
Ω

u(y, t) dy =
∫
Ω

u0(y) dy +
t∫

0

∫
Ω

∫
RN\Ω

J(x − y)g(y, s) dy dx ds. (1.3)
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Once existence and uniqueness of solutions is proved an important aspect in evolution equa-
tions is the asymptotic behavior as time evolves. In this context, we study the asymptotic behavior
of solutions for certain fluxes on the boundary.

First, we deal with a flux independent of time, that is, g(x, t) = h(x). As happens for the
heat equation, in this problem, when h verifies a compatibility condition, we prove that solutions
converge exponentially fast as t → ∞ to the unique stationary solution of the problem with the
same total mass as u0. If the compatibility condition is violated then solutions become unbounded
as t → ∞. We have the following result.

Theorem 1.2. Let in addition J ∈ L2(RN). Let h ∈ L1(RN \ Ω) such that

0 =
∫
Ω

∫
RN\Ω

J(x − y)h(y) dy dx. (1.4)

Then there exists a unique solution ϕ of the problem

0 =
∫
Ω

J(x − y)
(
ϕ(y) − ϕ(x)

)
dy +

∫
RN\Ω

J(x − y)h(y) dy (1.5)

that verifies
∫
Ω

u0 = ∫
Ω

ϕ and the asymptotic behavior of solutions of (1.2) is described as
follows: there exists β = β(J,Ω) > 0 such that∥∥u(t) − ϕ

∥∥
L2(Ω)

� e−βt‖u0 − ϕ‖L2(Ω). (1.6)

If (1.4) does not hold then solutions of (1.2) are unbounded.

Next, we prescribe the boundary flux in such a way that it blows up in finite time. We consider
a flux of the form

g(x, t) = h(x)(T − t)−α, (1.7)

with a nonnegative and nontrivial function h.
For this problem we analyze the possibility that the solution becomes unbounded at time T a

phenomenon that is known as blow-up in the literature. For blowing-up solutions we also analyze
the rate of blow-up (that is the speed at which solutions go to infinity at time T ) and the blow-up
set (that is the spatial location of the singularities).

We find that blow-up takes place in strips of width d (recall that J is positive in B(0, d) and
zero outside) around the support of h with blow-up rates that increase as the strips get closer to
the support of h.

Before stating our theorem we need some notation. We set Ω0 = Ω , B0 = supp(h) and define
recursively for i � 1

Bi =
{
x ∈ Ω

∖ ⋃
Bj : d(x,Bi−1) < d

}

j<i
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and

Ωi = Ωi−1 \Bi .

We also define the functions wi, w̃i : RN → R by

w1(x) = 1

(α − 1)

∫
RN\Ω

J(x − y)h(y) dy,

wi(x) = 1

(α − i)

∫
RN\Ωi

J (x − y)wi−1(y) dy for 1 < i < α,

w̃1(x) =
∫

RN\Ω
J(x − y)h(y) dy

and

w̃i(x) =
∫

RN\Ωi

J (x − y)wi−1(y) dy for 1 < i � [α].

We can now state our result.

Theorem 1.3. Let in addition J ∈ L∞(RN). Assume h ∈ L∞(RN \ Ω), h � 0,∫
Ω

∫
RN\Ω J(x − y)h(y) dy dx �= 0. Then, the solution of (1.2) with g(x, t) = h(x)(T − t)−α

blows up at time T if and only if α � 1.
If α > 1 is not an integer the blow-up set, B(u), is given by

B(u) =
⋃

1�i�[α]
Bi ,

with the asymptotic behavior

(T − t)α−iu(x, t) → wi(x) uniformly in Bi as t → T

for each i such that 1 � i � [α].
If α is an integer the blow-up set, B(u), is given by

B(u) =
⋃

1�i�α

Bi ,

with the asymptotic behavior,

(T − t)α−iu(x, t) → wi(x) uniformly in Bi as t → T
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for each i such that 1 � i < α and

u(x, t)

− ln(T − t)
→ w̃α(x) uniformly in Bα as t → T .

Observe that blow-up in the whole domain (global blow-up) is possible. Indeed this happens
for large values of α (depending on Ω , h and d).

One can compare this result with the corresponding one for the heat equation with bound-
ary flux ∂u/∂η(x, t) = h(x)(T − t)α . For the heat equation solutions blow up if and only if
α > 1/2 and in this case maxx u(x, t) ∼ (T − t)−α+1/2. Therefore the occurrence of blow-up
and the blow-up rate for nonlocal diffusion are different from the corresponding ones for the heat
equation.

Finally we consider a nonlinear boundary condition of the form

g(y, t) = ūp(y, t) (1.8)

where ū is the extension of u from the boundary to the exterior of the domain in the following
form: let us assume that a neighborhood of width d of ∂Ω in R

N \ Ω can be described by
coordinates (z, s) where z ∈ ∂Ω and s is the distance from the point to the boundary, then we
set ū(z, s) = u(z). For this nonlinear boundary condition with nonlocal diffusion we have the
following result.

Theorem 1.4. Let in addition J ∈ C(RN). Then, positive solutions blow-up in finite time if and
only if p > 1. As for the blow-up rate, there exist constants C, c > 0 such that

c(T − t)−1/(p−1) � max
x

u(x, t) � C(T − t)−1/(p−1). (1.9)

Moreover, the blow-up set is contained in a neighborhood of ∂Ω of width Kd , where K =
[p/(p − 1)].

There is a large amount of literature dealing with blow-up for parabolic equations and sys-
tems see for example the survey [9], the book [13] and references therein. When blow-up is due
to nonlinear boundary conditions see for example [10,12], the surveys [4,8] and the references
therein. It is known that solutions of the heat equation with a nonlinear boundary condition
given by a power blow up in finite time if and only if p > 1, the blow-up rate is given by
‖u(x, t)‖L∞(Ω) ∼ (T − t)−1/(2(p−1)) and the blow-up set is contained in ∂Ω . Hence the blow-
up rate and set are different but the blow-up set contracts to the boundary as the support of J

becomes smaller. Observe that for J fixed the blow-up set can be the whole domain Ω if p is
sufficiently close to 1.

Organization of the paper. In Section 2 we prove existence, uniqueness and the comparison
principle, in Section 3 we deal with the problem with g(x, t) = h(x), in Section 4 we analyze
the blow-up problem and finally in Section 5 we study the problem with a nonlinear boundary
condition.

2. Existence, uniqueness and a comparison principle

In this section we prove Theorem 1.1 and give as remarks several consequences of the proof
that will be used later in the paper.
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As in [5], existence and uniqueness will be a consequence of Banach’s fixed point theorem so
we give first some preliminaries.

Fix t0 > 0 and consider the Banach space

Xt0 = C
([0, t0];L1(Ω)

)
with the norm

|||w||| = max
0�t�t0

∥∥w(·, t)∥∥
L1(Ω)

.

