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SUMMARY

Genome control is operated by transcription factors
(TFs) controlling their target genes by binding to pro-
moters and enhancers. Conceptually, the interac-
tions between TFs, their binding sites, and their func-
tional targets are represented by gene regulatory
networks (GRNs). Deciphering in vivo GRNs underly-
ing organ development in an unbiased genome-wide
setting involves identifying both functional TF-gene
interactions and physical TF-DNA interactions. To
reverse engineer the GRNs of eye development in
Drosophila, we performed RNA-seq across 72 ge-
netic perturbations and sorted cell types and inferred
a coexpression network. Next, we derived direct
TF-DNA interactions using computational motif infer-
ence, ultimately connecting 241 TFs to 5,632 direct
target genes through 24,926 enhancers. Using this
network, we found network motifs, cis-regulatory
codes, and regulators of eye development. We vali-
date the predicted target regions of Grainyhead
by ChIP-seq and identify this factor as a general
cofactor in the eye network, being bound to thou-
sands of nucleosome-free regions.

INTRODUCTION

Gene regulatory networks (GRNs) control the functional expres-

sion of the genome. A GRN represents a particular combination

of active transcription factors (TFs) that interacts with genomic

enhancers, producing a specific gene expression profile for

each cell type. Reconstructing GRNs and deciphering the under-

lying cis-regulatory logic at a genomic scale can provide mech-

anistic insight into developmental and disease processes

(Davidson et al., 2002). Approaches to reverse engineer GRNs

either concentrate on unraveling which TF physically binds to

which genomic location, representing TF-DNA interactions, or

identifying which TF functionally regulates the expression of
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which target gene, representing TF-gene interactions. Ideally,

network inference takes both TF-DNA and TF-gene relationships

into account.

TF-DNA networks have been reconstructed using ChIP-seq

in yeast (Harbison et al., 2004), in Drosophila and C. elegans

cell cultures and embryos (Roy et al., 2010), and in human

cell culture (Gerstein et al., 2012; Yan et al., 2013). Contrary

to yeast, in higher eukaryotes, these networks did not reach

whole-genome coverage due to technical limitations of ChIP-

seq. Nevertheless, these studies have led to important insight

into GRN topology, including a substantial role for feedforward

and feedback loops. TF-gene networks, on the other hand, are

often reconstructed using gene expression profiling, whereby

computational methods are applied to reverse engineer a

GRN based on coexpression of a TF with its candidate (direct

or indirect) target genes (Marbach et al., 2012). Coexpression

networks have been inferred from a variety of samples,

including sorted cell types (Novershtern et al., 2011), cohorts

of patient samples or cell cultures (Bonnet et al., 2010), or

series of TF or chemical perturbations (Basso et al., 2005; De

Cegli et al., 2013).

Ideally, network inference takes both physical TF-DNA and

functional TF-gene relationships into account. By overlaying

the indirect TF-gene network inferred from gene expression

profiling with the direct TF-DNA network obtained by ChIP-

chip, functional GRNs have been reconstructed in yeast (Kem-

meren et al., 2014). Examples of integrative approaches in

higher eukaryotes are the networks for Th17 differentiation,

based on RNA-seq, ChIP-seq, and TF motif scanning (Ciofani

et al., 2012; Yosef et al., 2013), a smaller GRN of muscle cell

differentiation based on microarrays and motif detection

(Warner et al., 2008), and GRNs underlying hematopoietic dif-

ferentiation (Calero-Nieto et al., 2014; Novershtern et al.,

2011). As these networks are obtained from in vitro cell cul-

tures or through flow-cytometry-based cell sorting, they offer

limited insight into how GRNs behave in vivo. Several small-

scale efforts have been published that reconstruct in vivo net-

works ‘‘top down,’’ usually focusing on a subset of prechosen

master regulators. Examples include vulva development in

C. elegans (Deplancke et al., 2006) (117 TFs and 72 gene
hors
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Figure 1. RNA-Seq on Transcriptome Perturbations

(A) Schema representing the third instar larval eye-antennal imaginal disc (posterior on the right and anterior on the left) showing cell types and temporal diversity.

(B) Examples of tissues and perturbations used: the left showsWT (top) and gl60j (bottom) discs stained with phalloidin. The right shows the different drivers used

for cell sorting: GMR>GFP for PR ey>GFP for the eye part of the disc, sens-GPF for PR8 cells, and chp-GFP for the most posterior PRs.

(C) Heatmap representing the expression profiles (median row normalized) of expressed TFs across the 72 RNA-seq experiments; a zoom is shown on cell sorting

and mutant experiments for PR-specific TFs. The green stars points to expected variation. For example, glass is upregulated all PR-related samples and down in

the glass mutant. Senseless is upregulated in GMR>GFP-positive cells, but more strongly in the sens-GFP-positive cells and in the UAS-Ato perturbation.

Lozenge is enriched in PRs and downregulated in the glassmutant because it is a direct target gene of Glass (Naval-Sánchez et al., 2013; Yan et al., 2003). See

also Table S1 for the genotypes and Table S2 for GMR>GFP-positive versus GMR>GFP-negative DESeq differential expression analysis.
promoters), heart development in Drosophila (Junion et al.,

2012), anterior-posterior and dorsal-ventral patterning in the

Drosophila (MacArthur et al., 2009), and mesoderm develop-

ment in Drosophila (Sandmann et al., 2007). However, the bot-

tom-up reconstruction of GRNs underlying the development

of an entire tissue or organ is still a considerable challenge.

