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Abstract

We propose a simple derivation of renormalization group equations and Callan–Symanzik equations as decoupling
of the structures underlying effective field theories.

 2005 Elsevier B.V.

1. Introduction

It is well known that any known quantum field theory could at best be an effective field theory (EFT) that in
ingredients as many as possible for the description of certain phenomena. Various divergences (UV, IR a
types) arise in an EFT simply due to its simplification made at the scales widely separated from the dom
ones. In other words, an EFT is usually not a complete framework for accounting for the quantum fluctuatio
any distances, it fails for certain modes underlying the ‘effective ones’.

The conventional ways to deal with the divergences within EFT framework are renormalization (for U
vergences) and factorization (for IR and/or collinear divergences): the true noncalculable contributions f
underlying structures could be separated and put into some EFT ingredients (operators, couplings or m
ments, etc.) that could be determined later. Such tricky procedures lead to the celebrated renormalizati
equations (RGE). However, in the conventional treatment, an artificial regularization (as simple and tem
substitutes for the true underlying structures) must be employed in the course of calculations and the as
tricky procedures seem to obscure the physical rationality behind the treatments, though the final results s
independent of such regularization procedures.
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In this Letter, I wish to give a rather simple (to some extent, less rigorous) derivation of RGE and the C
Symanzik equation, solely based on the simple picture that there are some elaborate details underlying the
theories in use for certain purpose. In other words, the scale hierarchy substantiating the EFT constructi
only starting point. It is hoped that such simple lines of arguments could help the further exploration of th
fundamental implications of the EFT reconstructions as well as various factorization approaches that p
physics literature.

2. Effective versus underlying structures

To proceed, we take the existence of a well-defined formulation of the theory underlying (UT) the EFT
natural fact or postulate. In fact, we could take the well-defined formulation of an EFT as a result of reco
tion or projection procedure from the related sectors in the complete UT. The hierarchy between the scal
formulation discriminates the parameters into effective and underlying ones, respectively. Such hierarch
automatically facilitate a well-defined expansion in terms of the ratios likeΛEFT/ΛUT (for UV underlying struc-
tures) orΛUT/ΛEFT (for IR or other non-UV underlying structures), so that the resulting formulation is expre
in terms of the effective parameters and some possible ‘agent’ constants (only arise in the loop contribu
the limit that the underlying details are apparently ‘decoupled’. No unphysical divergences should appea
course of such reconstruction or projection procedure.

For convenience, we introduce the symbolP̆EFT to assume all the elaborate procedures of the reconstructi
projection of an EFT out of a complete underlying theory, which should contain at least the following three
ations: (1) projecting into the subspace of EFT; (2) averaging over the associated underlying dynamical p
(integrating out); (3) taking the decoupling limits with respect to the typical underlying constants,{σ }. With the
help of this projection symbol, we could easily identify the technical origin of various divergences in EFT.
this point, we employ the path integral formalism.

According to the above arguments, a well-defined generating functional for an EFT should be obtained f
EFT projection on the generating functional for UT,P̆EFT.

(1)ZEFT
([JEFT]

) ≡ P̆EFT

∫
d[Φ]exp

{
iS

([Φ], [g]; {σ }∥∥[JEFT]
)}

,

with [g] being the ‘effective’ parameters. That means, the path integral should be performed in the presen
underlying structures. If one perform the projection first before the path integral, an ill-defined EFT is resu

(2)
∫

d[φ]exp
{
iS

([φ], [g])}ill -defined=
∫

P̆EFTd[Φ]exp
{
iS

([Φ], [g]; {σ })}.
Thus, the appearance of various divergences in an EFT implies that path integral and the EFT projectionP̆EFT do
not commute.

In conventional approaches, the role of the sophisticated projection procedureP̆EFT is played by theR operation
procedure in the well-known BPZH program when there is only UV divergences. That is,R operation could be
seen as one tricky realization of the projection operationP̆EFT (in the case of UV divergences alone), which co
in turn be put into the forms with multiplicative renormalization,

(3)P̆EFT(Ô) ⇒R(Ô) ⇒ Z−1
O Ô.