We will obtain the solution as a fixed point of the operator T : Xt0 → Xt0 defined by

Tw0,g(w)(x, t) = w0(x) +
t∫

0

∫
Ω

J(x − y)
(
w(y, s) − w(x, s)

)
dy ds

+
t∫

0

∫
RN\Ω

J(x − y)g(y, s) dy ds. (2.1)

The following lemma is the main ingredient in the proof of existence.

Lemma 2.1. Let w0, z0 ∈ L1(Ω), g,h ∈ L∞((0, t0);L1(RN \ Ω)) and w,z ∈ Xt0 , then there
exists a constant C depending only on Ω and J such that

∣∣∣∣∣∣Tw0,g(w) − Tz0,h(z)
∣∣∣∣∣∣ � ‖w0 − z0‖L1(Ω) + Ct0

{|||w − z||| + ‖g − h‖L∞((0,t0);L1(RN\Ω))

}
.

Proof. We have

∫
Ω

∣∣Tw0,g(w)(x, t) − Tz0,h(z)(x, t)
∣∣dx

�
∫
Ω

|w0 − z0|(x) dx

+
∫
Ω

∣∣∣∣∣
t∫

0

∫
Ω

J(x − y)
[(

w(y, s) − z(y, s)
) − (

w(x, s) − z(x, s)
)]

dy ds

∣∣∣∣∣dx

+
∫
Ω

∣∣∣∣∣
t∫

0

∫
RN\Ω

J(x − y)
(
g(y, s) − h(y, s)

)
dy ds

∣∣∣∣∣dx.
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Hence∫
Ω

∣∣Tw0,g(w)(x, t) − Tz0,h(z)(x, t)
∣∣dx

� ‖w0 − z0‖L1(Ω) +
t∫

0

∫
Ω

∣∣(w(y, s) − z(y, s)
)∣∣dy ds +

t∫
0

∫
Ω

∣∣(w(x, s) − z(x, s)
)∣∣dx ds

+
t∫

0

∫
RN\Ω

∣∣g(y, s) − h(y, s)
∣∣dy ds.

Therefore, we obtain,∣∣∣∣∣∣Tw0,g(w) − Tz0,h(z)
∣∣∣∣∣∣ � ‖w0 − z0‖L1(Ω) + Ct0

{|||w − z||| + ‖g − h‖L∞((0,t0);L1(RN\Ω))

}
,

as we wanted to prove. �
Theorem 2.1. For every u0 ∈ L1(Ω) there exists a unique solution u of (1.2) such that u ∈
C([0,∞);L1(Ω)). Moreover, the total mass in Ω verifies,

∫
Ω

u(y, t) dy =
∫
Ω

u0(y) dy +
t∫

0

∫
Ω

∫
RN\Ω

J(x − y)g(y, s) dy dx ds. (2.2)

Proof. We check first that Tu0,g maps Xt0 into Xt0 . From (2.1) we see that for 0 < t1 < t2 � t0,

∥∥Tu0,g(w)(t2) − Tu0,g(w)(t1)
∥∥

L1(Ω)

� 2

t2∫
t1

∫
Ω

∣∣w(y, s)
∣∣dy ds +

t2∫
t1

∫
RN \Ω

∣∣g(y, s)
∣∣dy ds.

On the other hand, again from (2.1)∥∥Tu0,g(w)(t) − w0
∥∥

L1(Ω)
� Ct

{|||w||| + ‖g‖L∞((0,t0);L1(RN\Ω))

}
.

These two estimates give that Tu0,g(w) ∈ C([0, t0];L1(Ω)). Hence Tu0,g maps Xt0 into Xt0 .
Choose t0 such that Ct0 < 1. Now taking z0 ≡ w0 ≡ u0, g ≡ h in Lemma 2.1 we get that Tu0,g

is a strict contraction in Xt0 and the existence and uniqueness part of the theorem follows from
Banach’s fixed point theorem in the interval [0, t0]. To extend the solution to [0,∞) we may take
as initial data u(x, t0) ∈ L1(Ω) and obtain a solution up [0,2t0]. Iterating this procedure we get
a solution defined in [0,∞).

We finally prove that if u is the solution, then the integral in Ω of u satisfies (2.2). Since
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u(x, t) − u0(x) =
t∫

0

∫
Ω

J(x − y)
(
u(y, s) − u(x, s)

)
dy ds

+
t∫

0

∫
RN\Ω

J(x − y)g(y, s) dy ds.

We can integrate in x and apply Fubini’s theorem to obtain

∫
Ω

u(x, t) dx −
∫
Ω

u0(x) dx =
t∫

0

∫
Ω

∫
RN\Ω

J(x − y)g(y, s) dy dx ds

and the theorem is proved. �
Now we give some consequences that we state as remarks for the sake of future references.

Remark 2.1. Solutions of (1.2) depend continuously on the initial condition and boundary data.
Let u be a solution of (1.2) with initial datum u0 and v a solution of (1.2) with g replaced by h

and initial datum v0. Then for every t0 > 0 there exists a constant C = C(t0) such that

max
0�t�t0

∥∥u(·, t) − v(·, t)∥∥
L1(Ω)

� C
∥∥u(·,0) − v(·,0)

∥∥
L1(Ω)

+ C‖g − h‖L∞((0,t0);L1(RN\Ω)).

Remark 2.2. The function u is a solution of (1.2) if and only if

u(x, t) = e−A(x)tu0(x) +
t∫

0

∫
Ω

e−A(x)(t−s)J (x − y)u(y, s) dy ds

+
t∫

0

∫
RN\Ω

e−A(x)(t−s)J (x − y)g(y, s) dy ds, (2.3)

where A(x) = ∫
Ω

J(x − y)dy.
Observe that A(x) � α > 0 (x ∈ Ω) for a certain constant α.

Remark 2.3. From the previous remark we get that if u ∈ L∞(Ω × (0, T )), u0 ∈ Ck(Ω) with
0 � k � ∞, g ∈ L∞(RN \ Ω × (0, T )) and J ∈ Wk,1(RN), then u(·, t) ∈ Ck(Ω × [0, T ]).

On the other hand, if J ∈ L∞(RN), u0 ∈ L∞(Ω) and g ∈ L1(RN \ Ω × (0, T )), there holds
that u ∈ L∞(Ω × (0, T )). (See Corollary 2.3 for an explicit bound in the case of continuous
solutions.)

We now define what we understand by sub and supersolutions.
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Definition 2.1. A function u ∈ C([0, T );L1(Ω)) is a supersolution of (1.2) if u(x,0) � u0(x)

and

ut (x, t) �
∫
Ω

J(x − y)
(
u(y, t) − u(x, t)

)
dy +

∫
RN\Ω

J(x − y)g(y, t) dy. (2.4)

Subsolutions are defined analogously by reversing the inequalities.

Lemma 2.2. Let u0 ∈ C(Ω), u0 � 0, and u ∈ C(Ω ×[0, T ]) a supersolution to (1.2) with g � 0.
Then, u � 0.

