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Abstract

Powdery mildew (Pm) caused by the infection of Blumeria graminis f. sp. tritici (Bgt) is a worldwide crop disease resulting in significant
loss of wheat yield. To profile the genes and pathways responding to the Bgt infection, here, using Affymetrix wheat microarrays, we
compared the leaf transcriptomes before and after Bgt inoculation in two wheat genotypes, a Pm-susceptible cultivar Jingdong 8 (S)
and its near-isogenic line (R) carrying a single Pm resistant gene Pm30. Our analysis showed that the original gene expression status
in the S and R genotypes of wheat was almost identical before Bgt inoculation, since only 60 genes exhibited differential expression
by P = 0.01 cutoff. However, 12 h after Bgt inoculation, 3014 and 2800 genes in the S and R genotype, respectively, responded to infec-
tion. A wide range of pathways were involved, including cell wall fortification, flavonoid biosynthesis and metabolic processes. Further-
more, for the first time, we show that sense-antisense pair genes might be participants in wheat-powdery mildew interaction. In addition,
the results of qRT-PCR analysis on several candidate genes were consistent with the microarray data in their expression patterns. In
summary, this study reveals leaf transcriptome changes before and after powdery mildew infection in wheat near-isogenic lines, suggest-
ing that powdery mildew resistance is a highly complex systematic response involving a large amount of gene regulation.
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Introduction

Wheat (Triticum aestivum, AABBDD 2n = 42) is the most
widely grown crop in the world, occupying 17% of all the
cultivated land and providing approximately 55% carbohy-
drates for the daily human diet [1]. Powdery mildew (Pm)
caused by the infection of Blumeria graminis f. sp. tritici

(Bgt) is a common pathogenic disease distributed in many
wheat production countries, causing significant loss of yield
[2,3]. By traditional breeding, certain pathogen-resistant
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genes in wild relatives of wheat have been transmitted to
the susceptible common wheat generating a series of iso-
genic lines showing varying degrees of resistance to a num-
ber of Pm types. These Pm-resistant lines have been
considered as the most economical and environmentally
safe cultivars for disease control, and also have been used
as natural laboratory materials for a better understanding
of the molecular mechanisms underlying the host-pathogen
interaction and defense response in major crop plants [4,5].

Different approaches have been employed to identify the
pathogen-resistant genes in wheat responding to various
types of crop diseases [6–9]. Bernardo et al. showed that
44 genes are differentially expressed at 72 h post inocula-
tion (hpi) in Fusarium head blight resistant and susceptible
cademy of Sciences and Genetics Society of China. Published by Elsevier
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wheat cultivars [6]. Coram et al. investigated the transcrip-
tional profile of wheat infected by Puccinia striiformis f. sp.
tritici, and identified 99 genes specific to high-temperature
adult plant resistance [9]. Bhuiyan et al. found that 12
genes in the biosynthesis and supply of methyl units were
activated by Bgt infection in the epidermis of diploid wheat
(Triticum monococcum), suggesting that genes involved in
pathways of producing methyl units are also responsible
for the host defense response [7]. He also verified that sev-
eral genes involved in monolignol biosynthesis were critical
for the defense against Pm invasion in wheat [7]. Brugg-
mann et al. performed tissue-specific cDNA-AFLP analysis
of 17,000 transcripts to detect B. graminis f. sp. hordei

responsive genes at 6 and 24 hpi and found that 44 and
76 transcripts were specifically up-regulated in epidermis
and mesophyll tissues, respectively [8].

Microarray analysis has been used in wheat to determine
the transcriptome changes in response to a variety of abi-
otic stress such as heat, drought and cold [10–12]. In terms
of the biotic stress response in wheat, genome-wide analysis
has been done to study the Fusarium graminearum infec-
tion, Fusarium pseudograminearum infection, P. striiformis
f. sp. tritici infection and P. triticina infection [13–16].
However, little work has been done to study the transcrip-
tome responses of wheat during the Pm infection on a
genomic scale. Thus, identifying novel genes and studying
their expression patterns in response to Pm will provide a
molecular basis for improving disease resistance in crops,
while transcriptome analysis with gene chip could provide
us with a plethora of gene expression patterns simulta-
neously. So using wheat Affymetrix genome arrays, we
compared the gene expression patterns of a susceptible cul-
tivar Jingdong 8 (S), and its resistant near-isogenic line (R)
carrying a single Pm-resistant gene, Pm30, in leaf tissues,
before and after the inoculation with Bgt. Our analysis
shows that although the original expression status of the
susceptible and resistant wheat was very similar before
infection, certain genes with putative pathogen-defense
functions demonstrated constitutively higher expression
in resistant wheat than in the susceptible wheat. This may
play a critical role in building the basal barrier to defend
the Pm attack. At 12 hpi, the transcriptomes involved in
a wide range of molecular pathways changed dramatically
in both the resistant and susceptible cultivars.