3. Canonical scaling with underlying structures

Now let us consider a general vertex function (1PI)Γ (n)([p], [g]; {σ }) that is well defined in UT with[p], [g]
denoting the external momenta and the Lagrangian couplings (including masses) in an EFT and{σ } denoting the
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underlying parameters or constants. Now it is easy to see that such a vertex function must be a homo
function of all its dimensional arguments, that is

(4)Γ (n)
([λp], [λdgg

];{λdσ σ
}) = λd

Γ (n) Γ (n)
([p], [g]; {σ }),

whered··· refers to the canonical mass dimension of any parameters involved.
The corresponding equation in EFT could be obtained through the application of the projectionP̆EFT to both

sides of Eq.(4),

(5)Γ (n)
([λp], [λdgg

];{λdc̄ c̄
}) = λd

Γ (n) Γ (n)
([p], [g]; {c̄}).

Here some constants{c̄} must appear as the agents of{σ } to maintain the dimension balance between{σ } and the
EFT couplings and masses. Note that{c̄} only appear in the loop diagrams of EFT.

The differential form for Eq.(4) reads

(6)
{
λ∂λ +

∑
dgg∂g +

∑
dσ σ∂σ − dΓ (n)

}
Γ (n)

([λp], [g]; {σ }) = 0.

Since
∑

dgg∂g = Θ (the trace of the stress tensor), the alternative form of Eq.(6) reads

(7)
{
λ∂λ +

∑
dσ σ∂σ − dΓ (n)

}
Γ (n)

([p], [g]; {σ }) = −iΓ
(n)
Θ

([0;λp], [g]; {σ }).
Obviously only dimensional constants contribute to the scaling behavior. Eq.(6) or Eq.(7) is just the most genera
UT version of the EFT scaling laws. They differ from naive EFT scaling laws only by thecanonicalcontribution
from the underlying structures (

∑
dσ σ∂σ ). This is just the origin of EFT scaling anomalies.

To see this point, we first note the consequence of applyingP̆EFT to
∑

dσ σ∂σ ,

(8)P̆EFT

{∑
dσ σ∂σ

}
Γ (n)

([· · ·]; {σ }) =
{∑

dc̄c̄∂c̄

}
Γ (n)

([· · ·]; {c̄}).
Then, it is straightforward to see that, within EFT,

∑
dc̄c̄∂c̄ has to be expanded into the insertion of appropriate E

operators ([IOi
], ‘elementary’ or composite) with appropriate coefficients (δOi

). Thus, we arrive at the following
decoupling theorem:

(9)P̆EFT

{∑
dσ σ∂σ

}
=

∑
dc̄c̄∂c̄ =

∑
Oi

δOi
IOi

.

Note that eachδOi
must at least be a function of EFT couplings[g] and{c̄}. At present stage, we do not exclu

nonlocal operators from the set of[Oi], which might be more relevant in the presence of IR or other non
divergences. Thus Eq.(9) is a rather general form of ‘decoupling theorem’ for any sort of underlying struct
UV or IR.

As the final step, it is easy to classify these operators into the kinetic operators (for the EFT fields[φ]), the
coupling operators (with couplings[g]), and ‘composite’ ones,[ON ], that do not appear in the EFT Lagrangian

(10)
∑
Oi

δOi
IOi

=
∑
g

δgg∂g +
∑
φ

δφÎφ +
∑
ON

δON
ÎON

.

Now with Eqs.(8), (10)we can turn the primary decoupling theorem in Eq.(9) and the full scaling law in Eq.(6)
into the following forms,

(11)

{∑
c̄

dc̄c̄∂c̄ −
∑
ON

δON
ÎON

−
∑
g

δgg∂g −
∑
φ

δφÎφ

}
Γ (n)

([λp], [g]; {c̄}) = 0,

(12)

{
λ∂λ +

∑
δON

ÎON
+

∑
g

(dg + δg)g∂g +
∑

δφÎφ − dΓ (n)

}
Γ (n)

([λp], [g]; {c̄}) = 0.
ON φ
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Here Eqs.(11), (12)are only true for the complete sum of all graphs (or up to a certain order). It is obvious th
canonicalcontributions from the underlying structures become theanomaliesin terms of EFT parameters.δOi

is
just the anomalous dimension for the operatorOi in EFT. Again the operators contributing to the scaling anoma
should contain the ones corresponding to IR or other non-UV singularities.