Proof. Assume that u(x, t) is negative somewhere. Let v(x, t) = u(x, t) + εt with ε so small
such that v is still negative somewhere. Then, If we take (x0, t0) a point where v attains its
negative minimum, there holds that t0 > 0 and

vt (x0, t0) = ut (x0, t0) + ε >

∫
Ω

J(x0 − y)
(
u(y, t0) − u(x0, t0)

)
dy

=
∫
Ω

J(x0 − y)
(
v(y, t0) − v(x0, t0)

)
dy � 0

which is a contradiction. Thus, u � 0. �
Corollary 2.1. Let J ∈ L∞(RN). Let u0 and v0 in L1(Ω) with u0 � v0 and g,h ∈ L∞((0, T );
L1(RN \ Ω)) with g � h. Let u be a solution of (1.2) with u(x,0) = u0 and Neumann datum g

and v be a solution of (1.2) with v(x,0) = v0 and Neumann datum h. Then, u � v a.e.

Proof. Let w = u − v. Then, w is a supersolution with initial datum u0 − v0 � 0 and boundary
datum g − h � 0. Using the continuity of solutions with respect to the initial and Neumann data
and the fact that J ∈ L∞(RN), we may assume that u,v ∈ C(Ω × [0, T ]). By Lemma 2.2 we
obtain that w = u − v � 0. So the corollary is proved. �
Corollary 2.2. Let u ∈ C(Ω × [0, T ]) (respectively v) be a supersolution (respectively subsolu-
tion) of (1.2). Then, u � v.

Proof. It follows the lines of the proof of the previous corollary. �
Corollary 2.3. Let u be a continuous solution of (1.2) with u(x,0) = u0 and Neumann datum
g ∈ L∞((RN \ Ω) × (0, T )). Then,

u(x, t) � sup
Ω

u0 +
t∫

0

sup
Ω

∫
RN\Ω

J(x − y)g(y, s) dy ds. (2.5)
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Proof. Let

v(t) = sup
Ω

u0 +
t∫

0

sup
Ω

∫
RN\Ω

J(x − y)g(y, s) dy ds.

Then, v is a continuous supersolution of (1.2). By the previous corollary we get the esti-
mate (2.5). �
Corollary 2.4. If J ∈ L∞(RN) and u ∈ C([0, T ];L1(Ω)) is a solution of (1.2) with u(x,0) ∈
L∞(Ω), g ∈ L∞(0, T ;L1(RN \ Ω)) then, (2.5) holds.

Proof. Let un be the solution of (1.2) with un(x,0) = un
0(x) and Neumann datum gn ∈

L∞((RN \ Ω) × (0, T )) such that gn → g in L1((RN \ Ω) × (0, T )) and un
0 → u0 in L1(Ω)

with ‖un
0‖L∞(Ω) � ‖u0‖L∞(Ω).

The result follows from the application of Corollary 2.3 to the functions un ∈ C(Ω × [0, T ])
and taking limits as n → ∞. �
3. Asymptotic behavior for g(x, t) = h(x)

In this section we study the asymptotic behavior, as t → ∞, of the solutions of problem (1.2)
in the case that the boundary data is time independent. So we will assume throughout this section
that g(x, t) = h(x) and that J ∈ L2(RN). We start by analyzing the corresponding stationary
problem so we consider the equation

0 =
∫
Ω

J(x − y)
(
ϕ(y) − ϕ(x)

)
dy +

∫
RN\Ω

J(x − y)h(y) dy. (3.1)

Integrating in Ω , it is clear that a necessary condition for the existence of a solution ϕ is that

0 =
∫
Ω

∫
RN\Ω

J(x − y)h(y) dy dx. (3.2)

We will prove, by means of Fredholm’s alternative, that condition (3.2) is sufficient for exis-
tence and that the solution is unique up to an additive constant.

To do this we write (3.1) in the form

ϕ(x) − K(ϕ)(x) = b(x), (3.3)

where

b(x) = a(x)

∫
RN \Ω

J(x − y)h(y) dy,

K(ϕ)(x) = a(x)

∫
J (x − y)ϕ(y) dy
Ω
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and

a(x) =
(∫

Ω

J(x − y)dy

)−1

.

We consider the measure

dμ = dx

a(x)

and its corresponding space L2
μ of square integrable functions with respect to this measure.

We observe that, due to our assumptions on J , the operator K maps L2
μ into L2

μ and as an
operator K :L2

μ → L2
μ is compact and self adjoint.

We look now at the kernel of I − K in L2
μ. We will show that this kernel consist only of

constant functions. In fact, let ϕ ∈ ker(I − K). Then ϕ satisfies

ϕ(x) = a(x)

∫
Ω

J(x − y)ϕ(y) dy.

In particular, since J ∈ L2(RN), ϕ is a continuous function. Set A = maxx∈Ω ϕ(x) and consider
the set

A = {
x ∈ Ω

∣∣ ϕ(x) = A
}
.

The set A is clearly closed and nonempty. We claim that it is also open in Ω . Let x0 ∈ A. We
have then

ϕ(x0) = a(x0)

∫
Ω

J(x0 − y)ϕ(y) dy.

Since a(x0) = (
∫
Ω

J(x0 − y)dy)−1 and ϕ(y) � ϕ(x0) this implies ϕ(y) = ϕ(x0) for all y ∈
Ω ∩ B(x0, d), and hence A is open as claimed. Consequently, as Ω is connected, A = Ω and ϕ

is constant.
According to Fredholm’s alternative, problem (3.1) has a solution if and only if∫

Ω

b(x)
dx

a(x)
= 0

or equivalently ∫
Ω

∫
RN\Ω

J(x − y)h(y) dy dx = 0.

We have proved
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Theorem 3.1. Problem (3.1) has a solution if and only if condition (3.2) holds. Moreover any
two solutions differ by an additive constant.

We will address now the problem of the asymptotic behavior of the solution of (1.2). The next
proposition shows the existence of a Lyapunov functional for solutions of (1.2). Its proof is a
direct computation and will be omitted.

Proposition 3.1. Let u(x, t) be the solution of (1.2). Let us define

F(u)(t) = 1

4

∫
Ω

∫
Ω

J(x − y)
(
u(y, t) − u(x, t)

)2
dy dx

−
∫
Ω

∫
RN\Ω

J(x − y)h(y)u(x, t) dy dx. (3.4)

Then

∂

∂t
F (u)(t) = −2

∫
Ω

(ut )
2(x, t) dx.

We are now in a position to state and prove a result on the asymptotic behavior of continuous
solutions.

Theorem 3.2. Let u be a continuous solution of (1.2) with g(x, t) = h(x) where h satisfies the
compatibility condition (3.2). Let ϕ be the unique solution of (3.1) such that∫

Ω

ϕ(x)dx =
∫
Ω

u0(x) dx.

Then

u(x, t) → ϕ(x) as t → ∞ (3.5)

uniformly in Ω .
When (3.2) does not hold, solutions of (1.2) are unbounded.