Results and discussion

Disease responsive genes were detected after Pm infection

Two wheat lines were used in this study, including Pm-sus-
ceptible wheat with highly-susceptible phenotype (S), and
its near-isogenic Pm-resistant line with immune phenotype
(R). The seedling leaves were harvested at 0 h and 12 hpi,
designated as S-0 h/S-12 h and R-0 h/R-12 h, respectively.
The leaf samples were collected from three independent
biological replicates. We first performed quantile normali-
zation across the twelve slides to remove the systematic
bias and used the normalized signal intensity of each sam-
ple to evaluate the reproducibility between the replicates.
The Pearson correlation coefficients between each two rep-
licates ranged from 0.9784 to 0.9944, indicating the high
reproducibility of the microarray experiments (Table S1).

The probe sets prefixed with “AFFX” and “RPTR”
were removed and filtered by a fraction call of 100% as
described in the Methods, and the ones with a consistent
‘Present’ call in all the three biological replicates were then
considered as ‘expressed’ genes. Thus, 39.63% and 44.57%
of the 61,127 probe sets were detected as expressed genes in
S-0 h and S-12 h samples, indicating that up to 5% more
genes were activated after 12 h infection. For the Pm-resis-
tant wheat, 40.13% and 42.43% probe sets were called
‘Present’ in R-0 h and R-12 h samples, respectively. There-
fore, about 2% more genes were activated in S genotype
than in R genotype of wheat at 12 hpi.

To detect the potential disease responsive (DR) genes,
we conducted pairwise comparison between the samples
in pairs of S-0 h vs R-0 h, S-0 h vs S-12 h and R-0 h vs
R-12 h. With a stringent cutoff of false discovery rate
(FDR)-adjusted P = 0.01 and a less stringent cutoff of
P = 0.05, we subsequently defined the differentially
expressed genes subject to either up- or down-regulation.
Between the S-0 h and the R-0 h samples, only 60 genes
were detected as differentially expressed using a cutoff of
P = 0.01 and 781 genes using a cutoff of P = 0.05. Compar-
ison between S-0 h and S-12 h samples identified 3014 and
7554 differentially expressed genes, while in the R geno-
type, 2800 and 6906 genes were determined to be differen-
tially expressed at 12 hpi using a P value of 0.01 and 0.05
cutoff, respectively. This analysis is consistent with the pre-
vious observation that the pathogen attack can influence a
broad range of pathways and a large proportion of the
genes in the transcriptional networks are disturbed [9,14–
16]. Since there were a large number of genes showing
response to the Pm infection regardless of the S or R geno-
type, we decided to use 0.01 as the cutoff to narrow down
the range for selecting the possible candidates with the
most dramatic changes.

Expression of a few DR genes was constitutively higher in

resistant wheat than in susceptible wheat before Pm infection

We first performed hierarchical clustering algorithm on the
60 differentially expressed genes between R-0 h and S-0 h
samples, and identified four groups of genes (Cluster 1 to
4) exhibiting distinct expression patterns (Figure 1A and
Table 1). The genes in Cluster 1 and 3 showed opposite
expression trend in S and R genotypes of wheat, containing
the genes with various functions. For example, a hydroxy-
proline-rich glycoprotein family protein which functions in
cell wall fortification [17] was up-regulated 12 hpi in Clus-
ter 1. Another two differentially expressed genes were mem-
bers of lipoxygenases (LOX) family that catalyze the
hydroperoxidation of polyunsaturated fatty acids during
the first step of producing fatty acid metabolites for the



Figure 1 Overall analysis of differentially expressed genes in the microarray

(A) Hierarchical clustering analysis of the 60 differentially expressed genes detected by P = 0.01 cutoff between the S-0 h and R-0 h samples. (B)
Hierarchical clustering analysis of the commonly regulated genes in response to infection identified by P = 0.01 cutoff. Changes of gene expression are
displayed from blue (down-regulated) to red (up-regulated). Lighter colors indicate genes with low fold-change and darker colors indicate genes with high
fold-change. (C) Venn diagrams showing the common (gray) and unique differentially expressed genes in S (red) and R (blue) genotypes detected by
P = 0.01 cutoff. (D) Number of up- or down-regulated genes responsive to Pm in S and R genotypes.
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subsequent biological synthesis of antimicrobial com-
pounds in most plants [18,19]. In Cluster 3, bacterial blight
resistance protein was up-regulated in two lines 12 hpi,
which might play an important role in basal resistance to
powdery mildew. In Cluster 2, there were 9 genes that were
expressed relatively high in R-0 h compared to S-0 h,
whose expression decreased after the Pm infection.