In the present study, we investigate whether integrative GRN

mapping approaches, combining both functional TF-gene

and (predicted) physical TF-DNA interactions, can be used

to unravel in vivo networks underlying complex developmental

programs such as organ formation, in a genome-wide unbi-

ased setting, using Drosophila eye development as a model

system.
Cell Re
RESULTS

Transcriptome Changes during Eye Development
Induced by TF Perturbations and Cell Sorting
The Drosophila larval eye-antennal imaginal disc is composed

of several cell types that give rise to the antenna, the eye, the

maxillary palpus, and the head cuticle. During the third instar

larval stage, this tissue represents a very interesting biological

system, as it contains various cell types at different temporal

stages. In the eye part, these include undifferentiated pluripo-

tent cells anterior to the differentiation wavefront (called the

morphogenetic furrow [MF]) and retinal cells undergoing differ-

entiation posterior to the MF (Figure 1A). We asked whether the
ports 9, 2290–2303, December 24, 2014 ª2014 The Authors 2291



GRNs underlying this complex developmental program could

be reconstructed. To this end, we first measured gene expres-

sion during Drosophila eye development using RNA-seq start-

ing from 73 different samples of eye-antennal imaginal discs

(Figures 1B and 1C). The 72 samples that passed quality con-

trol (QC) filters (see the Supplemental Experimental Proce-

dures) include 10 tissue samples from WT D. melanogaster

strains, 52 genetic perturbations of different TFs, and 10 sam-

ples representing specific cell types obtained by FACS-based

cell sorting (Table S1). The genetic perturbations comprise 10

TF knockout conditions that result in rough eye (e.g., gl, shaven

(sv), rough (ro), anterior open (aop), lozenge (lz), enhancer of

split m8 (E(spl)), pebbled (peb), rn (rotund), Kr (Kruppel), Dfd

(Deformed)) plus mild perturbations of 30 TFs that overall lack

a clear adult eye phenotype. These mild perturbations were

obtained using the Gal4-upstream activating sequence (UAS)

system, whereby the UAS allowed for eye-specific expression

of RNA interference (RNAi) constructs to knock down a TF

or eye-specific overexpression of TF complementary DNA

(cDNA) (Figure 1C; Table S1; Experimental Procedures). The

samples used for gene expression profiling of specific cell

types were obtained by fluorescence-activated cell sorting

(FACS) using genetic markers that represent different subsets

of cell types, namely eyes absent-Gal4, UAS-GFP (eya>GFP)

for proliferating cells anterior and differentiating cells posterior

to the MF, GMR-Gal4, UAS-GFP (GMR>GFP) (Glass Multimer

Reporter) for differentiating photoreceptor (PR) cells posterior

to the MF, senseless-GFP (sens-GFP) for the R8 PR, and

chaoptin-GFP (chp-GFP) for the most posterior rows of PRs

(Figure 1B; Table S1; Experimental Procedures). For each

driver, we obtained RNA from both GFP-positive and GFP-

negative cells. Each sample was subjected to RNA-seq and

processed to obtain normalized gene expression levels (see

the Experimental Procedures). Of the 15,216 annotated pro-

tein-coding genes, 10,380 are expressed in at least 5 of the

72 samples. Remarkably, of the 752 annotated TFs (Pfreundt

et al., 2010), 694 are expressed (Figure 1C). To verify the quality

of the perturbations and cell sorting experiments, we looked

in detail at several marker genes that have specific roles

during eye development (Figure 1C, ‘‘zoom-in’’). Next, using

genome-wide gene rankings based on the contrast of GMR-

positive cells (representing differentiating PRs) versus the

GMR-negative cells (representing undifferentiated cells), we

found a very strong enrichment of the expected biological pro-

cesses, such as ‘‘compound eye PR development’’ (adjusted p

value 1.11 3 10�8 in the top 551 genes) (Table S2; Supple-

mental Experimental Procedures). Likewise, a contrast defined

by more specific R8-positive or chp-positive cells versus all

GMR-positive cells yields ‘‘R8 PR differentiation’’ (8.36 3

10�3) and ‘‘pigmentation’’ (3.5 3 10�3) as enriched terms,

respectively. Although the comparison of one perturbation

versus control or versus another perturbation can yield inter-

esting results, we decided not to consider each sample sepa-

rately but instead analyze the entire data set using network

inference methods. The advantage of doing so is that the com-

bination of multiple perturbations can provide a higher confi-

dence for deriving coexpression by using all measurements

simultaneously.
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TF-Centric Inference of the Eye Network and Motif-
Based Edge Pruning
To reconstruct the GRNs underlying cell proliferation, cell speci-

fication, and differentiation in the different developmental pro-

grams that occur simultaneously in the eye-antennal disc, we

have taken a TF-centric approach. Particularly, for each ex-

pressed TF, we aim to identify its candidate target genes based

on coexpression relationships (i.e., TF-gene relationships), fol-

lowed by cis-regulatory sequence analysis (i.e., TF-DNA relation-

ships). We first examine Glass as an example to illustrate a

validated data analysis pipeline to be applied later to less charac-

terized TFs. Glass is a zinc finger TF involved in PR differentiation

(Moses et al., 1989a) for which several target genes and binding

sites have already been discovered (Naval-Sánchez et al., 2013;

Yan et al., 2003).We use two differentmethods tomeasure coex-

pression on our large expressionmatrix, one called Pavlidis Tem-

plate Matching (PTM; see Figure 2A for an example), based on

Pearson correlation, and the second called GENIE3, based on

Random Forest machine learning (see the Experimental Proce-

dures). Both the PTM and GENIE3 queries yield gene sets that

represent candidate Glass targets, being a mixture of direct

and indirect targets. In the second step, we test whether the

Glass motif is enriched in these gene sets compared with the

rest of thegenomeandcomparedwith thousands of other ‘‘back-

ground’’ TFmotifs. To this end,we use themethod i-cisTarget, as

it uses large collections of candidate motifs, applies motif clus-

teringwithin cis-regulatorymodules (CRMs), and integratesmotif

cluster scoresacross species (Herrmannet al., 2012).When i-cis-

Target is applied to sets of genes coexpressed with glass, the

Glass motif is found as the most significantly enriched motif.

Particularly, the Glass motif is ranked first out of 6,782 PWMs

with Normalized Enrichment Scores (NESs) ranging between

4.92 and 7.42, depending on which method (PTM or GENIE3) or

threshold is used to define the coexpressed gene set (Figures

2B and 2C). As the Glass motif is only enriched in the set of posi-

tively correlated genes, and not in the set of negatively correlated

genes, this indicates that Glass is likely an activator rather than a

repressor. We also found that the fraction of predicted direct tar-

gets increases when the input set is smaller and more tightly

coexpressed (Figure 2C). However, this stringency comes with

a cost of lower sensitivity, and therefore, we maintain various

stringency levels throughout further analyses.

