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An ultrafilter on a set is a proper collection of subsets of that set
which is maximal among such collections having the finite intersection
property. Ultrafilters were popularized by N.Bourbaki for their use in
describing topological convergence, but for some time there was little
discussion of the possible structural properties that an individual ultra-
filter might possess. This paper is concerned only with ultratilters on a
countable s:t and a method of describing them by building them from
certain minimal ultrafilters; most of the work here has conme from
Chapters 1, 2, and 4 of [1]. The first part of this paper describes a cer-
tain tree of ultrafilters and the third part describes an ordering in which
this tree is embedded; the remaining two parts deal with finimal ultra-
filters and with products of ultrafilters.

Theorems and lemmas are always thought of herc as being proved in
Zermelo-Fraenkel set theory with the axiom of choice, ZFC. If a
theorem T is to be proved in some other set theory, say the theory I', it
is stated in ZFC in the following manner:

Theorem. T I T.

An ordinal is always the set of all inferior ordinals and we shall
always regard a cardinal as an initial ordinal — the first two infinite
initial ordinals are w and w . The cardinal 280 will often be wiitten ‘c’;
‘®” and ‘A’ are reserved for cardinals. The proposition X, = ¢ will often
be called ‘CH". The symbol ‘[ A] X’ stands for the set of all subsets of A
of power A and ‘[ A]<?’ consists of those subsets of power less than .
The set of all functions from A to B will be writtea ‘AP’



2 D.Booth, Ultrafilters on a countable et

Some concepts from model theory and topology will occasionally
appear; gX is, of course, the Stone-Cech compactification of X, N is the
discrete countable space. The cardinal numbear of a set A is written A.

There is also some notation in this paper which is less widely used.
We shall let St(w) be the set of all ultrafilters on w and St¥{w) the set
of non-principal ultrafilters; ultrafilters on « will usually be lower case
Roman letters, especially ‘p’ and ‘q’. The ultraproduct of the structures
{U%; : 1€ 1} by the ultrafilter D on I shall be written ‘Prod(D,Ai. ¥,)’.
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§ 1. The Rudin-Frolik ordering

The Rudin-Frolik ordering of ultrafilters was defined by Z.Frolik [3]
— who called it the ‘producing relation’ — and nearly defined by M.E.
Rudin [6]. M.E.Rudin, in unpublish:d work, first showed that it was an
ordering; Frolik used it to prove tha: 8N — N is not homogeneous.

1.1. Definition. A sequence X € @ St(w) is discret+ if there is a sequence
(@, : n € w) of subsets of w such thata, € X(n) and g, N a,, = C when
n# m. If X is any such sequence, discrete or not, X is the set of those
ultrafilters p € St(w) such that for each @ € p there is an n € w with

ac Xn).

1.2. Definition. (i) If X € WSt®(w) and p € St(w), then Z(X, p) =
={aCw:{n:acXmn)} ep}.

(ii) If X € WSt(w) is discrete and p € X, then Q(X, p) =
={aCw:VbepIncalbeXn)}.

Tne operations £ and Q are inverse to each other; this fact 1s the
point of the following lemma.

1.3. Lemma. If X € St(w) is ¢iscrete and p € St(w), then
() Z(X,p)eX;

(i) ifpe X, then Q(X, p) € St(w);

(i) ifp € X, T(Q(X, p)) = p;

(iv) QX,Z(X, p)) =p;

) X, p)€ X ifand only if p is principal;

(vi) ifp € X, then Q(X, p) is principal if and only if p € X.

The following definition provides an equivalence relation among
ultrafilters so that two equivalent ones have exactly the same set
theoretical properties.

1.4. Definition. If fis a permutation .. : such thatg={ (g):a€p}
where p,q € St(w), then one says that, _;3) = q. If for some permutation
f, f(p) = g, then p = q. The equivaleuce class, under =, containing p is

p.

~
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1.5. Lemma. If X, Y € @ St(w) are discrete and ¢ is a bijectién from
ran(X) to ran(Y) then there is a unique homeomorphism ¥ exterding ¢
mapping X onto Y.

Proof: Let ¥ (p) = 2(X, 2(X, p)); ¥ extends ¢ because of 1.3 (v) and
(vi); it is onto because ¥ (Z (X, Q(Y, p))) = p. To see that ¥ is wel’
defined one uses the fact that ¥(Z (X, Q(X, ¢))) = (Y, Q(X, ¢)). Thz
rest of the lemma follows by checking the effects of ¥ in the topology
of gN.

1.6. Lemma. If p € St(w), a € p and a is injinite, then p, =
={bna:bep}isanultrefilteronaand p,= p.

Proof: This is obvious if p is principal or if w — & 1s finite. Suppose that
ap = w — a is infinite, choose a,, < a such thata_, € p and ay — q, is
infinite. Let {a, : # 2 1} be a partition of ag — a,, into mutually dis-
joint infinite pieces. Take f,, to be a bijection of a,,; ontoa, and f, to
be the identity on a,, then f(p,) =p where f=U{f, :a€ > +1}.

The next lemma is due to M.E.Rudin.

1.7. Lemma. The following are equivalent:

(1) There is a discrete X € @ St¥(w), such that q = Z(X, p);

(2) There cre discrete sequences X, Y € WSt®(w) such that
ran(X) N ran(Y) = 0, ran(X) C Y, and there is an r € St¥ (w) with
r=2X,p)=2(Y,9q).

Proof: Assume (1) in the form q = £(Z, p) and let Y € @St¥(w) with
ran(Y) discrete. Using 1.5, one may exte. d the natural homeomorphism
of ran(Y) onto N to a ¢ mapping Y onto gN. For .is ¢, -1 @)=
=2(Y,q)=2(p~1(2Z), p) since ¥(£(Y, q)) = Z(N, q) = q. To establish
(2), one setsr = p~1(g) and X == ¢~ 1 (2).

