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A  number  of processing  options  associated  with  the  use  of  a “regional  curve”  to standardise  tree-ring
measurements  and  generate  a  chronology  representing  changing  tree  growth  over  time  are  discussed.  It
is shown  that  failing  to use pith  offset  estimates  can  generate  a  small  but systematic  chronology  error.
Where  chronologies  contain  long-timescale  signal  variance,  tree indices  created  by division  of  the  raw
measurements  by  RCS  curve  values  produce  chronologies  with  a skewed  distribution.  A simple  empirical
method  of  converting  tree-indices  to have  a normal  distribution  is  proposed.  The  Expressed  Population
Signal,  which  is widely  used  to estimate  the  statistical  confidence  of  chronologies  created  using  curve-
fitting  methods  of  standardisation,  is  not  suitable  for use  with  RCS  generated  chronologies.  An  alternative
implementation,  which  takes  account  of the uncertainty  associated  with  long-timescale  as  well  as  short-
timescale  chronology  variance,  is proposed.  The  need  to assess  the  homogeneity  of  differently-sourced
sets  of measurement  data  and  their suitability  for  amalgamation  into  a single  data  set  for  RCS  standard-
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isation  is discussed.  The  possible  use of  multiple  growth-rate  based  RCS  curves  is  considered  where  a
potential  gain  in  chronology  confidence  must  be balanced  against  the  potential  loss of  long-timescale
variance.  An  approach  to  the  use  of the  “signal-free”  method  for generating  artificial  measurement  series
with  the  ‘noise’  characteristics  of  real  data  series  but  with  a known  chronology  signal  applied  for  testing
standardisation  performance  is  also  described.

©  2014  The  Authors.  Published  by Elsevier  GmbH.  This  is  an  open  access  article  under  the  CC  BY
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In Part 1 (Melvin and Briffa, 2014) of this 2-part discussion of
he CRUST program for standardising tree-ring data, we focussed
n the concept and application of the signal-free implementation
f Regional Curve Standardisation (SF RCS). We  demonstrated the
dvantages this offers over the use of simple RCS by describing a
umber of experiments with known tree-growth forcing signals
pplied in different contexts to simulated and actual tree-ring data
ets. SF RCS was shown to capture introduced step changes of signal
s well as long-term signal trends with minimal or no distortion in
any cases. In this Part 2, we discuss a number of other issues with

he use of RCS and present several further examples that suggest
pecific implementations available within CRUST. We  discuss the

se of pith-offset estimates; the use of ratios or differences to calcu-

ate indices; and the estimation of chronology confidence. We  also
iscuss the application of RCS where the measurement data from
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arious sources are combined and the use of multiple RCS curves to
vercome some problems encountered in RCS. Some other CRUST
ptions are mentioned and potential users of CRUST are referred
o online versions of the program manual, installation instructions
nd program code which contain a more detailed list of specific
RUST implementation options.

he use of pith offset estimates

When trees are hollow, the boles are partly rotten, or where
oring fails to hit the centre of a tree, ring measurements do not
tart at the pith. The missing radius between first measured ring
nd pith can be estimated either by using diameter measurements
r by interpolating the distance to the geometric centre of the tree,
sing the curvature of the innermost rings of the sample (Nicolussi
t al., 1995, Section 4.1; Esper et al., 2003). The approximate rate
f growth near the centre of the tree can be used to estimate the

umber of years between pith and the first measurable ring (Bräker,
981) producing pith offset estimates (PO). The PO of cores from

iving trees can be consistently larger than the PO obtained from
he cross sections normally taken from sub-fossil trees (Luckman
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nd Wilson, 2005). From experience with tree cores, the accuracy
f missing-radius estimates is generally no better than ±10% and
here there is suppressed growth in the early sections of some

rees PO of the number of missing years may  be even less accurate
han this.

It is common practice with RCS, where PO are not available, to
ssume that the first measured ring of each tree has a ring age of
ne. Relative to this presumption, the use of PO for trees where
ings do not reach the pith will change the position (with regard
o ring age) of each tree’s contribution to the RCS curve and also
he position along the RCS curve from which each tree’s expected
rowth values are selected. An extreme example is provided in the
ase of a hollow tree where, without PO, the small rings of old age
re averaged with the larger rings of early growth from other trees
hus erroneously reducing the magnitude of the early section of the
rue RCS curve. In this situation the series of small rings from the
ollow tree are then detrended using the initial (faster growth rate)
ection of the RCS curve. With reasonably estimated PO data, the
mall rings of the hollow tree are averaged into the lower growth
ate section of the RCS curve which is then more correctly used to
etrend the measurements from the slower-growing outer section
f the tree. Thus the use of PO tends to increase the magnitude
f the early parts of the RCS curve, accentuate the early period of
uvenile growth and, more correctly, increase the overall slope of
he RCS curve.

Not using PO for individual trees will produce a less accurate
CS curve, increased chronology noise, and the potential for wider
rror bars in the chronology. As well as increased noise generally, a
ailure to use PO will likely introduce a systematic, “end-effect”,
ias into a chronology. This is because, after an initial increas-

ng phase, ring width tends to reduce with increasing ring age
nd the difference created by using PO is to increase the overall
lope of the RCS curve. This change of slope is transferred to the
eries of tree indices; earlier indices having lower values and later
ndices having higher values, relative to indices created without
he use of PO. For the central part of a long chronology, where
he first and last sections of overlapping series of tree indices
re averaged together, the artificial increases and decreases of
lope may  cancel. In this case the change in the slope of the RCS
urve will have little net effect on chronology indices (Esper et al.,
003; Melvin, 2004). At the modern end of the chronology, where
he final portions of all tree index series are averaged together,
he slope of the RCS curve becomes more critical and, even with
ata from large numbers of trees, there can be a resulting sys-
ematic bias in the chronology introduced by the omission of PO
ata.

Fig. 1 shows some examples of the differences created when
sing and not using PO, in both RCS curves and corresponding
hronologies. Measurement sets were standardised using one-
urve SF RCS and the results without using pith offset estimates
re shown in blue and with the use of pith offset estimates
hown in red. The Torneträsk maximum latewood density (MXD)
S88G1112A.mxd) measurements (Melvin et al., 2012) were used
o produce Fig. 1a and d. For these MXD  data, the central portion
f the RCS curve (corresponding to ring ages 50–300 years) is
pproximately a straight line (Fig. 1a) and using/not using PO
hows little effect on the slope of tree-index series. The change
n indices is restricted to rings <50 old and this is noticeable in
he chronology differences in the period 1750–1800 (Fig. 1d) when
ample counts are rapidly increasing. The Torneträsk tree-ring
idth (TRW) (S88G0812.raw) measurements (Melvin et al., 2012)

ere used for Fig. 1b and e. The use of PO changes the slope of the
CS curve (Fig. 1b) and the increased slope produces a small reduc-
ion in the chronology indices in the final century (Fig. 1e) and an
ncrease in values in the 18th century. The Dulan TRW (Sheppard
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t al., 2004) data (file name chin005.rwl) provide another, more
xtreme example (though these data were not originally processed
sing RCS). These data are from multiple cores from many trees
hat can exhibit a strip-bark-like growth form in old age. The RCS
urve without PO is roughly horizontal (Fig. 1c) and the chronology
Fig. 1f) has a large downward slope. Using PO, simply based on the
arliest measured ring of each tree, produces a sloping RCS curve
nd a chronology which is consistent with others from the region
see Yang et al., 2014, Figure SMB7).

