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Abstract

We realize the norms of certain composition operators Cϕ with linear fractional symbol acting on the
Hardy space in terms of the roots of associated hypergeometric functions. This realization leads to simple
necessary and sufficient conditions on ϕ for Cϕ to exhibit extremal non-compactness, establishes equiva-
lence of cohyponormality and cosubnormality of composition operators with linear fractional symbol, and
yields a complete classification of those linear fractional ϕ that induce composition operators whose norms
are determined by the action of the adjoint C∗

ϕ on the normalized reproducing kernels in H 2.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let D = {z ∈ C: |z| < 1} be the unit disk in the complex plane. The classical Hardy space
H 2 consists of those holomorphic functions on D whose Taylor coefficients about the origin are
square summable. The space H 2 is a Hilbert space with inner product given by〈 ∞∑

j=0

aj z
j ,

∞∑
k=0

bkz
k

〉
=

∞∑
j=0

aj b̄j .
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As a consequence of Cauchy’s integral formula, point evaluation is a bounded linear functional
on H 2. Thus, for each w ∈ D, the Riesz representation theorem guarantees a unique function
Kw ∈ H 2 such that

f (w) = 〈f,Kw〉
for all f ∈ H 2. The function Kw is called the reproducing kernel at the point w and is given by
Kw(z) = (1 − w̄z)−1.

Given an analytic map ϕ : D → D, the composition operator Cϕ is defined on H 2 by
Cϕf = f ◦ ϕ. A direct application of Littlewood’s subordination principle [13] shows that Cϕ is
in fact a bounded linear operator on H 2. Though boundedness is established with relative ease,
in only special cases is ‖Cϕ‖ known. In general, calculating the norm of a composition operator
appears to be a difficult problem.

Recall that a bounded linear operator T on a Hilbert space is compact if the image of the closed
unit ball under T has compact closure. Thus, one way to try to compute ‖Cϕ‖ is to compare it to
the essential norm

‖Cϕ‖e = inf
K cpt

‖Cϕ + K‖.

While it is clear that ‖Cϕ‖e � ‖Cϕ‖, this inequality may be strict. For example, if ϕ(z) =
2/(3 − z), then 0 < ‖Cϕ‖e < ‖Cϕ‖ (see [3, Theorem 3.9]). Because computing essential norms
of composition operators on the Hardy space is often easier than computing norms, one would
be interested to know precisely which self-maps ϕ of the unit disk result in composition op-
erators having norm equal to essential norm. Such operators are said to exhibit extremal non-
compactness.

In this paper we obtain necessary and sufficient conditions on the linear fractional map
ϕ : D → D for the equality ‖Cϕ‖e = ‖Cϕ‖ to hold. Our method involves interpreting the norm
representation recently discovered by Bourdon et al. [3] in terms of hypergeometric function
theory. In the next section we develop the background necessary for the sequel.

2. Background

For any holomorphic map ϕ : D → D we have

1

1 − |ϕ(0)|2 � ‖Cϕ‖2 � 1 + |ϕ(0)|
1 − |ϕ(0)| (1)

(see, e.g., [9, Corollary 3.7]). Equality is achieved on the left when ϕ is constant and on the
right when ϕ is inner [14]. The precise value of ‖Cϕ‖ is known in a few other cases as well.
For example, when ϕ(0) = 0, Eq. (1) implies that ‖Cϕ‖ = 1. Or when ϕ(z) = sz + t (s and t

necessarily satisfying |s| + |t | � 1), C. Cowen has computed

‖Cϕ‖ =
√

2

1 + |s|2 − |t |2 + √
(1 − |s|2 + |t |2)2 − 4|t |2

in [6].
In attempting to compute the norm of a linear operator T : H → H, one often works with the

positive operator T ∗T and attempts to compute ‖T ∗T ‖ = ‖T ‖2. The ingredients that can make
this approach particularly successful when dealing with the composition operator Cϕ : H 2 → H 2

are twofold.
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First, Hammond shows in [12] that if ϕ is an analytic self-map of D such that ‖Cϕ‖ > ‖Cϕ‖e,
then there exists a nowhere vanishing function g ∈ H 2 such that C∗

ϕCϕg = ‖Cϕ‖2g.
Second, when ϕ(z) = (az + b)/(cz + d) is a non-constant linear fractional map the adjoint of

Cϕ is computable via Cowen’s formula

C∗
ϕ = Tγ Cσ T ∗

ν

where γ (z) = 1/(−b̄z + d̄), ν(z) = cz + d , σ(z) = (āz − c̄)/(−b̄z + d̄) and Th is the analytic
Toeplitz operator with symbol h.

Using these two facts, the quest to compute ‖Cϕ‖ when ϕ(z) = (az+b)/(cz+d) and ‖Cϕ‖ >

‖Cϕ‖e is reduced to looking for the largest eigenvalue of C∗
ϕCϕ . Toward this end, Hammond

established in [12] that if f is an eigenvector for C∗
ϕCϕ with corresponding eigenvalue λ, the

functional equation

λf (z) = ψ(z)f
(
τ(z)

) + χ(z)λf (0) (2)

holds at every z for which the auxiliary maps

ψ(z) = (ad − bc)z

(āz − c̄)(−b̄z + d̄)
, χ(z) = c̄

−āz + c̄
, and τ(z) = ϕ

(
σ(z)

)
(3)

are defined.
Iteration of Eq. (2) ultimately leads to the following theorem of Bourdon, Fry, Hammond and

Spofford which appears as Theorem 3.5 and Corollary 3.6 in [3].

