
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
SHREC, an Effector Complex
for Heterochromatic
Transcriptional Silencing
Tomoyasu Sugiyama,1 Hugh P. Cam,1 Rie Sugiyama,1 Ken-ichi Noma,1 Martin Zofall,1 Ryuji Kobayashi,2

and Shiv I.S. Grewal1,*
1Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
2Department of Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA

*Correspondence: grewals@mail.nih.gov

DOI 10.1016/j.cell.2006.12.035
SUMMARY

Transcriptional gene silencing (TGS) is the
mechanism generally thought by which hetero-
chromatin effects silencing. However, recent
discovery in fission yeast of a cis-acting
posttranscriptional gene-silencing (cis-PTGS)
pathway operated by the RNAi machinery at
heterochromatin challenges the role of TGS in
heterochromatic silencing. Here, we describe a
multienzyme effector complex (termed SHREC)
that mediates heterochromatic TGS in fission
yeast. SHREC consists of a core quartet of
proteins—Clr1, Clr2, Clr3, and Mit1—which dis-
tribute throughout all major heterochromatin
domains to effect TGS via distinct activities
associated with the histone deacetylase Clr3
and the SNF2 chromatin-remodeling factor
homolog Mit1. SHREC is also recruited to the
telomeres by multiple independent mecha-
nisms involving telomere binding protein Ccq1
cooperating with Taz1 and the RNAi machinery,
and to euchromatic sites, via mechanism(s)
distinct from its heterochromatin localization
aided by Swi6/HP1. Our analyses suggest that
SHREC regulates nucleosome positioning to
assemble higher-order chromatin structures
critical for heterochromatin functions.

INTRODUCTION

Eukaryotic chromosomes are composed of two general

types of chromatin domains: euchromatin, gene-rich

chromatin that is accessible to factors involved in different

aspects of DNA transactions including transcription, and

heterochromatin, which is typically highly condensed

and forms highly ordered nucleosomal arrays (Grewal

and Elgin, 2002; Huisinga et al., 2006). Heterochromatin

has a characteristic histone-modification profile distin-
guished by hypoacetylation of histones and methylation

of histone H3 at lysine 9 (H3K9me) (Grewal and Elgin,

2002; Jenuwein and Allis, 2001). Deacetylation of histones

appears to be a universal prerequisite for establishing re-

pressive heterochromatin structures (Jenuwein and Allis,

2001). Whereas heterochromatic islands are interspersed

throughout the genomes, major targets of heterochroma-

tin formation are chromosome regions that contain high

density of repetitive elements such as transposons

present at centromeres and telomeres (Hall and Grewal,

2003). Heterochromatin not only silences underlying

DNA sequences but also prohibits recombination, which

is essential for protecting genome integrity. Moreover, de-

fects in heterochromatin disrupt chromosome segrega-

tion and developmentally controlled long-range chromatin

interactions (Jia et al., 2004b; Pidoux and Allshire, 2004).

The fission yeast Schizosaccharomyces pombe con-

tains large blocks of heterochromatin, and many factors

involved in heterochromatin assembly in higher eukary-

otes are also conserved in this system (Grewal and Elgin,

2002; Hall and Grewal, 2003). These factors include Clr4,

a member of the mammalian SUV39 histone methyltrans-

ferases, and HP1 family proteins Chp1, Chp2, and Swi6,

which all are preferentially enriched at heterochromatic

loci (Cam et al., 2005; Jia et al., 2005; Nakayama et al.,

2001; Sadaie et al., 2004; Thon and Verhein-Hansen,

2000). Clr4 exists in a cullin 4 (Cul4)-based E3 ubiquitin

ligase complex that specifically methylates H3K9 (Hong

et al., 2005; Horn et al., 2005; Jia et al., 2005). In addition,

heterochromatic silencing requires multiple conserved

histone deacetylases (HDACs) (Clr3, Clr6, and Sir2)

