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An Exponential Combination Procedure
for Set-Based Association Tests in Sequencing Studies

Lin S. Chen,1,* Li Hsu,2 Eric R. Gamazon,3 Nancy J. Cox,3 and Dan L. Nicolae3,4

State-of-the-art next-generation-sequencing technologies can facilitate in-depth explorations of the human genome by investigating

both common and rare variants. For the identification of genetic factors that are associated with disease risk or other complex pheno-

types, methods have been proposed for jointly analyzing variants in a set (e.g., all coding SNPs in a gene). Variants in a properly defined

set could be associated with risk or phenotype in a concerted fashion, and by accumulating information from them, one can improve

power to detect genetic risk factors. Many set-basedmethods in the literature are based on statistics that can be written as the summation

of variant statistics. Here, we propose taking the summation of the exponential of variant statistics as the set summary for association

testing. From both Bayesian and frequentist perspectives, we provide theoretical justification for taking the sum of the exponential of

variant statistics because it is particularly powerful for sparse alternatives—that is, compared with the large number of variants being

tested in a set, only relatively few variants are associated with disease risk—a distinctive feature of genetic data. We applied the exponen-

tial combination gene-based test to a sequencing study in anticancer pharmacogenomics and uncoveredmechanistic insights into genes

and pathways related to chemotherapeutic susceptibility for an important class of oncologic drugs.
Introduction

Advances in high-throughput arrays have made feasible

the genotyping of hundreds of thousands to millions of

SNPs for a large number of subjects.1 As a result, genome-

wide association studies (GWASs) have flourished in the

past decade, and thousands of SNPs have been successfully

associated with complex disease traits.2 Despite the success

of GWASs, a large proportion of genetic variation under-

lying disease risk remains unidentified.3 One possibility

is that many of the causal variants are rare in the popula-

tion and are therefore poorly captured by GWASs. As

state-of-the-art technology, next-generation sequencing

provides a more accurate and comprehensive measure-

ment of genetic variation, especially for the rare part of

the frequency spectrum.4 Rare variants appear infre-

quently in the sampled subjects, making them less likely

(unless the sample size is very large) to be detected with

single-SNP inference. Moreover, as millions of variants

are tested for association, one needs to apply a stringent

multiple-testing adjustment. Therefore, in current se-

quencing studies, power for detecting risk-associated rare

variants is a major concern.

For improving the power for detecting genetic risk

factors, a natural approach in sequencing studies is to

analyze sets of genetic variants.5–11 The rationale is that

by accumulating information on functionally related

variants, one can gain power to detect associations. In

addition, the number of tests is greatly reduced, and

the significance criterion is relaxed. In the set-based

analysis, a set is often defined by functional ‘‘units,’’ for

example, a gene5 or a pathway.12 To illustrate the con-

cepts, we mainly focus on gene-based analysis, although
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similar arguments could be applied to other genetic

units.

Various methods have been proposed for jointly

analyzing multiple variants in a gene. In the cohort allelic

sums test,5 the combined-multivariate-and-collapsing

method,6 and the weighted sum test by Madsen and

Browning (designated here as the burden test),7 rare-allele

counts of individual variants are collapsed (with weights)

in a gene for cases and are contrasted with those for

controls for the formation of an association statistic. The

C-alpha test10 is based on the sum of variant statistics,

each of which compares the observed and the expected

variance of minor allele frequencies (MAFs) in cases for

a variant in the gene. The C-alpha test is robust to the

direction of association effects. Wu et al. (2011)11 proposed

a weighted kernel regression approach (sequence kernel

association test [SKAT]) that upweighs rare variants. Under

certain conditions, such as assigning equal weights to vari-

ants regardless of MAF and with no covariates, SKAT and

some other regression-based tests8,9 are almost equivalent

to the C-alpha test. We mainly discuss the burden test

and the C-alpha test in this work as examples of set-based

tests. In large samples, the burden test can be approxi-

mated by a linear combination of normal statistics,

whereas the C-alpha test can be approximated by a linear

combination of chi-square statistics. They represent two

classes of set-based tests.

Set-based methods can be viewed as ways of combining

individual statistics, i.e., of determining whether an effect

is present in at least one of the variants in the set. Many

set-based test statistics can, in fact, be represented as the

linear combination of variant statistics. Linear combination

has beenwidely used because it is not only simple but is also
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the most powerful test for testing against simple alternative

hypotheses.13 In the context of case-control sequencing

studies, linear combination is powerful if the goal is to test

whether odds ratios are equal to 1 for all variants in a gene,

as opposed to whether odds ratios are equal to some given

value, say 1.2. However, linear combination is no longer

the most powerful test if the alternative is composite, for

example, not all odds ratios are equal to one. In addition to

linear-combination procedures, other methods for com-

bining individual test statistics in a set-based test are also

proposed and discussed. Fisher’s and Tippett’s methods are

widely used as combination tests.14 Fisher’s method rejects

large values of �2
P

logðpiÞ; where pi is the p value corre-

sponding to the individual statistic Zi.
15 Tippett’s method

rejects low values of the minimum of p values, minðpiÞ.14
These two combination procedures are nonparametric in the

sense that they are based on individual p values in a set

regardless of the distributional form of the test statistics.

Some other nonparametric set-basedmethods have been

proposed in the context of genetics or expression studies.