Proof. Set w(x, t) = u(x, t) − ϕ(x). Then w satisfies

wt(x, t) =
∫
Ω

J(x − y)
(
w(y, t) − w(x, t)

)
dy

and
∫
Ω

w(x, t) dx ≡ 0.
By the estimate given in Corollary 2.3 we have that ‖w‖L∞(Ω×[0,∞)) is bounded in Ω ×

[0,∞) by ‖u0 − ϕ‖L∞(Ω).
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Setting A(x) = ∫
Ω

J(x − y)dy and integrating, the above equation can be written as

w(x, t) = e−A(x)tw(x,0) +
t∫

0

e−A(x)(t−s)

∫
Ω

J(x − y)w(y, s) dy ds.

We note that A(x) is a smooth function and that there exists α > 0 such that A(x) � α for all
x ∈ Ω . We observe that for x1, x2 ∈ Ω one has∣∣e−A(x1)t − e−A(x2)t

∣∣ � e−αt t
∣∣A(x1) − A(x2)

∣∣.
With this inequality in mind it is not difficult to obtain, via a triangle inequality argument, the
estimate ∣∣w(x1, t) − w(x2, t)

∣∣ � D
(∣∣A(x1) − A(x2)

∣∣ + ∣∣w(x1,0) − w(x2,0)
∣∣)

where the constant D is independent of t . This implies that the functions w(·, t) are equicontin-
uous. Since they are also uniformly bounded, they are precompact in the uniform convergence
topology.

Let tn be a sequence such that tn → ∞ as n → ∞. Then the sequence w(·, tn) has a subse-
quence, that we still denote by w(·, tn), that converges uniformly as n → ∞ to a continuous
function ψ . A standard argument, using the Lyapunov functional of Proposition 3.1, proves
that ψ is a solution of the corresponding stationary problem and hence ψ is constant. As∫
Ω

w(x, t) dx ≡ 0 this constant must be 0. Since this holds for every sequence tn, with tn → ∞,
we have proved that w(·, t) → 0 uniformly as t → ∞ as we wanted to show.

When (3.2) does not hold the equation satisfied by the total mass, (2.2), implies that u is
unbounded. �

We end this section with a proof of the exponential rate of convergence to steady states of
solutions in L2. This proof does not use a Lyapunov argument. It is based on energy estimates.

First, we prove a lemma that can be viewed as a Poincaré type inequality for our operator.

Lemma 3.1. There exists a constant C > 0 such that for every u ∈ L2(Ω) it holds∫
Ω

(
u(x) − 〈u〉)2

dx � C

∫
Ω

∫
Ω

J(x − y)
(
u(y) − u(x)

)2
dy dx,

where 〈u〉 is the mean value of u in Ω , that is

〈u〉 = 1

|Ω|
∫
Ω

u(x)dx.

Proof. We can assume that 〈u〉 = 0. Now let us take a partition of R
N in non-overlapping cubes,

Ti , of diameter of length h. Using an approximation argument we can consider functions u

that are constant on each of the cubes Ti , u|Ti
= ai . We will only consider cubes Ti such that
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Ti ∩ Ω �= ∅. For this type of functions we have to prove that there exists a constant C indepen-
dent of the partition such that

∑
i

|Ti |a2
i � C

∑
i

∑
k

∫
Ti

∫
Tk

J (x − y)dy dx (ai − ak)
2.

Recall that there exist σ > 0 and r > 0 such that J (x − y) � σ for any |x − y| < 2r .
If the centers of two cubes Ti , Tk , are at distance less than r and h < r we have∫

Ti

∫
Tk

J (x − y)dy dx (ai − ak)
2 � σ |Ti ||Tk|(ai − ak)

2.

Given Ti , Tk two cubes intersecting Ω there exists a number �, depending only on Ω and r

but not on h, such that there exist a collection of at most �, not necessarily pairwise adjacent,
cubes Tj1, . . . , Tj�

intersecting Ω with Tj1 = Ti , Tj�
= Tk and such that the distance between the

centers of Tjm and Tjm+1 is less than r . Since all the involved cubes have the same measure, we
have

|Ti ||Tk|(ai − ak)
2 � �2

(
�−1∑
m=1

|Tjm ||Tjm+1 |(ajm − ajm+1)
2

)

� �2

σ

�−1∑
m=1

∫
Tjm

∫
Tjm+1

J (x − y)dy dx (ajm − ajm+1)
2. (3.6)

The intermediate cubes used in (3.6) corresponding to each pair Ti , Tk can be chosen in such
a way that no pair of cubes is used more than a fixed number of times (depending only on
the diameter of Ω and r) when varying the pairs Ti , Tk . Therefore, there exists a constant C,
depending only on J and Ω but not on h, such that

∑
i

∑
k

|Ti ||Tk|(ai − ak)
2 � C

∑
i

∑
k

∫
Ti

∫
Tk

J (x − y)dy dx (ai − ak)
2.

On the other hand, as we are assuming that∑
i

|Ti |ai = 0,

we get ∑
i

∑
k

|Ti ||Tk|(ai − ak)
2 � 2|Ω|

∑
i

|Ti |(ai)
2

and the result follows. �
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Now let us take the best J -Poincaré constant that is given by

β = inf
u∈L2(Ω)

∫
Ω

∫
Ω

J(x − y)(u(y) − u(x))2 dy dx∫
Ω

(u(x) − 〈u〉)2 dx
. (3.7)

Note that by Lemma 3.1 β is strictly positive and depends only on J and Ω .
Now let us prove the exponential convergence of u(x, t) to the mean value of the initial datum

when the boundary datum vanishes, i.e., h = 0.

Theorem 3.3. For every u0 ∈ L2(Ω) the solution u(x, t) of (1.2) with h = 0, satisfies∥∥u(·, t) − 〈u0〉
∥∥2

L2(Ω)
� e−βt

∥∥u0 − 〈u0〉
∥∥2

L2(Ω)
. (3.8)

Here β is given by (3.7).

Proof. Let

H(t) = 1

2

∫
Ω

(
u(x, t) − 〈u0〉

)2
dx.

Differentiating with respect to t and using (3.7), recall that 〈u〉 = 〈u0〉, we obtain

H ′(t) = −1

2

∫
Ω

∫
Ω

J(x − y)
(
u(y, t) − u(x, t)

)2
dy dx � −β

1

2

∫
Ω

(
u(x, t) − 〈u0〉

)2
dx.

Hence

H ′(t) � −βH(t).

Therefore, integrating we obtain,

H(t) � e−βtH(0).

As we wanted to prove. �
As a corollary we obtain exponential decay to the steady state for solutions of (1.2) with h �= 0.

Corollary 3.1. For every u0 ∈ L2(Ω) the solution of (1.2), u(x, t), verifies

‖u − ϕ‖2
L2(Ω)

� e−βt‖u0 − ϕ‖2
L2(Ω)

. (3.9)

Here ϕ is the unique stationary solution with the same mean value as the initial datum, and β is
given by (3.7).