Finally, the most important 10 genes from the compar-
ison of S-0 h and R-0 h were grouped as Cluster 4, showing
relatively high expression in R-0 h, which didn’t decrease
12 h after Pm infection, whereas in S genotype, the expres-
sion is consistently low both before and after Bgt inocula-
tion. These genes may function to build a constitutive
barrier to form the initial resistance defending the patho-
gen attack. It is worth noting that a transcription factor
annotated as a ‘multiple stress-associated zinc-finger pro-
tein’ fell into this group. Another important transcription
factor was DNA-binding protein ABF1, a member of
plant-specific WRKY families, which has been previously
shown to be involved in regulating patato responses to
the infection of Sonchus yellow net virus (SYNV) and Impa-

tiens necrotic spot virus (INSV) [20]. Another interesting
gene in Cluster 4 encodes an AMP-binding protein that
has been previously reported in rice for its involvement in



Table 1 The differentially expressed genes between S-0 h and R-0 h

Clusters Probe set ID Putative function

Cluster 1 Ta.3384.1.A1_at Putative uncharacterized protein
Ta.6248.1.S1_at Putative tetratricopeptide repeat (TPR)-containing protein
Ta.454.1.S1_at Putative elongation factor Ts family
TaAffx.65068.1.A1_at Putative MADS box-like protein
Ta.19211.1.A1_x_at Unknown protein
Ta.408.1.A1_at Unknown protein
Ta.7830.1.S1_at Lipoxygenase
Ta.442.1.S1_at Catalase
Ta.634.1.S1_at ABC1-like family protein
Ta.15048.1.A1_at ABC1 family protein
Ta.865.2.A1_at Hypothetical protein
Ta.23273.1.S1_at Putative ferredoxin-thioredoxin reductase
Ta.12159.1.A1_at Hydroxyproline-rich glycoprotein family protein
Ta.28049.1.S1_s_at MYB20 protein
Ta.10126.3.S1_a_at Putative zinc finger protein
Ta.3970.1.S1_at Putative monosaccharide transporter
Ta.5891.2.S1_a_at Major facilitator superfamily antiporter
Ta.485.1.A1_at Lipoxygenase 2, chloroplast precursor
Ta.12561.1.S1_at Unknown protein
TaAffx.97978.1.S1_at Pentameric polyubiquitin

Cluster 2 Ta.30913.2.A1_at Putative phosphate transport protein, mitochondrial
Ta.4747.1.S1_x_at Unknown protein
Ta.5293.1.S1_at Unknown protein
Ta.29984.1.S1_at Putative Annexin A8 protein
Ta.23072.1.S1_at Unknown protein
Ta.632.2.S1_x_at Putative survival motor neuron-related protein; splicing factor 30
Ta.8032.2.A1_x_at Unknown protein
Ta.11519.1.A1_x_at Unknown protein
TaAffx.110936.1.S1_s_at Light-inducible protein ATLS

Cluster 3 TaAffx.28047.3.A1_at Unknown protein
TaAffx.53376.1.S1_at Bacterial blight resistance protein
TaAffx.50125.2.S1_at Cytochrome P450
Ta.4973.2.S1_a_at Unknown protein
Ta.10740.1.S1_a_at Putative thioesterase family protein
Ta.25069.1.S1_x_at Unknown protein
Ta.30628.2.S1_at Ribosomal protein L36
Ta.3008.1.S1_a_at Putative signal peptidase 18 K chain
Ta.2464.1.S1_a_at Pescadillo-like protein
Ta.11853.1.S1_at Unknown protein
Ta.380.1.S1_a_at Unknown protein
Ta.15067.1.S1_at Unknown protein
Ta.15067.1.S1_x_at Unknown protein
Ta.9535.1.S1_at Putative 60S ribosomal protein L28
Ta.21353.1.S1_a_at Putative acetone-cyanohydrin lyase
TaAffx.132143.1.S1_s_at Cyanate hydratase
Ta.6101.1.S1_at Putative steroid membrane binding protein
Ta.13180.3.S1_at Unknown protein
Ta.28696.1.S1_x_at Unknown protein
Ta.30628.1.S1_at Ribosomal protein L36
Ta.27331.1.S1_at Unknown protein

Cluster 4 TaAffx.70192.1.S1_at Unknown protein
Ta.787.1.S1_x_at Unknown protein
Ta.9157.1.S1_at AMP-binding protein
Ta.393.1.S1_at Unknown protein
Ta.21237.1.S1_x_at Unknown protein
Ta.9243.1.S1_at Ankyrin repeat protein
TaAffx.98004.1.S1_at Multiple stress-associated zinc-finger protein
TaAffx.66205.2.S1_s_at Encodes protease I (pfpI)-like protein
Ta.8348.1.A1_x_at DNA-binding protein ABF1
TaAffx.54209.1.S1_at Unknown protein

These genes were clustered in four groups identified as differentially expressed between S-0 h and R-0 h samples by P = 0.01 cutoff.
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the regulation of the defense response through salicylic acid
(SA) and/or jasmonic acid/ethylene (JA/ET) signaling
pathways [21]. Moreover, we also found several genes of
unknown function specifically expressed in Pm-resistant
wheat that may be also critical in pathogen defense path-
ways against powdery mildew, whose functions need to
be verified in future.