Theorem 2.1. Let ϕ(z) = (az + b)/(cz + d) be a non-automorphic linear fractional mapping
that fixes the point 1. Then ‖Cϕ‖ > ‖Cϕ‖e if and only if there exists a number Λ > ‖Cϕ‖2

e such
that

∞∑
k=0

χ
(
τ [k](ϕ(0)

))[ k−1∏
m=0

ψ
(
τ [m](ϕ(0)

))](
1

Λ

)k+1

= 1. (4)

Moreover, the largest Λ (when there is one) for which Eq. (4) holds is ‖Cϕ‖2.

In general, it is not easy to tell whether Eq. (4) has any solutions. In special circumstances,
however, one can use this equation to good effect. For instance, in [3] Bourdon et al. show that
if ϕ(z) = (α − 1)/(α − z) for some α > 1, then ‖Cϕ‖ > ‖Cϕ‖e (the specific case α = 3 was
mentioned in the Introduction). The proof is via the intermediate value theorem and depends
critically upon the fact that the coefficients of the series in (4) are all real for this particular kind
of ϕ.

It is a major goal of this paper to circumvent this dependence on real coefficients in the series
of Theorem 2.1 and show that ‖Cϕ‖e very rarely equals ‖Cϕ‖ for linear fractional ϕ. The key
observation toward this end is the subject of the next section.

3. Hypergeometric series

A hypergeometric series is a series
∑

ak such that the ratio ak+1/ak is a rational function
of k. In general, the numerator and denominator of ak+1/ak will be polynomials in k of arbitrary
degree. Of particular importance to us, however, is the special case

2F1(a, b; c; z) ≡
∞∑ (a)k(b)k

(c)kk! zk, (5)

k=0
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where (α)0 = 1 and (α)k = (α)(α + 1) · · · (α + k − 1) for k = 1,2,3, . . . .
The function 2F1(a, b; c; z) is called the hypergeometric series of variable z with parame-

ters a, b, c. Note that the parameter c cannot be a negative integer. By the ratio test, the series
converges absolutely for |z| < 1 and therefore defines an analytic function on D.

Thanks to Euler, Gauss, Riemann and others much is known about the function 2F1, as well
as generalized hypergeometric functions having more parameters. We shall need various facts
concerning 2F1 along the way, but for a full treatment see the Bateman manuscript [11] or the
treatise of Andrews et al. [1].

The remainder of this section is devoted to showing that the series in (4) is in fact hyperge-
ometric whenever ϕ is a non-automorphic, non-affine linear fractional self-map of D (extremal
non-compactness of Cϕ is already settled for automorphic and affine ϕ; see [3,6,16,17]). We
begin with several lemmas.

Lemma 3.1. Suppose ϕ : D → D is a non-affine linear fractional map that fixes the point 1. Then
ϕ is of the form

ϕ(z) = (1 + q + qd)z + (d − q − qd)

z + d
, (6)

where q = ϕ′(1) > 0 and d ∈ C \ D̄.

Proof. Because ϕ is not affine, the linear coefficient in the denominator is non-zero. We may
therefore assume without loss of generality that ϕ(z) = (az+b)/(z+d). Since ϕ(1) = 1, a+b =
1 + d . Thus,

ϕ(z) = az + (1 + d − a)

z + d
.

Differentiating, we find that

ϕ′(z) = (a − 1)(d + 1)

(z + d)2
. (7)

Now, because ϕ(1) = 1 the Julia–Carathéodory theorem implies that q ≡ ϕ′(1) > 0. Substituting
z = 1 in (7) yields a = 1 + q + qd and

ϕ(z) = (1 + q + qd)z + (d − q − qd)

z + d

as claimed. �
We note that not all maps of the form in the above lemma are self-maps of the disk. Indeed,

ϕ(0) = 1 − q(d + 1)/d shows that q and d cannot be chosen independently if one hopes to
obtain a self-map. Examination of the conformally equivalent map f = T ◦ ϕ ◦ T −1, where
T (z) = (1 + z)/(1 − z) maps the disk onto the right half-plane, shows that ϕ : D → D if and only
if �{(d − 1)/(d + 1)} � q . This condition will play a role later.

Lemma 3.1 is useful in that it pares down the number of parameters we must deal with.
Because we wish to eventually analyze the series of Theorem 2.1, we would also be well served
to simplify the auxiliary maps associated to the linear fractional map ϕ. Recall that if ϕ(z) =
(az + b)/(cz + d), then σ(z) = (āz − c̄)/(−b̄z + d̄) and τ(z) = ϕ(σ(z)). The next lemma gives
an explicit representation of τ in terms of the parameters q and d of Lemma 3.1.
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Lemma 3.2. Suppose ϕ : D → D is of the form

ϕ(z) = (1 + q + qd)z + (d − q − qd)

z + d
.