Once the subset of inferred direct targets is defined, each of

them contains one or more high-scoring enhancers with one or

more Glass binding sites per enhancer. To test the predictions

of Glass target enhancers, we selected predicted regions that

overlap with transgenic Gal4 enhancer-reporter lines from the

FlyLight database (Jenett et al., 2012). We crossed these lines

with UAS-GFP, followed by immunohistochemistry and confocal

microscopy to monitor GFP expression in the eye. We tested 34

Janelia regions (accounting for 36 predicted enhancers, for 26

genes; see Table S3 for more details) of which 20 (22 predicted

enhancers for 16 genes) were positive, being active posterior to

the MF, either in PR (16), cone cells (3), or ocelli (1), thereby likely

to be activated by Glass (Figure 2D).

Interestingly, the motif enrichment analysis identifies, besides

the Glass motif, potential cofactors and their targets among the

input set of glass-coexpressed genes. For example, Lozenge
hors
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Figure 2. Mapping a TF Targetome: The Glass Example

(A) Heatmap of the 137 genes coexpressed with glass (derived by correlation, PTM p value < 10 3 10�8).

(B) i-cisTarget results on the gene set shown in (A), indicating how different confidence layers are built.

(C) Different methods and thresholds for coexpression all identify the Glass motif enriched, but influence the fraction of predicted direct targets among the

coexpressed gene set.

(D) Predicted Gl targetome. Gl predicted target regions fully overlapping with a FlyLight Gal4 enhancer-reporters have been tested: a red node border represents

a gene with a tested region showing expression corresponding to a possible Glass activation (PRs, ocelli, or cone cells). Images for those enhancer-reporters

showing activity in the PRs are shown (enhancer-GFP in green; Elav in blue; Eya, Gl, or Pros in red). A gray node border represents a gene with a tested region not

showing an expression pattern corresponding to a possible Glass activation. Black and brown node borders represent Glass targets validated in other studies

(see also Table S3 for Flylight enhance-reporter references).
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B Figure 3. The Mapped Eye GRN

(A) Coexpression TF-gene network and network

statistics.

(B) Direct GRN, combining TF-gene and TF-DNA

information. TF-DNA relationships are derived by

i-cisTarget motif inference.

(C) Clust&see network clustering. The FT algorithm

clustered the direct GRN in nine distinct clusters all

enriched for specific GO terms (relevant terms

are listed). A subset of biologically relevant TFs is

listed for each cluster (see also Figure S1 for a

comparison of expression level and SD of the

genes present in the network compared with the

rest genome and the network connectivity, Table

S4 for network clusters GO term enrichment, and

Figure S6 for insights related to temporal aspects).
and Pointed are two TFs with known roles in PR differentiation

(Figure 2B). Predicted targets of these ‘‘secondary’’ factors

(i.e., their motifs are enriched in coexpressed genes of another

factor) are added to the eye network as ‘‘medium confidence’’ in-

teractions when they are part of the input gene set like in the

Lozenge case. With this Glass example, we have illustrated
2294 Cell Reports 9, 2290–2303, December 24, 2014 ª2014 The Authors
that it is feasible to identify high-confi-

dence enhancers and direct target genes

of TFs by combining TF-coexpression

with TF-motif detection.

Discovery of Coexpressed Genes
and Prediction of Direct Target
Genes for 241 TFs in the Eye
Network
Encouraged by the results for Glass, we

now ask whether direct target genes can

be identified for all TFs involved in the

eye developmental program. To this end,

we applied the same prediction pipeline

to each of the 694 expressed TFs.

The merged coexpression network for all

TFs is composed of 10,380 nodes and

488,198 edges (Figure 3A). Applying i-cis-

Target on each TF-centered coexpres-

sion module identified the corresponding

TF motif as significantly enriched, along

with an optimal subset of inferred direct

targets for 241 TFs. These 241 TFs and

their predicted direct targets, represent-

ing the high-confidence network, account

for 23,404 regulatory interactions, being

5.16% of the total number of interactions

in the coexpression network (Figure 3B;

http://eyenetwork.aertslab.org/). Of the

10,380 expressed genes, 5,666 are part

of this GRN, meaning that they have

at least one upstream regulator or one

downstream target gene. This set of con-

nected networkmembers shows overall a

higher expression level and a higher vari-
ance across the 72 samples than the nonmembers (Figure S1A).

Functionally, the connected genes are enriched for develop-

mental processes, including sensory organ development (FDR

4.09 3 10�35; Table S4), and they are very strongly enriched for

TF activity (FDR 9.31 3 10�62). The number of target genes per

TF in this network ranges from 1 to 677 targets (median = 38;

http://eyenetwork.aertslab.org/


mean = 97.11) and has a scale-free distribution (Figure S1B).

Overall, compared with the limited knowledge in the literature

of only a handful of known eye and antennal regulators, it is

remarkable that we find more than 200 TFs (even up to 335 TFs

in the medium-confidence network) for which a significant num-

ber of predicted direct targets are significantly coexpressed

with the TF. This large network now allows more in-depth ana-

lyses of genomic regulatory programs of organ development.

Multiple Interconnected Subnetworks Represent
Concurrent Developmental Programs and Biological
Processes
Although themotif-inferred directGRN represents only about 5%

of the ‘‘parental’’ coexpression network, its size and complexity

still limit its direct use asanorganizer or as a code thatmay clearly

describe the developmental program of eye development. We

reasoned that this limitation is partly due to the complexity of

the tissue under study, as in the eye-antennal discmultiple devel-

opmental subprograms are being deployed simultaneously to ul-

timately generate the eye, the antennae, the ocelli, and part of the

head (Figure 1A) (Quan et al., 2012). If each subprogram is oper-

ated by distinct TFs, then the large GRN may be dissected into

multiple subnetworks, each representing a distinct program.