The transcriptomes of both resistant and susceptible wheat

were subject to dramatic changes in response to Pm

Among the 2800 DR genes of R genotype and 3014 genes
of S genotype, 1537 of them were found commonly respon-
sive to Pm infection (Figure 1B and C). The heatmap of the
clustered DR genes exhibited a consistent trend of up- or
down-regulation, indicating that they were responsive to
the Pm-infection in a similar manner regardless of the resis-
tant or susceptible characteristics (Figure 1C). Moreover,
in the R genotype, 1375 genes and 1425 genes were found
subject to respective down- and up-regulation, while in
the S genotype, a higher proportion of up-regulated genes
(1802) were observed (Figure 1D).

Subsequently, we performed GeneOntology (GO) analy-
sis to test what the functional categories for these genes
enriched in R and S genotypic lines after Bgt infection.
We used the online tool AriGO that contains the pre-anno-
tated GO term for the Affymetrix wheat microarray [22].
For the 1537 commonly responsive genes in both S and
R genotypes, oxidoreductase activity, antioxidant activity,
hydrolyase activity and chlorophyll binding in molecular
function category, fatty acid catabolic process, organic acid
catabolic process, response to stress and ribosome biogen-
esis in metabolic mechanism category, as well as photosys-
tem I and II, cytoplasm and thylakoid in the cellular
component category were differentially regulated. For
1227 R specifically responsive genes, electron carrier activ-
ity, molecular transducer activity and developmental pro-
cesses were included, while for 1441 S specifically
responsive genes, leaf senescence, aging, protein and lipid
degradation processes respond. The GO analysis showed
Figure 2 Gene enrichment analysis by GO term classification on the differentia

The GO annotation in wheat was done by blast2go program [73], and the GO
that even in the resistant and susceptible wheat demon-
strating distinct phenotypes in terms of responding to pm
infection, most genes and pathways were commonly influ-
enced under pm infection (Figure 2).

Expression of select candidate genes was validated using

experimental qRT-PCR

To validate the expression patterns of the DR genes detected
by the microarrays, we performed quantitative RT-PCR
(qRT-PCR) on 40 candidate genes with significantly chan-
ged expression pattern before and after the infection.
Expression of 35 (87.5%) out of 40 genes was in good agree-
ment with the microarray results. Among them, 18 genes
were up-regulated and the other 17 were down-regulated
after 12 h Pm infection in both genotypes, including three
well-documented pathogenesis related (PR) proteins
(Ta.278.1.S1_at, Ta.4389.1.S1_s_at and Ta.10.1.S1_x_at)
during plant disease resistance. Additionally, four
genes encoding abiotic stress-related proteins
(Ta.10259.1.S1_at, TaAffx.92272.1.A1_s_at, Ta.15208.
1.S1_at and Ta.23663.1.S1_s_a) and four redox-reaction
related proteins (Ta.872.1.S1_at, Ta.10081.2.S1_at,
Ta.10389.1.S1_a_at and Ta.681.1.S1_at) were also validated
by qRT-PCR, and showed good agreement with the micro-
array results (Figure 3 and Figure S1).

Due to the limited genomic information and putative
function annotation in wheat, our analysis hereafter was
mainly focused on the genes assigned with putative func-
tion by HarvEST1.51 (http://www.harvest.ucr.edu/). To
extend the manual screening on the DR genes, we filtered
candidate genes by the less stringent cutoff value of
P = 0.05 and a minimum twofold change between the pair
of R-0 h vs R-12 h and the pair of S-0 h vs S-12 h.

Sense-antisense transcripts showed anti-correlated patterns

responding to Pm infection

We have identified �100 pairs of sense-antisense transcripts
included in the wheat microarray, with a minimum 100 bp
lly expressed genes in R (A) and S (B) genotypes

enrichment analysis was done by AgriGO online tool [22].

http://www.harvest.ucr.edu/


Figure 3 Experimental qRT-PCR validation of selected differentially expressed genes

Expression of selected differentially expressed genes subject to up-regulation (A, B) and down-regulation (C, D) after 12 h Pm-infection in the R and S
genotypes of wheat was examined using qRT-PCR. In total 35 probe sets were detected and there were three biological replicates for each time point.

Xin M et al / Transcriptome of Wheat in Response to Powdery Mildew 99
overlapping region at the 50 end showing strong anti-corre-
lation (Pearson correlation coefficient 6�0.8) before and
after the infection. Six pairs of sense-antisense transcripts,
which encode cyclase/dehydrase family, MYB family
transcription factors, lecithine cholesterol acyltransferase,
stromal ascorbate peroxidase, definsin-like protein and
aquaporin protein, have drawn our attention (Figure 4). It
has been previously reported that one class of endogenous
small RNAs, called natural-antisense-transcript derived
siRNAs (nat-siRNAs), are specifically derived from the
overlapping region of a pair of sense-antisense transcripts
under environmental stress, and can trigger the degradation
of the target mRNAs located on the opposite strand by the
RNAi silencing machinery [23]. Given the strong anti-corre-
lation of six sense-antisense pair genes, we speculate that
some of the Pm responsive genes might be regulated by
the antisense RNAs in a similar way, since many miRNAs
and siRNAs were previously shown to be activated after
the pm infection [24].
PR genes were highly up-regulated after Pm infection in both
resistant and susceptible wheat