Then the associated map τ is of the form

τ [k](z) = T −1(f [k](T (z)
)) = (1 − kb)z + kb

−kbz + 1 + kb
, (8)

where

b = |d|2 − q|1 + d|2 − 1

q|1 + d|2 . (9)

Proof. It is customary (and exceedingly useful) to work with the “right half-plane version” of τ .
Specifically, let f = T ◦ τ ◦ T −1 where T (z) = (1 + z)/(1 − z) is the conformal mapping that
takes the unit disk onto the right half-plane. Note that f = (T ◦ ϕ ◦ T −1) ◦ (T ◦ σ ◦ T −1) is just
the composition of the right half-plane versions of ϕ and σ . We easily compute

(
T ◦ ϕ ◦ T −1)(z) = z

q
+ d − 1

q(d + 1)
− 1

and

(
T ◦ σ ◦ T −1)(z) = qz + d̄ − 1

d̄ + 1
− q.

Composing, we obtain

f (z) = (
T ◦ ϕ ◦ T −1) ◦ (

T ◦ σ ◦ T −1)(z) = z + 2(|d|2 − q|1 + d|2 − 1)

q|1 + d|2 ≡ z + 2b.

The utility of this right half-plane version of τ is now evident; the map f (z) is just translation
of the half-plane by the non-negative real number 2b. The k-fold iterate f [k] is therefore given
by f [k](z) = z + k(2b) and we finally obtain

τ [k](z) = T −1(f [k](T (z)
)) = (1 − kb)z + kb

−kbz + 1 + kb
(10)

as desired. �
With this firm grip on the auxiliary map τ , we are now in a position to show that the series

∞∑
k=0

χ
(
τ [k](ϕ(0)

))[ k−1∏
m=0

ψ
(
τ [m](ϕ(0)

))]
xk+1

is hypergeometric whenever ϕ is a non-affine linear fractional self map of the unit disk. For con-
venience we remind the reader of the auxiliary maps corresponding to ϕ(z) = (az + b)/(cz + d)

that were discussed in Section 2:

ψ(z) = (ad − bc)z

(āz − c̄)(−b̄z + d̄)
and χ(z) = c̄

−āz + c̄
.
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Theorem 3.3. Let ϕ : D → D be a non-affine, non-automorphic linear fractional map that fixes
the point 1. Then

ϕ(z) = (1 + q + qd)z + (d − q − qd)

z + d

and
∞∑

k=0

χ
(
τ [k](ϕ(0)

))[ k−1∏
m=0

ψ
(
τ [m](ϕ(0)

))]
xk+1 = 1 − 2F1(α,β; δ;x/q) (11)

where

α = 1 + d

qb|1 + d|2 , β = d + dd̄

qb|1 + d|2 , and δ = 1

qb
.

Proof. The form of ϕ is guaranteed by Lemma 3.1. Thus, ϕ(0) = (d −q −qd)/d and Lemma 3.2
shows that

τ [k](ϕ(0)
) = (1 − kb)ϕ(0) + kb

−kbϕ(0) + 1 + kb
= 1 − q(1 + d)

d + qb(1 + d)k

(where b is given by Eq. (9) above).
Let

∑∞
k=0 akx

k+1 be the series on the left side of equality (11). To show that the series is
hypergeometric, we analyze the quotient

ak+1

ak

= χ(τ [k+1](ϕ(0)))ψ(τ [k](ϕ(0)))

χ(τ [k](ϕ(0)))
. (12)

This appears to be a daunting task. Upon substituting the formulas for the functions ψ and χ

(with the coefficients for ϕ already in terms of q and d) and the value for τ [k](ϕ(0)) obtained
above, a fair amount of simplification takes place. Continuing from (12) we have

ak+1

ak

=
{

q[d(1 + d̄) − q|1 + d|2 + qb|1 + d|2k]
[q(|d|2 − 1) + q2(b − 1)|1 + d|2 + q2b|1 + d|2k]

}

×
{

d(1 + d̄) + qb|1 + d|2 + qb|1 + d|2k
[q(|d|2 − 1 + |1 + d|2) − q2|1 + d|2 + q2b|1 + d|2k]

}
.

While we are encouraged because ak+1/ak indeed appears to be a rational function of k, this
current incarnation of the quotient is far from practical. Factoring out a q from each term in the
denominator and dividing top and bottom by (qb|1+d|2)2 we finally arrive at the more palatable

ak+1

ak

= 1

q

[α + k + 1][β + k + 1]
[k + 2][δ + k + 1] , (13)

where

α = 1 + d

qb|1 + d|2 , β = d + dd̄

qb|1 + d|2 , and δ = 1

qb

are just as in the statement of the theorem.
It remains to prove that

∑∞
k=0 akx

k+1 = 1 − 2F1(α,β; δ;x/q). Consider the series∑∞
k=0 bkx

k+1 where the coefficient bk is given by

bk = (α + 1)k(β + 1)k
(

1
)k

.

(δ + 1)k(k + 1)! q
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By design, the quotient bk+1/bk = ak+1/ak satisfies Eq. (13). Because the first coefficient of any
such series determines the remaining coefficients, we must have

∞∑
k=0

akx
k+1 = a0

b0

∞∑
k=0

bkx
k+1 = a0

b0

∞∑
k=0

(α + 1)k(β + 1)k

(δ + 1)k(k + 1)!
(

1

q

)k

xk+1. (14)

Now, utilizing the facts that b0 = 1, a0 = χ(ϕ(0)), and ζ(ζ + 1)k = (ζ )k+1 whenever ζ = 0
and k = 0,1,2, . . . (recall that α, β and δ are all non-zero), we continue from (14) to obtain

q
χ(ϕ(0))δ

αβ

∞∑
k=0

(α)k+1(β)k+1

(δ)k+1(k + 1)!
(

x

q

)k+1

= q
χ(ϕ(0))δ

αβ

[
2F1(α,β; δ;x/q) − 1

]
.