(Ekwall, 2005; Freeman-Cook et al., 2005; Grewal et al.,

1998; Shankaranarayana et al., 2003) and RNAi machinery

(Matzke and Birchler, 2005). Specialized repeat (dg and

dh) elements present at all major heterochromatic re-

gions, including pericentromeric regions, subtelomeres,

and the mating-type locus, have been shown to act as

RNAi-mediated heterochromatin nucleation centers

(Cam et al., 2005; Hall et al., 2002; Kanoh et al., 2005;

Volpe et al., 2002). In addition, DNA binding proteins co-

operate with Clr3 to nucleate heterochromatin indepen-

dently of the RNAi machinery (Yamada et al., 2005).
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Heterochromatic silencing in S. pombe occurs at both

transcriptional and posttranscriptional levels (Noma et al.,

2004). RNAi machinery localizes across heterochromatic

domains to process nascent repeat transcripts into

siRNAs (Buhler et al., 2006; Cam et al., 2005; Motamedi

et al., 2004; Noma et al., 2004; Sugiyama et al., 2005;

Verdel et al., 2004). This cis-acting posttranscriptional

gene silencing (cis-PTGS) mechanism appears to couple

siRNA generation to the establishment of H3K9me by

Clr4 (Noma et al., 2004; Sugiyama et al., 2005). H3K9me

provides binding sites for Swi6/HP1 (Bannister et al., 2001;

Nakayama et al., 2001) and Chp1, a component of the

RNA-induced initiation of transcriptional gene silencing

(RITS) RNAi effector complex that includes Tas3 and Ago1

(Noma et al., 2004; Petrie et al., 2005; Verdel et al., 2004).

RITS contains siRNAs corresponding to dg and dh repeats,

which likely provide specificity for detection of repeat tran-

scripts generated by RNA polymerase II (Pol II) (Cam et al.,

2005; Djupedal et al., 2005; Kato et al., 2005; Verdel et al.,

2004). RITS also interacts with RNA-directed RNA polymer-

ase (RDRC) containing Rdrp1, whose catalytic activity is crit-

ical for siRNA generation and heterochromatin assembly

(Motamedi et al., 2004; Sugiyama et al., 2005). These studies

indicate that RITS recruits RDRC and perhaps other RNAi

factors to heterochromatic loci and, together, these factors

process repeat transcripts into siRNAs.

While recent studies have considerably illuminated the

contribution of cis-PTGS to heterochromatic gene silenc-

ing, the mechanism of transcriptional gene silencing (TGS)

and its relative contribution to silencing at heterochro-

matic loci in fission yeast is less understood. Our recent

analysis revealed that the HDAC activity of Clr3 contrib-

utes to the silencing of a dg/dh-like element (cenH) lo-

cated at the silent mat locus by regulating Pol II occu-

pancy (Yamada et al., 2005). These results suggest that

Clr3 operates at the level of transcription and that Clr3

may be a part of an apparatus that enforces heterochro-

matic transcriptional silencing.

In this study, we describe an effector complex involved

in TGS in S. pombe. This complex termed SHREC (Snf2/

Hdac-containing Repressor Complex) contains at least

two distinct enzymatic functions: Clr3 HDAC and a novel

factor named Mit1 belonging to the SNF2 family of chro-

matin remodeling factors. Other components include si-

lencing factors, Clr1 and Clr2, which together with Clr3

and Mit1 constitute a core quartet of SHREC present

across all heterochromatin domains. SHREC interacts

with Ccq1, a telomere binding protein that along with

Taz1 (a homolog of mammalian TRF1/2) acts in a parallel

mechanism to the RNAi pathway to facilitate SHREC re-

cruitment to the telomere ends. Whereas factors such as

Swi6/HP1 provide a platform for stable binding and

spreading of SHREC across heterochromatic domains,

the core SHREC components also localize to euchromatic

loci independent of Swi6. Our analyses suggest that the

enzymatic activities associated with Clr3 and Mit1 are

critical for proper positioning of nucleosomes at hetero-

chromatic loci and for TGS function of SHREC and that
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SHREC acts to restrict Pol II occupancy at heterochro-

matic repeats.