4. Novel perspective of RGE and Callan–Symanzik equation

In this section we limit our attention to a special type of theories beset only with UV divergences: the one
out the scaling anomalies

∑
{ON } δON

([g]; {c̄})ÎON
, i.e., the renormalizable theories in conventional terminolo

and all the operators are now local. Then, Eqs.(11) and (12)become simpler

(13)

{∑
c̄

dc̄c̄∂c̄ −
∑
g

δgg∂g −
∑
φ

δφÎφ

}
Γ (n)

([λp], [g]; {c̄}) = 0,

(14)

{
λ∂λ +

∑
g

(dg + δg)g∂g +
∑
φ

δφÎφ − dΓ (n)

}
Γ (n)

([λp], [g]; {c̄}) = 0.

These equations just correspond to the usual RGE and Callan–Symanzik equation (CSE) for renormaliza
ries. We could turn these equations into more familiar forms. For this purpose, we note that all the agent c
could be parametrized in terms of a single scaleµ̄ and a series dimensionless ones(c̄0). In the conventiona
programs, they are first predetermined through renormalization conditions, finally transformed into the p
parameters[1] or fixed somehow[2].

4.1. RGE and CSE as decoupling theorems

In Eqs.(13) and (14)only the insertion of kinetic operators appears unfamiliar. To remove this unfamiliarit
us note that

∑
φ δφÎφ lead to the following consequences[3]:

(15)δg → δ̄g ≡
(

δg − ng;φ
δφ

2
− ng;ψ

δψ

2

)
, Γ (nφ,nψ ) → (1+ δψ)nψ/2(1+ δφ)nφ/2Γ (nφ,nψ ),

with ng;φ andng;ψ being respectively the number of bosonic and fermionic field operators contained in the
with couplingg.

Then Eqs.(13) and (14)take the following forms:

(16)

{
µ̄∂µ̄ −

∑
g

δ̄gg∂g −
∑
φ

nφ

δφ

2
−

∑
ψ

nψ

δψ

2

}
Γ (nφ,nψ )

([p], [g];{µ̄; (c̄i
0

)}) = 0,

(17)

{
λ∂λ +

∑
g

Dgg∂g +
∑
φ

nφ

δφ

2
+

∑
ψ

nψ

δψ

2
− d

Γ
(nφ,nψ )

}
Γ (nφ,nψ )

([λp], [g];{µ̄; (c̄i
0

)}) = 0,

with Dg ≡ δ̄g +dg . Eqs.(16), (17)take the familiar forms of RGE and CSE. Here, all the constants (finite!) su
or arise from the ‘decoupling’ limit implied by the projection procedure. Thus, we could naturally interpret
equations as ‘decoupling’ theorems for the canonical scaling laws with underlying structures.

The RGE and CSE for the generating functional read

(18)

{
µ̄∂µ̄ −

∑
g

δgg∂g −
∑

δφÎφ

}
Γ 1PI([φ], [g];{µ̄; (c̄i

0

)}) = 0,
φ
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(19)

{∑
φ

∫
dDx

[
dφ − x · ∂x)φ(x)

] δ

δφ(x)
+

∑
g

Dgg∂g +
∑
φ

δφÎφ − D

}
Γ 1PI([φ], [g];{µ̄; (c̄i

0

)}) = 0

with D denoting the spacetime dimension. We note that the operator trace anomalies[4] could be readily read from
Eq.(19),

(20)gµνΘ
µν =

∑
g

δgg∂gLEFT +
∑
φ

δφÔkinetic(φ).

The right-hand side could be further simplified after using motion equations.