Finally, a simple computation shows that

χ(ϕ(0))δ

αβ
= − 1

q

and the proof is complete. �
It is worth noting that the maps ϕ of Theorem 3.3 above may be written in terms of the

parameters α and β from the outset. Indeed, if ϕ : D → D is a non-automorphic linear fractional
map that fixes the point 1, then ϕ may be written

ϕ(z) = (β̄ − 1)z + α + 1

ᾱz + β
,

where α, β and δ = ᾱ + β are precisely the parameters that appear in the associated hypergeo-
metric series. While certainly appealing on aesthetic grounds, we will see that the parameter d

has a good deal to say about two interesting operator theoretic questions regarding Cϕ . Since one
may determine d at a glance given an arbitrary non-affine linear fractional self-map of the disk,
it is convenient to continue working with our qd-parameterization.

Because so much is known about hypergeometric functions, we may parlay the information
contained in Theorem 3.3 to garner information about the norms of a great many composition
operators with linear fractional symbol. Specifically, the work of the next section will show that
such operators are rarely extremally non-compact and, as a consequence, their norms are rarely
exhibited by the action of the adjoint C∗

ϕ acting on the normalized reproducing kernels in H 2.

4. Extremal non-compactness

Given a linear fractional map ϕ : D → D, we would like to know the exact conditions under
which ‖Cϕ‖ = ‖Cϕ‖e. Because ‖ϕ‖∞ < 1 implies that Cϕ is compact, we limit our discussion to
ϕ for which ‖ϕ‖∞ = 1. In this case, either ϕ is an automorphism or else ϕ(D) is a disk internally
tangent to ∂D at a single point. If ϕ is an automorphism, then ‖Cϕ‖ = ‖Cϕ‖e (see, e.g., [17]).
We may therefore further limit our discussion to maps ϕ such that there exists a single pair of
points ζ and η on ∂D such that ϕ(ζ ) = η.

Having gone this far, we note that without loss of generality we may still further assume
that ζ = η = 1. To wit, Bourdon et al. note in [3] that for any unimodular constants ζ and η,
the operators Cζz and Cη̄z are unitary and thus ‖Cϕ‖ = ‖Cϕ‖e if and only if ‖CζzCϕCη̄z‖ =
‖CζzCϕCη̄z‖e. But when ϕ(ζ ) = η, η̄ϕ(ζ z) is a linear fractional self-map of the disk that fixes
the point 1. It therefore suffices to know how to compare ‖Cϕ‖ and ‖Cϕ‖e when ϕ(1) = 1.
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Finally, affine maps ϕ(z) = sz + t satisfying ‖ϕ‖∞ = 1 also satisfy ‖Cϕ‖ = ‖Cϕ‖e; Cowen’s
norm formula in [6] and Shapiro’s essential norm formula in [16] may be seen to coincide in
this case. Thus, we will assume throughout this section that ϕ : D → D is a non-affine, non-
automorphic linear fractional map that fixes the point 1. In the face of the rather restrictive
hypotheses of Theorem 3.3, this assumption lends credibility to the work of Section 3 and, via
Lemma 3.1, allows us to use the representation

ϕ(z) = (1 + q + qd)z + (d − q − qd)

z + d

freely. We begin with a lemma.

Lemma 4.1. Suppose ϕ : D → D is given by

ϕ(z) = (1 + q + qd)z + (d − q − qd)

z + d

and the number

α = 1 + d

qb|1 + d|2 � −1.

Then ‖Cϕ‖ > ‖Cϕ‖e.

Proof. Say α = −t for some t � 1. Then d < −1 (recall that q and b are both positive) and
substituting the value of b given by (9) in terms of q and d we have

−t = 1

qb(1 + d)
= 1 + d

d2 − q(1 + d)2 − 1
.

Solving for q , we obtain q = (1 + t (d − 1))/(td + t). Because ϕ is non-automorphic and
fixes 1, Shapiro’s essential norm formula [16] shows that ‖Cϕ‖2

e = 1/q . Thus, since d + 1 �
(d + 1)/t < 0,

‖Cϕ‖2
e = td + t

1 + t (d − 1)
� 1 + d

d
= 1 + 1

d
< 1 � ‖Cϕ‖2,

where the last inequality above is true for general self-maps ϕ by Eq. (1). �
The next proposition shows that the conclusion of the previous lemma holds in general when

d is negative.

Proposition 4.2. Suppose ϕ : D → D is given by

ϕ(z) = (1 + q + qd)z + (d − q − qd)

z + d
.

If d < −1, then ‖Cϕ‖ > ‖Cϕ‖e.

Proof. By Lemma 4.1 we may assume that −1 < α < 0. According to Theorems 2.1 and 3.3,
‖Cϕ‖ > ‖Cϕ‖e if and only if the equation 2F1(α,β; δ;x/q) = 0 has a solution in the interval
(0, q). Thus, we aim to prove that 2F1(α,β; δ;x) = 0 has a root in (0,1) where

α = 1 + d

2
, β = d + dd̄

2
, and δ = 1

.

qb|1 + d| qb|1 + d| qb
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When the number d is real there are some noteworthy relations among the constants α, β ,
and δ. First, β = αd when d ∈ R; since α and d have the same sign (again, recall that b and q

are positive), we conclude that β > 0 whenever d is real. Second, we in general have

δ − β = 1

qb
− d + dd̄

qb|1 + d|2 = 1 + d̄

qb|1 + d|2 = ᾱ.