Conversely, if X, Y, p, g anc r play the roles required by (2), ore
selects a homeomorphism ¢ of ran(Y) onto N; by 1.5 this can be ex-
tended to a map of Y onto gN. One obtains (1) by putting g =
=Z(¥(X), p).

1.8. Definition. When the state of affairs of 1.7 takes place one says thet
p<gq.
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Tho ordering of 1.8 is what we shall call the ‘Rudin-Frolik’ ordering.
In [3], Frolik showed that each element has 2¢ successors and at most
. predecessors. Since any two ultrafilters which can be mapped to each
other by a homeomorphism of BN — N have exactly the same predeces-
sors he was able to conclude that BN — N is not homogeneous. The next
results are due to M.E.Rudin: 1.9 is essentially in her paper [6], 1.10is
an unpublished result due to her, and 1.11 uses 1.10 tc conclude that
the Rudin-Frolik ordering is indeed an ordering.

1.9. Lemma. Let X, Y € ¥ St (w) be discrete and let p < X N Y, then
there exist subsequences X' and Y', of X and Y respectively, such that
QX,p)=QX', p), QY,p)=Q(Y', p), and such that one of the fol-

lowing t/.re¢ holds:

i) ran X' ~ranY' =0andran X' C Y';
(ii) ranX'NranY' =0andran Y' € X';
(iii) ran X'=ran Y'.

1.10. Theorem. If p < q, then p # q.

Proof: Suppose that p < g, then there exist anr, X, and Y with

ran(X) N ran(YY= OS'an(jf) CY, andr=2(X, p;) =2(Y,p,) where

p; = p, = p. One may permute the elements of the sequences XandY
to obtain new sequences X' and Y’ such thatr=Z(X', p) = 2(Y', p).
Let us hereafter call these new sequences ‘X’ and ‘Y’ again. Suppose that
(a, € w : n € w)renders X discrete asin 1.1;let C(n) =

={k€w:a, € Y(k)and n < k}. One now defines two sets R and B by
stages.

Ry={k:k¢u{Cn):new}};
let [y be the least integer not in Ry, then
B,=U {Cn):ne R} UCUy),
R,. =U{Cn):neU{B,:i<m}};

Let [y be the least integer not in R, then
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By=U{Cm}:ne Ry} v ),
R, =U{CwH):ncU{B:i<m}}.

Let !, ,; be the least iateger not contained in U {R,: i< m+1} U
UU{B,:i<m}. Now, take

B, =U{C):neU{R:i<m+1}} v C(,,).

To finish the theorem one observes that puttingR =U {R; . i€ w},
B=U{B,;:i€ w} provides two sets such that w = RU B, RN B =0,
and R € Q(X, r) exactly when B € Q(Y, r). This contradicts the
assumption that Q(X,r)=Q(Y,r)=p.

1.11. Theorem. (i) r<g-<p implies that r<p.
(i) { p:p< q} is a linear ordering,.

Proof: (i) If r < q < p then there are sequences X and Y for which
p=Z(X,q)= E(Y r). f case (ii) of 1.9 holds then r < p. Case (iii)
would mean that r=gq in violation of 1.10. It only remains to show
that case (i) is zmposmble If (i) held, one would have r < q < 14 < r.
By the method of 1.7 one can obtain sequences X, Y, “and Z with
r=2X,n=x,q)=2Z(Z, p). butr=2(X, r) means that r < r, con-
tradicting 1.10 again. R
Theorems 1.10 ard 1.11 serve to show that the Rudin-Frolik ordering
is a tree; we shall see in the next theorem thut it is not well-founded
- part 2 contains stronger versions of this result.

1.12. Theorem. The Rudin-Frolik ordering is not well-founded.

Proof: Let X, be a discrete sequence, and choose X,,, to be a discrete
sequence of elements of X, — ran(X,,). Since N is compact, there 1s a

pe U{X, W E w}. It follows that g,,4; < g, where g, = Q(X,, p).
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§ 2. The semigroup of ultrafilters

The foliowing definition of the product of ultrafilters, similar to the
definition of product measure, turns N into a semigroup.

2.1. Definition. If p and ¢ are ultrafilterson «w thenp-g =
={aCwXw:{m:{n:(n,my€a} €p} €q}. One writesp - q for
the r such that r = p - q, a convention justified by the next lemma.

2. Lemma. (i) p-q is an w/trafilter.
(i)p-@nr=@q)r
(i) If p=r.thenp-q=r-4.
(v) Ifp=sr.theng-p=q-r.

Proof: Each part can be demonstrated by an easy computation.

2.3. Definition. Let St be the set { p : p € St(w)}. If p is principal one
writes ‘1’ for ‘p’.

The definitions above make (St, -, 1) into a semigroup with unity.
Soon we shall see that it is non-commutative, has a trivial center, is right
cancellable, and has no left or right identities apart from 1.

2.4. Theorem. (i) If X is discrete, X € St (w), and (X, p) = q, then
Er-X,p)sr-qwhen (- X)(n)=r-Xn).

(ii) If X is discrete, X € St (w), and for each n, X(n) = p, thgn
ZX,9)=p-q.

(i) If X is discrete, X € St¥ (w), t € St(w),and p = £(X, q), then
there is a discrete sequence Y such that ran(Y) Nran(X)=0,p-t =
=32(Y,qg-t)and ran(X) C Y.