Proof. It follows from Theorem 3.3 by considering that v = u − ϕ is a solution of (1.2) with
h = 0. �
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4. Blow-up for g(y, t) = h(y)(T − t)−α

Now we analyze the asymptotic behavior of solutions of (1.2) when the flux at the boundary
is given by

g(y, t) = h(y)(T − t)−α

with h � 0 and
∫
Ω

∫
RN\Ω J(x − y)h(y) dy dx > 0. We will also assume that the initial data,

and hence the solution, is nonnegative. Throughout this section u(x, t) will denote the solution
of (1.2) with boundary and initial data as described above. Also in this section we will assume,
without loss of generality, that T < 1. This makes the quantity − ln(T − t) positive which helps
to avoid overloading the notation.

Throughout this section we will assume that J ∈ L∞(RN) and we will use the notation intro-
duced in the introduction.

First, we prove that α = 1 is the critical exponent to obtain blowing-up solutions.

Lemma 4.1. The solution u(x, t) blows up at time T if and only if α � 1.

Proof. Set

M(t) =
∫
Ω

u(x, t) dx,

then one has

M ′(t) = 1

(T − t)α

∫
Ω

∫
RN\Ω

J(x − y)h(y) dy dx � c

(T − t)α
.

Hence, if α � 1 M(t) is unbounded as t ↗ T and the same is true for the solution u(x, t).
On the other hand, if α < 1 we consider the solution of the ordinary differential equation

z′(t) = C

(T − t)α
with z(0) = z0,

that is a supersolution of our problem if C and z0 are large enough. Since z(t) remains bounded
up to time T , a comparison argument shows that so does u(x, t). �
Lemma 4.2. There exists a constant C such that for each integer i such that 1 � i � α, the
solution u(x, t) verifies

u(x, t) � C

(T − t)α−i
in Ωi−1 if i �= α

and

u(x, t) � −C ln(T − t) in Ωi−1 if i = α.
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Proof. If α > 1 we have that

z(t) = C1

(T − t)α−1

is a supersolution to our problem for C1 large enough, therefore

u(x, t) � C1

(T − t)α−1
in Ω0. (4.1)

If α = 1 the argument can be easily modified to get

u(x, t) � −C1 ln(T − t) in Ω0.

Now for x ∈ Ω1 we have

ut (x, t) =
∫
Ω

J(x − y)
(
u(y, t) − u(x, t)

)
dy (4.2)

which implies

ut (x, t) �
∫
Ω1

J (x − y)
(
u(y, t) − u(x, t)

)
dy +

∫
B1

J (x − y)u(y, t) dy. (4.3)

Assume that α > 2. In this case, in view of (4.1), we can use the function

z(t) = C2

(T − t)α−2
,

with C2 large enough, as a supersolution in Ω1 to obtain that

u(x, t) � C2

(T − t)α−2
in Ω1.

As before if α = 2 we get

u(x, t) � −C2 ln(T − t) in Ω1.

The previous argument can be repeated to obtain the conclusion of the lemma with the con-
stant C = max1�j�[α] Cj . �

We can describe now precisely the blow-up set and profile of a blowing-up solution.

Theorem 4.1. If α > 1 is not an integer the blow-up set, B(u), is given by

B(u) =
⋃

Bi ,
1�i�[α]
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with the asymptotic behavior

(T − t)α−iu(x, t) → wi(x) uniformly in Bi as t → T

for each i such that 1 � i � [α].
If α is an integer the blow-up set, B(u), is given by

B(u) =
⋃

1�i�α

Bi ,

with the asymptotic behavior

(T − t)α−iu(x, t) → wi(x) uniformly in Bi as t → T

for each i such that 1 � i < α and

u(x, t)

− ln(T − t)
→ w̃α(x) uniformly in Bα as t → T .

Proof. We have

ut (x, t) =
∫
Ω

J(x − y)
(
u(y, t) − u(x, t)

)
dy +

∫
RN\Ω

J(x − y)
h(y)

(T − t)α
dy. (4.4)

We prove first the theorem in the case when α = 1. Integrating (4.4) in t and using that, by
Lemma 4.2, u(x, t) � −C ln(T − t) we get

∣∣∣∣− u(x, t)

ln(T − t)
− w̃1(x)

∣∣∣∣ � u(x,0)

− ln(T − t)
+ C

1

− ln(T − t)

t∫
0

ln(T − r) dr + lnT

− ln(T − t)
w̃1(x).

This proves that

lim
t→T

u(x, t)

− ln(T − t)
= w̃1(x) uniformly in Ω0.

Also if x ∈ Ω1 (4.4) reads

ut (x, t) =
∫
Ω

J(x − y)
(
u(y, t) − u(x, t)

)
dy.

Integrating in t and using again Lemma 4.2 we have

u(x, t) � u(x,0) − C

t∫
0

ln(T − r) dr.

Hence u is bounded in Ω1 and the theorem is proved if α = 1.
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Assume now that α > 1 and consider the change of variables

v1(x, s) = (T − t)α−1u(x, t), s = − ln(T − t).

Since u verifies (4.4), v1 satisfies

(v1)s(x, s) = e−s

∫
Ω

J(x − y)
(
v1(y, s) − v1(x, s)

)
dy

+
∫

RN\Ω
J(x − y)h(y) dy − (α − 1)v1(x, s). (4.5)

Integrating in s we obtain

v1(x, s) − w1(x)

= e−(α−1)sv1(x,0) + e−(α−1)s

s∫
0

e(α−2)r

∫
Ω

J(x − y)
(
v1(y, r) − v1(x, r)

)
dy dr

− e−(α−1)sw1(x). (4.6)

If α �= 2 since, by the previous lemma, v1 is bounded we get∣∣v1(x, s) − w1(x)
∣∣ � C

(
e−s + e−(α−1)s

)
(4.7)

for some constant C. This implies that

(T − t)α−1u(x, t) → w1(x) (4.8)

uniformly in Ω0 as t → T .
We note that if α < 2, since w1(x) vanishes in Ω1, (4.7) implies∣∣v1(x, s)

∣∣ � Ce−(α−1)s for x ∈ Ω1

and hence

u(x, t) � C for x ∈ Ω1.

Consequently, if 1 < α < 2 the blow-up set of u is Ω0 \Ω1 = B1 and the asymptotic behavior
at the blow-up time is given by (4.8).

We have to handle now the case α = 2 which is slightly different. In this case instead of
estimate (4.7) there holds ∣∣v1(x, s) − w1(x)

∣∣ � C
(
se−s + e−(α−1)s

)
. (4.9)

This still implies that

(T − t)α−1u(x, t) → w1(x) (4.10)

uniformly in Ω0 as t → T but does not ensure that u is bounded in Ω1.
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If x ∈ Ω1 one has

ut (x, t) =
∫
Ω1

J (x − y)
(
u(y, t) − u(x, t)

)
dy +

∫
B1

J (x − y)u(y, t) dy −
∫
B1

J (x − y)u(x, t) dy.