For example, Zaykin et al. (2002)16 proposed a truncated

product method for combining p values in a set. Zaykin

et al. (2007)17 proposed a soft-threshold method with

a test statistic as the sum of inverse gamma transformation

of p values in a set. Yu et al. (2009)18 and Biernacka et al.

(2012)19 extended the p value combination methods to

gene-set or pathway analysis in association studies. These

methods share a similar idea to our proposed method:

when only a small number of statistics in a set are from

the alternative, linear combination or Fisher’s method

might not be powerful, and when more than one statistic

in a set is from the alternative, Tippett’s method is also

not optimal. In contrast to our proposed method, these

methods16–19 are based on combining individual p values

instead of test statistics in a set. In sequencing studies

that involve a lot of rare variants, individual p values for

rare variants might be unreliable, and set-based tests based

on individual p values can result in loss of power, espe-

cially when rare variants are more strongly associated

with disease risk than common variants.

For combining multiple one-sided normal statistics, van

Zwet and Oosterhoff (1967)20 proposed the statisticP
expðwiZiÞ, where wi is the weight and Zi is normally

distributed. Koziol and Perlman (1978)21 proposed the

statistic
P

expðwiZiÞ for combining independent chi-

square statistics. Both take the sum of the exponential

of individual statistics as set statistics. In contrast with

Fisher’s, Tippett’s, and other nonparametric methods,

linear combination and the sum of exponential of statistics

are parametric because they are derived from the density

functions of statistics from exponential families.

In this work, we propose an exponential-combination

(EC) framework for set-based association tests in sequenc-

ing studies. EC is not just one test statistic but is, rather,

a general procedure that can be used for combining

individual variant statistics for performing set-based anal-

ysis. The proposed EC procedure improves power under
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a natural class of alternatives for set-based tests in

sequencing studies. Genetic data, particularly sequencing

data, have distinctive features that can guide us in finding

powerful combination procedures. Specifically, among

tens of millions of known variants, only a very small

proportion is related to disease risk for any particular

disease. If a gene harbors k variants and k0 of them are truly

associated with disease risk, it is likely that k0 � k, particu-

larly if k is large. Thus, instead of testing against a generic

alternative (e.g., when at least one SNP is associated), a

more realistic composite alternative hypothesis is to test

whether only a small number among all variants have non-

zero effects while all the other variants have zero effects.

We term this kind of alternative a sparse alternative.

EC accounts for these distinctive features of sequencing

studies. In the following sections, we derive the EC statistic

against a sparse alternative from both Bayesian and fre-

quentist perspectives. With simulated examples and an

application to sequencing-based data in pharmacogenom-

ics, we show that EC is more powerful than other combina-

tionmethods for set-based tests when only a small number

of variant statistics are truly from the alternative.

Material and Methods

We denote with k the number of variants in a set under investiga-

tion. Many commonly used set-based test statistics can be written

as a linear combination of variant statistics, i.e., Z ¼ Pk
i¼1piZi,

where pi ðpiR0Þ is the weight and Zi is the statistic of the ith

variant. When only a small number of variant statistics are from

the alternative, a more powerful combination procedure exists.

This powerful combination is to take the sum of the exponential

of squared variant statistics, Z ¼ Pk
i¼1pi expðwiZ

2
i Þ if Zi is (approx-

imately) normally distributed, or the sum of the exponential of

variant statistics, Z ¼ Pk
i¼1pi expðwiZiÞ if Zi is (approximately)

chi-square distributed. Here, wi ðwiR0Þ is the weight on the expo-

nential scale, and pi is the weight on the linear scale for the indi-

vidual variant statistic Zi. We suggest the use of wi ¼ 1=2 and

pi ¼ 1 as the default.

The Bayesian Interpretation of EC
The distinctive feature of genetic data—sparse association—could

be modeled in the prior of Bayesian inference. Suppose that the

variant statistics Z1;.;Zk are independently distributed and that

each has the density function f ðzi; qiÞ; i ¼ 1;.; k, where qi is the

parameter of interest. To test the null hypothesis, H0 : qi%0 c i,

against the alternative hypothesis, H1: at least one qi > 0, the

Bayes test has the rejection region(
ðz1;.; zkÞ :

Z Yk
i¼1

�
f ðzi; qiÞ
f ðzi;0Þ

�
dfðq1;.; qkÞ > c

)
; (Equation 1)

where f represents the prior probability distribution of ðq1;.; qkÞ
over the alternative space U and c is chosen for achieving the over-

all significance level a. The Bayes test minimizes the Bayes risk and

is most powerful if the prior is correctly specified.

Different priors yield different Bayes tests, and we consider here

two classes of prior distributions. Under the alternative with

a ‘‘class I prior,’’ qi’s vary independently over the alternative space

U, and each qi has marginal prior fiðqiÞ. When Zi’s are normally or
er 7, 2012



chi-square distributed and have marginal conjugate priors for the

qi’s, the integral in Equation 1 reduces to rejecting large
Pk

i¼1piZi,

where pi’s are the weights and are functions of fi’s.
21 Therefore,

the linear-combination test is the Bayes test under the class I prior.

For example, when each variant in a gene is independently associ-

ated with disease risk with a nonzero log odds ratio, the linear

combination of variant statistics is powerful.

