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An ultrafilter on a set is a proper collection of subsets of ' that  set 

which is maximal among such collections having the finite intersection 

property. Ultrafilters were popularized by N.Bourbaki for their use in 
describing topological convergence, but for some time there was little 
discussion of the possible structural properties that an indiwdual ultra- 

filter might possess. This paper is concerned only with ultrafilters on a 
countable s,~t and a method of describing them by building them from 

certain minimal ultrafilters; most of the work here has co~l-e from 
Chapters 1, 2, and 4 of [ I ]. The first part of this paper describes a cer- 

• tain tree of ultrafilters and the third part describes an ordering in which 

this tree is embedded;  the remaining two parts deat with tninimal ultra- 
filters and with products of uitrafilters. 

Theorems and lemmas are always thought of +her~, as being proved in 
Zermelo-Fraenkel set theory with the axiom of choice, ZFC. If a 

theorem T is to be proved in some other set theory, say the theory 17, it 

is stated in ZFC in the following manner: 

Theorem. r I- T. 

An ordinal is always the set of  all inferior ordinals and we shall 

always regard a cardinal as an initial ordinal - the first two infinite 
initial ordinals are ~0 and ~o 1. The cardinal 2 ~0 will often be w~itten 'c'; 
'K' and 'X' are reserved for cardinals. The proposition ~1 = c will often 
be called 'CH'. The ~ymbol '[A] X, stands for the set of  all subsets of  A 
ef  power X and '[ ~]< X, consists of  those subsets of  power less than X. 
The set of  all functions from A to B will be writtea 'AB'. 
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Some concepts from model theory and topology will occasionally 
appear; ~X is, of  course, the Stone-Cech compactification of  X, N is the 
discrete countable space. The cardinal numh-,r of  a set A is written X. 

There is also some notation in this paper which is less widely used. 
We shall let St(co) be the set of  all ultrafilters on co and St ~° (co) the set 
of non-principal ultrafilters; ultrafilters on 60 will usually be lower case 
Roman letters, especially 'p '  and 'q'. The ultraproduct of  the structures 
{ ~ i  : i ~ I } by the ult~afilter D on I shall be written 'Prod(D,~i. 9~ ~)'. 
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§ 1. The Rudin-Frolik ordering 

The Rudin-Frolik ordering Of ultrafilters was defined by Z.Frolik [3 ] 

- who called it the 'producing relation' - and nearly defined by M.Eo 
Rudin [6].  M.E.Rudin, in unpublish :d work, first showed that it was an 
ordering; Frolik used it to prove tha ~. ~N - N is not  homogeneous. 

1.1. Definition. A sequence X ~  ~°St(w) is discret,, if there is a sequence 

(a n • n ~ w> of subsets of w such that a n E X(n) and a n .~ a m = 0 when 
n 4: m. If X is any such sequence, di.~crete or not, X is the set of  tho,~e 

ultrafilters p ~ 5t (w) such if, at for each a ~ p there is an n ~ w with 

a ~ X(n). 

1.2. Definition. (i) I f X ~  w S t W ( w ) a n d p  ~ St(w), then ~(X, p ) =  
= { a C _ w .  { n . a E X ( n ) }  ~ p } .  

(ii) If X ~ wSt (w)  is discrete and p ~ X, then ~2(X, p) = 

= {aC_ w . V b ~ p  3 n E a ( b E X ( n ) ) } .  

T~e operations X and s2 are inverse to each other; this fact is the 

point of the following lemma. 

1.3. Lemma. I f  X ~ St(w) is #iscrete and p ~ St(w), then 

O) z(x,  p) ~ x;  
(ii) i f  p E  X, then ~2(X,p)E St(w); 

(iii) i f  p ~ X, ~(12(X, p)) = p; 
(iv) ~2(X, Z(X, p)) = p; 

(v) Z(X,  p) ~ X i f  and only i f  D is principal; 

(vi) i f  p E X, then ~2(X, p) is principal i f  and only i f  p ~. X. 

The following definition pIovides an equivalence relation among 

ultrafilters so that two equivalent ones have exactly the same set 
theoretical properties. 

1.4. Definition. If f is a permutation .; ' such that q = { ~'(a) ' a  ~ p } 

where p, q ~ St(w),  then one says tha t ,  ',t~) = q. If for some permutation 

f ,  f ( p )  = q, then p = q. The equivale,t;e class, under - ,  containing p is 
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1.5. Lemma.  I f  X ,  Y ~ wSt(~o)  are discrete and  ~ is a bi]ectton f r o m  

r an (X)  to r an (Y)  then there is a unique h o m e o m o r p h i s m  ~I, ex tending 

mapping X onto  Y.  

Proof: Let ~I,(p) = ~;(X, t2(X, p)) ;  ,I, ex tends  ~0 because o f  1.3 (v) and 

(vi); it is on to  because 9 ( ~ , ( X ,  ~2(Y, p)))  = p.  To see that  ~I, is well 

def ined one uses the  fact tha t  ~I,t~ (X, ~2(X, q)))  = ~;(Y, S2(X, q)). The 

rest o f  the l emma fol lows by checking  the  effects  o f  ~I, in the topology  

of  fiN. 

1.6. Lemma.  l f  p E St (w) ,  a ~ p a n d a  is :~oi,'. :,e, then Pa 

= { b n a • b ~ p } is an ultrafilter on a and Pa --- P" 

Proof:  This is obvious if p is principal  or  if w - a ts finite. Suppose that  

a 0 = w - a is infinite,  choose  a w c a such tha t  a ~  ~ p and a 0 - a w is 

infinite. Let {a n : n >_ 1 } be a par t i t ion  o f a  0 - a~o into  mutua l ly  dis- 

jo in t  infinite pieces. T a k e f n  to be a bijectio,l  o f  an+ 1 on to  a, a n d f  w to 

be the iden t i ty  on a w ,  then  f (Pa)  = P where  f = u { f a  : a ~ ,  ~ + 1 }. 

The next  l emma is due  to  M.E.Rudin .  

1[.7. Lemma.  The fo l lowing  are equivalent: 

(1) There is a discrete X ~ wstw( , , J ) ,  such that  q = ~(X,  p);  

(2) There are discrete sequences X ,  Y ~_ ~ S t W ( w ) s u c h  that 

r an (X)  tq r an (Y)  = 0, r an (X)  ~ Y, and there is a~z r ~ StW(w) with 

r=  ~ , ( X , p )  = Y~(Y, q). 

Proof:  Assume ( 1 ) in the fo rm q - ~; (Z, p )  and let Y ~ ~o StCO (co) wi th  

r an (Y)  discrete. Using 1.5, one may exte .  d the natural  h o m e o m o r p h i s m  

of  r an (Y)  on to  N to a ~0 mapping  Y on to  ON. For  ~-!s ~o, ~0 -1 (q) = 

= Y2(Y, q) = ~(~0 - I  (Z), p )  since ~,(~ (Y, q))  = ~;(N, q)  = q. To establish 
(2), one sets r = ~0 -1 (q) and X :: ~0 --l (Z). 

Conversely,  if X, Y, p ,  q and r play the roles required by (2), o r e  

select.,; a h o m e o m o r p h i s m  ~0 of r an (Y)  on to  N; by 1.5 this can be ex- 

t ended  to a map of  Y on to  j3N. One o b t a i ~  (1) by put t ing  q = 

= Z (~  (X), p). 