The induction of PR proteins has been well documented
when plants are exposed to various pathogens, and consti-
tutive expression of PR proteins in transgenic plants can
increase the resistance to fungi [25–29]. It also has been
reported that the expression of PR-1, PR-4 and PR-10 were
induced to a higher level to trigger the rapid activation of
defense-responsive mechanisms in many fungus-challenged
plant species, such as wheat, rice, Arabidopsis, European
plums and Medicago [30–36]. Consistent with the earlier
reports, 46 genes annotated as PR proteins were up-regu-
lated in both S and R genotypes, including PR-1, PR-2,
PR-3, PR-4 and PR-10, with an exceptionally 62-fold
change for PR1 (Ta.278.1.S1_at). PR-1 is often used as a
marker for the systemic acquired resistance (SAR) [37].
Among the five transcripts encoding PR-1 proteins in the
wheat microarray, two were specifically up-regulated only
in resistant wheat (Ta.8304.1.S1_a_at and Ta.8304.1.S1_
x_at), while the other three were induced in both resistant
and susceptible wheat (Ta.278.1.S1_at, Ta.278.1.S1_x_at,
and Ta.30739.2.S1_at). We also observed that most PR
genes were induced to a higher level in S genotype than
in R genotype (Figure 5, Table S2), which is reminiscent
of another point of view that PRs are related to the severity
of symptom expression rather than to resistance [38].
Genes in cell wall fortification pathways responded to Pm

The cell wall, as the first barrier against pathogen attack,
reacts to localized stress by directly apposing substances
onto the inner surface. It has been suggested that cell wall
modification elicited by fungi might represent a disease
resistance mechanism by interfering with the invading
pathogens [39–41]. The genes encoding snare protein, syn-
taxin and WIR1A involved in cell wall fortification can
greatly enhance disease resistance in barley, tobacco and
Arabidopsis, respectively [42–44]. Our analysis in wheat
showed that many genes responsible for reinforcing cell
wall were up-regulated after inoculating the leaves with
Bgt. These included nine genes encoding hydroxyproline-



Figure 4 Expression profile of six pairs of selected sense-antisense transcripts

The six pairs of genes were selected with significant Pearson anti-correlation of �0.8 at P = 0.05. The potential function of each pair is predicted based on
the transcripts that show greater change according to microarray data and a clear functional annotation. There were three replicates for each time point.

Figure 5 Column chart of differentially expressed genes encoding PR proteins

All the data used for the figure are the average value of three replicates and are log2 transformed.
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rich glycoprotein (HRGP), twelve for proline-rich glyco-
protein, six for cellulose synthase, two for syntaxin, one
for snare and three for WIR1A (Table S2). The genes
annotated as cellulase (Ta.9047.2.S1_a_at) and pectinester-
ase (Ta.1564.1.S1_at), which play roles in destroying cell
walls, were down-regulated in R-12 h to a greater extent
than in S-12 h. Indeed, the pectinesterase (Ta.1564.1.S1_at)
was up-regulated 13 folds in susceptible wheat. Moreover,
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the wax layer as the frontline of defence against pathogen
invasion is also critically important. We found that the
CER1 gene (TaAffx.52653.1.A1_s_at) in wheat, encoding
a protein involved in wax biosynthesis, was highly up-reg-
ulated in resistant wheat but remained unchanged in
susceptible wheat [45]. So we proposed that the increased
expression of positive cell wall related protein might rein-
force wheat resistance to Pm, while negative protein would
play an opposite role. Therefore, the differential expression
of these genes between R and S genotypes might lead to
different reactions to disease.

Genes in flavonoids biosynthesis pathways responded to Pm

Flavonoids are ubiquitous secondary metabolites in plants
that have been considered to function in a wide range of
biological processes, including both abiotic and biotic
stress response [46–48]. Our analysis showed that several
key enzymes involved in flavonoid biosynthetic pathways
were up-regulated, including phenylalanine ammonia lyase
(PAL) (TaAffx.119254.1.S1_at and Ta.1465.1.S1_at) cata-
lyzing the conversion of phenylalanine to cinnamic acid,
cinnamate-4 hydroxylase (C4H) (Ta.21061.3.S1_at)
required for condensation of 4 coumaric acid, 4-coumarate
CoA ligase(4CL) (TaAffx.106960.2.S1_at and TaAffx.
Figure 6 Analysis of genes involved in anthocyanin and flavonoid biosynthesis