Now consider another type of prior, ‘‘class II prior,’’ where only

one qis0 and all other qj’s ¼ 0 ðisjÞ. The prior puts positive prob-
ability hi at the coordinate axis ð0;.; qi;.;0Þ in the alternative

space, where
P

ihi ¼ 1. With class II prior, we only consider each

coordinate axis to decide the rejection rule for the Bayes test.

The Bayes test in Equation 1 rejects when the following is large:

X
hi

ZN
�N

f ðzi; qiÞ
f ðzi;0Þ fiðqiÞdqi: (Equation 2)

Suppose that each Zi independently follows a normal distribu-

tion with mean qi and unit variance Zi � Nðqi;1Þ. With class II

prior, we have q ¼ ð0;.;0; qi;0;.;0Þ with probability hi under

the alternative, where qi � fiðqiÞ ¼ Nð0; t2i Þ. Here, we choose

Nð0; t2i Þ as the prior for qi because it is the conjugate prior for

the normal distribution and gives an explicit analytic form. This

test can be viewed as a union-intersection test of two one-sided

tests: one is for testing H0 : qi%0 for all i against H1: only one

qi > 0; the other is for testing H0 : qiR0 for all i against H1: only

one qi < 0. The rejection rule in Equation 2 for testing the first

one-sided test is rejecting large values ofX
pi exp

�
wiZ

2
i

�
; (Equation 3)

where pifhi and wi ¼ 1=2ð1þ 1=t2i Þ. It is natural to use hi ¼ 1=k.

As the hyperparameter ti becomes large, wi converges to 1/2. On

the basis of a similar derivation, this is also the rejection rule for

the second one-sided test H0 : qiR0 for all i versus H1: only one

qi < 0. Therefore, to combine multiple normal statistics and to

test whether one of them has a nonzero mean, the Bayes test

rejects a large value of the EC of squared normal statistics,P
expð1=2 Z2

i Þ.
Consider the sparse alternative that at least one and at most k0

out of k statistics have qi > 0, for which k0 � k. Under this sparse

alternative, the Bayes test is not easily derived and does not have

a simple form. However, this sparse alternative is much closer to

class II priors than to class I priors. Even though EC is not neces-

sarily the Bayes test under general sparse alternatives, it remains

more powerful than linear combination for combining normal

or chi-square statistics.

From a Frequentist Perspective: EC as a Score Test
Interestingly, the same EC procedure can also be derived as the

score test for testing H0 : p ¼ 0 against H1 : p > 0 on the basis of

the profile likelihood f ðzi;.; zkjq1;.; qk; pÞ, where p is the proba-

bility of qi being nonzero. Let X be the number of qi’s that are

nonzero and let X � Bðk; pÞ. The full likelihood is

L ¼ f ðz1;.; zk j pÞ ¼
R
f ðz1;.; zk j xÞf ðx j pÞdx

f
Pk
x¼0

P
ð1Þ; . ;ðkÞ˛L

e
�1
2

Px
i¼1

ðzðiÞ�qðiÞÞ2
e
�1
2

Pk
i¼xþ1

z2ðiÞ
�
k
x

�
pxð1� pÞk�x

;

where L is composed of all permutations fð1Þ;.; ðkÞg of

the labels for the k variant statistics. For x ¼ 0, we defineP0
i¼1ðzðiÞ � qðiÞÞ2 ¼ 0. For x ¼ k, we define

Pk
i¼kþ1z

2
ðiÞ ¼ 0.
The American
Consider the score test for testing H0 : p ¼ 0 against H1 : p > 0.

Specifically, at each X ¼ 0;.; k, one can maximize the likelihood

for the nonzero means bqMLE

ðiÞ ¼ zðiÞ. The resulting profile likelihood

is given by

~Lfe
�1
2

Pk
i¼1

z2
i Xk

x¼0

X
ð1Þ; . ;ðkÞ˛L

e
1
2

Px
i¼1

z2ðiÞ
�
k
x

�
pxð1� pÞk�x

:

If we take the derivative of the log profile likelihood with respect

to p, we obtain the following score function:

d log ~L

dp
¼

Pk
x¼0

P
ð1Þ; . ;ðkÞ˛L

e
1
2

Px
i¼1

z2ðiÞ
�
k
x

�
pxð1� pÞk�x

�
x

p
� k� x

1� p

�
Pk
x¼0

P
ð1Þ; . ;ðkÞ˛L

e
1
2

Px
i¼1

z2ðiÞ
�
k
x

�
pxð1� pÞk�x

:

As p/0, only X ¼ 0 and X ¼ 1 contribute to the numerator and

only X ¼ 0 contributes to the denominator, giving the score eval-

uated at null:

lim
p/0

d log ~L

dp
¼ �kþ k

Xk

i¼1

e
1
2 z

2
i :

Hence, the score test for testing H0 : p ¼ 0 rejects large values ofPk
i¼1expð1=2 Z2

i Þ, which is the same as the Bayesian test derived

under the class II prior.