Because the RCS curve is “smooth” and has no high-frequency
omponent, the use of PO only affects the medium- and low-
requency variance of the chronology (on multi-decadal time scales
nd longer). Some previous work has concluded that the use of
O makes little difference to the resulting chronologies (e.g. Esper
t al., 2003; Luckman and Wilson, 2005), at least for the specific
xamples these authors explored. However, their conclusions were
ased on correlation analyses. Correlation, with its implicit data-
eries normalisation and high weighting of individual extreme
alues, is not suitable for the evaluation of the small (i.e. rel-
tive to the amplitude of high-frequency signals) difference in
ow-frequency variance between chronologies produced with or

ithout PO data.
In RCS where PO are used, it is necessary to use a smoothing

urve that is sufficiently “flexible” to follow the relatively rapid
hanges in the magnitude of radial tree growth in the first decades
f growth and a “stiff” curve to smooth the oldest rings (Melvin
t al., 2007). The juvenile maximum in TRW can occur as early as
he first decade (e.g. see Fig. 1c) and most of the changes created
y the use or not of PO may  be lost by using smoothing that is too
tiff e.g. a spline with cut-off frequency 10% of the maximum tree
ength as used by Esper et al. (2003), or the negative exponential
nd straight lines discussed by Briffa and Melvin (2011, Section
.6.1).

The use of PO can produce notable differences in the shape of the
CS curve with corresponding changes produced in the resulting
hronologies (e.g. Esper et al. (2007), Figure S3 or Briffa and Melvin
2011), Figure 5/11). When using linear regression to reconstruct
limate, the relative slopes and means of the predictor chronolo-
ies and predictand climate series are critical and any systematic
hronology bias over the most recent century will translate into
ifferences in reconstructed climate. Because the chronology error
enerated by not using PO is generally a systematic positive bias it
ould become particularly relevant in the context of large regional
r hemispheric-mean reconstructions (e.g. Briffa, 2000; D’Arrigo
t al., 2006; Esper et al., 2009). In such cases much of the high- and
edium-frequency variance in different predictor chronologies is

ot common and will be largely removed in the averaging. How-
ver, even a relatively small difference in chronology slope over
he calibration period could become significant for large regional
econstruction where it is consistent over many sites.

Of course, the use of PO will have no effect if the RCS curve
s a horizontal line. A systematic end-effect bias is not always
pparent and was  not found by us in the case of MXD  data from
cefields, western Canada (Luckman and Wilson, 2005). However,
here remains a high probability that in many situations the use
f PO will change the values of tree indices and the chronology
o some extent. Though failure to use PO may result in only a
mall, medium-frequency end effect bias in RCS chronologies this
ay  still influence subsequent climate reconstructions. Using PO
ill, therefore, improve chronology accuracy where tree counts are

imited and will remove the potential for one type of “end effect”
ias. It is recommended that the pith offset information should be
ecorded as a routine part of tree-ring sampling and PO recorded

uring the measurement process. Wherever possible, PO should be
sed in RCS processing.
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Fig. 1. Here measurement sets are standardised using one-curve SF RCS without using pith offset (PO) estimates (blue) and using PO (red). The RCS curves of both with and
without PO estimates are shown by ring age in (a), (b) and (c) and the chronologies generated are shown in (d), (e) and (f). The Torneträsk MXD  measurements were used
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n  (a) and (d), the Torneträsk TRW measurements were used in (b) and (e), and the
hading and chronologies have been smoothed with a 50-year spline for display.

ndices by ratios or differences

kewed distribution of tree-indices

Subtracting ‘expected’ growth curve values from TRW mea-
urements, referred to here as taking “differences”, removes the
nfluence of tree age but creates tree indices whose variance is gen-
rally dependent on the local mean of the measurements (Cook and
eters, 1997). Where standardisation involves an expected growth
urve fitted to the measurements of each tree, dividing measure-
ents by the expected values (taking “ratios”) also removes the

nfluence of age but it also goes some way to reducing, or correct-
ng, the relationship between local chronology mean and variance
n the resulting indices. Ratios appear to be a better analogue for
he processes of tree-ring growth than differences. The climatic
ontrol of tree growth is via photosynthesis and annual varia-

ions in climate will produce variations in carbon production rates
hat are roughly proportional to foliage mass, though there are
ther processes involved (Melvin, 2004, Section 4.1). For MXD  mea-
urements the relationship between local chronology mean and

a
e
t
p

 TRW measurements were used in (c) and (f). Sample counts are shown with grey

ariance is less apparent (Melvin et al., 2012; Briffa et al., 2013) and
ndices created as differences do not generally require the variance
orrection needed for TRW indices (e.g. Bräker, 1981; Grudd, 2008).

 disadvantage of using ratios of TRW and MXD  is that, because
hey are ‘fractional deviations’, the indices may  have a noticeably
kewed probability distribution. This is because maximum ring
idth (or density) is unbounded while minimum ring width can-
ot be less than zero. If ratios are used, where the fitted detrending
urve closely follows the local mean of growth rate of each tree
e.g. when most of the low-frequency variance is being removed),
he probability distribution for indices produced as ratios is not
trongly skewed and the dependence of variance on local mean is
ot great (see blue line of Fig. 3).

Cook and Peters (1997) describe the bias associated with
sing ratios with curve-fitting standardisation methods that pro-
uce “poorly fitting” detrending curves. Where the fitted curve

pproaches too closely to zero, the use of ratios can generate
xtremely large and unrealistic index values, so creating bias in
he final chronology. For this reason when using ratios (e.g. in
rogram ARSTAN, Cook, 1985) it is necessary to examine the fit
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Fig. 2. One-curve SF RCS is used to standardise TRW data from Yamal (Briffa et al., 2013). (a) Chronology indices plotted by year and tree counts (grey shading), (b) standard
deviation for each chronology year, (c) standard deviations sorted by chronology index size, and (d) standard deviations sorted by chronology index value and scaled by
chronology index size. Alternatively, a chronology was created using one-curve SF RCS with tree-indices transformed to have a normal distribution. (e) The chronology
created after conversion of tree-index distribution to normal and tree counts, (f) standard deviations of the normal-distribution chronology plotted by year, and (g) standard
deviations of the normal-distribution chronology sorted by chronology index value.