Alternatively, subprogramscould exist as networkmodules fulfill-

ing a particular patterning role, and these may be reused by the

different sensory organs. To examine whether any of these

models match with our network, we clustered the GRN with the

Clust&See method (Spinelli et al., 2013) (see the Supplemental

Experimental Procedures). This resulted in nine subnetworks,

with sizes ranging between 69 and 1,499 genes. We used Gene

Ontology enrichment analyses to analyze the putative processes

controlled by each subnetwork and found several clusters where

specific processes of eye development are most represented

(Figure 3C; Table S4). Particularly, cluster eight contains several

PR-related TFs (e.g., Glass, Rough, Senseless, Scratch), and

this cluster is enriched for theGO term ‘‘compound eyePRdevel-

opment’’ (GO:0042051, p value 6 3 10�8). Cluster 2 contains in-

teractions likely tooccurmainly anterior to theMF,beingenriched

for the GO term ‘‘regulation of growth’’ (GO:0040008, p value 33

10�17). However, this cluster is also enriched for ‘‘PR cell devel-

opment’’ (GO:0042461, p value 4 3 10�9), indicating that these

different processes are strongly interconnected at the network

level. Five of the remaining six clusters do not represent particular

anatomical structures such as eye, antennae, ocelli, or head, but

rather depict functional network modules that can be invoked in

several places in the tissue. These modules control neurogene-

sis, metamorphosis/growth, redox, synapes, and G protein-

coupled receptor (GPCR) signaling. Clusters 1 and 2 are enriched

for genes involved in stress response and are mainly activated

in all the FACS sorted samples. Thus, the network clustering re-

sulted in meaningful subclusters representing either particular

parts of the tissue or reused functional modules.

The Regulatory Network Reveals Activators,
Repressors, Feedforward Loops, and cis-Regulatory
Grammars of Motif Combinations
Next, we asked whether we could decipher which TFs are acti-

vators and which are repressors within the predicted GRN. In-
Cell Re
formation about the mode of action can be derived from the

sign of the correlation of the TF with the predicted target genes

(see Experimental Procedures). We could obtain this informa-

tion for 15,611 of 23,404 edges. For example, of 112 predicted

Glass target genes, all are activating, while 49 of the 53 pre-

dicted Escargot (Esg) targets are repressed, as expected

because Esg is a known repressor (Fuse et al., 1994), although

in the eye-antennal disc its repressive role has not been

described. In the entire predicted network, the majority of the

direct edges represent activation (13,634), whereas fewer repre-

sent repression (1,977), and 7,793 edges are of an undefined

direct TF to TG link (see the Experimental Procedures). At the

TF level, among the 241 regulators in the network, 89 are pre-

dicted to only activate their targets, 65 to only repress their tar-

gets, and 62 are predicted to act as activator and repressor

(Figure 4A). To assess the quality of these predictions, we per-

formed a GO term-enrichment analysis with GOrilla (Eden

et al., 2009) with all TFs as background and either activators

or repressors as input. The set of predicted activators is en-

riched for ‘‘positive regulation of transcription, DNA templated’’

(q value FDR = 4.01 3 10�4), and the predicted repressors

are involved in ‘‘negative regulation of transcription, DNA tem-

plated’’ (q value FDR = 1.01 3 10�2).

The network is also enriched for network motifs such as feed-

forward loops (FFLs) and double-feedback loops (Milo et al.,

2002). For example, we recovered the known Sens-Ro repres-

sive feedback loop (Frankfort et al., 2001; Pepple et al., 2008)

in the subnetwork of PR differentiation (Figure 4B), among a total

of 22,741 FFLs (Z score = 60). We also found that a very large

proportion of TFs is autoregulatory (108 of 241, 44.8%). When

two TFs in a FFL share their target genes through the same reg-

ulatory region, their binding sites are expected to show signifi-

cant co-occurrence. This is indeed the case for 1,003 unique

TF pairs (p value for motif co-occurrence < 0.001 and more

than 10 regions in common). We found a striking overlap be-

tween Glass and Lozenge binding sites, both at the gene (Fig-

ure 5A) and enhancer level (enrichment 4.85; p value = 2.18 3

10�16; Figure 5B). These two TFs also form a FFL because Glass

targets lz, Lz targets gl, and they together coregulate 36 targets

(Figure 5A; Table S5: enrichment 293; p value 1.14 3 10�52).

Interestingly, at the enhancer level, the predicted Glass and

Lozenge binding sites are largely overlapping, which was an

unexpected finding given that their position weight matrices

are rather different (STAMP e-value > 0.1; Figures 5C and 5C’;

see the Supplemental Experimental Procedures).

Another interesting TF combination in the PR differentiation

subnetwork is the predicted Glass and Escargot coregulation

(Figure 4B). A large part of genes activated by Glass in PRs

(including gl itself) is predicted to be repressed by Esg outside

of the eye region. As esg is more expressed anterior to the MF

(e.g., eya>GFP negative cells) than posterior to the MF (e.g.,

eya>GFP positive cells), we can hypothesize that Escargot

represses Glass targets and likely other genes involved in PR

differentiation, anterior to the MF and/or in the antenna. These

findings at the cis-regulatory level provide a connection with

the network motifs and show that multiple pair of coregulators

not only share common targets, but often operate via the same

enhancer.
ports 9, 2290–2303, December 24, 2014 ª2014 The Authors 2295



A

B

Figure 4. TF Mode of Action and Network

Motifs

(A) Directionality (activation/repression) of TF-

target relationships in the high-confidence

network. TFs on the x axis are ranked from the

100% activators to 100% repressors. The fraction

of activation edges is reported on the y axis for

each TF.

(B) Activation and repression in the PR differenti-

ation subnetwork (subcluster 8 from Figure 3). The

node color represents the log2FC in PRs

compared with the rest of the EA disc (GMR>GFP

positive versus GMR>GFP negative). The bigger

node size represents TFs. The edge color repre-

sents a predicted activation (red), repression

(blue), or an undetermined action (turquoise). The

edge thickness represents the number of methods

that predict the TF-target edge. The inset shows

that we identified a known feedback loop between

ro and sens and a known activation of lz by Glass.
Identification of Known and New Regulators in the
Eye-Antennal Developmental Program
To validate known TFs and to identify TFs with a possibly impor-

tant, but until today uncharacterized role in eye development, we

evaluated for each TF how many publications linked to that TF

(as curated by FlyBase; St Pierre et al., 2014) contain the word

‘‘eye’’ in their title. We then compared this ‘‘eye knowledge

value’’ with the enrichment of ‘‘eye’’-related Gene Ontology

terms in the set of predicted targets for the same TF (Figure 6A).