EC of Chi-Square Statistics
In a related work, Koziol and Perlman (1978)21 discussed

the combination procedures for combining independent chi-

square statistics. In brief, let Zi be chi-square distributed

with degrees of freedom (df) dfi and noncentrality parameter

qi. For testing H0 : q ¼ 0 against H1 :
P

qi > 0 with class II

priors, the prior distribution is that with probability hi, qi is

distributed according to the conjugate prior gamma distribution

fiðqiÞ ¼ ðadfi=2
i =Gðdfi=2ÞÞ qdfi=2�1

i expð�aiqiÞ; where ai is a hyper-

parameter and all other fjðqjÞ ¼ 0 ðjsiÞ. Under this alternative,

the Bayes test in Equation 2 can be reduced to rejecting large

Xk

i¼1

pi expðwiZiÞ; (Equation 4)

where pifhi and wi ¼ 1=ð2ð2ai þ 1ÞÞ. We use hi ¼ 1=k. When ai is

small, the exponential weight wi also approaches 1/2. The Bayes

test in Equation 4 rejects large
Pk

i¼1expðð1=2ÞZiÞ when each Zi is

1 df chi-square distributed.

Weights
Although the idea of EC is to ‘‘boost’’ the large individual statistics

in a set when only very few are expected to be from the alternative,

how much we should boost is not an arbitrary decision. Large

exponential weights could yield huge combined statistics under

both the null and the alternative, resulting in low power for distin-

guishing the alternative from the null. On the basis of mathemat-

ical derivations, we obtained the exponential weight wi ¼ 1=2

when combining k normal or chi-square statistics for testing

against the most sparse alternative—only one out of k is from

the alternative.When the alternative is less sparse,wi < 1=2might

be slightly more powerful because it puts more weights on statis-

tics other than the largest ones. In general, when multiple stan-

dardized statistics are combined, exponential weights around or

less than 1/2 are appropriate. In Appendix A, we derive the EC

statistics for the burden and the C-alpha tests on the basis of their
Journal of Human Genetics 91, 977–986, December 7, 2012 979
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Figure 1. Boundary of Acceptance Regions of the Four Combi-
nation Procedures
For testing the noncentrality parameters for Z1;Z2 � c2

1,
H0 : q1 ¼ q2 ¼ 0 versus H1 : q1R0 and q2R0 with q1 þ q2 > 0, the
boundaries of acceptance regions of exponential (red solid),
Tippett’s (blue dot-dash), Fisher’s (green dotted), and linear (black
dashed) combination procedures are compared. The size of each
combined test is a ¼ 0.01.
respective standardized variant statistics. By standardization, we

implicitly impose the exponential weights that are inversely

proportional to the SD of variant statistics under the null. Because

rare variants have smaller SDs, they are weighted more heavily

than common variants in the EC analyses.

Sequential Precision-Improvement Permutation

for Calculating p Values
As a result of low rare-allele counts in the sample, the individual

variant statistics, Zi’s, do not often follow the standard normal

or chi-square distribution. Even when they do, the EC statistic,Pk
i¼1expðð1=2Þ Z2

i Þ for combining normal or
Pk

i¼1expðð1=2Þ ZiÞ
for combining 1 df chi-square statistics, does not have a trivial

distribution. Moreover, the parametric form of the EC statistic

might become intractable when the linkage disequilibrium (LD)

structure among variants is unknown and not easily estimated.

To accurately assess the significance,wepermutedphenotypes to

calculate the p values. To alleviate the computational burden, we

used a sequential precision-improvement permutation algorithm

to calculate set-based p values. Specifically, we first permuted

phenotypes B ¼ 100 times and estimated the p value for each set.

For sets with p values less than 10/B ¼ 0.1, we recalculated their

p values with ten times more permutations (B¼ 1,000) to improve

precision. If any genes still had p values less than 10/B ¼ 0.01,

we recalculated their p values with ten times more permutations

(B ¼ 104). We repeated this procedure until no gene had a p value

with low precision (<10/B) or until the number of permutations

was greater than a certain fixed number, for example, 106.
Results

Simulations: Power Comparison with Other

Combination Procedures Combining Two

Chi-square Statistics

Consider a simple scenario: a gene with only two variants.

We first calculated the test statistic for each variant,
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Ziði ¼ 1;2Þ. Under the null, i.e., if the variant is not risk

associated, Zi follows a chi-square distribution with 1 df

and noncentrality parameter qi ¼ 0. Under the alternative,

qi > 0. To test whether the gene is associated with disease

risk is to test whether either statistic Zi is from the alterna-

tive. We compared the acceptance boundaries (at size a ¼
0.01) of four combination procedures for combining two

chi-square statistics (see Figure 1). The four combination

procedures are: the EC method with gene statisticP2
i¼1expðZi=2Þ, Tippett’s method with gene statistic

mini¼1;2ðpiÞ, where pi is the p value for Zi ði ¼ 1; 2Þ, Fisher’s
method with statistic �2