Integrating in t we obtain

u(x, t) −
t∫

0

∫
B1

J (x − y)u(y, r) dy dr = u(x,0) + I1 + I2,

where

I1(x, t) =
t∫

0

∫
Ω1

J (x − y)
(
u(y, r) − u(x, r)

)
dy dr

and

I2(x, t) = −
t∫

0

∫
B1

J (x − y)u(x, r) dy dr.

Now using the fact that for z ∈ Ω1 one has u(z, t) � −C ln(T − t), it can be checked that

I1(x, t)

ln(T − t)
→ 0 uniformly in Ω1 as t → T

and also

I2(x, t)

ln(T − t)
→ 0 uniformly in Ω1 as t → T .

Moreover since (T − t)u(y, t) → w1(y) uniformly in B1 as t → T one has

− 1

ln(T − t)

t∫
0

∫
B1

J (x − y)u(y, r) dy dr →
∫
B1

J (x − y)w1(y) dy

uniformly in Ω1 as t → T .
Putting together this information we deduce that

− u(x, t)

ln(T − t)
→

∫
B1

J (x − y)w1(y) dy

uniformly in Ω1 as t → T .
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Finally since u(x, t) � −C ln(T − t) in Ω1 we can argue as in the proof of the case α = 1 to
show that u remains bounded in Ω2. So we have shown that if α = 2, then the blow-up set, B(u),
of u is given by

B(u) = B1 ∪B2

with the asymptotic behavior

lim
t→T

(T − t)u(x, t) = w1(x) uniformly in Ω0

and

lim
t→T

u(x, t)

− ln(T − t)
= w̃2(x) uniformly in Ω1.

If α > 2 setting

v2(x, s) = (T − t)α−2u(x, t), s = − ln(T − t),

we obtain for x ∈ Ω1 the equation

(v2)s(x, s) = e−s

∫
Ω

J(x − y)
(
v2(y, s) − v2(x, s)

)
dy − (α − 2)v2(x, s). (4.11)

This can be written as

(v2)s(x, s) = e−s

∫
Ω1

J (x − y)
(
v2(y, s) − v2(x, s)

)
dy

+
∫
B1

J (x − y)v1(y, s) dy − v1(x, s)

∫
B1

J (x − y)dy

− (α − 2)v2(x, s). (4.12)

Again integrating in s, after observing that by (4.7) |v1(x, s)| � Ce−s since x ∈ Ω1, we obtain
that ∣∣∣∣∣v2(x, s) − e−(α−2)s

s∫
0

e−(α−2)r

∫
B1

J (x − y)v1(y, r) dy dr

∣∣∣∣∣ � C
(
e−s + e−(α−2)s

)
(4.13)

for some constant C provided that α �= 3.
Also by (4.7) one has that∣∣∣∣ ∫ J (x − y)v1(y, s) dy −

∫
J (x − y)w1(y) dy

∣∣∣∣ � Ce−s
B1 B1
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and consequently∣∣∣∣∣w2(x) − e−(α−2)s

s∫
0

e−(α−2)r

∫
B1

J (x − y)v1(y, r) dy dr

∣∣∣∣∣ � Ce−s .

This, together with (4.13), implies that for all x ∈ Ω1∣∣v2(x, s) − w2(x)
∣∣ � C

(
e−s + e−(α−2)s

)
for some constant C and hence

(T − t)α−2u(x, t) → w2(x)

uniformly in Ω1.
The above procedure can be iterated to obtain for all integers i such that 1 < i < α∣∣vi(x, s) − wi(x)

∣∣ � C
(
e−s + e−(α−i)s

)
for all x ∈ Ωi−1 (4.14)

for some constant C and hence

(T − t)α−iu(x, t) → wi(x) (4.15)

uniformly in Ωi−1. Moreover, it follows from (4.14) that for x ∈ Ω[α], if α is not an integer,∣∣v[α](x, s)
∣∣ � Ce−(α−[α])s

and hence

u(x, t) � C for all x ∈ Ω[α].

In this fashion we have proved that, if α is not an integer, the blow-up set of u is
⋃

1�i�[α]Bi

and the behavior of u near time T in Bi is given by (4.15). This proves the theorem in the case
that α is not an integer.

In the case that α is an integer one can argue as in the proof of the case α = 2 to obtain the
result in that case. �
5. Blow-up with a nonlinear boundary condition

In this section we deal with the problem

ut =
∫
Ω

J(x − y)
(
u(y, t) − u(x, t)

)
dy +

∫
RN\Ω

J(x − y)ūp(y, t) dy,

u(x,0) = u0(x). (5.1)

Here we assume that J ∈ C(RN), u0 ∈ C(Ω), u0 � 0 and ū is the extension of u to a neigh-
borhood of Ω defined as follows: take a small neighborhood of ∂Ω in R

N \ Ω in such a way
that there exist coordinates (s, z) ∈ (0, s0) × ∂Ω that describe that neighborhood in the form
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y = z + sη(z) where z ∈ ∂Ω and η(z) is the exterior unit normal vector to ∂Ω at z. We set

ū(y, t) = u(z, t).

We also assume that d < s0 therefore for any x ∈ Ω , Bd(x)∩ (RN \Ω) is contained in the above
mentioned neighborhood.

We address now the problem of local existence in time and uniqueness of solutions.
As in the previous sections we set

A(x) =
∫
Ω

J(x − y)dy

and observe that there exists α > 0 such that A(x) � α for all x ∈ Ω .
As earlier we obtain a solution of (5.1) as a fixed point of the operator T defined by

T u(x, t) = e−A(x)tu0(x) +
t∫

0

e−A(x)(t−s)

∫
Ω

J(x − y)u(y, s) dy ds

+
t∫

0

e−A(x)(t−s)

∫
RN\Ω

J(x − y)ūp(y, s) dy ds.

We split the proof of existence into two cases. We deal first with the case p � 1 since in this
case we have uniqueness of solutions. In this direction we have the following theorem.

Theorem 5.1.

(a) Let p � 1. There exists t0 > 0 such that problem (5.1) has a unique solution defined in [0, t0).
(b) Let p < 1. There exists t0 > 0 such that problem (5.1) has at least one solution defined in

[0, t0).

Proof. Fix M � ‖u0‖∞, t0 > 0 and set

X =
{
u ∈ C

(
Ω × [0, t0)

) ∣∣ u � 0, |||u||| ≡ sup
(x,t)∈Ω×[0,t0)

∣∣u(x, t)
∣∣ � 2M

}
.