Reassuringly, Eyeless and Sine Oculis are found in the top right

of this plot, alongside other well-known TFs like Pointed (Pnt),

Aop, Gl, Lz, and Ro. This indicates a high eye-related knowledge

for these TFs, together with a strong enrichment for eye-related

processes in their targetomes. The most famous master regu-

lator of the classical retinal determination gene network is the

PAX6 homolog Eyeless (Ey). As the expression pattern of ey is

different from the pattern of its known targets (e.g., so) (Bessa

et al., 2002a), we were not able to predict any of the Eyeless

target genes within the high-confidence layer because this layer

is restricted to targets that are tightly (anti-)correlated with their

regulator, but when inspecting the medium confidence layer,

we found 446 predicted Ey targets, including the known targets

eyes absent (eya), so, teashirt (tsh), and atonal (ato) (Amore and
2296 Cell Reports 9, 2290–2303, December 24, 2014 ª2014 The Authors
Casares, 2010; Kumar, 2009) (Figure S2).

Another TF of the RDGN for which we

found many target genes in the medium-

confidence network is So. Particularly,

we predicted 417 targets for the Eya/So

pair (Figure S2A). We further validated

the Ey and Eya/So target predictions

and found their targets significantly en-

riched in the Eya>GFP-positive sorted

cells (Figures S2B and S2C; Table S6).

Moreover, some of the enhancers

predicted to be bound both by So/Eya

and Ey around ey and so reproduce

the expected expression pattern of
those genes, as indicated by enhancer-reporter assays (Figures

S2D–S2F).

Among the 164 TFs in the high-confidence GRN, having more

than 20 predicted target genes, the majority has not been inves-

tigated specifically for their role in eye development. One of the

best scoring TFs in this analysis is Grainyhead, with only one

eye-related publication, but a strong enrichment of ‘‘eye devel-

opment’’ among its predicted targets (adjusted p value 8 3

10�24; Figure 6A). Interestingly, Grainyhead has the second high-

est number of target genes (657) and is ubiquitously expressed in

the eye disc (Yao et al., 2006). As indicated by the keyword ‘‘syn-

apse,’’ one of the TFs with strong GO enrichment is Onecut (Fig-

ure 6B), the human HNF6 homolog. The targets of Onecut could

be discovered thanks to the motif of the human homolog and

are significantly enriched for synapse related processes (e.g.,

‘‘synaptic transmission’’ adjusted p value, 3 310�09) (Figures

S3A and S3B). This confirms previous studies (Janky et al.,

2014; Weirauch et al., 2014) that PWMs derived for one species

can be transferred to other species, provided that the DNA-bind-

ing domain is conserved, which is the case for Onecut and HNF6

(Figures S3B–S3D). In this case, the human HNF6 PWM outper-

forms the Drosophila Onecut PWM, which may be due to a

difference in quality, particularly because the human PWM is
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Figure 5. Gene Coregulation by Glass and

Lozenge Converges on Shared Enhancers

(A and B) Venn diagrams showing the overlap

between Glass and Lozenge target genes and

target enhancers.

(C) Location bias of Lz binding sites overlapping

with Glass binding sites. i-cisTarget regions pre-

dicted to be bound by Glass and Lz are centered

on the best Glass binding site (200 bp flanks are

shown) and scored for Lz motifs. (C’) Zoom on the

peak with high Lz scores, showing the rather dis-

similar Glass and Lozenge motif logos (see also

Table S5 for all Glass-TF combination p values).
constructed from curated binding sites, while the Drosophila

PWM is derived by Bacterial-1-Hybrid (Noyes et al., 2008). We

furthermore validated these targets experimentally by knocking

down onecut in the eye disc (see Table S1; Experimental Proce-

dures and Supplemental Experimental Procedures) and found

the set of predicted targets significantly affected, as quantified

by RNA-seq and GSEA (Figure S3E; Table S7).

Open Chromatin Underlies the Targetome of Ubiquitous
TFs, such as Grainyhead
The TF-DNA network contains 24,926 candidate CRMs that are

associated to 5,632 genes (i.e., on average 4.4 CRMs per gene)

and covering 28.45 kbp (almost 20%) of the noncoding

Drosophila melanogaster genome. We wondered if this pre-

dicted ‘‘eye regulatory landscape’’ is indeed active or nucleo-

some free at the chromatin level compared with locations not

involved in the eye network. To test this, we used recently

generated formaldehyde-assisted isolation of regulatory ele-

ments (FAIRE)-seq data in the same system (i.e., the eye-

antennal disc) at exactly the same stage as we examined here

(McKay and Lieb, 2013). To test which TF-DNA interactions

have the highest impact on chromatin activity, we tested all cor-

relations between eye-specific FAIRE peaks and specific TF-

target CRMs (Table S8) and found Grainyhead as the TF with

the strongest enrichment of open chromatin (p value = 2.893

10�113). Furthermore, chromatin opening correlates strongly

with the precise location of Grh predicted binding sites

(Figure 6C).

We decided to experimentally validate the Grh target predic-

tions and the putatively widespread association with open chro-

matin using a transgenic Drosophila line carrying a GFP-tagged

grh gene, expressing a chimeric Grh-GFP fusion under endoge-

nous grh control (Spokony and White, 2012). This fusion protein

is ubiquitously expressed in the eye-antennal disc (Figure 6D),

confirming previous findings (Yao et al., 2006). We performed

ChIP-seq against using an anti-GFP antibody (see the Experi-

mental Procedures). Peak calling identified 10,407 Grh peaks

(MACS2 FDR < 0.05), of which 5,874 are at least 2-fold enriched
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above input. The most strongly enriched

motif in these peaks is the Grh motif

with a high-significance score (i-cisTarget

NES = 10.77), confirming the high quality

and specificity of the ChIP-seq data.
The ChIP-seq data show a highly significant confirmation of

our predicted Grh binding sites (FDR = 0.000, GSEA) (Figures

7A and 7B). By comparing Grh ChIP-seq peaks with open chro-

matin (i.e., FAIRE-seq peaks), we confirmed that Grh binds to a

very large fraction of active regulatory regions (57.1% of all

FAIRE-seq peaks contain a Grh peak; Figure 7C). Note that the

remaining Grh peaks, those that do not overlap with open chro-

matin, are likely also true positive binding sites because this frac-

tion of peaks still presents a very strong enrichment of the Grh

motif (Figure S4). Two genes are shown in Figures 7D–7F as an

example, namelyHr39 and ci, both havingmultiple regulatory re-

gions with a Grh ChIP-seq peak and a FAIRE-seq peak. The re-

gions with the highest scoring Grh binding site prediction overlap

with Flylight enhancers that drive reporter expression in the eye-

antennal disc (Figures 7D and 7E) (Jory et al., 2012). In conclu-

sion, ChIP-seq against Grainyhead validates the predicted

Grainyhead binding sites and target genes and confirms its

correlation with open chromatin.