(A) Simplified scheme of anthocyanin and flavonoid biosynthesis pathway. (B
microarray analysis. Genes that were up-regulated after Pm infection in R and S
to analyze the changes in the gene expression 12 h after Pm infection (*P < 0.05
ammonia lyase, C4H: cinnamate-4 hydroxylase, 4CL: 4-coumarate CoA ligas
hydroxylase, DFR: dihydroflavonal-4-reductase, ANS: anthocyanin synthase.
106960.1.S1_at) to produce 4-coumaroyl-CoA, flavonoid
30-hydroxylase(F30H) (Ta.18397.1.A1_at) converting flavo-
none to dihydroflavonol and dihydroflavonal-4-reductase
(DFR) (Ta.11338.3.S1_a_at, Ta.11338.1.S1_at and
Ta.11338.3.S1_x_at) for producing the flavan-3,4-diol
(Figure 6A). Experimental validation of these flavonoid
biosynthesis related genes by qRT-PCR revealed good
agreement with microarray results (Figure 6B). Addition-
ally, proteins participating in flavonoid derivative biosyn-
thesis were also found responsive to Bgt infection, such
as caffeic acid O-methyltransferase (COMT), flavonol syn-
thase (FLS), UDP-glucosyltransferase, flavonol 40-sulfo-
transferase, flavonol 40-glucosyltransferase, isoflavone
reductase homolog IRL (IFR), UDP-glucose pyrophos-
phorylase, flavonoid 7-O-glucosyltransferase (FGT).
Although their roles in wheat-Bgt interaction remain
obscure and no experimental proof has been supplied, we
speculated that the flavonoid pathway is a potential partic-
ipant in wheat resistance to Pm based on our microarray
data and qRT-PCR results.

Phytohormones in wheat responded to Pm

The roles of phytohormones, such as SA, JA/ET, have
been described in plant disease response [49]. We identified
) Expression patterns of genes related to flavonoid biosynthesis based on
genotypes of wheat are highlighted in bold. Student’s t-test was performed
; **P < 0.01, compared to 0 h in respective genotype). PAL: phenylalanine

e, CHS: chalcone synthase, CHI: chalcone isomerase, F30H: flavonoid 30-
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numerous genes involved in phytohormone metabolism
and signaling pathway that were up-regulated in response
to Pm attack, including SA, abscisic acid (ABA), gibberel-
lic acid (GA), ET, Auxin, and cytokinin (CK).

SA induced by ROS, is a well-studied plant signaling
molecule responsive to pathogen attack [50]. A number
of genes encoding key enzymes in the phenylpropanoid
pathway displayed altered expression after Bgt inoculation
such as cytochrome P450 monooxygenases which convert
benzoic acid to SA.

The ABA is considered as a negative regulator of disease
resistance and the expression levels of ABA are anti-corre-
lated with increased disease susceptibility [51,52]. Zeaxan-
thin epoxidase (ZEP), 9-cis-epoxycarotenoid dioxygenase
(NECD) and aldehyde oxidase (AO) are the key enzymes
in ABA biosynthesis [53]. Our analysis showed that the
ZEP (Ta.404.1.S1_x_at), NECD (TaAffx.13292.2.S1_at)
and several ABA-responsive proteins (Ta.19973.1.A1_at,
Ta.17416.1.S1_at, Ta.27945.1.S1_x_at and TaAffx.132322.
1.S1_at) were subject to down-regulation to various
extents in resistant and/or susceptible wheat after Pm
infection.

In contrast to ABA, GA has a positive effect on plant
defense [49]. Ent-kaurene synthase (KS), ent-kaurene oxidase
(KO) and GA 20-oxidases (GA20ox) are the key enzymes in
GA biosynthesis [54]. All of KS (Ta.8418.1.S1_at), KO
(Ta.14904.1.S1_at and Ta.5772.1.A1_at) and GA20ox
(Ta.141.1.S1_x_at, Ta.23668.1.S1_at, Ta.3564.1.S1_s_at
and Ta.3564.1.S1_at) were up-regulated after Pm infection.

We also demonstrated that the genes involved in ethyl-
ene production were up-regulated, such as EIN3

(TaAffx.110715.1.S1_at), a component of ET signaling
pathway, and genes encoding ethylene-forming enzymes
ACC oxidases and ethylene-responsive element binding
proteins (EREBPs) [55]. Although there is a debate regard-
ing the role of ethylene in disease response, our data seems
to support the idea that ET signaling is involved in Bgt

response in wheat.
Auxin signaling pathway has been found to strengthen

the induced immune responses, and the Auxin response
factors (ARFs) might act as repressors of plant resistance
towards biotrophic pathogens [56]. Three genes encoding
ARFs (Ta.25087.1.S1_at, TaAffx.64139.1.S1_at and
Ta.6746.1.S1_at) were repressed after Pm attack.

Previous studies have suggested that plant hormones
were involved in mediating fungus interaction with
plants, and their roles were totally different [49–56].
Consistent with their reports, our microarray data
showed different expression patterns of genes involved
in hormone production and signaling in response to
Bgt inoculation.