1.8. Defini t ion.  When the state of  affairs o f  1.7 takes place one says the t  
p < q .  
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The order ing of  1.8 is wha t  we shall call the 'Rudin-Fro l ik '  ordering.  

In [3 ] ,  Frol ik  showed tha t  each e l emen t  has 2 c successors and at mos t  

," predecessors.  Since any two ultrafi l ters  which can be mapped  to each 

o ther  by a h o m e o m o r p h i s m  of  ~N - N have exact ly  the same predeces-  

sors he was able to  conc lude  that/~N - N is no t  homogeneous .  The next  

results are due  to M.E.Rudin :  1.9 is essentially in her  paper  [6 ] ,  1.10 is 

an unpubl i shed  result  due  to her,  and 1.11 uses 1.10 tc  conck tde  that  

the Rudin-Frol ik  order ing is indeed an ordering.  

1.9. Lemma.  Let  X ,  Y ~ o~ S t , ( c o )  be discrete and let p = X n Y, then 

*.here exist  subsequences X '  and Y ' ,  o f  X and Y respectively, ~uch that 

~2 (X,  p)  = [2 (X ' ,  p),  s2(Y,  p)  = ~2 ( Y ' ,  p),  and such that one o f  the fol-  

lowing .,,." ~,"., ttolds: 

(i) 

(ii) 

(iii) 

ran X '  r. ran Y '  = 0 and ran X '  c_ y ' ;  

ran X '  n ran Y' = 0 and ran Y' c_ X ' ;  

ran X '  = ran Y'.  

1.10. Theorem.  I f  p < ~q ' then ~P 4= .~q" 

Proof: Suppose that  p < q ,  then_there exist an r, X, and Y wi th  

ran (X) n ran ( Y~ = 0, ran (X) c_ y ,  and r = 2; (X, p 1 ) = ~; (Y, P 2 ) xVhere 

Pl  = P2 = P. One may pe rmute  the e lements  of  the sequences  X and Y 

to obtain  new sequences  X '  and Y' such that  r = ~ ( X ' ,  p )  = E ( Y ' ,  p). 

Let us hereaf ter  call these new sequences  'X'  and 'Y'  again. Suppose  that  

(a n c_ ¢o • n ~ ¢o) renders  X discrete as in 1.1 ; let C(n) = 

= { k ~ ¢o • a n ~ Y(k )  and n < k }. One now defines two sets R and B by 

stages: 

R o = ' ~ k ' k ~ w { C ( n ) ' n e w } }  ; 

let l o be the least integer no t  in R o, then  

B o = U [ C ( n ) ' n  ~ R o }  u C( lo ) ,  

Rm+ 1 =U { C ( n ) ' n ~  U { B ,  "i<_ m } }  ; 

Let  l o be the least integer  no t  in R o, th.en 
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B o = U { C ( n ) ' n E R o }  u C(lo)  , 

Rm+ 1 = U { C ( n ) ' n E U { B , ' i . < _ m } } .  

Let lm + 1 be the least iqteger no t  con ta ined  in U { R ,  • i <_ m + 1 } u 

u U {B z • i ~  m } .  Now,  take 

Bin+ 1 = U  { C ( n ) " n ~  U { R  i • i S  m + 1}} u C ( l m + l ) .  

To finish the theo rem one observes tha t  pu t t ing  R = U { R i . i E co },  

B = U { B i • i E 60 } provides  two  sets such that  co = R u B, R tq B = 0, 

and R ~ ~2 (X, r) exac'~ly when  B E ~ (Y, r). This contradicts, the  

assumpt ion that  s2 (X, r) = f~ (Y, r) = p. 

1.1 1. Theorem.  (i) r < q < p impl ies  that  r < p .  

(ii) { p "  p < q } is a linear ordering. 

Proof:  (i) If  r < q < p ,  then  there  are sequences X and Y for which  

D = Z ( X ,  q)  = Z ( Y ,  r). If  case (ii) o f  1.9 holds  then r < p. Case (iii) 

would  mean  that  r = q in violat ion of  1.10. It only remains  to show 

that case (i) is impossible.  If (i) held,  one  would  have r < q < p < r .  

By the m e t h o d  of  1.7 one  can obtain  sequences  X,  Y, and Z with  

r = ~;(X, r) = ~(Y,  q)  = ~ (Z ,  p) ,  but  r = Z(X,  r) means that  r < r ,  con- 

t radict ing 1.1 0 again. 

Theorems  1. I 0 av, d 1.1 1 serve to show that  the Rudin-Frol ik  order ing 

is a tree; we shall see in the next  t heo rem that  it is not  wel l - founded 

--: part  2 conta ins  s tronger versions of  this result. 

1.1 2. Theorem.  The  R u d i n - F r o l i k  ordering is n o t  wel l - founded.  

Proof:  Let X 0 be a discrete sequence,  and choose X,+ 1 to be a discrete 
sequence of  e lements  of .~n - ran(Xn )" Since 3N is compac t ,  there is a 

p ~ U {'~n "ID n ~ co}" It fol lows that  qn+l < qn where  q, = f t (X, ,  p). 
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§ 2. The semigroup of ultrafilters 

The fol lowing def in i t ion of  the p roduc t  o f  ultrafilters,  similar to  the 

def in i t ion o f  p roduc t  measure ,  turns  ON into a semigroup. 

2.1. Defini t ion.  I f p  and q are ul trafi l ters  on co then p .  q = 

= { a C _ - c o ) ( c o -  { m -  { n " (n ,  m)  E a } ~ p } ~ q }. One  w r i t e s  p . q for  

the r such that  r = p -  q, a convent ion  just if ied by the nex t  lemma.  

2.2. 1.emma. (i) p . q is an u?trafilter. 

(ii) p .  (q .  r) - ( p .  q ) -  r. 
(iii) I f  p = r. t hen  p .q  - r .  q.  

(iv) I f  p =- r, then  q . p  - q o r. 

Proof:  Each part  can be demons t r a t ed  by an easy compu ta t ion .  

2.3. Defini t ion.  Let St be the set { p • p E St (co)}. If  p is principal  one 

w r i t e s '  1' for ' p ' .  

The def ini t ions above make  (St , . ,  1 ) into a semigroup with uni ty .  

Soon we shall see that  it is n o n - c o m m u t a t w e ,  has a trivial center ,  is r ight 

cancellable,  and has no left or right ident i t ies  apar t  f rom 1. 

2.4. Theorem.  (i) l f X  is discrete,  X ~ St w ( co l  a n d  ~(X,  p)  = q, t hen  

Y , ( r . X , p )  = r . q  w h e n  ( r . X ) ( n ) -  r . X ( n ) .  

(ii) I f  X is discrete ,  X ~ St ~ ( co l  a n d  f o r  each n, X ( n )  = p ,  t h e n  

Y , ( X , q )  = p "q. 

(iii) I f  X is discrete,  X ~ S t "  (co), t ~ St(co ), a n d  p = Z ( X ,  q) ,  t hen  

there  is a d i scre te  seque,.zce Y such  tha t  ran(Y)  n r an (X)  = O, p .  t = 

= Z ( Y ,  q .  t ) a n d  r an (X)  c y.  

Proof:  (i) Suppose that  a ~ r .q ,  let a m = { n : (n, m) ~ a }. Since 

Z(X,  p)  = q, one finds that  { k : {m : a m ~ r}  E X(k)} ~- D. This means  

that  { k ' a ~  r . X t k ) }  ~ p so t h a t a ~  Z ( r . X , p ) ,  t h u s r - q  ~ Z ( r . X , q ) .  