Fig. 3. The distribution of tree-indices created using the Yamal data (Briffa et al., 2013). Indices were normalised (by subtraction of the mean and division by the standard
deviation) and counts for each 0.01 range from −3.0 to +3.0 were smoothed with a 60-year spline. Tree-indices from alternative standardisation methods are compared:
one-curve SF RCS tree indices (red), one-curve RCS with power transform and tree indices created as differences (cyan), and signal-free 30-year spline standardised tree
indices (blue). The distribution of similarly processed randomly generated numbers (one for each tree index) with a normal distribution is also shown (dashed black).
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f each detrending curve to the underlying measurements and
o correct or remove any problematic values manually. Cook and
eters (1997) proposed a solution to avoid this problem: first using

 power transform to correct the variance and then using dif-
erences to create tree indices. An alternative method to prevent
xcessively high index values, used in the implementation of the
ignal-free approach for curve fitting methods (Melvin and Briffa,
008), is to replace those values of the fitted curve which are below

 minimum value (e.g. the thickness of two rows of cells) with the
inimum value. Options are available within CRUST to implement

ither approach. When using RCS the inherent lack of a specifically
ailored fit of standardisation curve to individual series of measure-

ent data leads to an expectation that indices (whether produced
s differences or ratios) will be notably skewed.

xample of skewed RCS chronology indices

Here we examine the problem of the skewed probability dis-
ribution function for RCS chronology indices and the associated
ependence of local chronology variance on chronology mean. An
xample is shown in Fig. 2. Fig. 2a shows the chronology index
alues and tree counts over time for a chronology created using
ne-curve SF RCS applied to the data set of Yamal TRW measure-
ents (Briffa et al., 2013). Fig. 2b and c show the standard deviation

bout each calendar year’s mean index and the same standard devi-
tions sorted by ascending chronology value. The clear dependence
f standard deviation on index size (Fig. 2c) is largely removed
hen the standard deviations are scaled by division by the mean

ndex values (Fig. 2d). For example, Fig. 2b shows the 20th cen-
ury, in particular, as having large yearly standard deviations but
fter scaling by the high chronology index values of the 20th cen-
ury, the association between mean and standard deviation is no
onger apparent (see also the discussion of the EPS calculation for
CS in Section ‘Calculating more appropriate EPS values for RCS
hronologies’). If differences rather than ratios are used to produce
ing-width indices, they are not fractional deviations and scaling
y the chronology values may  not be appropriate.

Fig. 2e–g show the same data except that the chronology was
reated here using tree indices that have been transformed to have

 normal distribution prior to averaging by calendar year [see Sec-
ion ‘Tree-index transformation to normal’]. Some dependence of
tandard deviation of each year on sample count in that year is still
pparent, e.g. in the higher values of standard deviations before
00 CE in Fig. 2b and f. This is a separate problem which can be
educed using sample-count-based variance correction techniques
e.g. Osborn et al., 1997) also available in CRUST.

The skewed distribution problem is further illustrated in Fig. 3
see also Briffa et al., 2013, SM5  section PY2). In this example
he Yamal measurements have been standardised in three differ-
nt ways; firstly using a signal-free 30-year high-pass spline with
ndices generated as ratios, secondly using one-curve SF RCS with
ndices generated as ratios, and thirdly using a power transform
f the measurement data followed by simple RCS with indices
reated as differences following Cook and Peters (1997). The tree
ndices contributing to each chronology have been normalised, by
ubtracting the overall mean and dividing by the overall standard
eviation, and counts for each 0.01 of index range from −3.0 to +3.0
ave been smoothed using a 60-year spline for display. The distri-
ution of similarly processed randomly generated numbers (one
or each tree index) with a normal distribution is also shown for
omparison.
When using RCS to retain long timescale variance and creating
ree indices by division, because expected growth curves are not
losely fitted to individual sample series of measurements, there
s a wider distribution of tree-indices with a more noticeable skew

c
t
a
r

onologia 32 (2014) 343–356 347

han when using innately more flexible curve fitting methods (com-
are the red and blue lines of Fig. 3). Index values below the mean
ave a narrower range than those above the mean and this skew is
hat tends to produce a positive relationship between chronology

ndex value and associated standard deviation (see Fig. 2c). Many of
he methods used to process and interpret chronology indices (e.g.
he correlation and regression techniques frequently used in den-
roclimatology) have an underlying presumption that the series

nvolved are at least approximately normally distributed.
Esper et al. (2003) and Büntgen et al. (2004) illustrate and

iscuss the use of the power transform and using differences in
he context of RCS. The power transform was originally proposed
s a means to overcome the problem of a standardisation curve
pproaching zero (Cook and Peters, 1997). This should rarely occur
hen using RCS. The RCS curve should not approach too closely to

ero because the value for each tree age comprises the average of
easurements from multiple trees. However, care is needed when

moothing the RCS curve. If too-flexible a smoothing technique
s used at the poorly replicated (old-age) end of the mean-ring-

idth-by-age curve this problem might be encountered (Melvin
t al., 2007). The distribution of tree indices generated using power
ransform and differences is less skewed than the distribution of
CS indices generated as ratios (compare the cyan and red curves

n Fig. 3). Büntgen et al. (2004) point out that the difference between
simple) RCS and power transformed RCS chronologies, when used
o reconstruct temperature, is a systematic bias. While it is an
mprovement over simple RCS using ratios, the power transform
sing differences only partially corrects the index non-normality
roblem (see SM Figure SM1  and associated discussion). Fig. 3
hows that both simple and power transformed RCS indices are
ositively skewed.

Using ratios will only remove the relationship between variance
nd mean in tree indices when the detrending curves follow the
ocal mean of growth rate in individual trees closely. Indices pro-
uced using a 30-year spline have a distribution that is much closer
o symmetrical (the blue line in Fig. 3) but these index series repre-
ent only the relatively high-frequency chronology signal variance.

hen using ratios with RCS, where more low-frequency signal
ariance is retained, the resulting skewed distribution produces

 marked relationship between chronology value and chronology
tandard deviation. The use of the power transform does not cor-
ect this problem. Here we recommend that, consistent with the
se of a multiplicative model, RCS is implemented using ratios to
enerate tree-index series. A simple method is now proposed that
xplicitly corrects the problem that such indices, and the resulting
hronology values, have a markedly skewed distribution.

ree-index transformation to normal

If the history of changes in some climate variable is recon-
tructed from a chronology of tree growth indices using linear
caling, the climate estimate will have the same probability func-
ion as the scaled chronology. The use of fractional deviations in the
ignal-free method suggests the need for transformation of index
alues so that they are distributed similarly to the predictand cli-
ate series, which by default is assumed here to be approximately

ormal. (The option to transform tree indices to have a normal
istribution is built into CRUST along with the option for users to
upply a list of random numbers with a distribution appropriate to
heir predictand data.) This transformation should take place after
he standardisation procedures. Rather than transform the mean

hronology indices directly, it is preferable to transform the dis-
ribution of the total of individual tree indices prior to averaging
cross calendar years to form the chronology. This approach is more
obust because where there may  only be a few hundred chronology
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ndices there are often several thousand or more tree index values
rom constituent trees. A simple, empirical method of transforming
ree indices so that they have a normal distribution is as follows.