P2
i¼1log pi, and the linear-combi-

nation method with gene statistic
P2

i¼1Zi. The linear

combination and Fisher’s combination have smaller accep-

tance regions near the symmetric line z1 ¼ z2 (Figure 1)

and are thus more powerful when both variant statistics

are from the alternative. Exponential and Tippett’s combi-

nations are more powerful near the lines when z1 ¼ 0 or

z2 ¼ 0. They are more powerful when only one variant

statistic is from the alternative. Tippett’s method, however,

has the least power when z1 ¼ z2, whereas EC remains

competitive when z1 ¼ z2.
Comparing the Four Combination Procedures on Two

Commonly Used Set-Based Methods in Sequencing

Studies

We simulated data sets with 10,000 variants not associated

with disease risk and 5,000 variants associated with disease

risk. For all 5,000 risk-associated variants, we simulated the

rare-allele counts to be positively associated with disease

risk (i.e., deleterious) with odds ratios uniformly distrib-

uted from 1.2 to 1.8. Because all risk-associated variants

are associated with risk in the same direction, the simula-

tion is in favor of the burden test. Our EC statistic is based

on the sum of the exponential of squared normal (or chi-

square) statistics and it is not affected by the direction of

association. The simulated data consists of 500 cases and

500 controls. The MAFs of these simulated variants were

sampled uniformly from 0.1% to ~10%. We also repeated

the simulations with MAFs from 0.1% to ~1%, i.e., those

involving only rare and very rare variants. The conclusions

are the same (see Figure S1, available online).

We compared the power of different combination proce-

dures on the basis of two commonly used set-based tests,

the burden test7 and the C-alpha test,10 in three different

scenarios: small genes with ten variants in each gene,

moderately-sized genes with 100 variants, and large genes

with 300 variants. For each scenario, we simulated 1,000

genes. We calculated the gene-level statistics of the burden

test and the C-alpha test, and both were based on the linear

combination of variant statistics. We derived the EC of

these statistics (see Appendix A). We also compared the

original linear combination and the proposed EC with

Tippett’s and Fisher’s combinations on the burden and

the C-alpha statistics. Fisher’s and Tippet’s methods

combine variant-level p values in a gene. In sequencing
er 7, 2012
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Figure 2. Power Comparison of the Four Combination Procedures on the Burden Test and the C-alpha Test at the p Value Cutoff
of 0.001
We compared the power of different combination procedures for different gene sizes as the number of risk-associated variants in each
simulated gene increased from 0 to 10. The MAFs of the variants in the simulation range from 0.1% to 10%.
studies, the parametric p values for individual variants can

be unreliable as a result of low minor-allele counts for rare

variants. To make a fair comparison, we calculated the

permutation-based p values for individual variants and

then calculated the gene-level statistics for Fisher’s and

Tippet’s methods. Even when based on permutation,

variant-level p values for very rare variants can still be

unreliable, and Fisher’s and Tippet’s methods can suffer

from power losses, especially if rarer variants are more

strongly associated with disease risk. To assess the signifi-

cance of the four combination methods, we calculated

the gene-level p values for each with up to 104 permuta-

tions of phenotypes by using the proposed sequential

precision-improvement permutation method.

Figure 2 shows the power comparison of the four combi-

nation procedures for different gene sizes as the number of

risk-associated variants in each simulated gene increases

from 0 to 10. The p value cutoff is 0.001 (other thresholds

yield similar conclusions). EC is always more powerful

than Tippet’s method, especially when the number of

risk-associated variants in a gene is less sparse, e.g., in small

genes. Linear combination and Fisher’s method are more

powerful than EC in detecting small genes whenmost vari-

ants (R5 out of 10) are associated with disease risks. To

detect moderately sized or large genes, the linear combina-
The American
tion of burden statistics is not powerful if only a small

number of variants are associated with disease risk

(Figure 2A). This is because a few risk-associated variants

are combined linearly with a large number of nonassoci-

ated variants, and the overall signal strength is diluted.

The linear combination of C-alpha statistics still has

some power (Figure 2B) but is much less powerful than

the EC of C-alpha statistics, especially for large genes

with 300 variants. For large genes, EC is always more

powerful than competing methods. In practice, with the

availability of whole-genome sequencing, the number of

variants in a gene can be larger than 300, and the EC proce-

dure can be quite useful.

The burden test and the C-alpha test are chosen as exam-

ples because in large samples, they can be approximated by

a linear combination of normal and chi-square statistics,

respectively. In this simulation, as a result of limited

sample size and low MAFs of some variants, many variant

statistics might not be normal or chi-square distributed.

Nevertheless, we still see power improvement from EC

when the number (or proportion) of risk-associated vari-

ants is relatively small. This indicates that violation of

normal or chi-square distribution assumptions does not

invalidate our claim—EC is powerful against a sparse

alternative.
Journal of Human Genetics 91, 977–986, December 7, 2012 981



Table 1. Power Comparison of the Four Combination Procedures
at Different p Value Cutoffs

p Value
Cutoff

Linear
Combination EC

Tippett’s
Method

Fisher’s
Method

0.001 0.186 0.266 0.191 0.169

0.005 0.270 0.381 0.286 0.252

0.010 0.326 0.450 0.349 0.306

0.050 0.496 0.636 0.538 0.484

The results are based on a simulation with genotype data from 60 CEU samples
from the 1000 Genomes Project and simulated continuous phenotypes. The
following abbreviation is used: EC, exponential combination.
Comparing the Four Combination Procedures on