Proof: (i) Suppose thata€r-q,leta,, ={n:n,m€a}. Since
Z(X.p)=gq, one finds that {k: {m:q,, € r} € X(k)} = p. This means
that{k:a€r-X(k)} € psothata€ =(r-X,p), thusr-q < 2(r- X, q).
Since both r-q and Z(r- X, gq) are ultrafilters, they must be equal.

(i) Let {C,:n € w} be a partition of w with C, € X(n), setv,, =
={n,m): n€ w}. Letg, be a bijection fromv,, onto c,, such that if
h is the bijection from v, onto w sending(n, m) to n, then g, h~1(p)=



8 D.Booth, Ultrafilters o,* a countable set

=p, ={anc, :a€t} where t=p. Suchag,, exists by 1.6. Letting
g=U{g, :mEw},orehasthat g(a) € (X, q) fora € p-q. This
means thatg(p -q) € Z(X, g) so that g(» -q) = (X, q).

(iii) By (ii), there is a discrete sequence P with p -t = (P, t) and
P(n) = p for each n. Suppose that {c; : kK € w} renders P discrete. Using
1.6 we may choose a discrete sequence Y, with ¢; € Y, (n), for each n,
and P(n) = Z(Y,, q). The ‘Y’ of the theorem can be any sequence whose
range is U {ran(Y,): k € w}. To see this one maps w in a one-to-one
manner onto w X  sending ¢, onto w X {n}.

2.5. Levama. If X is a discrete sequence of ultrafilters such that cach
X(n) is minimal above l in the Rudin-Frolik ordering then q is minimal
above p whenever q = T, D).

Proof: Suppose r<gq, then there is a discrete Y such that = (X, p)=
=Z(Y,r). By our assumptlon case (i) of 1.9 is impossible, but either
case (ii) or case (iii) implies that r < p.

2.6. Definition. If S is a function from w 1nto St(w) then F[0] = F(0)
and Fln + 1] =F[n] - F(n + 1).

2.7. Thecrem. For each k € w, there are discrete sequences of ultra-
filters Xg, ..., Xy_.y such that Flk + 1] s Z(X,, F(k —i) - F(k + 1))
where, for each n, X;(n)= Flk — i — 1] and ran(X,) € ran(X,,, ), while
ran(X,) N ran(X]-) =0 wheni+#j.

Proof: One proceeds by induction on k; when k=0, F[1] = (Y, F(0))
and one may take Y as the ‘X’ of the theorem.

By defihition Flk+ 1] = F{k] -F(k + 1), so that F[k+ 1] =
=2(Y, F(k + 1)) where for each n, Y(n) = F{k]. Suppose that Y is ren-
dered discrete by the disjointed set {¢, : n € w }. Using the induction
hypothesis one can obtain discrete sequences Z, , i < n — 1, such that
c, €N{ran(Z)): i€ w}, Y(n)= Z(Z' Fn — 1 - 1) - F(n)) and for
eachm, Z, (m)= Flrn — 2 — i].

Let Xy =Y, and let X;,; be a discrete sequence whose range is
U[ran Z"q :n € w]. Itis clear that ran (X)) € ran(X;,,) and ran(X;) N
N ran(X;) = 0 when-s # / because of the corresponding facts concerning
the sequences Z;;. The rest of the theorem follows from 1.9 and 2.4 (iii).
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" Frolik spoke of the operation Z as an infinite sum of ultrafilters, we
shall now define something akin to an infinite product. The theorem
immediately above was introduced for its application to this notion of
a product.

2.8. Definition. Let F be a seyuence of ultrafilters. Fix a well ordering
of sufficiently many sets to permit one to define II(F, p) = Z(X, p)
where X is the first discrete sequence such that X(n) = F[n]. If for each
n, F(n)=p, then I(F, p) = p¥.

Surely I1(.7, p) 1s well defined. This equivalence class of ultrafilters
appears in the nexi theorem which serves to show that many different
orderings can be embedded into the Rudin-Frolik tree.

2.9. Theorem. Fcr 2ach function F from w to St* (w) and each non-
principe! ultrafilter p, there is an isomorphism ¢ of Prod(p, \n -(n, &)}
into the Rudin-Frolik predecessors of L(F.p).

®rrof: From the definition of IN(F, p) we know that I(F, p) = Z(X, p)
whure X(n) = Fln!. We may suppose that the sequence X is rendered
rascrete by the disjointed sequence (¢, & w : n € w). One can now use
2.7 and 1.6 to obtain discrete sequences X (’)’”, s X gf} which have the
properties of 2.7 (except that ‘4’ of 2.7 is ‘n’ here) but such that for
each i and m, ¢, € X' (m). Given a pressing down function on w (one
with f(n) < n, for positive n), one can define a discrete sequence Xf
such that ran(X,) = U { ran(X ?(:il)) : n € w}. The embedding ¢ is de-
fined by @([f1) = QSJQLH(F, p)).

It remains to be shown tha :?Z~(X 1 I(F, p)) < Q(X,, N(F, p)) when-

Pt Nt PN TN N N s N P N Py PN PN PN PN PN P Pt
ever

Prod(p, An.{n,e) = [f]1 < lg].

Whenever the latter holds we may suppose there is an a € p such that if

n+1€a, then QX731 Fin+11) <QX22L . F(n+1)). The de-

fartl)’ &
N Pt PN P PN e Py P Pt PN PN PNt Pt PN Tt PN Pt PN PG Ped Pt N4

sired result then follows from 1.6.

2.10. Corollary. The Rudin-Frolik ordering contains a chain of type w ’1"
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Proof: Such a chain cai be found in Prod(p, An.(n, €)).

2.11. Corollary. The Rudin-Frolik ordering contains a chain orcered
like the reals.

Proof: The structure Prod(p, An.(n, €)) has type w +8 + w* where 8 is
the type of a dense linear ordering. Since «w +6 + w* is the type of an
N saturated ordering, @ must be an n; ordering and ther=fore contains
a chain similar to the reals.