A series of random numbers, one for each tree index, is gener-
ted with a normal distribution. These are sorted to obtain values
n ascending sequence. The tree indices are ranked into ascending
rder to produce two parallel series; similarly ranked tree indices
nd random numbers. Each tree index value is then replaced with
he value of the random number with the same relative position
i.e. the largest random number replaces the largest tree index,
ext largest etc). The relative size of tree indices (i.e. larger than or
maller than) will be unchanged whilst they are given values that
ave a normal distribution. The now normally-distributed tree-

ndices are then averaged by calendar year to create the chronology.
he chronology indices, as the average of normally distributed tree
ndices for each year, may  not have a mean of zero and a standard
eviation of 1.0 and may  need to be normalised by subtracting the
ean and dividing by the standard deviation to achieve this.
The dashed-black line in Fig. 3 shows the distribution of RCS

ndices after their transformation to have a normal distribution.
he problem, that the values of indices below the mean have a
maller spread than the indices above the mean, has been corrected.
he one-curve RCS chronology created from normally distributed
ree-indices (Fig. 2e) has fewer extremely high values and more
xtremely low values that the uncorrected chronology (Fig. 2a). The
tandard deviation of the chronology values (Fig. 2f) has a mean
lightly less than 1.0 because of the averaging. The relationship
etween mean and standard deviation (Fig. 2c) has been corrected
y the transformation (Fig. 2g). A reason for the use of this trans-
ormation is the non-linearity of fractional deviations and it may
ot be appropriate where the data are non-stationary. Further dis-
ussion of the use of this approach and the underlying assumptions
hen processing various versions of TRW and MXD  chronologies

rom Yamalia, northern Siberia can be found in Briffa et al. (2013).
The use of ratios, or the use of the power transform with differ-

nces, has proved generally satisfactory for processing chronolo-
ies generated using curve-fitting standardisation methods. The
mbition to preserve greater long-timescale climate-related vari-
nce and the corresponding adoption of RCS methods have
xacerbated the problem of skewed chronology indices. Consis-
ent with our use of a multiplicative model of tree growth, and
ur recommendation that RCS be implemented using ratios rather
han differences, we also recommend that the subsequent need
o correct the skew in the distribution of RCS chronology indices
hould be satisfied by transforming the resulting RCS tree-indices
o have a normal distribution. We  have described a simple, empiri-
al method that must be applied to the whole of the chronology, i.e.
t cannot be applied to a section of chronology and “extrapolated”
o other sections. Nevertheless, we consider it an improvement
ver the use of non-normal chronologies. Further experimentation
ith other approaches, including the possibility of transformation

o other ‘non-normal’ distributions where relevant, is warranted.
t present CRUST only has the facility to transform indices to a
ormal distribution.

hronology confidence

We  now turn to the issue of assessing chronology confidence in
he context of RCS. Here we are concerned with two major stages
f RCS implementation: errors associated with constructing an RCS

urve and errors associated with the averaging of tree indices to
orm a chronology. The chronology error can be considered sepa-
ately for each of these aspects of chronology construction. When
onsidering chronology confidence we may  ask firstly, “How many
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ata series are needed to build an ‘acceptably accurate’ RCS curve?”
nd secondly “How many data series are needed in each calendar
ear to obtain an ‘acceptably accurate’ estimate of tree growth in
hat year?”

ow many trees are needed to build an RCS Curve?

An important requirement in developing an RCS curve is that
ings of a particular age (i.e. part of the RCS curve) come from
ifferent periods in time so that when aligned by ring age and
veraged together, the climate induced variability from different
eriods cancels out, leaving an RCS curve that accurately repre-
ents expected growth as a function of tree age (Briffa et al., 1992,
996). If, for example, all the young rings are predominately from
ne period in time, the common growth signal of that period may
ot be efficiently removed from the early section of the RCS curve.
he same is true for all sections of the RCS curve. There needs to be a
reasonable” representation of growth from different time periods
or all ring ages. What constitutes reasonable in this context cannot
e answered too rigidly as the precise requirements will depend on
pecific research situations and aspirations. However, as an illus-
ration, if we suggest a minimum of one tree representing each of
t least 5 time periods and five age ranges (parts of the young to old
ections of the RCS curve), this requires data from at least 25 trees.
f, as is often the case, the distribution of sample data over time is
ot even, we can easily double this. This suggests a rule of thumb,
hat data from at least 50 trees are needed to build an RCS curve.

In producing the RCS curve, high-frequency noise (in this
ase including year-to-year climate variability) will be efficiently
educed by averaging rings from different calendar years and is
urther removed by the smoothing of the curve of mean-growth
alues ordered by ring age when producing an RCS curve (Melvin
t al., 2007). The medium and low-frequency variance of the com-
on  forcing signal is not so efficiently removed and it is necessary

o use large numbers of sub-fossil tree data to build a sufficiently
ccurate RCS curve. When using a chronology built solely from liv-
ng trees, provided there is an adequate distribution of tree ages,
he use of the signal-free method as described in Melvin and Briffa
2014) will reduce the climate-related bias of all but the longest-
imescale (the slope over the chronology length) and enable 50
rees to be sufficient to build an accurate RCS curve.

ow many trees are needed in each year?

There is a problem in natural forest situations that the rates of
rowth of individual trees can vary appreciably because of varying
icro-site conditions (Fritts, 1976, p. 280). Factors such as rooting

epth, soil type, aspect, and site elevation can all affect local rates
f tree growth over the whole of a tree’s life, while local competi-
ion can constrain the growth of an individual over many decades.
he effects of such non-climate growth influences are presumed to
e noise that is superimposed on the common forcing or “climate
ignal” that varies on different time scales from year-to-year up
o many centuries. Sufficient samples are needed in each year for
he effects of this background noise and the random selection of
ifferent samples (e.g. from a fast growing tree rather than a slow
rowing tree) on the estimate of the mean chronology value to be
educed to an acceptable level.

Wigley et al. (1984) and Briffa and Jones (1990) describe a sta-
istical metric for gauging how well the common growth signal is
xpressed in a chronology: the Expressed Population Signal (EPS).

he EPS value refers to the proportion of “common” signal in the
hronology e.g. an EPS of 0.85 indicates that 85% of the chronology
ariance is common signal while 15% of the chronology variance
s residual noise. The calculation of EPS uses the mean correlation
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f all inter-tree index series (rbar). The rbar calculations should
ot be based directly on “within-tree” series correlations which
re normally much higher than “between-tree” correlations (Briffa
nd Jones, 1990, Section 3.6.2). Either the “effective chronology sig-
al” can be used (see Briffa and Jones, 1990, Equation 3.43) or the
easurement data for each tree can be averaged prior to standard-

sation and subsequent rbar calculation (Wigley et al., 1984).
The longer the (common) period over which rbar is calcu-

ated, the longer the timescales of chronology variability that are
ssessed. Analysis intended to assess temporal changes in sig-
al strength might calculate rbar over a moving window rather
han using a single common period (e.g. 50-year running seg-

ent lengths might be used). Where the period of comparison
s so short, only correspondingly short-period (high-frequency)
oherence between sample index series is assessed. In the normal-
sation implicit in rbar calculations, the means of each series of tree
ndices are set to the same value (zero) over the selected common
eriod and consequently the noise associated with variation of the
ean values of tree-index series is not accounted for in the EPS

alculation. In most practical situations the calculation of rbar is
ominated by the large magnitude of high-frequency (versus low-
requency) ring-growth variation and long-timescale chronology
onfidence is not assessed.