So when d is real, δ − β = α.
In general, the series 2F1(α,β; δ;x) has radius of convergence R = 1 and diverges at x = 1

when �{δ − α − β} � 0 (except in the case α = −n, which we are not currently considering).
In the present case where δ = α + β , the behavior of the series as x → 1− was determined by
Gauss (see [1, Theorem 2.1.3]):

lim
x→1−

2F1(α,β; δ;x)

− log(1 − x)
= Γ (δ)

Γ (α)Γ (β)
. (15)

Here Γ (z) = ∫ ∞
0 tz−1e−t dt is the gamma function familiar from complex analysis, analytically

continued to the plane minus zero and the negative integers.
Since −1 < α < 0, β > 0, and δ > 0, the right-hand side of (15) is a negative real number. Be-

cause − log(1 − x) → ∞ as x → 1−, we conclude that 2F1(α,β; δ;x) → −∞ as x → 1−. The
function 2F1(α,β; δ;x) is continuous on 0 � x < 1 and 2F1(α,β; δ;0) = 1, so the intermediate
value theorem implies that 2F1(α,β; δ;x) has a root in (0,1). �

In spirit, the analysis of the series 2F1 in the proposition above is very much akin to that
found in [3, Theorem 3.7]. In fact, the astute reader may have already noticed that the map ϕ

of Proposition 4.2 is indeed the member φr,s of the Cowen–Kriete family studied there with
r = (d − q − qd)−1 and s = q (about which we shall have more to say later). In this sense, the
hypergeometric approach simply offers an alternative light in which to cast these types of series
equations.

The greatest strength of the hypergeometric approach, however, is its capacity to give infor-
mation when the coefficients of the linear fractional map ϕ are complex-valued. One readily
sees that the proof of the preceding proposition fails (on several counts) when d is not real. The
remedy relies on a lovely transformation of Pfaff (see [1, Theorem 2.2.5], for a proof).

Theorem 4.3 (Pfaff’s transformation).

2F1(a, b; c;x) = (1 − x)−a
2F1

(
a, c − b; c; x

x − 1

)
. (16)

We remark that one must take care in interpreting the right side of (16). For 0 < x < 1 the
argument x/(x − 1) takes values in (−∞,0), yet the series definition of 2F1 is valid only in the
unit disk. There are, however, various integral representations of hypergeometric functions that
allow analytic continuation to the whole plane minus the ray [1,∞). Interpreted this way, Pfaff’s
transformation is valid and we henceforth let context dictate what we mean by the function 2F1.
For a much more extensive treatment of analytic continuation of hypergeometric functions refer
to [1] or [11].

We are now in a position to prove the main theorem of this section.

Theorem 4.4. Suppose ϕ : D → D is given by

ϕ(z) = (1 + q + qd)z + (d − q − qd)
.

z + d
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Then ‖Cϕ‖ = ‖Cϕ‖e if and only if d > 1.

Proof. We know already by Theorems 2.1 and 3.3 that ‖Cϕ‖ > ‖Cϕ‖e if and only if the series
2F1(α,β; δ;x) has a root in (0,1).

Suppose d > 0. The coefficients of the series 2F1(α,β; δ;x) are then clearly positive. Since
2F1(α,β; δ;0) = 1, the series has no roots in (0,1) and therefore ‖Cϕ‖ = ‖Cϕ‖e.

For the converse, suppose that d is not positive. Proposition 4.2 handles the case d < −1, so
we are left to consider whether 2F1(α,β; δ;x) = 0 holds for any x in (0,1) when 0 < |argd| < π .
Because δ − β = ᾱ, Pfaff’s transformation implies

2F1(α,β; δ;x) = (1 − x)−α
2F1

(
α, ᾱ; δ; x

x − 1

)
. (17)

The utility of Eq. (17) is that the hypergeometric series on the right side is real for all x ∈
(0,1). This is easy to see when 0 < x < 1/2; in this case, x/(x − 1) is in the unit disk and the
coefficients in the series definition of 2F1 are all real. When 1/2 � x < 1, things are less clear.
For these values of x, the argument x/(x − 1) lies in the interval (−∞,−1] and we must take
2F1 to mean the analytic continuation of the series valid in the disk. Letting t = x/(x − 1) in this
case, the identity

2F1(α, ᾱ; δ; t)
Γ (δ)

= Γ (ᾱ − α)

Γ (ᾱ)Γ (δ − α)
(−t)−α

2F1(α,1 − δ + α;1 − ᾱ + α;1/t)

+ Γ (α − ᾱ)

Γ (α)Γ (δ − ᾱ)
(−t)−ᾱ

2F1(ᾱ,1 − δ + ᾱ;1 − α + ᾱ;1/t), (18)

which follows from Barnes’ integral representation for 2F1 and is valid provided α − ᾱ is not an
integer (see [11, Section 2.1.4]), shows that

2F1(α, ᾱ; δ;x/(x − 1)) = 2F1
(
α, ᾱ; δ;x/(x − 1)

)
holds for 1/2 � x < 1 (due to the symmetry in α and ᾱ).