Since bo th  r .q  and ~ ( r - X ,  q)  are ultrafil ters,  they  mus t  be equal.  

(ii) Let  { C n : n ~ co } be a par t i t ion  of  co wi th  C n ~ X ( n ) ,  set v m = 

= { (n, m) : n ~ co }. Let  gm be a bi ject ion f rom v m on to  c m such tha t  if 

h is the bi ject ion f rom o m on to  co sending (n,  m~ to n, then  gm h -  1 ( p )  = 
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=Pro = { a n  c m : a ~  t }  where  t = p .  Such a g  m exists by 1.6. Let t ing 

g = U {gm : m ~ co }, or, e has tha t  g(a )  ~ ~ ( X ,  q )  for  a ~ p -  q. This 

means  t h a t g ( p . q )  c_ Y.(X,  q )  so tha t  g(D .q )  = ~ (X ,  q). 

(iii) By (ii), there  is a discrete sequence P with  p .  t = I~(P, t) and 

P(n)  = p for each n. Suppose  tha t  {c k : k ~ ~ } renders  P discrete.  Using 

1.6 we may  choose  a discrete sequence  Y k  with c k ~ Y k ( n ) ,  for  each n, 

and P(n)  = Z ( Y k ,  q)" The 'Y'  o f  the theo rem can be any sequence whose 

range is U { ran (Yk)  : k ~ ~ }. To see this one maps ~o in a one- to-one 

manner  on to  ~ × ~ sending c n on to  o~ X {n}. 

2.5. LemJrna. I f  X is a d i scre te  s e q u e n c e  o f  u l t ra f i l ters  such  t ha t  each 

X ( n )  is m i n i m a l  above  ..~1 in the  R u d i n - F r o l i k  order ing  t hen  q is m i n i m a l  

above  p w h e n e v e r  q - ~, (X ,  p) .  

Proof:  S,Jppose r < q ,  then  tl~ere is a discrete Y such that  ~ (X, p)  = 

= Z(Y,  r). By our  assumpt ion  case (i) o f  1.9 is impossible,  but  e i ther  
case (ii) or c.ase (iii) implies tha t  r <_ p.  

2.6. Defla i t ion.  I f S  is a func t ion  f rom ~ into  S t ( ~ )  then F [ 0 ]  = F(0)  

a n d F [ n  ~- 1] = F i n ]  . F ( n  + I). 

2.7. Theorem.  F o r  each k ~ ~o, there  are d iscre te  s equences  o f  ultra- 

f i l t ers  X o ,  ..., Xk__ 1 such  t h a t  F [ k  + 1 ] -~ Z ( X , ,  F ( k  - i) ... F ( k  + 1 )) 

where ,  f o r  each n, X i ( n )  = F [ k  - i - 11 a n d  ran(Xa) c_ ran(Xz+ 1 ), whi l e  

ran(Xz) n ran(Xj)  = 0 w h e n  i 4: ]. 

Proof:  One proceeds  by induc t ion  on k; when  k = 0, F[  1 ] = Z(Y,  F(0) )  

and one may  take Y as the 'X 0, of  the theorem.  

By d, ffihition F [ k  + 1 ] = F [ k ]  . F ( k  + I),  so that  F [ k  + 11 = 

= Z ( Y ,  F (k  + 1)) where  for each n, Y ( n )  = F [ k ] .  Suppose that  Y is ren- 

dered discrete by the dis jointed set { c n • n ~ co }. Using the induc t ion  

hypothes is  one can obta in  discrete sequences  ZZn, i < n - 1, such that  

c n e A { ran(Z~z)" i ~ ~o}, Y ( n )  = Z(Zin,  F (n  - 1 - i) ... F (n ) )  and for  

each m ,  Z~ (m)  = F [ n  - 2 -- i l .  

Let X 0 = Y, and let Xt+ ~ be a discrete sequence whose range is 

19 [ ran Z t • n e co]. I t  is clear tha t  r a n ( X  t) ~ r a n ( X t + l )  and r a n ( X  l) n 
n 

n ran(Xs)  = 0 whenos 4: l because of  the cor responding  facts concern ing  

the sequences Z / . The rest o f  the theorem follows f rom 1.9 and 2.4 (iii). 
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Froiik spoke of the operation Z as an infinite sum of ultrafilters, we 

shall now define something akin to an infinite product. The theorem 

immediately above was introduced for its application to this notion of 

a product. 

2.8. Definition. Let F be a seauence of ultrafilte, rs. Fix a well orderipg 

of sufficiently many sets to permit one to define II(F, p) = Z(X, p) 

where X is the first discrete sequence such that X(n) ---- F in] .  If for each 
n, F(n) = p, then n(F, p) = p,o. 

Surely II('7, p) Is well defined. This equivalence class of ultrafilters 

appears in the nex~ theorem which serves to show that many different 

orderings can be embedded into the Rudin-Frolik tree. 

2.9. Theorem. For each funct ion F f rom to to St '~ (to) and each non- 
principet ultrafilter p, there is an isomorphism ~o o f  Prod(p, ?~n . (n, e)) 
into the Rudin-Frohk predecessors o f  ~ (F. p ) . 

~ o o f :  From the definition of H (F, p)  we know that I1 (F, p) = ~: (X, p) 

whcr~ X(n) - F[n~. We may suppose that the sequence X is rendered 
d~crete by the disjointed sequence (% c_ co • n ~ co>. One can now use 

2.7 and 1.6 to obtain discrete sequences X~ +1, "", Xn+~n- which have the 
properties of 2.7 (except that 'k'  of 2.7 is 'n '  here) but such that for 
each i and rn, c n ~ Xn(m) .  Given a pressing down function on co (one 

with f (n )  < n, for positive n), one can define a discrete sequence ,Yf 

such that ran(Xf)= U { ran(X?<+nl+l))" n ~ co}. The embedding ~0 is de- 

fined by ~ [ f ]  ) = S2(Xf, n(F,  p)). 

It remains to be shown tha: ~2(Xt, n(F,  p)) < ~ (Xg ,  II(F, p)) when- 

ever 

Prod(p,  ~,n. (n, e)) ~ [ f ]  < [g] . 

Whenever the latter holds we may suppose there is an a ~ p srch that if 

n + 1 ~ a, then ~2(Xn+nl+l , F i n  + l l )  < ~(xnt+n~l, ,F(n + 1)). The de- 

sired result then follows from 1.6. 

2.t0.  Corollary. The Rudin-Frolik ordering contains a chain o f  type to ~. 
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Proof: Such a chain ca~i be found in Prod(p,  Xn.(n,  e)). 

2.11. Corollary. The Rudin-Fro l ik  ordering contains a chain ort 'ered 

like the reals. 

Proof: The structure Prod(p,  Xn. (n, e)) has type co + 0 + ,~* where 0 is 

the type of a dense linear ordering. Since ~0 + 0 + co* is the type of an 
1 saturated ordering, 0 must be an nl  ordering and ther,ffore contains 

a chain similar to the reals. 

Let us now find the theory of the ultraproduct which appears in 2.9 

above. The next theorem gives axioms for this theory; if one were to 

assume the continuum hypothesis the theorem wo:,~,d follow imme- 

diately from basic results concerning saturated models. Here '='  denotes 

elementary equivalence. 