Let us now find the theory of the ultraproduct which appears in 2.9
above. The next theorem gives axioms for this theory; if one were to
assume the continuum hypothesis the theorem wouid follow imme-
diately from basic results concerning saturated models. Here ‘=’ denotes
elementary equivalence.

2.12. Theorem. If p and q are non-principal uitrafilters then
Prod (p, An.{(n, e)) = Prod (g, An.{n, &). In fact, both are equivalent to
{w + w*, <.

Proof: We expand the la~puage appropriate for these structures to a
new language having two new countably infinite sets of constants,
{c,,d, : n € w}, and a unary function parameter, S. The theory I' con-
sists of the conszquences of that set of axioms which specify a strict
ordering with a first element, ¢, and a last element, d, such that ele-
ment other than dy has an immediate successor which is given by S.
Furthermore, we require that Sdy =dy,8d, ., =d,.Sc, =c,4y,and
that ¢, < d,, for each n and m.

The structure (w + w*, <) is a reduct of a model of I'. By eliminating
quantifiers in ' one can see that I' is complete; it follows that the ap-
propriate expansions of (w + w*, <), Prod(p, An.(n, €)) are all elemen-
tarily equivalent and are therefore themselves equivalent.

2.13. Corollary. (i) ZFC & CH ~ If p and q are non-principal then
Prod (p, An.(n, €)) and Prod(q, \n.(n, €)) are isomorphic.

(ii) If p and q are Rudin-Frolik minimal then the orderings of their
predecessgrs areNmutually isomorphic.
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The prc .ess of exponentiation can be continued through the count-
able ordinals.

2.14. Definition. First, fix a well ordering of enough sets to carry out
the rest of this definition. Already we have defined p* and p”?,n € w;
let p%*! be the equivalence class of the first ultrafilter g such that

q = p-p%, and if & 1s 7 positive limit ordinal then p® = (X, p) where
(8, : n € w) is the first sequ~nce of countable ordinals whose union is §
and X is the first discretc sequence with X(n) = p%n.

2.15. Theorem. For each o € wy, there is a discrete sequence X such
that X 'n) = p%n for some a,, € a, p® = =(X. p), and, in addition, these
discrele sequcnces can be chosen so that if g € a, p® = Z(X, p),

p? =2 (Y, p), X(») =p®n and Y(n) = pPn, then B, € w, for all but
finitelv manv » € w.

Proof: If « is a limit ordinal the definition of p® insures that it is of the
form £(X, p). If « =8 + 1, then, by induction, pf = (X, p) where
X(n)=pPrn. By 24 (i), Z(p-X,p)=p-p® = pb*l = p® where
(p-2)n)=p-X(n)= an”. It is easily shown by induction that the
sequences defined in this way satisfy the final clause or the theorem.

2.16. Corollary. If 8 € a, then pf < p%.
2.17. Theorewn. (i) There is an order preserving monomorphism of the
ultraproduct Prod(p,{w, &) into {g A€ w, (g < pﬁ)}.

(ii) ZFC & CH ~ If p is Rudin-Frolik minimal then the set of pre-
decessors of p°‘, w € a € w,, is isomorphic to Prod(p, An.(n, e)).

Proof: (1) If fe Yw, let¥([f])= E(X p), where X is the first dis-
crete sequence for which X(n) = pf (n). By the methods that have already
been exploiied above, this ¥ can be seen to be an embedding.

(ii) Both of these structures are models of the theory I' o1 2.12.

In the remainder of this section we shall list some additional proper-
ties of the semigroup of ultrafilters; first, 2.19 shall provide a cancella-
tion law, then we will consider some infinite distributive laws.
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2.18. Lemma. (i) Ifp-g=r-qthenp=r.

(i) If p-q = r-sand q is Rudin-Frolik minimal then either s = q and
p = r,or thereisan ultrafilter t such that pEr-tands=t-q.

(iii) If p-q = r-s and p is Rudin-Frolik minimal then either s = q
and p = r, or there is an ultrafilter t such that r = p-tandq=t-s.

Proof: Each of the parts of this lemma follows easily from 1.11 and
2.4 (ii).

2.19. Corollary. If p-q=p -s and r is Rudin-Frolik minimal then q = s.

Proof: By 2.18 (iii), either ¢ = s or there isa t withp=p-¢. Thusp > ¢,
so that either p = 1, in which case g = s, or ¢t = 1, in which case g = s
sinceqg=t-s.

There are several ways in which one might try and extend the distri-
butive law for ultrafilter products to cover the case of an infinite
sequence of ultrafilters; some of these extend rules hold, others do not.
In 2.21 one can find a distributive law and an application for it and
2.22 is devoted to a useful counterexample.

2.20. Lemma. (X, p)< Z(Y,p)ifand only if {n: X(n)< Y(n)} € p.

Theorem 2.21 below is due to K.Kunen.

2.21. Theorem. (i) If Z is a discrete sequence with Z(n) = (X, Y(n))
thenZ(X,Z(Y,q))=Z(Z, q).

(ii) Le. RF be the Rudin-Frolik ordering. The ordering of the Rudin-
Frolik successors of p is isomorphic to Prod(p, RF).

Proof: Fart (i) follows directly from 2.20. For part (ii), one sets
¥(X1)= E(Y p) where Y is the first discrete sequence, in some fixed
well ordermg, “such that X (n) = Y(n). Using 2.20 one sees that ¥ isa
monomorphism of the desired sort.