4.2. RGE and CSE for composite operators

For the vertex functions in the presence of composite operators, the only complication lies in the cont
from the related composite operators (more could show up than those in the vertex functions), that is the
cases in Eqs.(11), (12),

(21)

{
µ̄∂µ̄ −

∑
ON

δ̄ON
ÎON

−
∑
g

δ̄gg∂g −
∑
φ

nφ

δφ

2
−

∑
ψ

nψ

δψ

2
−

∑
i=A,...

δ̄Oi

}
Γ

(n)
OA,...

([λp], [g];{µ̄; (c̄i
0

)}) = 0,

(22)

{
λ∂λ +

∑
ON

δ̄ON
ÎON

+
∑
g

Dgg∂g +
∑
φ

nφ

δφ

2
+

∑
ψ

nψ

δψ

2
− D

Γ
(n)
OA,...

}
Γ

(n)
OA,...

([λp], [g];{µ̄; (c̄i
0

)}) = 0.

HereD
Γ

(n)
OA,...

= d
Γ

(n)
OA,...

− ∑
i=A,... δ̄Oi

, while the contributions from other composite operators (
∑

ON
δ̄ON

ÎON
)

could be further put into the familiar forms as the nondiagonal anomalous dimensions:
∑

ON
δ̄ON

ÎON
Γ

(n)
OA,... =∑

[ON ],[i=A,...] δ̄ONOi
Γ

(n)
OA,.... Thus, the final forms for Eqs.(21), (22)read{

µ̄∂µ̄ −
∑
g

δ̄gg∂g −
∑
φ

nφ

δφ

2
−

∑
ψ

nψ

δψ

2
−

∑
[ON ],[i=A,...]

δ̄ONOi
−

∑
OA,...

δ̄Oi

}

(23)× Γ
(n)
OA,...

([λp], [g];{µ̄; (c̄i
0

)}) = 0,{
λ∂λ +

∑
g

Dgg∂g +
∑
φ

nφ

δφ

2
+

∑
ψ

nψ

δψ

2
+

∑
[ON ],[i=A,...]

δ̄ONOi
− D

Γ
(n)
OA,...

}

(24)× Γ
(n)
OA,...

([λp], [g];{µ̄; (c̄i
0

)}) = 0.

4.3. Underlying structures and the notion of renormalization

As remarked above, the EFT parameters[g] and the UT agents{c̄} should be ‘derived’ from UT (they could no
be derived from EFT!). Thus, in EFT, they have to be determined or fixed somehow through physical bou
or data[1] or through sensible procedures[2].

Now to see the origin of the notion of renormalization, we solve the equation for scaling law, Eq.(17). This
could be conveniently achieved through the introduction of ‘running’ parameters[ḡ(λ)] for [g] based on Coleman’
bacteria analogue[5]. Then the solution of Eq.(17)can be found as the solution of the following equation,

(25)

{
λ∂λ +

∑[
dḡ + δḡ

([ḡ]; {c̄})]ḡ∂ḡ +
∑

δφ

([ḡ]; {c̄})Îφ − dΓ (n)

}
Γ (n)

([λp], [ḡ]; {c̄}) = 0

ḡ φ
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with ḡ(= ḡ([g];λ)) satisfying the following kind of equation,

(26)λ∂λ

{
ḡ
([g];λ)

/λdg
} = −{

dḡ + δḡ

([ḡ]; {c̄})}ḡ([g];λ)
/λdg ,

with the natural boundary condition:ḡ([g];λ)|λ=1 = g for each EFT parameter. The EFT couplings[g] should
be finite ‘bare’ parameters as they are in principle defined in the underlying theory. Now the notion
malization arises in EFT with the rescaling[p] → [λp]: the EFT couplings[g] (defined in UT!) get ‘renor-
malized’, [g] → [ḡ([g];λ)]. Accordingly, one could define the ‘renormalization’ constants (finite again!
zg([g];λ) ≡ ḡ([g];λ)/g. Thus renormalization is a notion in EFT associated with the rescaling, whose ge
origin is the contributions from underlying structures.

The renormalization constants for operators (kinetic or composite) could be introduced in similar man[3],
including the cases with ‘mixing’[6]. As a result, in the underlying theory point of view, the ‘renormalizati
constants are finite and could be introduced afterwards as byproducts, not as compulsory components. W
that this simple scenario might be helpful in more complicated EFTs, e.g., the Standard model, especia
sectors with unstable fields and with flavor mixing.