2.12. Theorem. I f  p and q are non-principal ultrafi!ters then 

Prod (p, ~,n. in, e)) = Prod tq ,  Xn. (n, e)). hi  f, Tct, b~th are equivalent  to 

(6o + ¢o *, <). 

Proof: We expand the la~?uage appropriate for these structures to a 
new language having two new countably infinite sets of constants, 
{c n , d n : n ~ ~o}, and a unary function parameter, S. The theory F con- 
sists of the consequences of that set of axioms which specify a strict 

ordering with a first element,  c 0 , and a last element, d o , such th~ t ele- 
ment  other than d o has an immediate successor which is given by S. 

Furthermore, we require that Sd  o = d o , Sd  n + 1 = dn " Scn = cn + 1, and 

that c n < d m for each n and m. 
The stzaacture <~o + ~o *, < ) is a reduct of  a model of F. By eliminating 

quantifiers in P one can see that I" is complete; it follows that the ap- 

propriate expansions of (~o + w *, <),  Prod (p,  ~n.(n,  e)) are all elemen- 
tarily equivalent and are therefore themselves equivalent. 

2.13. Corollary. (i) ZFC & CH t- I f p  and q are non-principal then 

Prod(p,  Xn.(n,  e)) and Prod(q, Xn.(n,  e)) are isomorphic. 

(ii) I f  p and q are Rudin-Frol ik  minimal  then the ord~,rings o f  their 

predecessors are mutually" isomorphic. 
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The prt ..ess of exponentiat ion can be continued through the count- 

able ordinals. 

2.14. De~nition. First, fix a well ordering of enough sets to carry out 
the rest of this definition. Already we have defined pO~ and p n ,  n ~ co ; 

let pa+l be the equivalence class of the first u]trafilter q such that 
q = p . p a  and if8 is ,~ positive limit ordinal then p~ = Z,(X, p)  where 
(/i n : n ~ ¢o) is the first sequ"nce of countable ordinals wkose union is 
and X is the first discrete sequence with X(n)  = p~n.  

2.15. ]laeorem. For each a ~ co l ,  there is a discrete sequence X such 

that X ( n )  = pan fo r  some a n ~ a, pa = ~ ( X ,  p), and, in addition, these 

discrete sequences can be chosen so that i f  f3 ~ a, pa = ~,(X, p), 

pa = Z ( Y ,  p), X (n )  = pan and Y(n)  = pan, then (3 n ~ a n f o r  all but  

f in i te tv  many  t~ E to. 

Proof: If o~ is a limit ordinal the definition of pa insures that it is of the 
form ~(X, p). I f a  = fl + 1, then, by induction, pa = ~;(X, p) where 
X(n)  - pan. By 2.4 (i), ~:(p-X,  p) = p "pa -- pa+l = pO~, where 
( p .  ).')(n) = p .  X (n )  = p ~n+l . It is easily shown by induction that the 
sequences defined in this way satisfy the final clause or the theorem. 

2.16. Corollary. Iffl  ~ a, then p ~  < p ~ .  

2.17. Theore,n. (i) There is an order preserving m o n o m o r p h i s m  o f  the 

ul traproduct  Prod(p,  (t~ 1, e)) into { q • :lu ~ w I (q  < pa~)}. 

(ii) ZFC & CH F- I f  p is Rudin-Frol ik  minimal  then the set  o f  pre- 

decessors o f  p ~ ,  to E a E oo 1, is isomorphic to Prod(p,  Xn.(n,  e>). 

Proof: (l) I f f ~  '~o~ 1 let , I ,([f]  ) = ~;(X, p), where X is the first dis- 
crete sequence for which X(n )  - p [ ( n ) .  By the methods that have already 

been exploited above, this ~I, can be seen to be an embedding. 
(ii) Both of these structures are models of the theory P o t  2.12. 

In the remainder of this section we shall list some additional proper- 
ties of the semigroup of ultrafilters; first, 2.19 shall provide a cancella- 
tioa law, then we will consider some infinite distributive laws. 
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2.18. Lernma. (i) I f  p . q  =- r . q  t h e n  p = r. 

(ii) f f  p " q = r o s a n d  q is R u d i n - F r o l i k  m i n i m a l  then  e i ther  s = q a n d  

p = r, o r  there  is an u l t ra f i l t er  t ,~ttch t ha t  p = r .  t a n d  s - t .  q. 

(iii) I f  p . q = r . s a n d  p is R u d i n . F r o l i k  m i n i m a l  t hen  e i ther  s - q 

a n d  p = r, o r  there  is apt u l t ra f i ! ter  t s u c h  t ha t  r = p . t a n d  q - t .  s. 

Proof: Each of  the parts of  this l emma follows easily f rom 1.11 and 
2.4 (ii). 

2.19. Corollary. I f  p . q  = p . s  a n d  p is R u d i n - F r o l i k  m i n i m a l  t h e n  q = s. 

Proof: By 2.18 (iii), e i ther  q = s or there i~s a t with p = p -  t. Thus p > t, 

so that  e i ther  p = 1, in which case q = s, or t -~ 1, in which case q = s 
since q - t . s .  

There are several ways in which one might  try and ex tend  the  distri- 
butive law for  ultrafi l ter  products  to cover the case of  an infinite 
sequence of  ultrafilters; some of  these ex tend  rules hold,  o thers  do not.  
In 2.21 one can find a distributive law and an applicat ion for it and 
2.22 is devoted  to  a useful counterexample .  

2.20. I .emma. Z(X,  p )  < Z(Y,  p )  i f  a n d  o n l y  i f  {n  " X ( n )  < Y ( n )  } e p .  

Theorem 2.21 below is due to K.Kunen.  

2.21. Theorem.  (i) I f  Z is a d i scre te  s e q u e n c e  w i t h  Z ( n )  - ~;(X, Y ( n ) )  

t hen  Z, (X,  ~ ( Y ,  q ) )  - Z,(Z,  q) .  

(ii) Le~ R F  be the  R u d i n - F r o l i k  ordering.  The  order ing  o f  t he  R u d i n -  

F r o l i k  successors  o f  p is i s o m o r p h i c  to Prod(p ,  RF) .  

Proof: Part (i) follows direct ly f rom 2.20. For  part  (ii), one sets 

9 ( I X ]  ) = Z (Y, p)  where  Y is the first discrete sequence,  in some fixed 

well ordering, such that  X ( n )  = Y ( n ) .  Using 2.20 one sees that  9 is a 

m o n o m o r p h i s m  of  the desired sort. 

2.22. l, emma.  I f  Y is a d i scre te  s e q u e n c e  o f  u l traf i l ters  w i t h  Y ( n )  =- p , + 2 ,  

t hen  ~ , (Y ,  p )  - poa+l. 

Proof: Let X be a discrete sequence with X ( n )  = p , + l  and Z (X, p)  = p ' .  
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Using 2.20, one finds that p..~ < ~....,.~~'(Y" p)  so tha! there is a discrete 

sequence Z such that Y,(Y, p ) =  ~(Z, p " ) .  Now by 1.I 1, there as a set 

a = {n  : Y(n)  ~ ran(X)} ~ p. Choose a set of subsequences X n of X 

such that Y(n)  ~ r a n ( X  n ) when n ~ a, and such that there are mutually 
disjoint neighborhoods in ~N each containing the range of exactly one 

sequence X n . Let T be a discrete sequence with T(n) - -  ~2(Xn, / ( n ) ) f o r  

n ~ a. It is easily seen that ~ , ( T , p )  =- p,O so that {n" T ( n ) -  pn+l} E p. 