2.22. Lemma. If Y is a discrete sequence of ultrafilters with Y(n) = pn+?,
then (Y, p)= pw+!,

Proof: Let X be a discrete sequence with X(n) = p"*! and Z (X, p) = pw.
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Using 2.20, one finds that p« < £(Y. p) so that there is a discrete
sequence Z such that E(Y,}ﬁ-‘- f(%?ﬁw ). Now by 1.11, there 1s a set
a={n:Y(n)eran(X)} € p. Choose a set of subsequences X, of X
such that Y(n) € ran(X,,) when 7 € a, and such that there are mutually
disjoint neighborhoods in §N each containing the range of exactly one
sequence X,,. Let T be a discrete sequence with T'(n) = Q(X,,, 7(n)) for
n € a. It is easily seen that Z(7, p) = p« so that {n: T(n)= p"*l} € p.
This means that {n: {m: X, (m)=p} € p™1} € p so that one can de-
fine a subsequence X, of X, such that for each n, X.(m) = p and
{n:=(X,,,p"*1)=Y(m)} € p. Let X' be a discrets sequence having
each X, as a subsequence. It is clear that Z(X', pw) = Z(Y, p), but
X', pw)=p-pw =pwtl

2.23. Corollary. If p is non-principal then p@*l = p - p» < pw - p.

This corollary shows that the semigroup of ultrafilters kas a trivial
center. It also provides a counterexample to the following erroneous
distributive law: Z(X -p,q)= Z(X, p - q). If we choose X so that
X(n)=pn*l then Z(X - p, g)= pw*! while Z(X, p2)= (X, p)p, by
2.21 (1). In this instance, Z(X, p2) = p¥ - p which is not equal to pw+1
by 2.23.
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§ 3. The Rudin-Keisler ordering

There is a natural ordering of the ultrafilters which includes the
Rudin-Frolik tree as a suborder; one says that p is less than g if it is a
quotient of ¢ under some mapping of the natural numbers. This idea
commonly appears in work on ultrafilters — and on filters and measures
as well — but the first uses, which are known to me, of the properties of
this ordering are those of M.E.Rudin and H.J Keisler. M.E.Rudin noticed
that this ordering could be used to establish Frolik’s theorem on the
non-homogeneity of BN — N in place of the Rudin-Frolik ordering.

H.J Keisler used it to provide some counterexamples to statements in
model theory obtained by abandoning a requirement, in certain theo-
rems of model theory, that the language involved by countable — some
of this appears in [4].

3.1. Definition. (i) If f€ “w, p and q are ultrafilters, then f(p)=¢q
whenever 7 ={f"1@):a€p}.

(ii) One says that p <, g if there is an f'such that f(g) = p, and
p<yqifp<yqwhilep¥gq.

(iii) If p <4 g then one also says that p <, ¢, similarly p <, g
whenever p < q. -7 -7

3.2. Lemma. (i) If p < q,then p <; q.

i) {g:¢<gp} has power at most c.

(iii) {g:7 <o q} has power 2¢.

(iv) 1fp<0 q<0 r,then p<qgr.

v) The ordermg <0 is well dejzned on the = equivalence classes of
ultrafilrers.

Let & = {w, b))y, - Keisler had considered < in the following form
{which is equivalent to f(p) =¢q): q = {aC w :Prod(p,2)E[f] €a)l.
This says, 1oughly, that g is a non-standard principal ultrafilter in the
model determined by p. The next theorem has been independently
proved by many people including K.Kunen, H.J Keisler, and M.E.Rudin.
It is stated here for ultrafilters on a countable set but is really quite
general.
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3.3. Theorem. If f(p) = p, then {n:f(n)=n} € p.

Proof: Let S={n.fG)=n} . R={n:fm)>n},and T={n: f(n)< n};
one can prove the theorem by showing that R U T € p.

Snuppose that T < p. let T, = {m : n is the least integer such that
fm(m)€ T}. Here ‘77" means the n-fold iterate of f, so that
U{7,:n> 0} =T. Each of the disjoint sets U {7, :n € w} and
U{T,,+; 17 S w} can be in p only if the other is as well, this gives a
contradiction.

Suppose R,, = {m : n is the least integer such that f"(m)€¢ R}. Just
as in the previous case one can s.; that neither U {R,, :n € w } nor
U{R,,,1:"nE€w}canbeinp. Theset w - U{R, :n€ w} can be par-
titioned into two pieces, in the s ne manner, such that when one is in
p the other is in f(p) =p, thus R & p.

3.4. Corollary. (i) If p <y q <o p,thenp=gq.
(ii) The relation < partially orders the = equivalence classes of
ultrafilters.

The next theorem is due to H.J.Keisler; it shows that the present
ordering is not a tree.

3.5. Theorem. Both of the following hoid p <y p-qand q<,p-q;ifq
is non-principal, then p <y p - q, while if p is non-princival, g <y, p-q.

Proof: That g <, p-q and that strict less than obtains when ¢ is non-
principal follows from 3.2 (i). The function f = N(m, n)n sends p - g
onto p, so thatp <, p-q. If f(p-q) = p then there is a permutation g
of w such that gf(p - q) = p and thus, by 3.3, fis identical with g on an
element of p. This clearly can never happen when p is non-principal.

3.6. Theorem. If no non-principal wltrafilter has less than c generators
then the < ordering has at least ¢ mutually incomparable elements.

