On Locally Supersoluble Groups

B. A. F. Wehrfritz

Department of Mathematics, Queen Mary College,
Mile End Road, London, England, E1 4NS

Communicated by J. E. Roseblade

Received November 21, 1975

A group G is supersoluble if and only if G is finitely generated and has a series

$$\langle 1 \rangle = G_0 \subseteq G_1 \subseteq \cdots \subseteq G_n = G$$

(*)

of normal subgroups with abelian factors such that for each $i = 1, 2, \ldots, n$ every subgroup of G_i containing G_{i-1} is normal in G (cf. [4]). More generally, call a group G parasoluble if it just has a series (*) with the above properties. The least n for which a supersoluble (more generally a parasoluble) group G has a series (*) of this type we call the paraheight of G. Paraheight corresponds to parasolubility as derived length does to solubility and central height to nilpotency.

An obvious question is whether a group that is locally supersoluble-of-paraheight-n necessarily is parasoluble of paraheight n. This question is not as trivial as the corresponding questions for solubility and nilpotency. In [2] Hill shows that such a group is parasoluble with paraheight at most $(3.2^{n-1} - 1 - n)n + 1$. Brazier and Stewart [1] reduce this bound to $2n + 1$.

The main purpose of this note is to give examples to show that the best bound is never n for any $n \geq 3$. We also take the opportunity to give a short proof leading to a slight improvement to the bound $2n + 1$ above. Let \mathcal{P}_n denote the class of all parasoluble groups of paraheight at most n and set $\rho(n)$ equal to the least integer m for which $L\mathcal{P}_n \subseteq \mathcal{P}_m$. We prove that

$$\min\{2n - 3, n\} < \rho(n) \leq 2n - 2 \quad \text{for every} \quad n \geq 2.$$

Let $H \subseteq K$ be normal subgroups of a group G. Suppose that there exists a series

$$H = H_0 \subseteq H_1 \subseteq \cdots \subseteq H_n = K$$

of normal subgroups of G such that for $i = 1, 2, \ldots, n$ every subgroup of H_i containing H_{i-1} is normal in G and H_i/H_{i-1} is abelian. The least n for which
there is such a series we call the G-paraheight of K/H. We shall use the following simple fact. If a factor $A = H_i/H_{i-1}$ contains elements of infinite order then for each $g \in G$ either $a^g = a$ for all $a \in A$ or $a^g = a^{-1}$ for all $a \in A$.

The Lower Bound

Choose distinct odd primes p and q such that $q \equiv 1 \mod 4$. Then there exists an integer r with $r^2 \equiv -1 \mod q$ and $1 < r < q - 1$. Let A be the abelian group generated by elements a_i for $i = 1, 2, \ldots$ subject to the relations $|a_i| = p^i$ for each i. Put $B = A \times \langle b \rangle$ where $|b| = \infty$ and $C = B \times \langle c \rangle \times \langle z \rangle$ where $|c| = |z| = q$.

Define automorphisms $d, g_i, i = 1, 2, \ldots$ of C by

\[
\begin{align*}
 a_k^d &= a_k & a_k^{g_i} &= a_k^{-1} \\
 b^d &= b & b^{g_i} &= a_i b^{-1} \\
 c^d &= cz & c^{g_i} &= c^r \\
 z^d &= z & z^{g_i} &= z^{-1}
\end{align*}
\]

for each i and k. Clearly $E = \langle g_i; 1 \leq i < \infty \rangle$ is abelian. Since $r^4 \equiv 1 \mod q$ we have

\[
c^{g_{i-1} d} g_i = c^{r^{g_i} d} g_1 = c^{2^r} = c^{d^r}.
\]

Thus $d^{g_i} = d^r$ for each i and in particular E normalizes $\langle d \rangle$. Clearly $|d| = q$.

Let G denote the split extension of C by the subgroup $\langle d \rangle E$ of Aut C. Note that $C\langle d \rangle = B \times \langle c, d \rangle$ where the two direct factors here are normal in G. Trivially $a_i^2 = [g_i, a_i]$, $b^a = a_i^{-1}[g_i, b]$, $c^{r^{-1}} = [c, g_1]$ and $d^{r^{-1}} = [d, g_1]$. It follows easily in view of the choice of p, q and r that $G' = A\langle b^2, c, d \rangle$.

Note that $\langle c, d \rangle \cong \text{Tr}_1(3, q)$ and the latter group has exponent q (for $q > 2$) and a unique nontrivial cyclic normal subgroup, namely its centre, while the centre of $\langle c, d \rangle$ is $\langle z \rangle$. Suppose that ab^e generates a cyclic normal subgroup of G where $a \in A$ and $e \in \mathbb{Z}$. Choose an integer $i > |e|$. Then for some integer t we have

\[
(ab^e)^i = (ab^e)^{g_i} = a^{-1} a_i^e b^{-e}.
\]

If $e \neq 0$ we have $t = -1$, whence $a_i^e = 1$, which contradicts the choice of i. Thus $e = 0$. We have now shown that if $x \in G'$ and $\langle x \rangle$ is normal in G then $x \in A\langle x \rangle$. By the definition of G every subgroup of $A\langle x \rangle$ is normal in G.