RESULTS

Purification of Clr3 and Identification of Its

Interaction Proteins

To gain insights into the function of Clr3 in TGS, we puri-

fied Clr3 from a strain expressing Clr3 tagged at its car-

boxyl terminus with triple FLAG epitopes (Clr3-FLAG).

Clr3-FLAG is fully functional (Figures 1A and 1B). Analysis

of the Clr3-purified fraction revealed several polypeptides,

ranging in sizes from 65 to 170 kDa, which were present in

immunoaffinity-purified fraction of Clr3-FLAG but not in

that of the control (Figure 1C). Mass spectrometry analy-

ses identified the 80 kDa polypeptide as Clr3-FLAG, and

the 140 and 65 kDa polypeptides respectively as Clr1,

a C2H2-type zinc finger protein, and Clr2, a protein with

no obvious conserved domain (Figures 1C and S1) (Bjerl-

ing et al., 2004). Clr1, Clr2, and Clr3 were identified in

screens for factors required for heterochromatic silencing

at the mat locus (Ekwall and Ruusala, 1994; Thon et al.,

1994; Thon and Klar, 1992), and previous genetic evi-

dence indicates that Clr1 and Clr3 may function jointly in

the same pathway (Grewal et al., 1998). We identified

the 90 and 170 kDa bands as Ccq1 and SPBP35G2.10, re-

spectively. Ccq1 contains a HEAT repeat and a coiled-coil

domain and has been implicated in linking telomeres to

the spindle-pole body (Flory et al., 2004). We named

SPBP35G2.10 as Mit1 (Mi2-like protein interacting with

Clr three 1) due to its high similarity to Mi-2/CHD3 pro-

teins, in possessing PHD finger, SNF2_N helicase and

helicase C-terminal domains commonly found in SNF2

family chromatin remodeling factors. However, unlike its

orthologs, Mit1 lacks a chromodomain (Figure 1).

Clr1, Clr2, Ccq1, and Mit1 Stably Associate with Clr3

In Vivo

To confirm that the proteins identified in the Clr3-purified

fraction stably associate with Clr3, we constructed strains

expressing epitope-tagged versions of these proteins. In

strains carrying Clr1-myc, V5-Clr2, Mit1-myc, or Ccq1-

GFP, we observed the expected size for each protein,

and silencing assay showed that none of these tagged

proteins displayed defect in centromeric or telomeric si-

lencing (Figure S2), indicating that the tagged proteins

are functional. We performed immunoprecipitation exper-

iments and found that Clr3 coimmunoprecipitated with

Clr1, Clr2, Mit1, and Ccq1 (Figure 1D). These analyses in-

dicate that factors mentioned above form a complex with

Clr3 in vivo.

SHREC Core Quartet Localizes to All Major

Heterochromatic Loci and Euchromatic Sites

Clr3 is known to localize to centromeres and the mat locus

(Wiren et al., 2005; Yamada et al., 2005). In addition, ge-

nome-wide studies implicate a global transcriptional reg-

ulatory role for Clr3 (Hansen et al., 2005; Wiren et al.,



Figure 1. Purification of Clr3 and Identifi-

cation of Its Interacting Partners

(A) Clr3-FLAG is functional. Ten-fold serial dilu-

tion of untagged, Clr3-FLAG, and clr3D strains

carrying Kint2::ura4+ marker at the silent mat

locus were spotted onto nonselective (N/S),

uracil-lacking (-Ura), and FOA-containing

(+FOA) plates.

(B) The expression of Clr3-FLAG. Extracts from

untagged and Clr3-FLAG strains were ana-

lyzed by western blotting. The arrow indicates

protein band corresponding to Clr3-FLAG.