The point here is that (1 − x)−α is non-zero for 0 < x < 1, so according to Eq. (17)
2F1(α,β; δ;x) has a root in (0,1) if and only if 2F1(α, ᾱ; δ; t) has a root t in (−∞,0). Since
we have established that 2F1(α, ᾱ; δ; t) is real for these values of t , we may once again employ
the intermediate value theorem to guarantee the desired root. Specifically, it now suffices to show
that 2F1(α, ᾱ; δ; t) < 0 for some t ∈ (−∞,0).

Toward this goal, observe that Eq. (18) may be written

2F1(α, ᾱ; δ; t) = Γ (ᾱ − α)Γ (δ)

Γ (ᾱ)Γ (δ − α)(−t)α

[
1 + O

(
1

t

)]

+ Γ (α − ᾱ)Γ (δ)

Γ (α)Γ (δ − ᾱ)(−t)ᾱ

[
1 + O

(
1

t

)]
(t → −∞).

Letting s = −t , it therefore suffices to show that

(A + Bi)s−α + (A − Bi)s−ᾱ < 0

for arbitrarily large positive values of s and

A + Bi ≡ Γ (ᾱ − α)Γ (δ)
.

Γ (ᾱ)Γ (δ − α)



E.L. Basor, D.Q. Retsek / J. Math. Anal. Appl. 322 (2006) 749–763 759
Now, if α = x + iy, then

(A + Bi)s−α + (A − Bi)s−ᾱ = 2s−x
[
A cos

(
y ln(s)

) + B sin
(
y ln(s)

)]
.

Note that A and B cannot both be zero since the function 2F1(α, ᾱ; δ; t) is not identically zero
for t < 0. Also note that because 0 < | argd| < π , α is not real. In particular, y = 0 and, conse-
quently, the function

G(ω) = A cos(yω) + B sin(yω)

is negative for arbitrarily large positive values of ω. For instance, if A > 0 then G((2k+1)π/y) =
−A for each k ∈ N; the possibilities A < 0, B > 0, and B < 0 are handled in a similar fash-
ion. �

This completes the classification of the extremely non-compact composition operators in-
duced by linear fractional self maps of the disk. To summarize, there are three possibilities for a
linear fractional map ϕ : D → D:

• ‖ϕ‖∞ < 1, in which case ‖Cϕ‖ > ‖Cϕ‖e = 0.
• ϕ is an automorphism, in which case

‖Cϕ‖ = ‖Cϕ‖e = [(
1 + ∣∣ϕ(0)

∣∣)/(
1 − ∣∣ϕ(0)

∣∣)]1/2
.

• The image ϕ(D) is a disk internally tangent to ∂D at a single point. In this case, either
ϕ(z) = sz + t and ‖Cϕ‖ = ‖Cϕ‖e or else ϕ is a non-affine, non-automorphic map. If the
latter is the case, then ϕ may be pre- and post-composed with rotations to produce a non-
affine, non-automorphic map ϕ̃ that fixes the point 1 and induces a composition operator
with the same norm and essential norm as Cϕ . This new map must be of the form

ϕ̃(z) = (1 + q + qd)z + (d − q − qd)

z + d

and has ‖Cϕ̃‖ = ‖Cϕ̃‖e if and only if d > 1.

Christopher Hammond has observed that this classification settles another closely related
operator-theoretic question. This is the subject of the next section.

5. Cohyponormality

Recall that for a self-map ϕ, the Denjoy–Wolff point of ϕ is the unique point a ∈ D such
that |ϕ′(a)| � 1. If |a| < 1, then the spectral radius r(Cϕ) of Cϕ is 1; if |a| = 1, then r(Cϕ) =
[ϕ′(a)]−1/2 (see [9, Theorem 3.9]). When working with norms, it is thus sometimes helpful to
deal with composition operators that enjoy equality of norm and spectral radius. The composition
operators exhibiting some form of normality form just such a class (recall that T : H → H is
normal if T T ∗ = T ∗T ).

A Hilbert space operator T : H → H is called hyponormal if T ∗T − T T ∗ � 0 (equivalently,
‖T h‖ � ‖T ∗h‖ for all h ∈ H). The operator T is subnormal if there exists an auxiliary Hilbert
space K ⊇ H and a normal operator N : K → K such that T is the restriction of N to H. In this
section we shall be concerned with deciding when the adjoint T ∗ satisfies these definitions, in
which case the operator T is said to be cohyponormal or cosubnormal.
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The operator Cϕ itself is known to be subnormal in just a few cases. These are: when ϕ(z) = cz

(these are precisely the normal Cϕ), when ϕ is inner and fixes the origin (these are precisely the
isometric Cϕ), and when ϕ is linear fractional and Cϕ is unitarily equivalent to 1 ⊕ C∗

ψ with C∗
ψ

subnormal.
Perhaps the best theorem on subnormality of C∗

ϕ is the following result of C. Cowen and
T. Kriete in their article [7].

Theorem 5.1. For 0 < s < 1 and 0 � r � 1, if

ϕr,s(z) = (r + s)z + (1 − s)

r(1 − s)z + (1 + sr)
,

then C∗
ϕr,s

is subnormal.

A nice discussion of the proof may be found in [9, pp. 314–317]. Under some additional
smoothness hypotheses on ϕ, the converse to Theorem 5.1 is true as well [7]. The authors there
suggest that the smoothness assumption serves only to facilitate the proof of the converse and
that probably it is true without any additional requirements on ϕ.