DISCUSSION

The development of the Drosophila eye is a classical model sys-

tem to study neuronal differentiation and patterning. The TFs

that represent the core of the retinal determination network are

Eyeless (Ey), Twin of Eyeless (Toy), Dachsund (Dac), Sine Oculis

(So), and Eyes Absent (Eya). Although many regulatory interac-

tions are known between these TFs, as they intensively cross-

regulate each other (Bessa et al., 2002a), knowledge about inter-

actionswithdownstreamtarget genesandof otherTFs involved in

theeye-antennalGRN is sparse (AmoreandCasares, 2010).Here,

we aimed at combining classical reverse genetics—starting from

amutant allele andanalyze its (molecular) phenotype—with geno-

mics. Doing so, we aimed at unveiling genetic regulatory interac-

tions in an unbiased way, and we identified many regulators of

the eye and antennal developmental programs, for most of which

we did not require or use any mutation or direct perturbation.

We began ourmapping approach by systematically perturbing

the developmental system. We attempted to include multiple
cember 24, 2014 ª2014 The Authors 2297
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Figure 6. Known and New Eye-Related TFs and the Grainyhead Targetome

(A) Representation of previously published ‘‘eye knowledge’’ (x axis), as the number of eye-related papers for that TF versus the enrichment for eye-related GO

terms in the set predicted TF target (y axis). Node size and color represent the targetome size. For example, Ey, So, andGlass are well known eye-related TFswith

many papers and an eye-enriched targetome. Grh is located in the top left corner, with only one eye-related publication, but its targetome has the highest

enrichment for ‘‘eye’’-related GO terms.

(legend continued on next page)
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Figure 7. Validation of Predicted Grh Targets by ChIP-Seq

(A) Comparison of predicted Grh binding sites (black lines below x axis) with Grh ChIP-seq signal (x axis) showing significant (FDR = 0.000) enrichment of

predicted sites among high Grh peaks.

(B) Aggregation plot showing total Grh ChIP-seq (purple) and chromatin opening (blue) signal in the 4 kb centered around the best Grh binding sites at each Grh

predicted region. The best Grh motif is displayed in the center of the panel.

(C) Venn diagram representing the overlap of predicted Grh binding sites (turquoise), open chromatin peaks (blue), and Grh ChIP-seq peaks (purple).

(D) Janelia Gal4 region (GMR41E08, linked to Hr39) that is ubiquitously active in the EA disc.

(E) Janelia Gal4 region (GMR34D04, linked to ci) that is broadly active across the EA disc. Both (D) and (E) are reproduced with permission of Janelia Farm.

(F) Two examples of predicted Grh target regions (red enhancers, other Grh predicted target regions are colored in Turquoise) for Hr39 and ci, with the best Grh

binding site represented by a black tick. These predicted enhancers overlap FAIRE-peaks and Grh ChIP-seq peaks (wiggle plot respectively in blue and purple)

and represent the enhancer-reporters in (D) and (E) (see also Figure S4 for motif enrichment predictions of each Venn diagram segment).
perturbations into one data matrix to obtain a broad spectrum of

expression profile changes. These perturbations included TF

mutants, TF overexpression, TF knockdown, and cell sorting.
(B) Knowledge plot of ‘‘synapse’’-related publications of a TF (x axis) versus ‘‘sy

Onecut cellular component term enrichment is highlighted.

(C) Chromatin opening in the 4 kb centered around the best Grh binding sites a

ranking. The number of predicted TF inputs for the region is shown in blue.

(D) Anti-GFP immunostaining of Grh-GFP fusion third instar larval eye-antennal d

Figure S3 for the Onecut targetome, Figure S5 for the ‘‘antennal’’ knowledge plot,

enrichment with the set of predicted target enhancers of each TF).

Cell Re
We dissected eye-antennal discs at the stage where in the WT

discs about half of the eye disc contains pluripotent cells that

are dividing asynchronously, while the other half contains
napse’’-related GO term enrichment of the TF target predictions (y axis). The

t each Grh predicted region. Regions are ranked according to the i-cisTarget

isc (see also Figure S2 and Table S6 for the Ey and So predicted targetome,

Table S7 for onecutx652 versusWT RNA-seq, and Table S8 for FAIRE-seq peak
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differentiating PR neurons, in consecutive stages of differentia-

tion. Simultaneously, the antennal disc contains neuronal pre-

cursors that are undergoing specification. The expression

changes induced by the perturbations often result from a shift

in proportion of cell types. This is trivial for the cell-sorting exper-

iments; for example, the GMR>GFP-positive cells show, as ex-

pected, a very strong enrichment of genes related to PR differen-

tiation (Table S2). TF mutants and TF perturbations can also

result in cell type shifts; for example, overexpression of Atonal

yields more R8 PRs (Aerts et al., 2010), and the glassmutant re-

sults in fewer differentiated PRs (Moses et al., 1989a). Other TF

perturbations cause changes in gene expression downstream

of the TF without changing the cell type composition, such as

Retained, which disturbs axonal projection (Ditch et al., 2005).