Proof: We shall define two incomparable ultrafilters by stages; it shall
be clear how to obtain ¢ of them. For each « € c there are filters Q,
and P, such that if p and g are ultrafilters which extend them, they are
tt e desired ultrafilters.
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Let (fy : @ € ©) be a well orderin:: of “w, suppose that P; and Qg
have been defined for § = a € ¢, and that each P; and @, are proper fil-
ters having less than ¢ generators and containing all complemeaits of
finite sets. Suppose, in eddition, that if p extends Py and g extends Qg
then f4(p) # q and fo(g@)# p. lfa=4+1 let P=Pg and Q=0 and if
w is a limit ordinal let P be the filter generated by the complements of
finite sets along with U {P; : 8 € a}. Define Q in the correspording
manner. Both P and Q have less than ¢ generators and hence are not
ultrafilters. Consider a set @ C « such thata€ Pand w —a € F;if
fy(@) € Q then let P’ be the filter generated by P and {w —a} If
f(w —a) € O let P’ be the filter generated by {a} and P. If neither @ nor
w — a are in Q let Q' be generated by [a] along with Q and P’ by
{w —a} along with P.

Finally, consider a set b C w such thatb¢ Q" and w — b & Q'. One
cerries out the above construction again beginning with P’ and Q' and
reversing the roles of P and Q. In: this way one obtains Q" and P”;
finally let Q" = 0, and P" = P,

It follows from the above theorem that assuming its hypothesis there
must be Rudin-Frolik incomparable ultrafilters. The hypothesis is often
true; it holds in any model of set theory obtained bv adding enough
Cohen reals or Solovay reals (random reals) so that the CH fails in the
resulting extension; it 1s also a consequence of Martin’s axiom. We shall
see below that it holds if ¢ is real-valued measurable.

Let & be a correspondence between s(«w) and « 2 which assigns tc
each set its characteristic function, and let 4 be the map from «2 to
[0, 1] which assigns to each function the real for which it represents a
binary expansion. In this way *ve obtain a subset, dh(p), of the interval
starting with an ultrafilter p. If a C w let F(a) be the filter generated by
a and I(a) the ideal which is generated by a. It is readily seen that for
any infinite-coinfinite set a, m(d - h(/(a))) = m{d - h(F(a))) = 0, where m
is Lebesgue measure. The following theorem is an immediate conse-
gquence of ttis fact.

3.7. Theorem. If there is an extension p of Lebesgue mwasure which is
finitely additive and such that p(U { Ay : « € k }) = 0 whenever each
Ay €10, 1] and u(Ay) = 0, then no ultrafilter on w has less than x*

generators.
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§ 4. Minimal ultrafilters

Z Frolik introduced the Rudin-Frolik ordering — the ‘producing rela-
t:on’ of [3] -- to show that 8N — N is not homogeneous; W.Rudin has
previously obtained the same result, assuming the continuum hypothe-
sis, v showing that 8N — N contains both p-points and points which are
not p-points and that the property of being a p-point is a topological
invariant. The p-points, which we shall soon define, are minimal in the
Rudin-Frolik ordering; they are again assuming the continuum hypothe-
sis, mutually interchangeable by a homeomorphism of N — N onto
itself — a fact which appeared in the paper [ 7] of W.Rudin.

It is convenient here to use the notion of a generic set in a partial
ordering which has been developed by R.Solovay. The defin'tion of a
generic set is a direct descendant »f the ‘generic’ sets of P.Cchen [2]
which were intended to be ideal sets of natural numbers whose seman-
tical properties made them quite different from the common real.

4.1. Definition. A dense subset D of a partial ordering ? =(P,<)1sa
subset of P such that any element of P 1s greater than an element of D.
If @ is a collection of dense subsets of ? and G € P, then G is said to be
D generic for ? if the following hold:

(i) ifx,y€ G, thereisaz& Gsuchthatz<xandz<y;

(ii) ifx€ G and x <y, theny € G;
(iii) foreachDeEeD, DN G+ 0.

4.2. Definition. MA(R ) is the proposition: for each partial ordering ?
having no uncountab. set of mutually incomparable elements and for
each collection D of less than 8 , = ¢ dense subsets of P, there is a set
which 1s D generic for 2. MA is the porposition: Ja > 1 MA(R ).

The proposition MA is known as ‘Martin’s axiom’; it was formulated,
as MA(R ;), by A.Martin and shown consistent with ZF by him. The
next lemma is essentially a theorem of Rasiowa and Sikorski — their
result can be found in [5}, page 87 — but stated here for x rather than
w.

4.3. Lemma. If ? = (P, <) is a partial ordering such that each descending
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chain in P of length less than k has a lower bound, where « is regular,
and if T is a set of at most k dense subsets of P, then there is a D generic
set for .

4.4. Corollary. The theories ZFC & CH a1d ZFC & MA(R ) are identical.

4.5. Theorem. ZFC & MA +— Let F be tke set of all filters on w gener-
ated by less than c elements and which contain no finite sets, let
F=(F, D), then any decreasing chain of elements of F of length less
than c has a lower bound in F.

Proof: Suppose that (F, : @ € k € ¢) is a descending chain in F and that
{a, € w : a € k} constitutes a set of generators of all the F, o € «.
Form the partial ordering (P, <) consisting of elements

(s, revu{"2:new} X {x]<“’ ;

iwo such elements bear the relation (sg, #y) < {5y, #;> when sg 2 5¢,
tg 2 t;,and s(‘,l(l)— ay = sl“l(l) whenever a € ¢,. Each of the sets
Ag={¢s, ) :a€t}and B, ={(s, 1) : n € dom(s)} isdense in P. It is
easily seen that P has no uncountable set of mutually incompatible
elements, so, using MA, one may assume that there is a set G which is
generic for these dense sets. The set b= {s~1(1): s € G} generatesa
filter which is a lower bound for the chain (F).

4.6. Definition. An ultrafilter p is a p-point if for each partition
{c, :n € w} of w with ¢, & p, there is an a € p such that for each n,
a N ¢, is finite.