Using the definitions above, it is not hard to show that any subnormal operator is hyponormal.
Though not true in general, for adjoints of composition operators with linear fractional symbol
the converse holds as well.

Theorem 5.2. Let ϕ : D → D be linear fractional. If Cϕ is cohyponormal, then Cϕ is cosubnor-
mal.

Proof. Suppose C∗
ϕ is hyponormal. If C∗

ϕ is normal, then it is certainly subnormal. We may
therefore assume without loss of generality that C∗

ϕ , hence Cϕ , is not normal.
Theorem 8.4 of [9] then implies that ϕ has Denjoy–Wolff point a ∈ ∂D with ϕ′(a) < 1. Since

both hypo- and subnormality are unitary invariants, we may assume (as usual) that a = 1. The
remainder of the proof proceeds in cases.

If ϕ is affine, then ϕ(z) = sz + (1 − s) where 0 < s = ϕ′(1) < 1. In this case, ϕ = ϕ0,s and C∗
ϕ

is subnormal by Theorem 5.1.
If ϕ is an automorphism, then a priori it is either elliptic, parabolic, or hyperbolic. Be-

cause ϕ(1) = 1, ϕ is not elliptic. In addition, ϕ is not parabolic because in this case we have
r(Cϕ) = 1 < ‖Cϕ‖ by [9, Theorem 7.5] (recall that our cohyponormality assumption guarantees
norm and spectral radius coincide). It is possible, however, for ϕ to be hyperbolic.

Suppose that ϕ(z) = λ(w − z)/(1 − w̄z) is hyperbolic. In this case, Theorem 7.4 of [9] asserts
that r(Cϕ) = (ϕ′(1))−1/2. Equating this spectral radius to ‖Cϕ‖ forces −1 < w < 0 and one finds
that in actuality ϕ = ϕr,s where r = 1 and s = ‖Cϕ‖−2. Thus, when ϕ is hyperbolic, Theorem 5.1
again implies that C∗

ϕ is subnormal.
Finally, if ϕ : D → D is a non-affine, non-automorphic linear fractional map that fixes the

point 1, we are squarely in the realm of Theorem 4.4. That result, combined with the fact that
essential norm equals spectral radius for a composition operator with non-automorphic linear
fractional symbol having Denjoy–Wolff point on ∂D (see [3, Section 2] for the details), ensures
that ϕ is of the form

ϕ(z) = (1 + q + qd)z + (d − q − qd)
z + d
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for some d > 1 and 0 < q = ϕ′(1) < 1. Set r = (d − q − qd)−1 and s = q . Since �{(d − 1)/

(d + 1)} � q is necessary for ϕ to map the disk into itself, we obtain 0 < r � 1 and 0 < s < 1.
Thus, ϕ = ϕr,s is yet again a member of the Cowen–Kriete family of Theorem 5.1 and conse-
quently C∗

ϕ is subnormal in this final case as well. �
We remark that the family of self-maps ϕ with “qd-representation”

ϕ(z) = (1 + q + qd)z + (d − q − qd)

z + d
,

where q > 0 and |d| > 1 is distinct from the “extended” Cowen–Kriete family

ϕr,s(z) = (r + s)z + (1 − s)

r(1 − s)z + (1 + sr)
,

where 0 � |r| � 1 and 0 < s < 1.
Lemma 3.1 shows that the non-affine members of the extended Cowen–Kriete family certainly

have qd-representation, but the self-map ϕ(z) = 1/(2 − z), which has q = 1 and d = −2, is not
equal to ϕr,s for any r and s. What has been most important to us, however, is that self-maps
with qd-representation, d > 1, do belong the Cowen–Kriete family and consequently enjoy the
attendant nice properties of maps therein.

We should also point out that Theorem 5.2 marks the culmination of steady progress in that
direction. Earlier relevant work includes [5,8,10]. Subsuming the more recent completion of
the story for real r contained in the work of Bourdon et al. in [3], we now know that symbols
belonging to the extended Cowen–Kriete family induce cohyponormal composition operators if
and only if 0 � r � 1.

In the final section of the paper, we consider a detailed example and establish connections
between extremal non-compactness and another heavily studied operator-theoretic quantity that
is often compared to ‖Cϕ‖.

6. The quantity S∗
ϕ and geometric function theory

Another way to try to compute ‖Cϕ‖ that has drawn a fair amount of attention recently is to
compare it to the quantity

S∗
ϕ := sup

w∈D

∥∥∥∥C∗
ϕ

(
Kw

‖Kw‖
)∥∥∥∥,

where Kw represents the reproducing kernel at w in H 2. While it is clear that ‖Cϕ‖ � S∗
ϕ , this

inequality may be strict. For example, if ϕ(z) = 2/(3 − z), then ‖Cϕ‖ > S∗
ϕ ([2, Theorem 4.2]

or [15]). On the other hand, if ϕ(z) = sz+ t for constants satisfying |s|+ |t | � 1, then ‖Cϕ‖ = S∗
ϕ

(see [6, Proof of Theorem 3], for the case |s| + |t | = 1; see [4, Proof of Theorem 3.2], for the
case |s| + |t | < 1).