The ‘normal’ application of EPS calculation is not suitable for
stimating the strength of common signal of RCS chronologies.
he original papers describing the EPS (Briffa, 1984; Wigley et al.,
984) were written before the common adoption of RCS in the
1st century and its availability in ARSTAN (Cook, 1985) and so do
ot directly address the use of EPS with RCS chronologies. When
sing RCS, the varying mean value of tree-index series is the source
f long-timescale variance. The exclusion of the long-timescale
ariance in the rbar calculation causes the EPS to seriously underes-
imate the level of true “noise” in RCS chronologies (Briffa and Cook,
008; Jones et al., 2009). Here we demonstrate the underestimation
f low-frequency noise in the standard EPS calculations using some
f the Torneträsk TRW data (Melvin et al., 2012). Fig. 4 shows 20
ears of tree-index data for each of the nine Torneträsk trees which
pan the years 700–750 CE. Fig. 4a shows tree index series derived
rom 50-year spline signal-free standardisation applied to the full
ata set. Fig. 4b shows tree indices derived from one-curve SF RCS.
ig. 4c shows the RCS index series after each has been normalised
by subtracting the mean and dividing by the standard deviation
ver the period 700–750 CE). When standardised with RCS, as
xpected with its greater retention of low frequency variance, there
s a much wider distribution of index values in each year (Fig. 4b)
han when spline standardisation is used (Fig. 4a). The normal-
sation (Fig. 4c) implicit in calculating rbar over 50-year segments
emoves the low-frequency variance (and associated noise) leaving

 similar amount of (the higher-frequency) variance to that pro-
uced when standardising with a 50-year high-pass spline (Fig. 4a).
alculation of EPS using the between-series variability of Fig. 4c

nstead that of Fig. 4b, seriously under-estimates the proportion of
oise in an RCS chronology.

alculating more appropriate EPS values for RCS chronologies

Assuming that the chronology “noise will cancel in direct pro-
ortion to the number of series averaged” (Briffa and Jones, 1990).
he number of trees needed to achieve a specified level of EPS for
n RCS chronology can be estimated, as in the case for relatively
igh-frequency noise, by assessing a requirement to attain the

ame proportion of noise as that contained in a “high-frequency”
hronology. This can be calculated by scaling the number of trees
or a particular EPS threshold in a high-frequency chronology (e.g.
s produced using a 50-year high-pass spline) by the square of
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he ratio of the chronology standard deviations (e.g. RCS variance
ivided by 50-year-spline variance both calculated over the same
egment). This is equivalent to calculating the change in sample
ount that will “compensate” for the additional noise in the mean
alue of RCS tree indices and thus provide EPS calculations that are
ore relevant to assessing the levels of chronology confidence for

CS chronologies. To achieve an EPS of 0.9 for the 50-year segment
f the spline chronology shown in Fig. 4b requires a sample depth
f 5 (4.5) trees while for the RCS chronology in Fig. 4c approxi-
ately 5 times as many trees would be needed, i.e. a sample depth

f 22 (22.2) trees. However, there is an additional complication that,
ecause RCS-generated TRW indices are fractional deviations, the
tandard deviation is proportional to the chronology index value
see Section ‘Example of skewed RCS chronology indices’). This
roblem is removed either by scaling the standard deviations by the
hronology values or transforming tree-indices to have a normal
istribution (see Section ‘Tree-index transformation to normal’).

For a high-frequency chronology where:

rbar = the mean between-tree index-series correlation coefficient
n = the number of trees
1.0 − rbar) = the fraction of noise
(n × rbar) = the magnitude of common signal

EPS is the proportion of chronology variance represented by
he common signal, calculated (following Briffa and Jones, 1990,
quation 3.4.4) using:

PS = (n × rbar)
[(n × rbar) + (1.0 − rbar)]

.

To take account of the additional long-timescale variance in an
CS chronology and the consequent increase in the number of sam-
les needed to reduce the RCS chronology standard deviation to the

evel of the standard deviation of a high-frequency chronology (e.g.
0-year high-pass spline), the rbar calculation is made using the
CS “adjusted count” (nadj). Because the standard deviation varies
onsiderably from year to year the standard deviations are calcu-
ated here as the mean of standard deviations for each year over
he time span (window) used in the rbar calculation:

adj = n × 50-year-spline variance
RCS variance

.

EPS for RCS is estimated by

PSRCS = (nadj × rbar)
[(nadj × rbar) + (1.0 − rbar)]

.

Note that here the error associated with representation of the
CS curve itself is not incorporated in the EPS calculations.

The Torneträsk TRW chronology is used to demonstrate these
PS calculations. Running (50-year windows) rbar values cal-
ulated for 50-year spline (black) and for one-curve RCS (red)
hronologies are shown in Fig. 4d. The EPS (Fig. 4e) was calculated
or the 50-year spline chronology (black) and for an RCS chronology
ith rbar calculated over 50-year moving windows (red). Adjusted

PS was also calculated (blue). The unadjusted EPS suggests that
he chronology is acceptably reliable (using the often quoted crite-
ion of EPS > 0.85) after 400 CE while the adjusted EPS suggests that
he reliability of the chronology is limited in the period before 600
nd also between 1000 and 1440 CE. The number of trees during
oth periods drops below 50. The running rbar values are inherently
noisy” and increasing the window length for calculation EPS would

educe this noise. Where interest is focussed on a specific timescale,
n adjusted EPS can be calculated for specific filter lengths. An
ption to select the filter length used for EPS calculation for RCS
s built into CRUST.
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Fig. 4. Plots of indices for 20-year segments from 11 trees from the Torneträsk AD TRW chronology which include the common period 1150 to 1199 AD: (a) tree indices
derived from a 50-year spline standardisation, (b) tree indices derived from one-curve SF RCS standardisation, and (c) SF RCS tree indices which have had their mean value,
over  the period 1150 to 1199, subtracted. For the CE portion of the Torneträsk TRW chronology, (d) shows the Rbar calculated using 50-year spline standardisation (black)
a pline 
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nd  two-curve SF RCS chronology (red). (e) shows EPS calculated for the 50-year s
alculated for the RCS chronology (blue).

ombining sub-samples of data from different sources or
ites

It is a basic requirement of simple RCS that the data being
rocessed represent a homogeneous sample through time (Briffa
t al., 1992, 1996, 2013). Mixing data from trees from sources
ith notably different mean growth rates under the same cli-
ate conditions has the potential to produce serious chronology

ias when the proportions of data from different sub-samples
aries over time. Combining sub-sample data sets into one for RCS
rocessing assumes that the different sub-samples contain simi-

ar common forcing signals and come from populations of trees
ith similar age-related growth curves. To explore the potential for

ias when constructing long, compound chronologies, it is infor-
ative to test the data from different sub-samples of trees, e.g.

ub-fossil, archaeological and living-tree samples or samples from
eighbouring sites, for compatibility. There are several issues that
eed to be considered when assessing compatibility between data
ets.