Genes in metabolic pathways responded to Pm

Lipid degradation
Lipid degradation, particularly the membrane lipids, is one
of several biochemical manifestations of cellular senescence
[57]. The beta oxidation process is responsible for lipid
transformation from fatty acids to acyl-CoA, and acyl-
CoA then enters the glyoxylate and tricarboxylic acid cir-
cle, which is activated by senescence. Ultimately metabo-
lites turn into carbohydrates through glyconeogenesis
[58,59]. Four enzymes, acyl-CoA oxidase, enoyl-CoA
hydratase, thiolase and 3-hydroxybutyryl-CoA dehydroge-
nase participate in the beta oxidation process. In this study,
expression of genes encoding these four enzymes was
induced to a higher level in S than in R genotypes. Malate
synthase and isocitrate lyase are characteristic enzymes of
the glyoxylate circle, which were up-regulated after Pm
infection. In S genotype, they were induced by fold changes
of 194 (Ta.23970.1.A1_at) and 927 (TaAffx.79139.1.S1_at),
while in R genotype, they were only increased by fold
changes of 45 and 28, respectively. In addition, genes
encoding malate dehydrogenase which catalyze malic acid
into oxaloacetic acid were only induced in the S genotype
(Figure S2 and Table S3).

Carbohydrate metabolism

Four enzymes, pyruvate kinase, enolase, phosphoglycerate
kinase, and glyceraldehyde-3-phosphate dehydrogenase are
required for the gluconeogenesis process [60,61]. We found
that most of probe sets which were annotated as genes
encoding these enzymes were up-regulated after Pm infec-
tion. For example, one gene (Ta.3910.3.S1_a_at) encoding
pyruvate kinase was up-regulated only in the S genotype,
while another one (TaAffx.81575.1.S1_at) was up-regulated
17 and 8-fold in S and R genotype (Si:Ri = 17:8) (Si:
increased fold in S genotype; Ri: increased fold in R geno-
type), respectively. The Si:Ri for two phosphoglycerate
kinase genes was 25:14 (TaAffx.81675.1.S1_at) and 5:4
(TaAffx.6099.1.S1_at), respectively, whereas the Si:Ri for
glyceraldehyde-3-phosphate dehydrogenase gene was
134:21 (Ta.15063.1.A1_at) and 153:23 (TaAffx.108685.1.
S1_at) (Table S3).

Additionally, we found that 32 genes encoding chloro-
phyll a/b-binding proteins were responsive to Pm infection.
Only two of them were up-regulated, while the others were
repressed, and much higher fold changes were observed in
S than in R genotype. For instance, TaAffx.114127.1.S1_
x_at was reduced up to 300-fold in S genotype, but 150-fold
in R genotype at 12 hpi (Figure 7A, Table S3). Most (15/17)
genes encoding ribulose-1,5-biophosthate carboxylase and
genes (43/47) for photosystem related protein were down-
regulated (Figure 7B, Table S3). These results are similar
to a previous report by Swarbrick et al. [62].

Proteolytic process

Protein degradation in plants is a complex process involv-
ing a multitude of proteolytic pathways, and ubiquitin/pro-
teasome is one of the important pathways [63]. Our study
showed that all the genes encoding ubiquitin activating
enzyme (E1), one for 26S proteasome and three for ubiqui-
tin conjugating enzyme (E2) were induced only in S geno-
type. In addition, the Si:Ri for the genes encoding E2



Figure 7 Column chart of other differentially expressed genes

(A) Chlorophyll a/b binding proteins and ribulose-1,5-bisphosphate carboxylase. (B) Photosystem related proteins. (C) Ribosomal proteins. All the data
used for the figure are the average value of three replicates and are log2 transformed.
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(TaAffx.81408.1.S1_at) and monoubiquitin/carboxy exten-
sion protein fusion (Ta.22526.1.S1_at and TaAffx.81696.1.
S1_at) was 23:12, 162:37 and 30:20, respectively. Most
genes encoding ribosomal protein (132/168) were up-regu-
lated at 12hpi, and the fold change in S genotype was much
higher than in R genotype (Figure 7C, Table S3). We
speculate that more rapid protein degradation occurs in S
genotype, which might be caused by faster senescence in
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S genotype, as the pathogen develops more quickly and
consumes more nutrition. To support this idea, we found
that one gene (Ta.15208.1.S1_at) encoding senescence asso-
ciated protein was up-regulated to a much higher level in S
genotype than in R genotype (Si:Ri = 42:7).

Recently, interest in primary metabolism in plants after
pathogen infection has been growing. Photosynthesis and
nutrient metabolism in several types of plant-pathogen
interactions have been investigated [64–68]. As it has been
shown that the induction of defense is cost-intensive, obvi-
ously contact with pathogens greatly alters plant primary
metabolism [69,70]. Consistent with these previous studies,
a great change was observed in gene expression in both R
and S genotypes during the wheat-Pm interaction. None-
theless, our results showed a considerably greater there
was a much more serious change in S genotype than in R
genotype of wheat.