This means that {n : {m : X n ( m )  - p }  ~ pn+l } ~ p so that one can de- 

fine a subsequence X n of X n such that for each n, X ' ( m )  = p and 
{n : ~(X~n , pro+l) = Y(m)} ~ p. Let X' be a discrete sequence having 

each X n as a subsequence. It is clear that ~;(X', p~ )  = ~;(Y, p), but 
y ~ ( X , , p t O ) -  p .pro -_ pto+l 

2.23. Corollary. I f p  is non-principal  then p,O+l = p .  p,~ < pW . p.  

This co~-ollary shows that the semigroup of ultrafilters has a trivial 
center. It also provides a counterexample to the following erroneous 
distributive law: Z(X .p, q) = Z(X, p .q). If we choose X so that 
X ( n )  - pn+ 1 then ,Y.; (X- p, q) - p~O + l while Y~ (X, p 2 ) ~_ y~ (X, p ) .  p, by 

2.21 (i). In this insta:,ce, Z(X, p2) ___ pro .p which is not  equal to po~+l 

by 2.23. 
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§ 3. The Rudin-Keisler ordering 

There is a natural ordering of the ultrafilters which includes the 
Rudin-Frolik tree as a suborder; one says that p is less than q if it is a 
quotie.nt of q under some mapping of  the natural numbers. This idea 
commonly appears in work on ultrafilters - and on filters and measures 
as we~l - but the first uses, which are known to me, of the properties of 
this ordering are those of M.E.Rudin and H.J.Keisler. M.E.Rudin noticed 
that this ordering could be used to establish Frolik's theorem on the 
non-homogeneity of #N - N in place of the Rudin-Frolik ordering. 
H.J.Keisler used it to provide some counterexamples to statements in 
model theory obtained by abandoning a requirement, in certain theo- 
rems of model theory,  that  the language involved by countable - some 

of this appears in [4] .  

3.1. Definition. (i) If r E  tow, p and q are ultrafilters, t h e n f ( p )  = q 

whenever '7 = { f -  1 (a)" a ~ p }. 
(fi) One says that p -<0 q if there is an f such that f (q )  = p, and 

P <0 q i fp  <-0 q while p ~ q. 
(iii) I f p  <-0 q then one also says that p -<0 q ,  similarly p <0 q 

whenever p <0 q. 

3.2. Lemma. (i) I f  p < ~.q' then ~P <o ~q. 
(ii) { ~," 5~ <0 P } has power  at most  c. 

(iii) { q • [, <0 q } has power  2 c. 
(iv) / f p  <--0 q~ 60 r ,  then p <-o r.  
(v) The ordering ~ is wel'f dej'ined on the - equivalence classe.~ o f  

~Altrajfl~ers. 

Let ® = (o~, b)oc  - to- Keisler had considered <0 in the following form 
(which is equivalent t o f ( p )  = q): q = {a E_ o~ • Prod(p,  ~.) D [ f ]  ~_ a ] .  
This says, ioughl:~, that q is a non-standard principal ultrafilter in the 
model determine,~l by p. The next  theorem has been independently 
proved by many people including K.Kunen, H.J.Keisler, and M.E.Rudin. 
I t is sta~Led here for ultrafilters on a countable set but is really quite 

general. 
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3.3. Theorem.  I f f ( p )  = p, then {n : f ( n )  = n } ~ p. 

Proof:  L e t S =  {n ~ f ( n ) = n } , R  = {n : f ( n )  > n} ,  and T =  {n : f ( n )  < n } ;  
one can prove the  theorem by showing that  R u T q  p. 

S,~ppose that  T,5 ~. let T n = {rn : n  is the least integer such that  
fn  (m) q~ T}. Here 'y n" means lhe  n-fold iterate o f f ,  so that  

U { T n : n > 0} = T. Each of  the disjoint sets u { T2n : n ~ co } and 
U { Tzn+ 1 : n E co } can be in p only  if the o ther  is as well, this gives a 
contradict ion.  

Suppose R n = { rn : n is the least integer such that  f n  (m j ~ R }. Just  

as in the previous case one can s:~ that  ne i ther  u {R2n : n E co } nor  

U {R2n, l "n ~ co } can be i n p .  3'he set co - U {R n • n E co} can be par- 
t i t ioned in to  two pieces, in the s ne  manner ,  such that  when  one is in 
p the o ther  is in f ( p )  = p, thus R ~ p. 

3.4. Coroaary. (i) I f  p <-o q <-o P, then p - q. 
(ii) The relation <0 partially orders the = equivalence classes o f  

ultra filters. 

The next  theorem is due to H.J.Keisler; it shows that  the present  
ordering is not  a tree. 

3.5. Theorem.  Both o f  the following hold p <-o P "q and q <-o P "q; i f  q 
is non-principal, then p <0 P" q, while i f  p is non-principal, q <0 P" q. 

Proof: That  q -<0 P" q and that  strict less than obtains  when q is non-  
principal follows f rom 3.2 (i). The funct ion  f =  X(m, n)n sends p . q  
on to  p, so that  p <-0 P" q. l f f ( p  • q)  = p then  there is a pe rmuta t ion  g 
of  co such that  g f ( p .  q) = p and thas,  by 3.3, f is ident~.cal with g on an 
e lement  of  p. This clearly can never happen  when  p is non-principal.  

3.6. Theorem.  I f  no non-principal u!trafilter has less than e generators 
then the <0 ordering has at least c mutuall~ incomparable, elements. 

Proof:  We shall define two incomparable  ultrafilters by stages; it shall 

be clear how to obtain  c of  them. For  each t~ ~ c there are filters Qa 

and Pa such that  i f p  and q are ultrafilters which ex tend  them,  they are 
t~ e desired ultra filters. 
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Let (for : a ~- c) be a well orderin:5 of "~o, suppose that  Pt3 and Qa 
have been defined for t3 ,~ ot ~ c, and that each Pa and Qt~ are proper fil- 
ters having Jess than c gc;nerators and containing all complements of 
finite sets. Suppose, in ~_ddition, that if p extends Pa and q extends Qt~ 
fhenf~(p)  ~ ~- q and fo(q) 4: p. I f a = #  + 1 let P=Po and Q = Q~, and if 

is a limit ordinal let P be the filter generated by the complements of 
?inite sets along with u {Pt~ : t3 ~ a }. Define Q '.'n the correspording 
manner. Both P and Q have less than c generators and hence are not 
~altrafilters. Consider a set a c_ ~, such that  a ~ P and ~0 - a ~ P; if 
fa(a)  E-- Q then let P '  be the filter generated by P and { co - a } If 
f(~o - a) ~= Q let P '  be the filter generated by { a} and P. If ne:ther a nor 

w - a are in Q let Q' be generated by [ a ] along with Q and P '  by 
{w - a} aiong with P. 

Finally, consider a set b c_ co such that b ~ Q' and ~o - b q~ Q'. One 
ce~rries out the above construction again beginning with P '  and Q' and 
reversing the roles of P and Q. In this way one obtains Q" and P" ; 

finally let Q" = Qa and P" = Pa- 

It follows from the above theorem that assuming its hypothesis there 
must be Rudin-Frolik incomparable ultrafilters. The hypothesis is often 
Irue; it holds in any model of set theory obtained by adding enough 
Cohen reals or $olovay reals (random reals) so that the CH fails in the 
resulting extension; it is also a consequence of Martin's axiom. We shall 
see below that it holds if c is i-eal-valued measurable. 