4.7. Theorem. The following are equivalent properties of a non-principal
ultrafilter p:
(1) p is a p-point,
(ii) if {c, € w:n € w} are elements of p, then there is an a € p such
that for each n, a N (w — c,)) is finite;
(iii) if U, are open sets in BN with p € N { U, : n € w}, then
peInt(N{U, :n€ w}),
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() if' {w, R) is a linear ordering then there is an a € p such that
{a, R N a?) has order type w or w*;

(v) each sequence {x,) in DXo (D is the Hausdorff space of two points)
has a convergent subsequence (x, : n € a) wherea € p.

Proof: Properties (i) and (ii) are clearly equivalent and they are equiva-
lent to (iii) by translating them into the language of the topology of gK.
To show that (i) implies (iv) one observes that any subinterval / of

{w, R) with I € p has a cofinal subset and this set determines a decorn-

position of / into subintervals. If none of these subinte_vals were an
element of p, then thare would be infinitely many of them; so, by (i),
there would be an increasing sequence in R of type w. On the other
hand, suppose {w, R) were decomposed so that some subinterval
{ag, RN a%) were an element of p, one would then decompose g, into
intervals. If no such subinterval were in p, then we would be finished,
because R would have en increasing sequence, otherwise there would be
a subinterval (a; ,R N a‘;'), a, € ay, and a; € p. Either we would finish
the argument in finitely many steps or would obtain a descering se-
quence, ay 2 ay 2 @, 2 ..., of elements of p. In this case there would
be a partition {w — ay, g — a;, a; — a,, ...} which using (1), would
provide an element of p of type w, w*, or w + w*, and therefore of
type w or w*.
For (iv) implies (v) one observes that DR s the Cantor set and that,
under its lexicographic ordering, any w or w * sequence will converge.
To show that (v) implies (i) one lets {a,, : » € w} be a partition of w
and sets x,(m)=1if n € ay U -+ U a, and x,,(m) = 0 otherwise. If
(x, : n € b) converges, then either b N (ay U - U a,)) is finite or
b N (w—(ag V- Va,)) is finite, the latter ~ontradicts the supposition
that b € p while q, ¢ p.

4.8. Definition. An ultrafilter p on w 1s Ramsey if for eachn and m € w,
and each f: [w]” = m there is an a C w such that f1s constant on [a!”;
in the circumstances one says that f is homoge.eous on a.

Most of the next theorem is due to K.Kunen; he noticed that (i), (ir),
and (v) are equivalent and his proof that (iv) implies (v) is used here to
show that they are equivalent to (ii) and (iii).
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4.9. Theorem. The following are equivalent properties of a non-
principal ultrafilter p:
(i) p is Ramsey;
(ii) if R € w? such that for each n,{m :nRm} € p then there is an
a€ psuch thata={k,:n€ w},k, <k,.,,and kRk,,, foreach
n;
(iii) if {w, T is a tree then there is an a € p which is either a chain or an
antichain
(iv) if{c, - n € w} is a partition of w, c, & p, then there isan a € p
such that for each n,a N c,, has at most one element,;
(v) if for each n, a, € p, then there is a function g such that
gn+1)€ay,),gn)<gm+1),andran(g) € p.

Proof: We shall show that (i) = (iv) = (v) = (i); having done this one can
show that (ii) and (iii) are equivalent to the others by showing that
(i) = (i1) = (iv) and (i) = (iii) = (v).

To see that (i) - (ii) one defines a function f: [w]2 = 2 by
f({n.m})=1 exactly when nRm, where n < m. By hypothesis f must
be homogeneously equal to one on a set in p, such a set satisfies the
conclusion of (ii). To see that (ii) = (iv) one begins with a partition
{c,} of w, where ¢, € p, and then one defines a relation AR/ wh'ch
holds exactly whenk € c,,l€c,,,andn < m.

The implications (i) = (iii) - (iv) are easily established. One proves
(i) - .iii) by defining f({ m, n}) = | exactly when mTn; a homogt neous
set for f gives either a chain or an antichain. To show that (iii) > (iv)
one corsiders a tree having countably many branches joined at their
base and each consisting of the elements of one piece of the partiiion
{c,}. There can be no chains lying in p and any antichain will serve to
obtain the conclusion of (iv).

The implications (iv) = (v) = (i) still remain. To show that (iv) - (v),
let a, € p and suppose thata,,; € a,. Since p is a p-point it contains
a set b sach that b — a,, is finite for each n. Say that b= {k, :n€ w}
with &, < k. Let f(m) be the-first n such b — a,, C k,. Now let
Ag=w—b, Ay, ={1€b: fXO0)<IL f*¥*1(0)} where £O is the
function which is constantly zero, f1 is f, and fk*1 i; f- fk_ By (iv)
there is an a € p such that a N A4; has exactly one element for each
i€ w.If {l;: i€ w} is an enumeration of the distinct elements of
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{an A,:i€ w} in increasing order and g(n) = /,,, then g has the prop-
erties required in (v).

The proof that (v) - (i) can be closely patterned upon a popular
proof of Ramsey’s theorem.

4.10. Theorem. ZFC & MA + Let {c, :n € w} be a partition of w, and
c,=U{c,, : m>n};suppose that F={w — ¢ : Vn(c-*ﬂxcn <D
U{e: w—eisfinite}. If G is a filter having less than ¢ generators [ay ],
and FU G U {c, :n€ w} U {b} has the finite intersection property,
then there is a d C w such that jor each o, d — ay, is finite, and

{c;, : n€ w} UFU {b,d} has the finite intersectior. property.