A simple assessment based on comparing the means of the mea-
urement data requires the removal of two confounding factors.
irstly, the effects of the common-forcing signal must be removed

ecause differing forcing regimes are expected to produce differ-

ng ring measurements, e.g. temperature sensitive tree rings would
e expected to be larger in a warm period than in a cool period.
omparing the count weighted means of sub-sample data over a

m
d
(
a

chronology (black), EPS calculated for the RCS chronology (red), and adjusted EPS

ommon period can achieve this. Dividing each measurement by
he chronology index also removes the effect of variation in com-

on  forcing signal of tree growth over time: in other words using
ignal-free measurements. A major advantage of this is that it does
ot require the selection of a common analysis period. Secondly, the
ffect of differing ring age needs to be taken into account because
RW and MXD  measurements reduce with increasing ring age.
easurements can be converted to values that would be expected

t a specific ring age by rescaling: dividing the measurements by
he actual ring-age value of the RCS curve and multiplying by the
different” ring-age value of the RCS curve. Alternatively tree-index
eries, which have had the effect of changing ring age removed, can
e used.

Combining the different sub-sample data sets into one,
rocessing the combined data with one-curve SF RCS, and divid-

ng series of tree indices by the appropriate-year chronology index
roduces series of signal-free tree indices. These indices have
ad both the age-related and the common-signal-related variance
emoved. This then allows a valid, direct comparison of the mean
alues of the different sub-sample signal-free tree indices and
ill reveal the existence of differences and the potential for bias

etween data sets. Examples of just such comparison and adjust-

ent by rescaling of differently sourced TRW and MXD  data sets are

escribed for the Torneträsk (Melvin et al., 2012) and Polar Urals
Briffa et al., 2013) regions. Procedures are available in CRUST to
ssist with the evaluation and “correction” of sub-sample biases.
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he use of multiple RCS curves

In RCS, expected growth is expressed as a function of tree age
nd below we  only consider trees with full circumferential growth.
n this there is an implicit assumption that in an unchanging cli-

ate all trees have similar growth rates over their lifetime. In
 forest, if trees of the same age have differing diameters, then
e would expect a larger diameter tree to have a faster growth

ate. Hence diameter in combination with age becomes a supe-
ior predictor of tree growth rate than age alone. It would be
qually valid to use tree diameter as an estimator of expected
rowth rate using diameter-based RCS curves (see Melvin, 2004,
hapter 4 for a detailed discussion). If trees of roughly the same
iameter have differing ages, then we would expect a younger
ree to have a faster growth rate than an older tree and hence
ge in combination with diameter is a superior predictor of tree
rowth rate than diameter alone. The combination of age and diam-
ter is a measure of growth rate. Because fast growing trees tend
o continue growing rapidly whilst slowly growing trees tend to
ontinue to grow slowly tree growth rate tends to be a supe-
ior predictor of expected growth than either age or diameter
lone.

The observation that the rate of reduction of ring width over
ime is greater for fast-growing trees than for slow-growing trees
partly a consequence of rate of change of diameter) suggests that
he ‘average’ RCS curve may  not be optimum for representing
xpected-ring width in trees with widely varying growth rates. The
ssumption that one curve fits all trees can lead to systematic bias
n tree-index series; where the tree-index series of faster-growing
rees have a negative slope and those of slower-growing trees have

 positive slope (Melvin, 2004; Briffa and Melvin, 2011). It is pos-
ible, where sufficient samples are available, to consider the use
f multiple RCS curves, each representing a different growth-rate
lass. Because growth rate is a “reasonable” predictor of expected
rowth rate, growth rate is the metric we use to separate trees into
ultiple RCS curves.
Rathgeber et al. (1999) proposed using the first 50 years of tree

rowth to evaluate and remove the within-site variation of the
ean growth rate of trees. Melvin (2004) used the early years of

rowth of each tree to evaluate the rate of growth for each tree
nd found that the RCS curve for each growth rate tended to the
ame value as tree age increased. Subsequent work has shown that
sing the mean growth rate of the tree over the full time span,
fter removing the mean age affects, produces multiple RCS curves
hich do not tend to converge. In CRUST the growth rate of each

ree is assessed over its full life span, relative to the growth rate
f an unsmoothed RCS curve created using the measurement data
rom all trees: the ratio of the diameter increment of the tree is
xpressed relative to the diameter increment of the single RCS
urve, using the common age range. Trees are sorted by relative
rowth rate and near equal (as much as possible) numbers of trees
re allocated to each multiple RCS curve (note: CRUST will only use
ultiple RCS if there are data from 40 or more trees in each RCS

urve).
When an RCS curve is created by averaging all the measure-

ents from a set of trees and those measurements are each divided
y the appropriate age RCS curve value then the mean of the com-
lete set of tree indices created will be ∼1.0. When using multiple
CS curves, the sub-chronologies formed by averaging sets of tree

ndices, created using their own sub-set RCS curve will each have a
ean of ∼1.0. Averaging together the tree index series of these sub-
hronologies will lose some of the low-frequency variance in the
verall chronology that the RCS technique is intended to preserve.
onsistent with our multiplicative model, the mean value of tree-

ndex series (as calculated using one-curve RCS) can be reinstated

(
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a
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y rescaling the means of the series of indices from each tree to
ave the value that they would have had if only one RCS curve
ere used. This procedure produces a multiple-curve RCS chronol-

gy that contains as much low frequency variance as a one-curve
CS chronology.