Let h be a correspondence between s(w) and " 2 which assigns te 
each set its characteristic function, and let d be the map from " 2  to 
[ 0, 1 ] which assigns to each function the real for which it represents a 
binary expansion. In this way we obtain a subset, dh(p),  of the interval 
starting with an ultrafilter p. If a c_ ~ let F(a) be the filter generated by 
a and I(a) the ideal which is generated by a. It is readily seen that for 
any infinite-coinfinite set a, m ( d .  h(I(a))) = m(d .  h(F(a))) - O, where rn 
is Lebesgue measure. The following theorem is an immediate conse- 

quence of this fact. 

3.7. Theorem. I f  there is an extension ta o f  Lebesgue mwasure which is 

finitely additive and vuch that ts(u { Aa : a ~ K }) = 0 whenever each 
Aa c__ [0, 1 ] and Ia(Aa) = O, then no ultrafilter on ~o has less than ~+ 

generators. 
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§ 4. Minimal ultrafilters 

Z.Frolik introduced the Rudin-Frolik ordering - the 'producing rela- 

'don" of [3] -- to show that t3N - N is not homogeneous; W.Rudin has 

previously obtained the same result, assuming the con~:inuum hypothe-  
sis, '~y showing that t3N - N contains both p-points and points which are 

not p-point:~ and that the property of being a p-point is a topological 

invariant. The p-points, which we shall soon define, are minimal in the 

Rudin-Frolik ordering; they are again assuming the continuum hypothe- 

sis, mutuaqy interchangeable by a homeomorphism of/3N - N onto 
i t s e l f -  a fact which appeared in the paper [7] of W.Rudin. 

It is convenient here to use the notion of a generic set in a partml 

ordering which has been developed by R.Solovay. Thc defin' t ion of a 

generic set is a d~rect descendant "~f the 'generic' sets of P.Cc;hen [2] 

which were intended to be ideal sets of natural .qumbers whose seman- 

tical properties made them quite different from the common real. 

4.1. Definition. A dense subset D of a partial ordering 9 = (P, <_> ~s a 
subset of P such that any element of P is greater than an element of D. 

If<~ is a collect!on of dense subsets of 9 ~ and G _c p, then G is said to be 
c~9 generic for 9 if the following hold: 

(i) if x, y ~ G, there is a z E G such that z _< x and z <_ y; 
(ii) i fx  ~ G a n d x  <_y, t h e n y  ~ G; 

(iii) for eat.h D ~ @, D n G 4: 0. 

4.2. Definition. MA (~a)  is tile propositiol:: for each partial ordering 

having no uncountab, z set of mutually incomparable elements and for 
each collection O of less than ~a  = c dense subsets of  9 ~, there is a set 
which lsq) generic for :.~. MA is the porposition: 3a  >_ 1 MA(~a),  

The proposition MA is known as 'Martin's axiom'; it was formulated, 

as MA (~ 2), by A.Martin and shown consistent with ZF by him. The 
next lemma is essentially a theorem of Rasiowa and Sikorski - their 
result can be found in [ 51, page 87 - but stated here for K rather than 
CO. 

4.3. Lemma. I f  2~ = (P, < > is a partial ordering such that each descending 
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chain in 5~ o f  length less than ~ has a lower  bound ,  where  K is regular, 

and  ifcD is a set  o f  a t  m o s t  K dense subsets  o f  g , then there is a ct) generic 

se t  f o r  9 .  

4.4.  Coro l l a ry .  The theories  Z F C  & CH a zd Z F C  & M A  (~1)  are identical. 

4.5 .  T h e o r e m .  Z F C  & M A  b L e t  F be t~:e set  o f  ali f i t ters  on  co gener- 

a t ed  by  less than c e l emen t s  and  which  contain  no f i n i t e  sets, let  

= (F,  ~_ ), then any  decreasing chain o f  e l ements  o f F  o f  length less 

than c has a lower  b o u n d  in 5 r. 

Proo f :  S u p p o s e  t h a t  ( F  a • ~ ~ K ~ c) is a d e s c e n d i n g  cha in  in ~7 a n d  t h a t  

{a a c_ co • ~ ~ K } c o n s t i t u t e s  a set  o f  g e n e r a t o r s  o f  all t h e  F a ,  a 6 ~. 

F o r m  the  par t i a l  o r d e r i n g  (P,  <_ ) c o n s i s t i n g  o f  e l e m e n t s  

( s , t ) ~ u { n 2 " n ~ c o } ×  [ K ] < ~  ; 

tw o  such  e l e m e n t s  bea r  t he  r e l a t i o n  (So, t 0) <_ (Sl ,  t 1) w h e n  s o _~ s 1 , 

t o _~ t i , and  s o 1 ( 1 ) - a a  = s i- 1 ( 1 ) x~henever a ~ t I . E a c h  o f  t he  sets  

A a = {(s ,  t) • ~ ~ t}  a n d B  n = {(s ,  t) " n ~ d a m ( s ) }  is dense  i n P .  I t  is 

easi ly seen  t h a t  P has  n o  u n c o u n t a b l e  set  o f  m u t u a l l y  i n c o m p a t i b l e  

e l e m e n t s ,  so, u s ing  M A ,  o n e  m a y  a s s u m e  t h a t  t h e r e  is a set  G w h i c h  is 

gener ic  fo r  these  d e n s e  sets. T h e  set  b = { s - l ( 1 )  • s ~ G} gene ra t e s  a 

f i l te r  w h i c h  is a l ower  b o u n d  fo r  t he  cha in  (Fa). 

4.6 .  D e f i n i t i o n .  A n  u l t r a f i l t e r  p is a p - p o i n t  if  fo r  e ach  p a r t i t i o n  

{c n • n ~ co} o f  co w i t h  c n q~ p,  t h e r e  is an  a ~ p such  t h a t  fo r  each  n ,  

a n c n is f in i te .  

4 .7 .  T h e o r e m .  The f o l l o w i n g  are equivale~t  propert ies  o f  a non-principal  

ul traf i l ter  p: 

(i) p is a p-poin t ;  

(ii) i f  { c n c co : n ~ co} are e lements  o f  p, then there is an a ~ p such 

tha t  f o r  each n, a n (co - cn) is f in i t e ;  

(iii) i f  U n are open  sets in f3N wi th  p ~ [3 { U n : n E ,o} ,  then 

p ~ l n t ( f l { U  n : n E ~,} ); 
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(w) iJ" ( w ,  R ) is a l inear o rder ing  t h e n  there  is an a ~ p such  tha t  

(a, R n a 2) has  o r d e r  t y p e  to or  o~*; 

(v) each s e q u e n c e  ( x  n) in D ~ o  (D is t he  t t a u s d o r f f  space  o f  t w o  p o i n t s )  

has  a c o n v e r g e n t  s u b s e q u e n c e  ( x  n : n ~ a)  w h e r e  a ~. p .  

Proof: Propert ies  (i) and (ii) are clearly equivalent  and they  are equiva- 

lent to (iii) by translat ing them into  the language o f  the topo logy  o f  ON. 