Simulations Based on Genotype Data from the 1000

Genomes Project

To evaluate the performance of different combination

procedures for dependent variants, we conducted simula-

tions based on the whole-genome sequencing data of the

60 HapMap CEU (Utah residents with ancestry from

northern and western Europe from the CEPH collection)

samples from the 1000 Genomes Project.22 In our simula-

tions and the data analyses that followed, we assigned vari-

ants within the start and end coordinates of a gene as the

variants of the gene. There were 9,390 genes with at least

two variants. The median, mean, and maximum gene sizes

were 61, 168.4, and 19,817 variants, respectively. We

compared the four combination procedures for combining

variant score statistics (or p values of variant score tests) in

the genes. The score statistic for variant i is calculated as

qi ¼ ðPjgijyjÞ2, where gij is the rare-allele count for variant

i in individual j and yj is the standardized phenotype for

individual j. Linear combination of variant score statistics

in a gene is formed as
P

jciqi, where ci is the weight for qi
and is inversely proportional to the SD of the score statistic

for variant i under the null. Except for the weighting

scheme, the linear combination of score statistics is equiv-

alent to SKAT with a weighted linear kernel.11 The EC of

score statistics is
P

iexpðð1=2Þ ciqiÞ. Because the SDs of

score statistics for rare variants are smaller than those for

common variants, rarer variants are weightedmore. Single-

tons within a gene are collapsed. Fisher’s and Tippett’s

statistics are calculated on the basis of permutation-based

variant-level p values in the genes. We first simulated

a continuous phenotype under the null, i.e., no gene or

variant is associated with the simulated phenotype. For

each method, we calculated the gene-level p values for

the 9,390 genes with 1,000 permutations. The p values

for all methods were uniformly distributed under the

null (see Figure S2).

To compare the power under sparse alternatives with

dependence, we simulated one continuous phenotype

for each gene in the data and simulated the phenotypes

to be associated with one to four independent variants in

a gene (larger genes were more likely to harbor more causal

variants). The log odds ratios were simulated to be propor-
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of the variants. Although only up to four

independent causal variants were simulated for each gene,

the actual number of phenotype-associated variants could

be much larger than four, especially for larger genes, as

a result of strong LD among variants in a gene. Table 1

shows the power comparison of the four procedures at

different p value cutoffs. EC is 20%–30% more powerful

than Tippett’s method. This is possibly because depen-

dence among variants reduces the level of sparsity in the

alternative, and by considering statistics other than the

maximum (or p values other than the minimum), EC can

gain additional power. An alternative explanation is that

we simulated rarer variants to be more strongly associated

with phenotype and that the p values for very rare variants

are less reliable, and as such, Tippett’s method based on

individual variant p values can suffer from loss of power.

Even with LD among variants, the alternative is still sparse,

and EC can be 30%–50% more powerful than either

Fisher’s or the linear method.

Application to Cell-Based Pharmacogenomics

In previously reported cell-based pharmacogenomics

studies, cell lines that had been derived from HapMap

CEU samples were treated with platinating agents and

assayed for cellular susceptibility phenotypes.23 In our

study, we focused on two platinating agents: carboplatin

and cisplatin. The platinating agents are some of the

most commonly used chemotherapeutic drugs and are

often used clinically against a wide variety of cancers,

including head-and-neck cancer (MIM 275355), ovarian

cancer (MIM 167000), lung cancer (MIM 211980), and

colorectal cancer (MIM 114500).24 Platinum-based treat-

ment can be accompanied by intrinsic and acquired resis-

tance, but the molecular mechanism of resistance is not

well understood. Translationally, there is an urgent need

for a reliable approach to identifying patients at risk for

significant toxicities.25 Cell-based studies have shown

that pharmacologic phenotypes in the platinating agents

are heritable traits.26 With extensive genotypic (from

the HapMap Project) and whole-genome sequence (from

the 1000 Genomes Project) data,1,22 pharmacogenomic

studies of lymphoblastoid cell lines have facilitated the

investigation of potential genetic etiologies. Investigators

have sought to characterize the role of genetic variation

in conferring platinum-induced cytotoxicity and in the

development of platinum resistance.27

In this study, the half-maximal inhibitory concentration

(IC50) was used for measuring the growth-inhibition effect

of two anticancer drugs, carboplatin and cisplatin. Specifi-

cally, IC50 of carboplatin (or cisplatin) measures the dose of

carboplatin (or cisplatin) needed for inhibiting the cells by

50%. Out of the 60 CEU samples (from the 1000 Genomes

Project) from which genotype data are available, 58 of

them have available (from previous studies23,28,29) the

log2-transformed IC50 of both carboplatin and cisplatin,

and the two cytotoxicity phenotypes are significantly

correlated (correlation ¼ 0.487).
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A B Figure 3. Scatter Plots of p Values Based
on Linear Combination Tests and p Values
Based on EC in the Analyses of Carbopla-
tin and Cisplatin
(A) Carboplatin.
(B) Cisplatin.
To identify genes associated with the log2 IC50 of carbo-

platin, and separately with the log2 IC50 of cisplatin, we

formed gene statistics by the linear combination and the

EC of score statistics of variants within a gene. We calcu-

lated p values by permuting the phenotypes by using the

proposed computationally efficient permutation algo-

rithm (see Material and Methods). Because the sample

size in this study was limited and because ~30% of the vari-

ants had five or fewer rare-allele counts in this data, the

individual variant p values could be unreliable even

when they were calculated on the basis of permutation.

Results from Fisher’s and Tippett’s methods based on

combining variant-level p values are therefore not pre-

sented in this analysis.