Proof: We first define a partial ordering (P, <) in which a typical ele-
ment has the form

=8, 10N, oy (s, 20, {ag, s 0 1),
where 1, k, (i) € w, 5, € [w]<w¥, and a, € kx where ¢ has k generators
[aq : @ € k]. Furthermore, we require that s; C ¢y, 5,41 > I({) and

G+ 1)> I(¥). If t' is another element of P having the same form as ¢
except w-itten with primes cne sets ¢’ < tif n’ > n, k' > k; eacia (s,, I(i))
appearing in ¢ appears in ¢'; each a, appearing in ¢ appears in ¢'; and for
each s, appearing in ¢ but not ir ¢t and each e in ¢, 5, C a,.

We shall now define come dense subsets of P, 4, = {f € P: « appears
int} and B, = {t € P: for some (s,, I(i)) appearing in ¢, I(}) > I} . It is
obvious that 4, is dense because one can simply add an « to any ele-
ment of P in which it does not appear and thus obtain a lesser element
of P. To see that B, is dense one first establishes the following fact: for
each k, m € w and a € « there isan /> & such that b N ¢, N ay > m. If
this were not the case one could choose {r(’), e r,’n _1} to be a set of m
distinct elements of ¢; which includes & N ¢; N a,. Taking r, =
={r!:1> k} we should have that b N ¢, N ay Cryg U =~ W r,, _;. This
wmeans that b N ¢; N gy N (w — r,, _1 )= 0 which would contradict our
hypothesis concerning the finite intersection property. It is easily seen
that P has no uncountable set of mutually incompatable elements.

Using MA we may now select a & which is generic for P and intersects
each 4, and each B,; the ‘d’ of the theorem isd =U {s, : for some t € P
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and some /, {s;, I) appears in ¢ }. The fact that d intersects A, insures
that d — 4y, is finite; the fact d intersects the sets B, insures that
{c¢;, :n€ w} U FU {b, d} has the finite intersection property.

If G were only countably generated then 4.10 would be provable
without any axioms other than those of ZFC.

4.11. Definition. (i) A partition {c, : n € w} of w is unbounded if
{C, : n € w} is unbounded.

(ii) An ultrafilter p is selective for the partition {¢, : n € w} of w if
there is an a € p such that foreachn,anc, < 1.

It has been shown above that the ultrafilters which are selective for
every partition are exactly the Ramsey ultrafilters, thus the next
theorem implies that there are p-points which are not Ramsey.

4.12. Theorem. ZFC & MA + If {c, : n € w} is an unbounded partition
of w, then there ex’sts ¢ p-point which is not selective for it.

Proof: Let F={w--c:Vn(cnc, < 1)} U{e: w— eisfinite} asin

4.10;letc, =U{c, : m> n}. Give a well ordering (A4, : « € ¢) of all

partitions of a we shall define a sequence (F, : « € ¢) of filters having

the following properties:

(i) F is the filter generated by F;

(ii) each Fy can be generated by ¥ U G, where G, has power less
than c;

(iii) if & is a positive limit ordinal, then Fy =U {F, - a € 8} ;

(iv) if Ay = [af : n € w], either there is an n withaf € Fy,, or for
each n, d r af is finite.

Once a sequence (F,) having these properties has been defined one
can extend F, io an ultrafilter p which would have to be a p-point, on
account of (iv), and could not be selective for {c, } because it includes
F.

Condition (iii} describes the manner in which Fj is defined for limit
ordinals; we will now define F, ;. Call the partition A5, ‘{a,}’, rather
than ‘{a8}", as before ., =U{a,, :m>n}. If Fy U {a, : n € w} lacks
the finite intersection property, then there is an i such that Fz U {a,}
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has the finite intersection property; let Fg,, in this case, be the filter
generated by F, U {a;}.

We may suppose, then, that Fy U {a, : n € w} har the finite inter-
section property. One may, by (ii), choose a set G of x < ¢ generators
for Fz beyond those of Fyy. By 4.10 there is a set d such thatd - a is
finite for each a € G, such that the filter generated by F, U {d} in-
cludes Fy, and such that Fy U {d} U {a, : n € w} has the finite inter-
section property. Again by 4.10 we can extend this set to ¥, U {d} U
U ‘a, :n € w} U {y} which also has the finite intersection property
and such that y N a,, is finite fo1 each n. Let F be the filter generated
by Fy U {d} U {a, : n€ w} U {y}; this shows how to complete the
construction of the filters F,

4.13. Corollary. ZFC & MA + There exists a dense set in N of p-points
which are not Ramsey.

The existence of Ramsey ultrafilters was first shown, assuming the
CH, by F.Galvin.

4.14. Theorem. ZI ~ & MA + There exists in BN a dense set of Ramsey
ultrafilters.

Proof: Let f: [w]" > mandlet 4, = {Fe ¥ :3ae F(fis homogene-
ous ona)} — heie we are using the notation of 4.5. Let B, =

={F€ ¥ :a€ F or{w — a) € F}; the sets B, are dense in F and, using
Ramsey’s theoreri, one can see thiat the sets A¢ are dense too. By 4.3
and 4.5 there is a C which is generic for these dense sets; UG is a Ram-
sey ultrafilter. T show that they are dense one just relativizes the con-
struction to an open set.

The next theo~em is an obvious consequence of 4.7 and is stated
here just to show the relationship between this section and part 2 of
this paper.

4.15. Theorem. If p is a p-point, then p is Rudin-Frolik minimal,

4.16. Definition. (i) The °(x) ultrafilters a- those ultrafilters p such
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that for every sequence (@, : @ € X\ € k) there is a b € p such that fer
eacha € A, b — a, is finite.

The P(X ) ultrafilters are exactly the p-points; M4 implies that there
exist P(c) ultrafilters. This last fact can be shown by adapting the con-
struction of [7] to the combinatorical principle of 4.5.
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