To show that  (i) implies (iv) one observes that  any subinterval  I o f  

<~, R)  wi th  I ~ p has a cofinal  subset and this set de te rmines  a decom-  

posi t ion of  I in to  subintervals. I f  none  o f  these subinte.vals  were an 

e lement  of  p,  then  there  wou ld  be inf ini tely many  of  them;  so, by (i), 

there  would  be an ,.'ncreasing sequence in R of  type  w.  On the o the r  

hand,  suppose (~ ,  R )  were decomposed  so that  some subinterval  

<a e,  R n a2> were an e lement  of  p,  one wou ld  then  decompose  a 0 in to  

intervals. If  no such suNnterval  were in p ,  then  we would  be finished, 

because R would  have an increasing sequence,  o therwise  there  wou ld  be 

a subinterval  ( a l ,  R n a~>, a 1 c ao,  and a 1 ~ p.  Ei ther  we wou ld  finish 

the a rgument  in f initely many  steps or would  obta in  a descer~ ing  se- 

quence ,  a 0 _-2 a I _3 a 2 -~ . . . ,  o f  e lements  o f p .  In this case there  wou ld  

be a par t i t ion  {co - So, a 0 -- a l ,  a 1 - a2,  ... } which  using (J), wou ld  
provide an e lement  o f p  of  type  co, co*, or co + co*, and therefore  o f  
type  ~ or ~o* 

For  (iv) implies (v) one  observes that  D ~ 0 is the Cantor  set and that ,  

under  its lexicographic ordering,  any w or ~ *  sequence  will converge.  

To show that  (v) implies (i) one  lets { a n : n ~ co } be a par t i t ion  of  o., 

and sets xn  ( m )  = 1 i f n  ~ a 0 u ... u a n and  x n ( m  ) = 0 otherwise.  If  

(x  n : n ~ b) converges,  then  rather b c~ (a o u ... u a n ) is f inite or 

b n ( ~  - (a o u ... u a n ) )  is finite, the lat ter  ~ontradicts  the supposi t ion 
that  b E p while a~ ~ p. 

4.8. Defini t ion.  An ul t raf i l ter  p on ~ is Ramsey  if for each n and rn 6 ~ ,  

and e a c h f  : [ w i n  ~ rn there  is a n a  c_ co such that  f l s  cons tant  on [a !n ;  

in the c i rcumstances  one says that  f is h o m o g e a e o u s  on a. 

Most o f  the next  t heo rem is due to K .Kunen ;  he no t iced  that  (i), (it), 

and (v) are equivalent  and his p roof  that  (iv) implies (v) is used here to 

show that  they  are equivalent  to (ii) and (iii). 
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4.9° Theorem.  T h e  follc,  w i n g  are e q u i v a l e n t  proper t ie~  o f  a n o n -  

pr inc ipa l  u l t ra f i l ter  p:  

(i) p is R a m s e y ;  

(ii) i f  R c_ ~o 2 such  tha t  f o r  each n, { m : n R m  } E p then  there  is an 

a E p such  t ha t  a = { k  n : n E co},  k n < kn+l ,  a n d  kRkn+ 1 f o r  each 

n;  

(iii) i f  <~o, T> is a tree t hen  there  is an a ~ p w h i c h  is e i ther  a chain  or  an 

:,. ,~ t ichain ; 

(iv) i f  { c r • n E ~ } is a p a r t i t i o n  o f  ~ ,  c n q~ p ,  t hen  there  is an a E p 

such  tha t  f o r  each n,  a n c n has  at  m o s t  o n e  e l e m e n t ;  

(v) i f  f ~ r  each n,  a n E p ,  t h e n  there  is a f u n c t i o n  g such  tha t  

g ( n  + 1 ) E ag(n), g ( n )  < g ( n  + l ), a n d  ran(g) E p. 

Proof: We shall show that  (i) -~ (iv) -* (v) ~ (i); having done  this one can 

show that  (ii) and (iii) are equivalent  to the others  by showing that  
(i) ~ (ii) -* (iv) and (i) ~ (iii) ~ (iv). 

To see that  (i)-~ (ii) one defines a funct ion  f :  [ w ] 2  _~ 2 by 
f ({  n, m} ) = 1 exactly when  n R m ,  where n < m. By h y p o t h e s i s f  must  
be homogeneous ly  equal  to  one on a set in p ,  such a set satisfies the 
conclusion of  (ii). To see that  (ii) -~ (iv) one begins with a par t i t ion 
{Cn} of  w, where c n q~ p ,  and then  one defines a relation k R l  wh:ch 
holds exactly when  k ~ Cn, I E Cm, and n < m. 

Tlze implicat ions (i) -~ (iii) ~ (iv) are easily established. One prnves 
(i) --" ,iii) by defining f ({  m, n} ) = 1 exactly when m T n ;  a homog~ neous 

set for f g i v e s  ei ther  a chain or an antichain.  To show that  (iii) -~ (iv) 

one cors iders  a tree having countably  many  branches jo ined  at th,;ir 
base and each consisting o f  the e lements  o f  one piece of  the parti~ ion 
{c n }. There can be no chains lying in p and any antichain will ser~e to 

obtain the conclusion o f  (iv). 
The irr~plications (iv) -* (v) ~ (i) still remain. To show that  (iv) -* (v), 

let a n E p and suppose that  an+ 1 C_ a n . Since p is a p-point  it contains 
a set b s~ach that  b - a n is finite for each n. Say that  b = { k  n : n ~ ~ } 

with k n < kn+ 1 . Let f ( m )  be the.first  n such b - a m c_ k n . Now let 
A o = ~o - b,  Ak+ 1 = { l  E b : f k ( o )  < l _< fk+l(O)} where f o  is the 
funct ion  which is constant ly  zero, f I is f ,  a n d f  k+l i ~ f . f  k. By (iv) 

there is an a ~ p such that  a n A i has exactly one e lement  for each 

i ~ ~o. If ( l  i : i E 6o} is an enumera t ion  of  the distinct e lements  o f  
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{ a n  A z : i ~ w} in increasing order  and g (n )  = 12n, t h e n g  has the  prop- 

erties requi red  in (v). 

The p roof  tha t  (v) ~ (i) can be closely pa t te rned  upon  a popu la r  

p roof  of  Ramsey ' s  theorem.  

4.110. Theorem.  Z F C  & M A  ~ L e t  { c n • n ~ ~ } b e  a p a r t i t z o n  o f  o3 , a n d  

c n 13 {c  m • m > n }  ; s u p p o s e  t h a t F =  { ~  - c " V n ( c  n c n <_ 1)} u 

13 { e • o~ - e is f i n i t e  } .  I f  G is a f i l t e r  h a v i n g  less thm~ c g e n e r a t o r s  [ a a ],  

a n d  F u G u { c' n • n E c.~} tJ {b} has  t h e  f i n i t e  i n t e r s e c t i o n  p r o p e r t y ,  

t h e n  t h e r e  is a d c_ co s u c h  t h a t  f t ,  r each  a ,  d - a~  is f i~dte ,  a n d  

{c'  n • n ~ ~ }  u F u { b ,  d }  has  t h e  f i n i t e  in tersect ior~ ¢ r o p e r t y .  