The key technique that we applied, however, is not to compare

each TF perturbation with WT discs to identify differentially ex-

pressed genes. Rather, we used (linear and nonlinear) correla-

tions of gene expression profiles across the entire vector of 72

gene expression measurements. This TF-gene coexpression

network contains both direct and indirect edges, and although

this network is informative, we added a second layer of predicted

TF-DNA interactions, thus making this a direct GRN. To increase

the sensitivity, we used a very large collection of TF motifs, also

including position weight matrices derived for yeast and verte-

brate TFs and including computationally derived motifs (e.g.,

highly conserved words). Using motif-motif similarity measures

and TF-TF orthology relationships, we link each motif to a candi-

date binding factor, as described elsewhere (Herrmann et al.,

2012; Janky et al., 2014). This yielded a large network with

335 TFs and their predicted direct targets. The only functional

network of comparable size and comparable directedness to

our in vivo network is the TH17 GRN that was derived in vitro

in a recent study (Yosef et al., 2013). Yosef et al. (2013) used a

microarray time course of naive CD4+T cells differentiating into

TH17. From these gene expression data, they derived TF-gene

interactions by clustering and filtered thosewith TF-DNA interac-

tions obtained by ChIP-seq data, TF perturbations, and cis-reg-

ulatory sequence analysis.

The predicted direct and functional eye-antennal GRN in-

cludes many previously reported interactions, such as known

target genes for Eyeless and Sine Oculis (Figures S2A–S2D).

We also found target genes in our network for late factors (e.g.,

Glass, Onecut) and very late factors (e.g., Pph13). The fact that

we capture information at different time points during develop-

ment is because we sorted several cell populations that are

loosely correlated with the temporal axis of development, con-

sisting of undifferentiated pluripotent cells anterior to the furrow,

all PR cells undergoing differentiation posterior to the MF, R8 PR

cells (Figures S6A and S6B), and late populations of chp-positive

cells (Figure S6C). However, the temporal information encoded

in the network is limited to these broad domains, and a more

detailed reconstruction of the time axis would require higher res-

olution cell sorting or microdissection experiments. Although the

perturbed TFs were mainly chosen for their development of the

retina, we could also identify master regulators of antennal

development, such as aristaless (Figure S5).

Interestingly, we also found general factors like Grainyhead

that are ubiquitously expressed. Grh was found as one of the
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TFs with the largest number of target enhancers and its binding

correlates with open chromatin. Previous studies have shown

that Grainyhead may interact with Polycomb and Trithorax pro-

teins to regulate (both activate and repress) target gene expres-

sion (Blastyák et al., 2006; Schuettengruber et al., 2007). We

speculate that this observed correlation can be explained by

the fact that Grh is present ubiquitously in the eye disc, thus

yielding many sequence fragments from bound and nucleo-

some-free enhancers by FAIRE-seq.

It iswell known that networkmotifs suchasFFLsplay an impor-

tant role in biological networks (Le and Kwon, 2013; Mangan and

Alon, 2003). We examined one such networkmotif in more detail,

namely the TF pair Glass-Lozenge, and their common targets,

in more detail. These TFs constitute a double-feedback loop

(Glass regulates Lozenge, Lozenge regulates Glass, and they

together regulate 36 targets). For this network motif, we found

that Glass and Lozenge motifs co-occur at the same enhancer,

where they furthermore overlap; this may indicate competition

for binding between Glass and Lozenge. Given that Lozenge,

an important regulator of cone cell differentiation, could be a

repressor (Canon and Banerjee, 2003) and Glass, an important

regulator of PR differentiation, could be an activator (Naval-Sán-

chez et al., 2013), such a competition at the CRM level could

indeed be a plausible mechanism for their regulatory action.

Another interesting feature that can be derived from a GRN is

the proportion of autoregulatory TFs (108 autoregulatory TFs in

the eye network) and the proportion of activating versus repres-

sive TFs. A recent large-scale study in yeast (Kemmeren et al.,

2014) found a small majority of yeast TFs to have a repressive

role. In that study, each individual TF was perturbed, thereby

providing information on positive versus negative edges from

the TF to its direct predicted targets, whereby TF-DNA informa-

tion was used fromChIP-chip data. Since we started building the

eye GRN from a coexpression TF-gene network, we revisited the

correlations between TFs and their candidate targets and found

151 TFs that have their motif enriched in the positively correlated

target genes, but not in the negatively correlated targets, and

127 TFs showing the opposite; 62 TFs show enrichment in

both. This finding agrees, to some extent, with the results in

yeast from Kemmeren et al. (2014) concerning the high amounts

of gene-specific repressors. On the other hand, our network sug-

gests relative more TFs with a dual activator/repressor function,

while Kemmeren et al. (2014) found in yeast only a few such

cases. In conclusion, starting from an expression matrix derived

from large-scale perturbations and combining TF-gene coex-

pression with TF-DNA interactions based on motif inference

enabled drawing an extensive eye-antennal GRN. All predicted

regulatory interactions, target genes, and candidate regulatory

regions are stored in a Neo4J database and can be queried

from our website (http://eyenetwork.aertslab.org). The database

can also be accessed directly from Cytoscape using the

CyNeo4j plugin or can be queried programmatically using the

Neo4j query language Cypher. Although we recovered many

known regulators and cis-regulatory elements and revealed

several other ones, a large part of the predicted network,

including how the dynamics of the developmental program are

encoded in the cis-regulatory regions and in the topology of

the network, remains to be explored.
hors

http://eyenetwork.aertslab.org


EXPERIMENTAL PROCEDURES

Fly Stocks

Fly stocks used for RNA-seq experiments are listed in Table S1. The Janelia

FlyLight enhancer-Gal4 lines used for Gl binding site predictions are listed in

Table S3. The Grh-GFP fusion used is Bloomington stock number 42272. All

flies were raised at 25�C on standards fly food. All crosses were set up at

25�C. Crosses with the heat-shock Gal4 driver were treated with a 60 min

heat pulse at 37�C every 24 hr starting from first instar larval stage.

RNA-Seq

We used a classical Illumina TruSeq protocol to build the libraries after RNA

extraction and sequenced them on the Illumina HISeq 2000 (see the Supple-

mental Experimental Procedures for more details).

RNA-Seq Data Analysis

Reads were first cleaned using fastx clipper (from fastx_toolkit-0.0.13, op-

tions -Q33 -M15 -n -v -l 20) to remove adaptor sequences, and their quality

after cleaning was checked using the FastQC software (in case of overrepre-

sentation from different primers, samples were cleaned again to remove the

contamination). The reads passing the cleaning step were mapped to

D. melanogaster genome release 5 using TopHat2.0.3 (default parameters).

Gene expression measures were quantified by HT-seq count (option -str =

no) using D. melanogaster gene annotation release 5.45 from FlyBase. The

entire matrix of raw counts was first filtered (minimum of 1 read per million in

5 samples across the 72) and then normalized using edgeR (v.2.4.6) and

DESeq (v.1.6.1) variance-stabilizing transformation in R (v.2.14.0).