If t0 is chosen small enough, then T maps X into X. Indeed, we have for t � t0 and u ∈ X

∣∣T u(x, t)
∣∣ � e−A(x)tu0(x) +

t∫
0

e−A(x)(t−s)

∫
Ω

J(x − y)
∣∣u(y, s)

∣∣dy ds

+
t∫

0

e−A(x)(t−s)

∫
RN\Ω

J(x − y)
∣∣ūp(y, s)

∣∣dy ds

� M + t0
(
2M + (2M)p

)
� 2M

if t0 is small.
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Proof of (a): We will prove that for p � 1 we can choose t0 in such a way that T is a strict
contraction. In fact, for t � t0 and u1, u2 ∈ X

∣∣T u1(x, t) − T u2(x, t)
∣∣ �

t∫
0

e−A(x)(t−s)

∫
Ω

J(x − y)
∣∣u1(y, s) − u2(y, s)

∣∣dy ds

+
t∫

0

e−A(x)(t−s)

∫
RN\Ω

J(x − y)
∣∣ūp

1 (y, s) − ū
p

2 (y, s)
∣∣dy ds

� t0
(
1 + p(2M)p−1)|||u1 − u2|||

and part (a) of the theorem follows via Banach’s fixed point theorem.
Proof of (b): We have that T maps X into X if t0 is small enough. We claim that the operator

T :X → X is compact. Indeed, for t1, t2 � t0, u ∈ X and x1, x2 ∈ Ω we have

∣∣T u(x1, t1) − T u(x2, t2)
∣∣

�
∣∣e−A(x1)t1u0(x1) − e−A(x2)t2u0(x2)

∣∣
+

∣∣∣∣∣
t1∫

0

e−A(x1)(t1−s)

∫
Ω

J(x1 − y)u(y, s) dy ds −
t2∫

0

e−A(x2)(t2−s)

∫
Ω

J(x2 − y)u(y, s) dy ds

∣∣∣∣∣
+

∣∣∣∣∣
t1∫

0

e−A(x1)(t1−s)

∫
RN\Ω

J(x1 − y)ūp(y, s) dy ds

−
t2∫

0

e−A(x2)(t2−s)

∫
RN\Ω

J(x2 − y)ūp(y, s) dy ds

∣∣∣∣∣.
As in the proof of Theorem 3.2 we have that for x1, x2 ∈ Ω one has∣∣e−A(x1)t − e−A(x2)t

∣∣ � e−αt t
∣∣A(x1) − A(x2)

∣∣
with α > 0. This inequality plus the fact that J is integrable imply, via a triangle inequality ar-
gument, that the family {T u | u ∈ X} is equicontinuous and, since it is bounded, it is precompact
in (X, ||| · |||). Consequently, since T is clearly continuous in X, it is a compact operator and the
claim is proved. Part (b) of the theorem now follows from Schauder’s fixed point theorem. �
Remark 5.1. We observe that the same argument of the proof of part (a) of Theorem 5.1 provides
existence of a unique solution if the boundary nonlinearity takes the form f (ū) with f locally
Lipschitz.

Now we prove a comparison lemma for solutions of (5.1).
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Lemma 5.1. Let u be a continuous subsolution and v be a continuous supersolution of problem
(5.1) defined in [0, t0). Assume u(x,0) < v(x,0) for all x ∈ Ω . Then

u(x, t) < v(x, t)

for all (x, t) ∈ Ω × [0, t0).

Proof. Assume, for a contradiction, that the lemma is not true. Then, by continuity, there exist
x1 ∈ Ω and 0 < t1 < t0 such that u(x1, t1) = v(x1, t1) and u(x, t) � v(x, t) for all (x, t) ∈ Ω ×
[0, t1). We have now

0 = u(x1, t1) − v(x1, t1)

= e−A(x1)t1
(
u(x1,0) − v(x1,0)

)
+

t1∫
0

e−A(x1)(t1−s)

∫
Ω

J(x1 − y)
(
u(y, s) − v(y, s)

)
dy ds

+
t1∫

0

e−A(x1)(t1−s)

∫
RN\Ω

J(x1 − y)
(
ūp(y, s) − v̄p(y, s)

)
dy ds < 0

a contradiction that proves the lemma. �
Now we use this comparison result to prove the lack of uniqueness for p < 1.

Proposition 5.1. In the case p < 1 with u0 ≡ 0 there exists a nontrivial solution of problem (5.1).
Hence this problem does not have uniqueness.

Proof. Let b(t) be a positive solution of b′ = bp with b(0) = 0 and 0 � a(x) � γ be a continuous
function with a(x) ≡ γ on ∂Ω . Let γ > 0 be so small as to have

γ p

∫
RN\Ω

J(x − y)dy > 2γ

for every x ∈ Ω . Then,

v(x, t) = a(x)b(t)

is a subsolution to our problem for a certain interval of time, (0, t0).
Let ε > 0 be given and consider a locally Lipschitz function fε such that fε(s) = sp for s �

ε/2. It follows from Remark 5.1 that there exists a unique solution, wε , of (5.1) with the boundary
nonlinearity replaced by fε(w̄) and initial data wε(x,0) ≡ ε. By the comparison principle wε � ε

and hence it is a supersolution of (5.1).
By comparison, the sequence wε is monotone increasing in ε. In particular, for every ε wε

is defined on the interval [0, t1] where w1 is defined. Therefore, by monotone convergence, we
obtain that the limit

w = lim
ε→0

wε

is a solution with w(x,0) = 0.



C. Cortazar et al. / J. Differential Equations 234 (2007) 360–390 385
Using again the comparison principle we obtain that wε(x, t) > v(x, t) for 0 < t < min{t0, t1}.
Hence, w(x, t) > 0 for every 0 < t < min{t0, t1} and all x ∈ supp(a). �

We address now the blow-up problem for solutions of (5.1). In this direction we have the
following theorem.

Theorem 5.2.

(a) Let p > 1, then every nontrivial solution of (5.1) blows up in finite time.
(b) Let p � 1, then every solution of (5.1) is globally defined in time, by this we mean that it

exists for all t ∈ [0,∞).

Proof. Proof of (a): Let u be a solution of (5.1) and assume, for a contradiction, that it is globally
defined in time.

Since u � 0 and
∫
Ω

J(x − y)dy � 1 we have for x ∈ Ω ,

ut (x, t) � −u(x, t) +
∫

RN\Ω
J(x − y)ūp(y, t) dy.

Here we have used that the equation is satisfied for x ∈ ∂Ω .
Integrating on ∂Ω , denoting by dSx the surface area element of ∂Ω , we get

d

dt

∫
∂Ω

u(x, t) dSx � −
∫

∂Ω

u(x, t) dSx +
∫

∂Ω

∫
RN\Ω

J(x − y)ūp(y, t) dy dSx.