Using a single RCS curve to standardise the complete measure-
ent dataset will preserve the maximum long-timescale changes

n the mean growth rates of all trees but will often result in a
hronology that suffers from systematic biases: e.g. modern sam-
le bias, or the slope problem discussed above; or where subsets
f data are not homogeneous. The use of multiple growth-based
CS curves can remove much of this bias but at the cost of los-

ng some of the potential long-time scale climate-related changes
n mean growth rates. When multiple growth-rate based RCS
urves are used the slope bias caused by the differing growth
ates of trees (and less-well fitting RCS curves) is corrected. The
emoval of long-timescale variance will also substantially reduce
he amplitude of both modern sample bias and any sample homo-
eneity problems. The CRUST user has a choice of either creating

 chronology which has some long-timescale variance removed
ut has been largely corrected for “modern sample bias” and
as reduced homogeneity problems or of retaining all the long-
imescale variance. These points are now illustrated using example
ata sets.

he Yamal trees

The Yamal trees (Briffa et al., 2013) were standardised using
hree-curve SF RCS with tree indices transformed to have a nor-

al  distribution. Fig. 5a shows the mean signal-free measurements
lotted by ring age for the three separate sub-samples (i.e. each
or a different growth rate). The slowest growth rate trees cre-
te a much shallower RCS curve than do the fastest growth rate
rees. Use of a single RCS curve (black), with too shallow a slope for
he fastest growth rate trees and too steep a slope for the slow-
st growth rate trees, would generate tree indices with a slope
ias whereas the use of three separate RCS curves reduces this
ias. In Fig. 5b–d chronologies have been smoothed with a 50-year
pline for display purposes. The three sub-chronologies, generated
sing the different growth rate RCS curves, are shown in Fig. 5b.
here sample counts are sufficient (>7 shown as thicker lines)

he sub-chronologies generated from trees with widely differing
rowth rates have similar values. Separate sub-chronologies cre-
ted after each series of tree indices is rescaled to have the same
ean as it would have had were one-curve RCS used are shown in

ig. 5c. These chronologies clearly illustrate the differences in rela-
ive growth rate (slow, medium and fast) of the three sub-samples
f trees. When the tree indices from these three growth rates are
veraged into a single chronology (Fig. 5d) the chronologies cre-
ted without rescaling (blue) and after resetting their means to the
alues they would have had were one-curve RCS used (red), are
emarkably similar much of the time. The main difference between
hese chronologies is in the most recent 400 years, where the
hronology with means reset has a steeper slope than the chronol-
gy with means of 1.0. Sample counts by calendar year for each
hronology (slow, medium and fast growth rate trees) show that
n the 20th century there were more of the fast growing trees
nd in the 16th and 17th centuries there were more of the slow
rowing trees, and the changing counts of fast and slow growing
rees has created the differences (see Fig. 5e). The difference in
ample count could be the result of improved growing conditions

increased summer temperature) or it could result from sample
election; specifically “modern sample bias” where faster growing
iving trees are selected preferentially for sampling. That the slow
nd medium growth rate trees (there are insufficient fast growing
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Fig. 5. The Yamal TRW measurements (Briffa et al., 2013) were standardised using three-curve SF RCS with tree indices transformed to have a normal distribution. The
unsmoothed single RCS curve (black) and each of three different growth-rate RCS curves are shown in (a) along with the total sample counts (grey shading). For display the
chronologies have been smoothed with a 50-year spline and narrow lines are used where sample counts are below 7. The three individual sub-sample chronologies, slowest
growth rate (blue), medium growth rate (red) and fastest growth rate (cyan) are shown in (b). The means of indices for each tree were reset to the values they would have
had  were one-curve RCS used and the sub-chronologies created from these are shown in (c). The two  alternative chronologies: one with tree means unchanged (blue) and
one  with tree means reset (red) are shown in (d) along with the total sample counts (grey shading). Sample counts for each of the three sub-sample chronologies are shown
in  (e) with narrow lines indicating where sample counts are below 7.
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rees in the 16th and 17th centuries for comment) both display
he same growth rate change suggests that much of the difference
etween the sub-chronologies in Fig. 5d is the result of modern
ample bias on the chronology made from trees whose means have
een reset and this bias would also apply to the case of a one-curve
CS chronology.

Four chronology versions were created using the Yamal trees,
ith the data processed using one-curve, two-curve, three-curve

nd four-curve SF RCS. The means of tree indices were not reset
nd tree indices were converted to have a normal distribution
see Fig. 6a). To further examine the reasons for the loss of long-
imescale variance involved with the use of multiple RCS, for each
hronology, time series were created using only the mean value
f each series of tree indices (Fig. 6b) and alternatively only the
lopes of each series of tree indices (Fig. 6c). For the means, the val-
es of each series of tree indices were replaced by a horizontal line,
he series mean. For the slopes, the values of series of tree indices,

fter the mean was removed, were replaced by a least squares fit-
ed sloping line, the series slope. For the full chronologies, the two-,
hree- and four-curve RCS versions are similar while the one-curve
CS chronology has a notably larger slope than the others over the

g
(
t
u

ost 1600 period. The two-, three- and four-curve RCS chronologies
reated only from the means of series of tree indices are also sim-
lar while the one-curve RCS chronology created from the means
f tree indices shows the increased slope post 1600 very clearly
Fig. 6c). The four chronologies created from the slopes of tree index
eries are all similar (Fig. 6c) suggesting that the predominant effect
f multiple RCS is to change the relative means of series of tree
ndices. Power spectra plots of the four full chronologies are shown
n Fig. 6d. The loss of low-frequency variance does not occur until
he period is beyond the average length of the trees (∼150 years)
nd almost all of the loss occurs in the change from using one to
wo RCS curves, with little change from the progression to three or
our RCS curves.

The processing used in producing Fig. 6 was repeated using a
et of data from the Tibetan Plateau (Yang et al., 2014). Again most
f the loss of long-timescale variance occurs with the change from
ne-curve to two-curve RCS. This Tibetan chronology has a homo-

eneity problem, the trees used for constructing burial chambers
before 500 CE) were much slower growing than contemporary
rees sampled at higher altitudes. This effect was  corrected with the
se of multiple RCS curves (Yang et al., 2014). The power spectrum
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Fig. 6. (a) Four chronologies are shown, each based on TRW data from Yamal (Briffa et al., 2013) using one-curve, two-curve, three-curve and four-curve SF RCS, all with
tree-indices transformed to have a normal distribution. The individual values of each series of tree indices were replaced by the appropriate series mean value (i.e. the index
series  for each tree was replaced by a horizontal line) and separate chronologies created by averaging these mean values (b). The mean value of each series of tree indices
was  subtracted from the series, the residual values were replaced by a least-squares-fitted sloping line, and separate chronologies were created by averaging the values of
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he  sloping straight lines (c). All chronologies have been smoothed here with 50-ye
or  the four full chronologies (from a) are shown in d).

lot (Fig. 7d) again shows that most of the loss of long-timescale
ariance occurs at a period beyond the average lifespan of the trees
here ∼660 years). In these trees there is a progressive loss of long-
imescale variance from chronologies created using only the mean
alues of tree index series as the number of multiple RCS curves is
ncreased from two to four (Fig. 7b) while the variance associated

ith the slopes of tree indices (Fig. 7c) is remarkably constant dur-
ng the increase of RCS curves from one to four. These examples
emonstrate the value of using multiple RCS curves and using the
eans and slopes of tree-index series to explore the source of the

ong-timescale variance within a chronology. The use of two-curve
CS appears to remove modern sample bias from both of these
xample chronologies. The effect of using multiple RCS curves on
he standard deviations of chronologies derived from the means
nd slopes of tree-index series for both these example chronologies
re illustrated in SI (see Figures SM2  and SM3).

enerating artificial ring measurements
Series of unprocessed ring measurements contain an age-
elated growth signal, a chronology signal and “noise” (see Part 1, a
onceptual RCS model). Dividing measurements by the chronology

u

N

ine for display. Tree counts are shown with grey shading in (a). The power spectra

ignal produces series of signal-free measurements. If a chronol-
gy of signal-free measurement is standardised using RCS (with
nchanged parameter settings) this will generate a “null” chronol-
gy. If signal-free measurements series were randomly selected
nd given artificial start dates we would expect a chronology cre-
ted from these series to be a “null” chronology with larger variance
representing residual noise) where sample counts are lower. Pre-
cribed artificial signals can be added (by multiplication) to the
ge-related-growth curve and error contained by series of SF mea-
urements.