5. Appelquist–Carazzone decoupling theorem and underlying structures

Now let us discuss the decoupling theorem a la Appelquist–Carazzone[7] from the underlying structures
perspective.

5.1. Decoupling and repartition

First let us note that, in the underlying theory perspective, the EFT parameters and the underlying param
grouped or partitioned into two separate sets by the reference scale that naturally appear in any physical
(e.g., center energy in a scattering ) according to the relative magnitudes: the effective set[g] and the underlying
set{σ }. When an EFT field ‘becomes’ too heavy to directly participate the EFT dynamics, it only induces
partition between the effective and underlying parameters, with the union of the two sets kept ‘conserved
course of decoupling:

(27)[g] ∪ {σ } = [g]′ ∪ {σ }′, [g]′ ≡ [g]/[MH ], {σ }′ ≡ {σ } ∪ [MH ].
This repartition yields a new EFT that differs from the original one by a very massive field, hence a new
agent constants{c̄}′ is generated from this repartition. In terms of the scaling behavior, that means

(28)
∑
σ

dσ σ∂σ +
∑
g

dgg∂g =
′∑
σ

dσ σ∂σ +
′∑
g

dgg∂g,

or, equivalently,

(29)
∑

c̄

dc̄c̄∂c̄ +
∑
g

dgg∂g �⇒
∑
c̄′

dc̄′ c̄′∂c̄′ +
′∑
g

dgg∂g.

Then from the configuration of the parameters described in Eq.(27), the decoupling of a heavy EFT field cou
be formally be taken as the following two operations: (i) repartitioning the EFT and underlying paramete
taking the low energy limit with respect to the new underlying parameters, including the heavy EFT field’s
This is the mathematical formulation of EFT field decoupling.
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5.2. Practical decoupling of EFT fields

From Section4.3, we have seen that, the underlying parameters or their agents scale contribute to the ‘r
or ‘renormalization’ of the EFT parameters. Thus the repartition will alter the contents of ‘running’: what to
as underlying parameters versus what to scale as EFT parameters:

(a) Before decoupling, namely,MH is an EFT parameter and does not vary together with the underlying

meters or their agents. Then the factor lnc̄2

M2
H

contributes to the running of any EFT objects

(30)δλ

[
ln

c̄2

M2
H

]
= ln

[(1+ δλ)c̄]2
M2

H

− ln
c̄2

M2
H

�= 0;

(b) After decoupling,MH becomes underlying and varies homogeneously with{c̄}, then

(31)δλ

[
ln

c̄2

M2
H

]
= ln

[(1+ δλ)c̄]2
[(1+ δλ)MH ]2 − ln

c̄2

M2
H

= 0.

That is, taking as a member of the underlying parameters or their agents,MH will cancel out some agents’ con
tributions to the ‘running’. Accordingly, the anomalous dimensions of the EFT parameters will alter by a
amount (�δ̄g) due to decoupling

(32)δ̄g ⇒ δ̄′
g = δ̄g + �δ̄g.

From Eqs.(28) or (29), we see that, one could also work with the EFT containingMH , only adding some unnec
essary technical complexities. This is also a well-known fact.

It is not difficult to see that our arguments above amounts to provide a relatively ‘physical’ rationale
‘subtraction’ solution of decoupling[8]. Of course different boundary conditions are needed across the thre
which must lead to certain matching conditions for the ‘running’ parameters[9]. We hope our understanding cou
also be useful in the heavy quark effects in deeply inelastic scattering[10] and other important phenomenologie

6. Discussion and summary

Of course, all the results presented here are not new. However, we still feel the way we derived thes
seems more general and more natural. This underlying theory perspective might be of helps in deepe
understanding of the EFT methods. This is relevant to all the quantum theories, as any known theory is in
effective theory to some extents.