Proof:  We first define a partial order ing (P, <_ ) in which a typical  ele- 

men t  has the form 

t = <<<s 0 , l(0)~, ..., <s n , ,'(n)>>, {~0, .... at: } ~ , 

where  n, k, l ( i ) ~  ~ ,  s t ~- [ ~ ] < w ,  and a z ~ K where  G has K genera tors  

[at, " a ~ K ]. Fu r t he rmore ,  we require tha t  s i c_ c t ( o ,  ~+1 > l ( i )  and 

l( i  + 1 ) > l( i) .  If  t '  is ano the r  e l emen t  o f  P having the same form as t 

except  w- i t ten  wi th  pr imes one  sets t '  _<_ t if n'  _> n, k' >_ k; each <s~, l ( i ) )  

appearing in t appears in t ' ;  each a t appear ing in t appears in t ' ;  and for  
t each s t appear ing in t" but  no t  i r  t and each a in t ,  s t c_ a a .  

We shall now defiiae come dense subsets o f  P,  A a = { t  ~ P "  ~ appears  

in t} and B t = { t ~ P "  for  some (s z, l ( i ) )  appearing in t ,  l ( i )  > l}.  It is 

obvious that  A a is dense because one can s imply acid an t~ to any  ele- 

m e n t  of  P in which  it does no t  appear  and thus  obta in  a lesser e l emen t  

of  P. To see that  B~ is dense one  first establishes the fo l lowing fact:  for  

each Ic, m ~ to and a E K there  is an l >_ k such tha t  b n c I n at~ > m. If  

/ t } to b e a s e t o f m  this were no t  the case one could  choose  {r  , ..., r m _  1 

dist inct  e lements  of  c t which  includes b n c l n aa .  Taking r z = 

= { r [ ' l _ > k }  we should have t h a t b n c  l n a a C _ r  o u . . . w r  m _ l . T h i s  

taeans tha t  b n c~ n ac~ n ( ~  - r m _  1 ) = 0 which  would  con t rad ic t  our  

hypothes is  concern ing  the finite in tersect ion proper ty .  It is easily seen 

tha t  P has no uncoun tab le  set o f  mu tua l ly  incompa tab le  e lements .  

Using M A  we may  now select a G which  is generic for  P and intersects  

each A a  and each Bt; the ~d' n f  the t heo rem is d = 13 {s z • for some t 6 P 
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and some l, (s i, l) appears in t }. The fact f i a t  d intersects A a  insures 
that  d - a a is f inite;  the fact d intersects  the sets B t insures that  

{ c~z " n ~ co} u F u { b, d }  has the finite intersect ion property.  

If G were only countab ly  generated then  4.10 would be provable 
wi thout  any axioms o ther  than  those o f  Z F C .  

4.11. Def'mition. (i) A par t i t ion {c  n : n ~ co} o f  co is u n b o u n d e d  if 
{ ~n : n ~ ~ } is unbounded .  

(ii) An ultrafil ter p is selective for the part i t ion {c n : n ~ co } of  ~ if 
there is an a ~ p such that  for each n, a n c n <_ 1. 

It has been shown above that  the ultrafilters which are selective for 
every part i t ion are exactly the Ramsey ultrafilters, thus the next  
theorem implies that  there are p-points  which are not  Ramsey. 

4.12. Theorem.  Z F C  & M A  ~- l f  {c  n : n ~ ~o} is an u n b o u n d e d  par t i t ion  

o f  co, then  there ex"sts ~, p - p o i n t  wh ich  is n o t  select ive  f o r  it. 

Proof: Let F =  {w  -- c • V n ( c  n c n <_ 1)} u {e • ~ - e is finite} as in 
t 

4.10; let c n = U { c ,  • m > n} .  Give a well ordering <A a e ~ c> of  all 

part i t ions of  a we shall def ine a sequence (Fa : a ~ c) of  filters having 
the following propert ies:  

(i) F 0 is the filter generated by F;  
(ii) each Fa  can be generated by F o Ga, where Gc~ has power  less 

than c; 
(iii) i f8 is a positive limit ordinal,  then  F 6 = O {Fa • a ~ 8} ; 
(iv) if Aa = [ a~ • n ~ co ], e i ther  there  is an n with an~ ~ Fa÷ 1 or for 

each n, d c TM a~ is finite. 

Once a sequence ( F  a) having these propert ies  has been def ined one 
can ex tend  F c ~o an ultrafil ter p which would  have to be a p-point ,  on 
account  of  (iv), and could no t  be selective for { c n } because it includes 
F. 

Condi t ion  (iii~ describes the manner  in which F 8 is def ined for limit 

ordinals; we will now define Fa+ 1 . Call the part i t ion Aa+ 1 '{a n } ', rather 

than '{ana}', as before ~",, = Ll{a m • m > n} . I f F  a o {a~ • n ~ ~o} lacks 
the finite interse ztion proper ty ,  then  there is an i such that  Fa u {a z } 
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has the finite in tersect ion proper ty ;  let Fa+ l ,  in this case, be the filter 

generated by Ft~ u { a i }. 
We may suppose,  then,  that  Ft~ u {a n • n ~ to} has the finite inter- 

section property.  One may,  by (ii), choose a set G o f  ~ < c generators  

for Fa beyond  those o f F  0. By 4.10 there is a set d s,,~ch that  d - a is 

f inite for each a ~ G, such that  tile filter generated by F 0 u { d } in- 

cludes F~, and such that  F 0 u {d} u {a n • n ~ to} has the finite inter- 

section property.  Again by 4.10 we can ex tend  this set to F 0 o { d} u 
u .','an • n ~ to} u {y} which also has the finite intersect ion proper ty  

and such that  y n a n is finite fm each n. Let Fa be the filter generated 
t by F 0 u {d} u {a n • n E to} u {y}  ; this shows how to comple te  the 

const ruct ion of  the filters F a 

4.13. Corollary. ZFC & MA b- There pxtsts a dense set in {3N o f  p-points  

which are no t  Ramsey .  

The existence of  Ramsey ultrafilters was first shovm, assuming the  

CH, by F.Galvin. 

4.14. Theorem.  Z I  2 & M A  H There exists in {3N a dense set o f  R a m s e y  

u ltrafilters. 

Proof: Let f : [to ]" --, m and let Af  = {F ~ cy : 3a  ~ Y ( f  is homogene-  

ous on a)} - he ie  we are using the no ta t ion  of  4.5. Let B a = 

= { F ~  5 r : a ~ F or (to - a) ~ F} ; the sets B a are dense in 9 r and,  using 

Ramsey 's  theorem,  one can see that  the sets A f  are dense too. By 4.3 
and 4.5 there is a G which is generic for these dense sets; U G is a Ram- 

sey ultrafilter. T:, show that  they  are dense one just  relativizes the con- 

struction to an olJen set. 

The next  t heo -em is an obvious consequence  of  4.7 and is s tated 

here just  to show the relat ionship be tween  this section and part 2 of  

this paper. 

4.15. Theorem.  I f  p is a p~point, then p is Rudin-Fro l ik  minimal. 

4.16. Defini t ion.  (i) The P(r  ) ultrafil ters a" those ultrafil ters p such 
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t h a t  f o r  e v e r y  s e q u e n c e  ( aa  • a ~ >, ~ K) t h e r e  is a b ~ p such  t ha t  f e r  

e a c h  a ~ ?~, b - a a is f ini te .  

The P(~ 1 ) ultrafilters are exactly the p-points; MA implies that there 
exist P(c) ultrafilters. This last fact can be shown by adapting the con- 
stn,.ction of [ 7] to the combinatorical principle of 4.5. 
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