Conclusion

In this study, we used Affymetrix wheat genome micro-
arrays to profile the transcriptomes of susceptible and resis-
tant wheat cultivars in response to powdery mildew. Our
analysis identified a number of candidate genes showing
higher expression levels in resistant wheat than in suscepti-
ble wheat before the Pm infection, indicating their potential
roles in building the basal barrier for the pathogen defense
and flavonoid pathway could play a crucial role in disease
resistance. For the first time, we report that sense-antisense
pair genes are potentially involved in disease resistance in
wheat, and based on our analysis, susceptible wheat may
display greater degradation of lipid, protein and carbohy-
drate than resistant wheat after Bgt inoculation. Several
candidate genes with potential pathogen defense functions
in response to Bgt infection were also experimentally vali-
dated by qRT-PCR. Future functional analysis of these
Bgt responsive genes is expected to help towards a better
understanding of the molecular mechanisms of pathogen-
defense in wheat.

Materials and methods

Plant growth and tissue collection

Seeds of S genotype) and R genotype were planted in 8–
10 cm diameter pots. Seedlings were manually inoculated
when the first leaf was fully expanded, with a locally-preva-
lent Bgt isolate E09. Inoculation was performed by dusting
conidia from neighboring sporulating susceptible seedlings
onto the test seedlings. Leaf samples were collected from
both lines at 0 h and 12 hpi, respectively, followed by freez-
ing in liquid nitrogen for subsequent RNA extraction.

RNA extraction and microarray hybridization

Total RNAs were extracted using Trizol reagent (Invitro-
gen). First, mRNAs were enriched from 80–90 lg total
RNAs using the RNeasy Plant Mini Kit (QIAGEN), and
then were reversely transcribed to double-stranded cDNAs
using the GeneChip� Two-Cycle cDNA Synthesis Kit. The
biotin-labeled cRNAs were made using the GeneChip�

IVT Labeling Kit (Affymetrix, CA, USA). Twenty micro-
grams of cRNA samples were fragmented and hybridized
for 16 h at 45oC to the Affymetrix Wheat Genome Array
containing 61,127 probe sets representing 55,052 tran-
scripts based on the ESTs and full-length cDNAs collection
in wheat. After washing the microarrays using the Gene-
chip� Fluidics Station 450, the microarrays were scanned
using the Genechip� 3000 Scanner located in the bioinfor-
matics facility at the China Agriculture University.

Microarray data analysis

The chip images were scanned and the hybridization inten-
sities of the probe sets were extracted to generate the CEL
files by the Affymetrix GeneChip Operating Software
(GCOS 1.2). The resulting CEL files were imported into
the software dChip for data processing and analysis,
including background adjustment, normalization of the
raw data, summarizing gene expression signals and detect-
ing the differentially expressed genes [46]. In order to assess
the reproducibility of microarray data, the normalized sig-
nal intensities from the three replicates of each sample were
used to calculate correlation coefficients. After removing
the probe sets prefixed with “AFFX” and “RPTR” by frac-
tion call 100%, statistical identification of DR genes was
performed by the t-test functional module in dChip, fol-
lowed by the false discovery rate (FDR) adjustment
[46,71,72]. The wheat microarray annotation was obtained
from HarvEST (http://www.harvest.ucr.edu/). The micro-
array data has been submitted to NCBI GEO database
under the accession number GSE27339.

Quantitative real-time PCR (qRT-PCR) analysis

A portion of seedling leaves was used for qRT-PCR anal-
ysis to validate the expression patterns detected by micro-
arrays. Total RNAs were extracted using Trizol reagent
(Invitrogen, USA). Two microgram total RNAs of each
sample were used to synthesize the first-strand cDNA by
using oligo (dT)18 primer with M-MLV reverse transcrip-
tase (Promega, USA) according to the manufacture’s
instructions. The product of reverse transcription was
tested by amplifying a wheat actin gene (Ta-actin) frag-
ment, which was used as the endogenous control. PCR
primers were designed using DNAMAN software, and
the primer pairs used to amplify probe set-specific products
were listed in Table S4. qRT-PCR was performed using the
cDNA samples in a 10 lL mixture containing 1� Light-
Cycler-FastStart DNA master SYBR Green I. PCR was
performed as follows: initial denaturation for 10 min at
95 �C, followed by 40 cycles of 30 s at 95 �C, 45 s at 55
to 60 �C, 30 s at 72 �C, and 72 �C for 5 min as the last step.
The threshold cycles (Ct) of each test target were averaged

http://www.harvest.ucr.edu/
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for triplicate reactions and the values were normalized
according to the Ct of Ta-actin. Each PCR product was
evaluated in at least three independent experiments, and
the value of 2�44ct from three replicates were then
subjected to student’s t test. Only the genes, which showed
more than 2-fold change with significant differences
(P < 0.01), were defined as differentially expressed.
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