Since ∫
∂Ω

∫
RN\Ω

J(x − y)dy dSx > 0

an application on Jensen’s inequality implies that

d

dt

∫
∂Ω

u(x, t) dSx � −
∫

∂Ω

u(x, t) dSx + C

( ∫
∂Ω

∫
RN\Ω

J(x − y)ū(y, t) dy dSx

)p

for some constant C > 0.
Now, ∫

∂Ω

∫
RN\Ω

J(x − y)ū(y, t) dy dSx

� 1

2

∫ ε∫ ∫
J
(
x − σ − sη(σ )

)
u(σ, t) dSσ ds dSx
∂Ω 0 ∂Ω
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= 1

2

∫
∂Ω

∫
∂Ω

[ ε∫
0

J
(
x − σ − sη(σ )

)
ds

]
u(σ, t) dSσ dSx

� δ|∂Ω|
∫

∂Ω

u(σ, t) dSσ ,

if 0 < ε < d is small enough. (Recall that J (z) � c > 0 for |z| < d/2.)
Thus, if we call

m(t) =
∫

∂Ω

u(x, t) dSx,

we have

m′(t) � −m(t) + γmp(t). (5.2)

This implies that m(t) → ∞ in finite time if for some t0, m(t0) is large enough.
Since we are assuming that u(x, t) is defined for every t > 0, it holds that m(t) is defined (and

finite) for all t > 0. Let us see that this leads to a contradiction. Let v(x, t) be the solution of
(1.2) with g = 0 and v(x,0) = u0. By Theorem 3.2 we get that

v(x, t) → 1

|Ω|
∫
Ω

u0,

uniformly in Ω . Since u is a supersolution for the problem satisfied by v, there exists t1 > 0 such
that for t � t1,

u(x, t) � 1

2|Ω|
∫
Ω

u0 = c0 > 0.

Therefore,

M(t) =
∫
Ω

u(x, t) dx

� M(t1) +
t∫

t1

∫
Ω

∫
RN\Ω

J(x − y)ūp(y, s) dy dx ds

� M(t1) + (t − t1)cc
p

0 .

Arguing as before we get that

u(x, t) � 1
M(t2)
2|Ω|
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for t large enough. Now

m(t0) =
∫

∂Ω

u(x, t0) dx � |∂Ω|
2|Ω|M(t2) � C

(
M(t1) + (t2 − t1)cc

p

0

)
.

This implies that m(t0) is as large as we need if t0 is large enough, hence m(t) is not defined for
all times and we conclude that u blows up in finite time.

Proof of (b): Let p < 1 and let u be a solution of (5.1). Set v(t) = C(t + 1)
1

1−p . It is directly
checked that

v′(t) = C
1

1−p

1 − p
vp(t).

Picking C such that

C
1

1−p

1 − p
� max

x∈Ω

∫
RN\Ω

J(x − y)dy

we have that v is a supersolution of (5.1). Moreover taking C larger, if necessary, such that
u(x,0) < v(0) in Ω we obtain by Lemma 5.1 that

u(x, t) � v(t)

as long as u is defined. This implies the theorem in the case p < 1. The case p = 1 is proved in
the same fashion but using v(t) = Cet as a supersolution. �

Our next result is an estimate of the blow-up rate of blowing-up solutions of (5.1).

Theorem 5.3. Let u be a solution of (5.1) that blows up at time T . Then there exists a constant
C such that

(p − 1)−1/(p−1)(T − t)−1/(p−1) �
∥∥u(·, t)∥∥

L∞(Ω)
� C(T − t)−1/(p−1). (5.3)

Proof. Let

v(t) = (p − 1)−1/(p−1)(T − t)−1/(p−1).

One can easily check that v is a supersolution of our problem. If for some t0 ∈ (0, T ) one has∥∥u(·, t0)
∥∥

L∞(Ω)
< v(t0),

then there exists T̃ > T such that

u(x, t0) < (p − 1)−1/(p−1)(T̃ − t0)
−1/(p−1).
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Let ṽ(t) := (p − 1)−1/(p−1)(T̃ − t)−1/(p−1) that is also a supersolution to our problem in the
interval [t0, T̃ ).

Using a comparison argument, we obtain

u(x, t) < (p − 1)−1/(p−1)(T̃ − t)−1/(p−1),

for all t ∈ (t0, T ). This contradicts the fact that T̃ > T and hence

(p − 1)−1/(p−1)(T − t)−1/(p−1) �
∥∥u(·, t)∥∥

L∞(Ω)
.

The proof of the reverse inequality is more involved. By Eq. (5.2), if

m(t) =
∫

∂Ω

u(x, t) dSx → ∞ as t ↗ T ,

we have

m(t) � C(T − t)−1/(p−1). (5.4)

Now, we claim that

(T − t)1/(p−1)

t∫
0

∫
RN\Ω

J(x − y)ūp(y, s) dy ds � C, (5.5)

for all x ∈ ∂Ω . In fact, if this does not hold, there exists a sequence (xn, tn) with xn ∈ ∂Ω ,
tn ↗ T , such that

(T − tn)
1/(p−1)

tn∫
0

∫
RN\Ω

J(xn − y)ūp(y, s) dy ds → ∞.

By compactness we may assume that xn → x0 ∈ ∂Ω . Hence

(T − tn)
1/(p−1)

tn∫
0

∫
(RN\Ω)∩B(x0,2d)

ūp(y, s) dy ds → ∞.

Therefore there exists a point x1 ∈ ∂Ω such that for a subsequence that we still call tn,

(T − tn)
1/(p−1)

tn∫
0

∫
N

ūp(y, s) dy ds → ∞.
(R \Ω)∩B(x1,d/4)
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Since every function involved is nonnegative and J (z) � c > 0 for |z| < d/2 we get

(T − tn)
1/(p−1)

tn∫
0

∫
RN\Ω

J(x̂ − y)ūp(y, s) dy ds → ∞,

for every x̂ ∈ ∂Ω ∩ {|x̂ − x1| < d/4}.
Using (2.3), we get

(T − tn)
1/(p−1)u(x̂, tn) � c(T − tn)

1/(p−1)

tn∫
0

∫
RN\Ω

J(x̂ − y)ūp(y, s) dy ds → ∞.

Therefore,

(T − tn)
1/(p−1)m(tn) = (T − tn)

1/(p−1)

∫
∂Ω

u(x, tn) dSx → ∞,

which contradicts (5.4). The claim is proved.
Using again that J (z) � c > 0 for z < d/2 we get that (5.5) holds for every x ∈ Ω . In fact,

first we see that for every x ∈ ∂Ω

(T − t)1/(p−1)

t∫
0

∫
∂Ω∩Bd/4(x)

up(σ, s) dSσ ds � C.

Then, since ∂Ω is compact we deduce that

(T − t)1/(p−1)

t∫
0

∫
∂Ω

up(σ, s) dSσ ds � C.

This immediately implies, by using that J ∈ L∞, that (5.5) holds for every x ∈ Ω .
Now, let for t0 < T ,

M = max
Ω×[0,t0]

(T − t)1/(p−1)u(x, t) = (T − t1)
1/(p−1)u(x1, t1).

This implies by using again (2.3) that

M � C +
t1∫

0

e−A(x1)(t1−s)

∫
Ω

J(x1 − y)M dy ds � C + (
1 − e−A(x1)t1

)
M.

So that, since A(x) � α > 0,

M � C,

with C independent of t0. The result follows. �
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Corollary 5.1. Let u be a solution of (5.1) that blows up at time T . Then, the blow-up set, B(u),
verifies

B(u) ⊂ {
x ∈ Ω | dist(x, ∂Ω) � Kd

}
(5.6)

where K = [p/(p − 1)].

Proof. The proof follows from the results in Section 4. �
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