Figures 3A and 3B show the scatter plots of the p values

by linear-combination tests and the p values by EC in the

analyses of the two drugs, carboplatin and cisplatin,

respectively. Genes with small p values by linear-combina-

tion tests always have small EC p values. In contrast, genes

with small EC p values might not be identified by linear-

combination tests. These plots show that EC is more

powerful than linear-combination tests in both carbopla-

tin and cisplatin analyses. At different p value cutoffs, EC

often yields more significant findings than do linear-

combination tests (see Table S1).

To facilitate further insights into the underlying mecha-

nism of resistance, we conducted DAVID (Database for

Annotation, Visualization and Integrated Discovery) func-

tional enrichment analyses30 on the top 100 EC-identified

genes associated with carboplatin and cisplatin. The top

100 genes associated with carboplatin showed a highly

significant enrichment: 29 genes were involved in acetyla-

tion and had a Benjamini-Hochberg-adjusted p value of

0.0076. It has been reported that acetylation might inter-

fere with resistance mechanisms of chemotherapeutic

agents such as carboplatin and might elevate the activity

of the drug.31,32 Some other pathways, such as blood-

group antigens, phosphoproteins, and transmembrane

proteins, are also significantly enriched with the top genes

from EC in the DAVID functional analyses. In contrast,

only the blood-group-antigen pathway is significantly en-

riched with the top genes from linear combination in the

DAVID functional analyses.
The American Journal of Human Gen
Identified Susceptibility Loci

Enable Hypotheses onMechanism

of Toxicities

Two claudin-family genes, namely

CLDN9 and the adjacent CLDN6,

show suggestive evidence of associa-
tion with both carboplatin and cisplatin log2 IC50.

Claudins are integral membrane proteins that are compo-

nents of tight junction strands. Given that potentially

permanent hearing loss is one of the devastating toxicities

associated with the platinum compounds, both the role of

the claudin-9 gene as essential for hearing in mice studies

and the high sequence conservation of the gene between

mice and humans33 are noteworthy. On the basis of

the EC analysis, the p values for CLDN9 are 0.00085 in

cisplatin (ranked fourth among 9,390 genes) and 0.0015

in carboplatin (ranked 16th); the p values for CLDN6 are

0.00072 (ranked third) and 0.0012 (ranked tenth) for

cisplatin and carboplatin, respectively. Ototoxicity is

much more frequent in cisplatin than in carboplatin,34

consistent with our finding that both genes are slightly

more significant in cisplatin than in carboplatin. On the

basis of the linear-combination analysis, the p values of

the two genes are very close to those of EC but have slightly

worse rankings. These two adjacent genes harbor 14 vari-

ants, mostly with MAFs R 5%, and rare-allele counts of

most variants are negatively correlated with log2 IC50 of

both cisplatin and carboplatin. This suggests that rare

alleles or mutations in claudins might confer sensitivity to

the two platinating agents, consistent with the previous

finding thatwild-type claudin-9 is required for thepreserva-

tion of sensory cells in the hearing organ.33 Figure 4A

displays the association and LD plot35 of the 14 variants

in the two genes. Although none of the variants has an

individual variant p value that reaches genome-wide signif-

icance, several variants (whether in LD or not) are sugges-

tively associated with carboplatin and cisplatin. These re-

sults potentially implicateCLDN9 as a platinumbiomarker.

Another gene, cadherin-2 (CDH2 [MIM 114020]), is

highly significant with a p value of 0.0007 (ranked second)

for cisplatin and a p value of 0.038 for carboplatin by

EC. CDH2 is also known as neural cadherin (NCAD) and

is a calcium-dependent cell-cell adhesion glycoprotein.

The protein is commonly present in cancer cells and has

an important function in transendothelial migration.

Remarkably, in a genome-wide transcriptional study of

genes with significantly altered expression between carbo-

platin-sensitive (S) and carboplatin-resistant (R) cells,

CDH2 was found to have nearly 143 lower expression in
etics 91, 977–986, December 7, 2012 983



A B Figure 4. Individual Variant Association
to Platinating Agents and LD Plots
(A) The 14 SNPs in CLDN9 and CLDN6 on
chromosome 8. From left to right, the first
five SNPs are in CLDN9 and the other nine
are in CLDN6.
(B) The 585 SNPs in CDH2 on chromo-
some 10.
R cells than in S cells.36,37 Figure 4B displays the associa-

tion and LD plot35 of all variants in the genes. Among

the 585 variants, rare-allele counts of 461 and 419 variants

are negatively correlated with log2 IC50 of cisplatin and

carboplatin, respectively. Except for a few variants with

individual SNP p values below 10�4, most are not signifi-

cantly associated with either drug. In contrast, this gene

is not significant by linear-combination analysis.
Discussion

We propose an EC procedure that sums the exponential of

variant statistics in a gene- or set-based test. We provide

theoretical support for the proposed procedure from both

Bayesian and frequentist perspectives, as well as empirical

evidence via simulated and real application examples,

showing that EC is powerful for detecting sparse alterna-

tives. EC is a general and flexible framework that can be

used for improving power for many existing methods for

set-based analysis of sequencing data. Furthermore, the

proposed procedure is applicable not only to sequencing

data but also to GWAS data or other settings where risk-

associated genetic factors are sparse.