TF-Gene Coexpression Network

Two methods were used to build the coexpression network, namely, GENIE3

(Huynh-Thu et al., 2010) and PTM (Pavlidis and Noble, 2001). GENIE3 was run

with mtry option set to sqrt, and we selected all TF to TG pair with an interac-

tion score higher at least than 0.005. Four different thresholds were selected

from the most permissive to the most stringent: 0.005, 0.006, 0.007, and

0.008. PTM was performed starting from the template (expression profile) of

each expressed TF in R (v.2.14.0) using three different options—greater (for

coexpressed genes), less (for antiexpressed genes), and two sided (both at

the same time)—and four different p value thresholds (10 3 10�7, 10 3

10�8, 10 3 10�9, 10 3 10�10).

Direct TF-DNA Network by Motif Inference

Each of the 694 TFs times four thresholds (GENIE3 data sets) and the 694 TFs

times four thresholds times three correlations (PTMdata sets) (16 data sets per

TF for a total of 11,072 data sets) was converted to FlyBase annotation r5.37

(corresponding to the i-cisTarget database), and an i-cisTarget analysis

was performed. We used the ‘‘motif2TF’’ links from iRegulon to link PWMs

to Drosophila TFs (Janky et al., 2014). From this analysis, three different layers

of confidencewere derived: (1) a high-confidence layer, where the TF to TG link

is drawn from direct evidence. The motif of the TF is found enriched in the reg-

ulatory sequences of one of its 16 corresponding data sets. If it is found in a

PTM ‘‘greater’’ coexpression data set, we attribute a direct activation; in

PTM ‘‘less,’’ we attribute a direct repression. In PTM ‘‘two-sided’’ or in GENIE3

data sets, we attribute an undefined direct link. (2) In a medium-confidence

layer, the TF to TG link is drawn if the TF corresponding to the motif found to

be enriched is part of the input data set. (3) In a low-confidence layer, the

link between TF and TG is drawn when the TF motif is discovered in any coex-

pressed gene set of another TF.

Immunohistochemistry

For immunohistochemistry, imaginal discs of wandering third instar larvae

were dissected and processed as described in (Wang et al., 2002). The anti-

bodies against Glass, Eya, and Elav raised by G.M. Rubin were obtained

from the Developmental Studies Hybridoma Bank, developed under the aus-

pices of the Eunice Kennedy Shriver National Institute of Child Health and

Human Development, and maintained by the University of Iowa, Department

of Biology. The antibody against GFP, the Alexa Fluor 647-488-555, and

secondary antibodies were obtained from Life Technologies.
Cell Re
FAIRE-Seq Peaks and TF Correlations

EAdisc FAIRE-seq and input data from (McKay and Lieb, 2013)were download

from the NCBI Gene ExpressionOmnibus (GSE38727: samples GSM1261348,

GSM948724, and GSM948725) and peaks called using MACS2 (Zhang et al.,

2008) callpeak (options: -g dm -bdg -nomodel) comparing merged EA with

merged input to produce a peak file (_peak.encodePeak), an EA-treated file

(_treat_pileup.bdg), and a control file (_control_lamba.bdg). The two last

files are used with macs bdgcmp (-m ppois -t _treat_pileup.bdg -c _control_

lambda.bdg) to create the signal file. To visualize EA FAIRE-seq signal, we

plotted read coverage per base pair for each predicted region in the 4 kb

centered on the best Grh motif occurrence (cbust/options -m3 -c0) inside the

i-cisTarget predicted Grh CRM. Enrichments for TF targetomes in EA FAIRE-

seq peaks were calculated by counting the number of i-cistarget region over-

lapping a peak (minimum of 40% in both ways, 4,105/24,926 regions present

in the network) for each targetome; p values for all TF region targetomes

were then computed using a hypergeometric test comparing the number of re-

gion with a peak in a targetome with the number of regions having a peak in the

network as reference.

Grh ChIP-Seq

Eye-antennal imaginal discs are dissected from Grh-GFP (Bloomington stock

42272) third instar larvae and fixed with formaldehyde. Chromatin is prepared

and sonicated until fragments reach an average size of 500 bp. Chromatin is

immunoprecipitatedwithananti-GFPAb (ab290,Abcam), and the immunocom-

plexes are recoveredwith protein A/Gmagnetic beads (Millipore). ChIP libraries

are preparedwith the TruseqDNA library prep kit (Illumina), and the samples are

sequenced on a HiSeq 2000 (Illumina) (see Supplemental Experimental Proce-

dures for the extensive protocol). For the data analysis, 101 bp sequence reads

were first cleaned using fastx clipper, checked using the FastQC software, and

mapped to the dm3 genome using bowtie2-1.0.0-beta3 (options -q-seed 1

-local). Reads were filtered for a minimum mapping quality of four. We used

macs2 ‘‘callpeak’’ and ‘‘bdgcmp’’ with the same options as in the FAIRE-seq

analysis above (using another input sample fromWTCantonS flies). For the ag-

gregation plots, we summed the read coverage per base pair in the 4 kb regions

centered on the best Grh motif occurrence (cbust/options -m3 -c0) inside the i-

cisTarget predicted Grh CRM and normalized it by the total signal.

Data and Network Availability

The high- andmedium-confidence network is available via an online web appli-

cation hosting aNeo4j graph database: http://eyenetwork.aertslab.org. A dump

of thedatabasecanbedownloaded, and thedatabasecanbequeriedCypheror

Cytoscape using the CyNeo4j plugin (see the help page). Finally, A UCSC track

hub is available with all CRMpredictions for Grainyhead, alongside with FAIRE-

seq and ChIP-seq data, from http://genome.ucsc.edu/cgi-bin/hgTracks?

db=dm3&hubUrl=http://ucsctracks.aertslab.org/Network-paper/hub.txt.
ACCESSION NUMBERS

All RNA-seq and Grh-GFP ChIP-seq experiment fastq files and processed files

were deposited to the NCBI Gene Expression Omnibus under accession num-

ber GSE62558.
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