A set of measurement data containing 1200 samples was  cre-
ted by the random selection (with replacement) of series of SF
easurements which were generated from the Yamal data (Briffa

t al., 2013) using one-curve SF RCS. The series of measurements
each series representing one tree) were allocated start dates that
ere evenly distributed through time to form a 2000 year-long

hronology. An artificial sine wave signal of period 1000 years and
ith amplitude ±0.5 was  created. This signal was  converted to rep-

esent a fractional deviation; the negative values were replaced

sing the formula:

ew value = 1.0
2.0 − Old value

.
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Fig. 7. As for Fig. 6 but using TRW data from

The artificial measurements were multiplied by the appropri-
te calendar-year values of the adjusted sine wave. Chronologies
ere created from these measurement series by standardising

hem using one-curve (Fig. 8a), two-curve (Fig. 8b) and three-curve
Fig. 8c) SF RCS with all tree indices in each case converted to have

 normal distribution. Sample counts are shown as grey shading
Fig. 6a) and the artificial common signal is shown with red lines.
he amplitude of the sine wave is fully preserved using one-curve
CS (Fig. 8a) but the amplitude is progressively reduced using two-
urve (Fig. 8b) and three-curve (Fig. 8c) RCS. This demonstrates a
oss of long-timescale variance caused by allowing the chronologies
reated using separate RCS curve to retain their mean of 1.0. The
eriod of the sine wave is roughly four times the mean length of the
rees and the slopes of series of tree indices are unable to preserve
ariance on timescales corresponding to this (and longer) periods.
he three chronologies (smoothed with a 500-year spline) are plot-
ed together in Fig. 6d to highlight the differences and to show the
rogressive loss of long-timescale variance associated with the use
f multiple RCS curves.

The above process was repeated but this time the value of
ach series of tree indices created using multiple RCS curves was
escaled to have the same mean value that they would have had, if

ne-curve RCS had been used (CRUST option “mean single”, gtr = 2).
he chronologies, smoothed with a 500-year spline, are plotted
n Fig. 6e. Resetting the means of individual trees has recovered
he lost amplitude of the long-timescale sine wave signal and the

t
i
B
w

ortheast Tibetan Plateau (Yang et al., 2014).

moothed chronologies are very similar to the imparted sine wave
ignal.

dditional CRUST features

Although we  recommend the use of growth-rate based mul-
iple RCS curves, CRUST contains other options for sorting trees
nto multiple RCS curves; sort by tree age, sort by final tree diam-
ter, or to use unsorted data. Because the decay of ring-width
ay  be associated with the increase of diameter, the option to

valuate diameter-based RCS curves and chronologies has been
ncorporated within CRUST. Melvin (2004) found that diameter-
ased RCS curves were neither better nor worse than age-based
CS curves. The use of basal-area increment (BAI) as an alterna-
ive to TRW for dendroclimatic standardisation has been addressed
y many papers (e.g. Frelich et al., 1989; Briffa, 1992; Biondi and
eadan, 2008). An assumption of constant basal area increment
oes not tend to fit the progression of measurements from indi-
idual trees even after ignoring the juvenile period. The use of
AI-based RCS curves to generate chronologies does not appear
o be an improvement over TRW based chronologies. The option

o convert TRW into basal area increment is available in CRUST
n order to facilitate further experimentation with the use of
AI. The detailed User Manual for CRUST is available at http://
ww.cru.uea.ac.uk/cru/papers/melvin2013dendrochronologia/.

http://www.cru.uea.ac.uk/cru/papers/melvin2013dendrochronologia/
http://www.cru.uea.ac.uk/cru/papers/melvin2013dendrochronologia/
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Fig. 8. Measurement data were generated by the random selection (with replacement) of 1200 series of signal-free measurements from the Yamal TRW data set. These
series  were allocated start dates which were evenly distributed through time. An artificial signal comprising a sine wave with a period of 1000 years and amplitude 1.0
(smooth red line in (a) to (e)) was converted to fractional deviations (values below 1.0 = 1.0/(2.0 − value)) and added to the measurement data by multiplication to form a
2000  year-long chronology. This chronology was  standardised using one-curve (a), two-curve (b) and three-curve (c) SF RCS with tree indices converted to have a normal
distribution. The three chronologies were smoothed with a 500-year spline and are plotted superimposed in (d). The standardisation of the two-curve and three-curve RCS
w  as it w
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as  repeated but with each tree-index series rescaled to have the same mean value
tr  = 2). These chronologies along with the one-curve chronology were smoothed w
ata  set are shown as grey shading in (a).

onclusions

We  have tried to describe a number of the principal options in
he use of SF RCS and the CRUST program. It is not our intention to
e prescriptive in the use of CRUST, but we believe that an ensem-
le of detrending experiments should be performed to get an idea
f how sensitive the final chronology versions are to subjective
ethodological choices.  In this paper we have pointed to a num-

er of implementation issues associated with the use of RCS. It is for
he user to experiment and choose specific applications of RCS that
re appropriate for their needs. Our experience to date with RCS
tandardisation leads us to make the following recommendations
or using SF RCS in CRUST:

. Pith offset estimates should always be used when using the RCS
method.

. Tree indices should be created as ratios by the division of mea-

surements by RCS curve values.

. Correction of the skewness of RCS generated chronologies
should be made by changing the distribution of tree-indices (e.g.
to a normal distribution).

f
I
d
v

ould have had using one-curve RCS standardisation (CRUST option “mean single”,
500-year spline and are plotted in (e). Sample counts for each year of this artificial

. An “adjusted” version of the EPS calculation should be used to
account for the additional long-timescale variance associated
with RCS chronologies.

. The mean value of signal-free tree indices should be used to
evaluate the homogeneity of sub-samples of tree-ring measure-
ments from different contexts.

. Where sufficient trees are available, the use of multiple growth-
rate based RCS curves should be used to evaluate (and where
necessary remove) the effects of modern sample bias.

. Signal-free measurement series with an added common signal
can be used to generate artificial measurement data sets with
the noise characteristics of actual measurement data
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