Of course, we did not touch the cases with concrete IR or other non-UV singularities. In such cases th
lying structures at large distances (hence often nonperturbative) must be incorporated (expanded) in a co
way. Considering the complications in various factorization formulations, we refrain here from a naïve ext
tion of the scaling law. But the abstract operator form of the decoupling theorems (or scaling laws) in Eq.(9) (or
Eq. (12)) is valid independent of such concrete details. The next step for deriving decoupling theorems or
laws in the case of non-UV singularities is to elaborate the contents of the operators and their anomalou
sions that are responsible for non-UV singularities. We hope this line of investigations would lead to a d
approach to the problem of non-UV singularities2 and help to clarify the universal contents of factorization and
its violation.

2 In QCD, this means an approach for tackling the nonperturbative dynamics.
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In summary, we derived the scaling laws in any EFT assuming the existence of nontrivial underlying str
with renormalization group equation and Callan–Symanzik equation being interpreted as ‘decoupling’ theo
the underlying structures. The Appelquist–Carazzone theorem was briefly discussed in this underlying s
perspective.

Acknowledgements

The author is grateful to Professor Bernd A. Kniehl for his hospitality at the II. Institute for Theoretical Ph
of Hamburg University. This project is supported in part by the National Natural Science Foundation of
under Grant Nos. 10502004 and 10475028, and by China Scholarship Council.

References

[1] G. Sterman, An Introduction to Quantum Field Theory, Cambridge Univ. Press, Cambridge, 1993.
[2] P.M. Stevenson, Phys. Rev. D 23 (1981) 2916;

G. Grunberg, Phys. Rev. D 29 (1984) 2315;
S.J. Brodsky, G.P. Lepage, P.B. Mackenzie, Phys. Rev. D 28 (1983) 228.

[3] J.-F. Yang, hep-th/0311219;
J.-F. Yang, hep-th/9908111.

[4] S.L. Adler, J.C. Collins, A. Duncan, Phys. Rev. D 15 (1977) 1712;
J.C. Collins, A. Duncan, S.D. Joglekar, Phys. Rev. D 16 (1977) 438.

[5] S. Coleman, Aspects of Symmetry, Cambridge Univ. Press, Cambridge, 1985, Chapter 3.
[6] H. Kluberg-Stern, J.B. Zuber, Phys. Rev. D 12 (1975) 54;

N.K. Nielsen, Nucl. Phys. B 97 (1975) 527;
N.K. Nielsen, Nucl. Phys. B 120 (1977) 212.

[7] T. Appelquist, J. Carazzone, Phys. Rev. D 11 (1975) 2262.
[8] S. Weinberg, Phys. Lett. B 91 (1980) 51;

L.J. Hall, Nucl. Phys. B 178 (1981) 75;
B. Ovrut, H. Schnitzer, Nucl. Phys. B 179 (1981) 381;
B. Ovrut, H. Schnitzer, Nucl. Phys. B 189 (1981) 509;
W. Bernreuther, W. Wetzel, Nucl. Phys. B 197 (1982) 228.

[9] G. Rodrigo, A. Santamaria, Phys. Lett. B 313 (1993) 441;
K.G. Chetyrkin, B.A. Kniehl, M. Steinhauser, Phys. Rev. Lett. 79 (1997) 2184.

[10] See, e.g., M.A. Aivazis, J.C. Collins, F.I. Olness, W.K. Tung, Phys. Rev. D 50 (1994) 3102;
M. Buza, Y. Matiounine, J. Smith, R. Migneron, W.L. van Neerven, Nucl. Phys. B 472 (1996) 611;
R.S. Thorne, R.G. Roberts, Phys. Rev. D 57 (1998) 6871;
M. Krämer, F.I. Olness, D.E. Soper, Phys. Rev. D 62 (2000) 096007.


	Renormalization group equations as `decoupling' theorems
	Introduction
	Effective versus underlying structures
	Canonical scaling with underlying structures
	Novel perspective of RGE and Callan-Symanzik equation
	RGE and CSE as decoupling theorems
	RGE and CSE for composite operators
	Underlying structures and the notion of renormalization

	Appelquist-Carazzone decoupling theorem and underlying structures
	Decoupling and repartition
	Practical decoupling of EFT fields

	Discussion and summary
	Acknowledgements
	References