In [4], the second author and Paul Bourdon show that for ϕ with ϕ(0) = 0 inducing compact
Cϕ , ‖Cϕ‖ = S∗

ϕ if and only if ϕ(z) = sz + t . As a corollary, non-affine maps ϕ inducing Cϕ with
‖Cϕ‖ = S∗

ϕ are shown to satisfy ‖Cϕ‖ = ‖Cϕ‖e.
As evidenced by Joel Shapiro’s celebrated formula for the essential norm of a composition

operator on H 2 (see [16])

‖Cϕ‖2
e = lim sup

−

Nϕ(w)

− log |w| ,
|w|→1
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the compactness of Cϕ is intimately related to the way in which ϕ approaches the boundary
of the disk, both how fast and how often. Using this formula, it is not difficult to show that
for univalent ϕ, S∗

ϕ � ‖Cϕ‖e. Now, since affine maps induce Cϕ satisfying either ‖Cϕ‖e = 0 or
‖Cϕ‖e = ‖Cϕ‖, the preceding results combine to yield the following fact.

Fact. If ϕ is univalent, ϕ(0) = 0, and Cϕ is non-compact, then ‖Cϕ‖ = S∗
ϕ if and only if ‖Cϕ‖ =

‖Cϕ‖e.

The complete classification of extremal non-compactness of composition operators induced
by linear fractional maps provided in the previous section therefore completes the classification
of such composition operators satisfying ‖Cϕ‖ = S∗

ϕ as well. Theorem 4.4 adds to the evidence
provided in [4] that the set of normalized reproducing kernels is rarely robust enough to exhibit
the norm of a composition operator under the action of the adjoint C∗

ϕ .
In the case of linear fractional ϕ, there is a particularly nice geometric interpretation of the

rarity of this phenomenon. Let us refer to a linear fractional map ϕ, with image disk Δ = ϕ(D)

tangent at η ∈ ∂D, as fast if for some (hence, all) r ∈ (0,1) we have

d
(
∂Δ,ϕ(Γr)

) = d
(
η,ϕ(Γr)

)
,

where Γr = {z: |z| = r} and d is Euclidean distance.
Because the sets Γr are left invariant under rotations, the same reasoning found at the begin-

ning of Section 4 allows us to focus our attention on maps ϕ given by

ϕ(z) = (1 + q + qd)z + (d − q − qd)

z + d
.

In this case, the condition d > 0 is precisely the condition that ϕ be fast. Thus, for non-affine,
non-automorphic ϕ that fix the point 1, ‖Cϕ‖ = S∗

ϕ if and only if ‖Cϕ‖ = ‖Cϕ‖e if and only if ϕ

is fast. This is intuitively appealing because fast linear fractional maps approach the boundary of
the disk “as fast as possible” and so should be “as non-compact as possible.”

We conclude with an example. Let ϕ(z) = 2/(3 − z). This non-affine, non-automorphic linear
fractional self-map of the disk already fixes the point 1 and so has “qd-representation”

ϕ(z) = 0z + (−2)

z + (−3)
.

As such, d = −3 and we know that ‖Cϕ‖ > ‖Cϕ‖e and ‖Cϕ‖ > S∗
ϕ . This is not new information;

dating back to [2], this particular map ϕ has been extensively studied.
What is more interesting is to examine the family {ϕθ }0�θ�2π of linear fractional maps given

by

ϕθ (z) = −[
ϕ(λz) − 3/4

]
eiθ + 3/4.

Here the unimodular constant λ = ϕ−1((3 − e−iθ )/4) is a rotational parameter inserted to guar-
antee that ϕθ fixes the point 1 for every θ .

We note that ϕ0 is just the original map ϕ and that each ϕθ maps onto the same image disk of
radius 1/4 centered at 3/4. But the way in which each ϕθ maps onto this disk depends on θ . For
instance, when θ = π the map

ϕπ(z) = (3/2)z + 5/2

z + 3

is fast. Thus, since d = 3 and q = 1/8, we have ‖Cϕ‖2 = ‖Cϕ‖2
e = (S∗

ϕ )2 = 8.

π
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On the other hand, the map

ϕπ
2
(z) = (15 + 15i)z + (−31 + 33i)

20z + (−36 + 48i)

is not fast but is “faster” than the original map ϕ(z) = 2/(3 − z). In this case, we use the hyper-
geometric representation 2F1((−2 + 6i)/15, (6 + 2i)/5;16/15;x) to numerically compute

‖Cϕ π
2
‖2 ≈ 3.3764 > 16/5 = ‖Cϕ π

2
‖2
e .

In general,

‖Cϕθ ‖2
e = 16

5 + 3 cos θ

and the quotient function Q(θ) = ‖Cϕθ ‖/‖Cϕθ ‖e tends to 1 as θ tends to π . Indeed, ϕθ = η ◦ αθ

where η(z) = (z + 3)/4 and αθ (z) = 4ϕθ (z) − 3 is an automorphism. It is not hard to check that
αθ (0) = eiθ /3 and therefore ‖Cαθ ‖2 = 2. The elementary inequalities

1 � ‖Cϕθ ‖2

‖Cϕθ ‖2
e

� ‖Cαθ ‖2‖Cη‖2

‖Cϕθ ‖2
e

= 5 + 3 cos(θ)

2

then readily show that limθ→π Q(θ) = 1 = Q(π).
We leave the reader with this final challenge, which to our knowledge has not been met.

Challenge: Write the function Q in closed form as a (probably) transcendental function of θ .
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