EC is presented here as a gene- or set-based method. In

principle, it is applicable to analyses of pathways, gene-

gene or gene-environment interactions, or other much

larger sets of genomic features. The extensions of EC to

the latter settings might require additional development.

For example, in a pathway, there are specific correlation

structures among variants in a gene and variants between

genes. By treating a pathway as a larger set of variants,

one can lose the advantage of pathway analysis. Further-

more, when a pathway becomes too large (say, with more

than 10,000 variants) and the risk-associated variants in

a pathway are too sparse, even EC might not be powerful

in detecting them. For pathway analysis in association

studies, Yu et al. (2009)18 and Biernacka et al. (2012)19

applied combinationmethods to gene-level p values. Alter-

natively, a mixture of EC and other methods at the gene

and SNP levels might be useful.
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Application of the proposed

approach to the pharmacogenomics

of platinum compounds (specifically,

carboplatin and cisplatin), widely

used for the treatment of various

cancers, has revealed mechanistic

insights underlying resistance and
toxicity. The EC analysis identifies more significance

than does linear combination at most p value thresholds

and implicates shared genetic mechanisms influencing

the drug effects of the two chemotherapeutic agents,

which are often interchangeably used. In addition, results

based on EC recapitulate earlier findings that found

potential connections between cell adhesion and the

development of chemoresistance.37 Our study identified

platinum-associated genes previously shown to be impor-

tant for hearing loss (a devastating toxicity associated

with these compounds) in animal studies.

There might be other situations in which multiple very

rare variants in a set are associated with disease risk and

in which each of them is only weakly associated with

risk. If more than half of the variants in a set are risk asso-

ciated, the alternative hypothesis is different from the

sparse alternative discussed in this work. EC with the

proposed form might not be most powerful in those situa-

tions. On the basis of preliminary exploration, other forms

of EC statistics might offer good power for combining

multiple very rare variants. For example, the EC statistic

of the form
P

expðwiZiÞ, when Zi is normally distributed,

was proposed by van Zwet and Oosterhoff (1967)20 for the

combination of multiple one-sided tests. This form of EC

of burden statistics is very powerful when one combines

multiple very rare variants with the same direction of asso-

ciation with disease risk (e.g., multiple singletons, double-

tons, or tripletons with deleterious rare alleles). However,

for combining only a small number of risk-associated rare

and common variants, the power of
P

expðwiZiÞ is slightly
lower than the power of the proposed EC statistic,P

expðwiZ
2
i Þ, where Zi is normally distributed.

One caveat of the current EC procedure is that it does not

directly incorporate the potential dependence structure

among variant statistics, which could have complicated

effects on the combined statistic. To circumvent the need

to estimate the dependence structure for rare variants

and properly control the type-I-error rate, we proposed a

sequential precision-improvement permutation algorithm

to obtain p values. Although permutation-based strategies

are often computationally demanding, the proposed



algorithm permutes as few as 100 times for the majority of

the genes (or sets). This algorithm is not only computa-

tionally efficient but also accounts for the potential effect

of the different number of variants in different sets.

With rapid advances in next-generation-sequencing

technologies, many studies are conducting association

analyses between disease risk and whole-exome or

whole-genome sequencing data. Set-based methods have

become more and more widely utilized for identifying

genetic risk factors associated with various disease traits.

The identified genetic factors, especially the rare ones,

could be used for improving our understanding of disease

etiology and for developing personalized approaches to

disease prevention and treatment.

Appendix A

EC for the Burden Test

The burden statistic by Madsen and Browning (2008)

collapses genetic burdens (weighted rare-allele counts) in

cases. The burden test contrasts the burden statistics in

cases versus controls and can be shown to be nearly equiv-

alent to rejection for extreme S ¼ Pk
i¼1si=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nfið1� fiÞ

p
;

where fi is theMAF in controls and si is the rare-allele count

for the ith variant in cases. The burden test is also equiva-

lent to rejecting large normalized statistic S0 ¼ Pk
i¼1s

0
i ¼Pk

i¼1ðsi � 2nfiÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nfið1� fiÞ

p
, where s0i is the standardized

variant statistic and 2n is the total number of alleles in

cases. We propose the EC of the burden statistic as

~S ¼
Xk

i¼1

exp

�
1

2
s02i

�
:

EC for the C-alpha Test

The C-alpha test statistic is defined as T ¼ Pk
i¼1ti and

ti ¼ ðsi � vigÞ2 � vigð1� gÞ, where si is the rare-allele count

for variant i in cases, vi is the total rare-allele count for

variant i in all samples, and g is the proportion of cases

among all samples; each variant statistic ti contrasts the

variance of observed rare-allele counts in cases with ex-

pected variance and tests for overdispersion of variant i.

It can be seen that the original C-alpha statistic linearly

combines the test statistic from each variant. We propose

the EC of the C-alpha statistic as

~T ¼
Xk

i¼1

exp

�
1

2
t 0i

�
;

where t 0i is a weighted variant statistic, t 0i ¼ citi. We propose

the weight ci to be inversely proportional to the SD of ti
under the null, where the SD can be estimated by permuta-

tion. Because statistics of rarer variants have smaller SDs,

rarer variants are weighted more in the combination test.

Supplemental Data

Supplemental Data include two figures and one table and can be

found with this article online at http://www.cell.com/AJHG.
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