Now modulo $A\langle x \rangle$ the element b^2 has infinite order and is inverted by g_1,
while module $A\langle x \rangle$ the element c is not inverted by g_1 since $r \equiv -1 \mod q$.
Hence $G'/A\langle x \rangle$ has G-paraheight 2 and so G has paraheight exactly 4.

For $n = 1, 2, \ldots$ set
\[G_n = \langle a_i, b, c, d, g_i : 1 \leq i \leq n \rangle \subseteq G. \]
Clearly $G_1 \subseteq G_2 \subseteq \cdots \subseteq G_n \subseteq \cdots$ and $G = \bigcup_n G_n$. We prove that $G \in L \mathfrak{P}_3$ by showing that G_n has paraheight at most 3. For each $i \leq n$ we have
\[(b^p)^{a_i} = a_i^p b - p^n = b - p^n. \]
Therefore $H_n = \langle a_i, b^p, z : 1 \leq i \leq n \rangle$ has G_n-paraheight 1. Now $\langle b, H_n \rangle/H_n$ is a cyclic normal p-subgroup of G_n/H_n and $\langle c, d, H_n \rangle/H_n$ is a normal q-subgroup of G_n/H_n. Since $p \neq q$ it follows that $\langle b, c, d, H_n \rangle/H_n$ has G_n-paraheight 1. Clearly $G_n' \subseteq \langle b, c, d, H_n \rangle$, so G_n has paraheight at most 3. (In fact G_n has paraheight exactly 3 for every n since G_n' is not abelian.)

For $m \geq 1$ let S denote the split extension of the free abelian group of rank m on the standard basis by the cyclic group generated by the $m \times m$ matrix (α_{ij}) acting in the obvious way, where α_{ij} is 0 if $i < j$ and 1 otherwise. It is easily seen that S is supersoluble of paraheight m and that the only parasoluble series (*) of S of length m is the upper central series of S. With G as in the above example it is elementary to check that $G \times S$ has paraheight $m + 3$ while each finitely generated subgroup of it has paraheight at most $m + 2$. We have now proved the following result.

Theorem 1. $n < \rho(n)$ for every $n \geq 3$.

The Upper Bound

Let \mathfrak{P}_n denote the class of all groups G with a series
\[\langle 1 \rangle = G_0 \subseteq G_1 \subseteq \cdots \subseteq G_n = G \]
of normal subgroups of G of length n such that for $i = 1, 2, \ldots, n$ the group G_i/G_{i-1} is abelian, every subgroup of G_i containing G_{i-1} is normal in G and either G_i is periodic or for all $g \in G$ and $x \in G_i$ we have $x^g \in xG_{i-1} \cup x^{-1}G_{i-1}$. Clearly \mathfrak{P}_n is subgroup closed. We prove the following two lemmas.

Lemma 1. $L \mathfrak{P}_n = \mathfrak{P}_n$ for all $n \geq 1$.

Lemma 2. $\mathfrak{P}_n \subseteq \mathfrak{P}_{2n-2} \subseteq \mathfrak{P}_{2n-2}$ for all $n \geq 2$.
As an immediate consequence of Lemmas 1 and 2 we have the following result:

Theorem 2. \(\mathfrak{P}_n \subseteq \mathfrak{P}_{n-2} \subseteq \mathfrak{P}_{2n-2} \) for all \(n \geq 2 \).

Thus \(\rho(n) \leq 2n - 2 \) for all \(n \geq 2 \). In particular \(L\mathfrak{P}_2 = \mathfrak{P}_2 \). It is trivial that \(L\mathfrak{P}_1 = \mathfrak{P}_1 \). Note that \(L\mathfrak{P}_n \neq \mathfrak{P}_{2n-2} \) for all \(n \geq 3 \) since \(\mathfrak{P}_n \) contains every finite supersoluble group of paraheight \(m \) and there exist finite supersoluble groups of every paraheight, see [2]. Also \(\mathfrak{P}_n \neq \mathfrak{P}_n \) for all \(n \geq 3 \) since the group \(G \times S \) of the previous section lies in \(L\mathfrak{P}_{m+2} \) but not \(L\mathfrak{P}_{m+2} \subseteq \mathfrak{P}_{m+2} \) for every \(m \geq 1 \).

Proof of Lemma 1. Let \(G \in L\mathfrak{P}_n \). If \(X \) is any finite subset of \(G \) let \(S_X \) denote the set of all \(n \)-tuples \((X_0, X_1, \ldots, X_n) \) of subsets of \(X \) such that the \(\mathfrak{P}_n \)-group \(H = \langle X \rangle \) has a series \(\{H_i\} \) of length \(n \) as in the definition of \(\mathfrak{P}_n \) such that \(X_i = X \cap H_i \) for \(i = 0, 1, \ldots, n \). Clearly \(S_X \) is finite and non-empty. If \(Y \) is a finite subset of \(G \) containing \(X \) define \(\gamma_X^Y: S_Y \to S_X \) by

\[
\gamma_X^Y: (Y_0, Y_1, \ldots, Y_n) \mapsto (X \cap Y_0, X_1 \cap Y_1, \ldots, X \cap Y_n).
\]

Clearly \((S_X, \gamma_X^Y: X \subseteq Y \subseteq G, Y \text{ finite}) \) is an inverse system of finite non-empty sets over a directed set and as such its inverse limit is not empty, e.g. [3] Section 1.K.

Let \(\{(X_0, X_1, \ldots, X_n)\} \in \varprojlim S_X \) where \((X_0, X_1, \ldots, X_n) \in S_X \). For \(i = 0, 1, 2, \ldots, n \) set \(G_i = \bigcup X_i \). In the usual way

\[
\langle 1 \rangle = G_0 \subseteq G_1 \subseteq \cdots \subseteq G_n = G
\]

is a series of normal subgroups of \(G \) such that for \(i = 1, 2, \ldots, n \) and for each \(X \) we have

\[
G_i' \subseteq G_{i-1} \quad \text{and} \quad X_i = X \cap G_i.
\]

Let \(x, y \in G_j \) and \(g \in G \). If \(x \) has finite order, \(l \) say set \(X = \{x, y, g, x^{-1}x^g, x^{-2}x^g, \ldots, x^{-l}x^g\} \). Otherwise set \(X = \{x, y, g, x^{-1}x^g, xx^g\} \). There exists a series \(\{H_i\} \) of \(H = \langle X \rangle \) as in the definition of \(\mathfrak{P}_n \) such that \(X_i = X \cap H_i \) for each \(i \). In particular we have \(x \in H_j \) and \(g \in H \). If \(x \) has finite order there exists a positive \(r = r(x) \) not exceeding \(l \) such that \(x^{-r}x^g \in X \cap H_{j-1} = X_{j-1} \subseteq G_{j-1} \). If \(x \) has infinite order \(x^r x^g \in X \cap H_{j-1} \subseteq G_{j-1} \) for \(r = 1 \) or \(-1 \) by the definition of \(\mathfrak{P}_n \). Thus in either case \(\langle x \rangle G_{j-1} \) is normal in \(G \).

This shows that \(G \in \mathfrak{P}_n \). To see that \(G \in \mathfrak{P}_n \) recall the element \(y \in X \). If \(G_j \) is not periodic choose \(y \) to be an element of \(G_j \) of infinite order. Then \(y \) is an element of \(H_j \) of infinite order and hence either \(xx^g \) or \(x^{-1}x^g \) lies in \(H_{j-1} \) again by the definition of \(\mathfrak{P}_n \). It follows easily that \(G \in \mathfrak{P}_n \).
Lemma 3. Let $A \subseteq B \subseteq G'$ be normal subgroups G such that A and B/A have G-paraheight 1. Suppose that A is torsionfree and B/A is periodic. Then B contains a normal periodic subgroup T of G with B/T torsion free such that T and B/T have G-paraheight at most 1.

Proof. Since $B \subseteq G'$ we have that A is central in B. By Schur's Theorem B' is periodic and thus trivial. Hence B is abelian. Let T denote the torsion subgroup of B. Trivially $A \cap T = \langle 1 \rangle$ so T is G-isomorphic to a subgroup of B/A and consequently has G-paraheight at most 1. Let $b \in B$ and $g \in G$. For some positive integer r we have $b^r \in A$. Thus $(b^r)^g$ is either b^r or b^{-r}. Hence either $(bb^o)^r = 1$ or $(b^{-1}b^o)^r = 1$. In either case we have $b^o \in bT \cup b^{-1}T$ and it follows that B/T has G-paraheight 1.

Proof of Lemma 2. Only $\mathfrak{P}_n \subseteq \mathfrak{P}_{2n+2}$ requires proof. Let $G \in \mathfrak{P}_n$ and let

$$\langle 1 \rangle = G_0 \subseteq G_1 \subseteq \cdots \subseteq G_n = G$$

be a series as in the definition of parasoluble group of paraheight at most n. Let T_i denote the torsion subgroup modulo G_{i-1} of G_i for $1 \leq i \leq n$ and consider the series

$$\langle 1 \rangle = G_0 \subseteq T_1 \subseteq G_1 \subseteq \cdots \subseteq T_{n-1} \subseteq G_{n-1} \subseteq G_n = G. \quad (\dagger)$$

If G is not in \mathfrak{P}_n then for some $i < n$ the factor G_i/G_{i-1} is periodic. In this case series (\dagger) has a repetition, after the deletion of which series (\dagger) has length $2n - 2$. Using Lemma 3 we can push the periodic factors of (\dagger) down to the bottom and obtain a series still of length $2n - 2$ that satisfies the properties of the series in the definition of \mathfrak{P}_n. Thus $\mathfrak{P}_n \subseteq \mathfrak{P}_n \cup \mathfrak{P}_{2n-2}$ and the Lemma follows.

References