(C) Clr3 purification and schematic representa-

tion of Clr3 binding proteins. Extracts from un-

tagged and Clr3-FLAG strains were subjected

to FLAG purification procedure, and Clr3

binding proteins were visualized by silver stain-

ing. The bands were excised from gel and sub-

jected to mass spectrometry. CC, coiled-coil

domain; HDAC, histone deacetylase; HEAT,

HEAT repeat; Hel_C, helicase C-terminal do-

main; PHD, PHD finger; SNF2_N, SNF2 N-ter-

minal domain; Zn, C2H2-type Zinc finger.

(D) Extracts prepared from strains expressing

tagged proteins were incubated with indicated

antibody, and immunoprecipitated (IP) frac-

tions were analyzed by western blotting using

anti-FLAG antibody. Lanes labeled ‘‘input’’

show the equivalent of 10% extracts used in

IP lanes.
2005). To identify the global targets of SHREC and deter-

mine its mode of recruitment, we utilized ChIP-chip anal-

yses to map at high resolution all SHREC components

across the S. pombe genome. We found prominent bind-

ing peaks of Mit1, Clr1, Clr2, and Clr3 associated with ma-

jor heterochromatin domains including centromeres, sub-

telomeres, rDNA, and the mat locus, while those of Ccq1

were restricted to telomeres (Figure 2). Detailed examina-

tion of the major heterochromatic regions revealed the

ubiquitous presence of SHREC components throughout

the entire heterochromatic domains (Figure 3A). In partic-

ular, the binding profiles of SHREC components at centro-

meres, subtelomeres, and the mat locus are highly similar

to H3K9me2 and Swi6 distributions reported previously

(Cam et al., 2005), except Clr2, which is also enriched at

the central core (cnt) domain of centromeres, regions de-

void of H3K9me2 and Swi6 (Figure 3A). This result sug-

gests that in addition to their roles at heterochromatin,

SHREC components, notably Clr2, might have a role in

chromatin organization at the cnt domain, the site of kinet-

ochore assembly.
SHREC also localizes to a number of euchromatic sites

(Figures 2 and 3B). These sites include protein-coding

genes, noncoding RNAs, and intergenic regions. Addi-

tionally, SHREC associates with Tf2 retrotransposons

and some solo LTRs sequences that are believed to

be packaged into repressive chromatin (Hansen et al.,

2005). We noticed that some SHREC components, in

particular Clr3, localize to several sites seemingly unac-

companied by other components, which might reflect

the dynamic nature of SHREC, or that these components

can act independently in certain chromosomal contexts.

However, the consistent colocalization patterns at most

genomic locations among the four SHREC components,

namely Clr1, Clr2, Clr3, and Mit1, but not Ccq1 due to

its restricted binding profile at the chromosomal end re-

gions, further support the notion that these proteins

may constitute the core quartet of SHREC and that

Ccq1, similar to Atf1/Pcr1 required for targeting Clr3

to a nucleation site at the mat locus (Yamada et al.,

2005), mediates the recruitment of SHREC to the telo-

meric loci.
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Figure 2. Genome-Wide Distribution Maps of Clr3 and Its Interacting Proteins

ChIP-chip analyses were performed to determine chromosomal distribution profiles of SHREC components. Relative enrichments of Mit1, Clr1, Clr2,

Clr3, and Ccq1 are plotted in alignment with the map of each chromosome. Relative enrichment values shown are averages of results from two in-

dependent experiments. ura4*, enrichment at ura4+ locus, reflects crosshybridization to otr1R::ura4+ present in strains used for ChIP analyses. cen,

centromere; mat, the mating-type locus; tel, telomere.
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Figure 3. SHREC Localizes to Both Heterochromatic and Euchromatic Loci

(A and B) Distributions of SHREC components at major heterochromatic domains (A) and at euchromatic loci (B). Conventional ChIP analyses of Mit1,

Clr1, Clr2, Clr3, and Ccq1 at different loci were performed to confirm results from ChIP-chip experiments. DNA isolated from chromatin-immunopre-

cipitated (ChIP) or whole-cell extract (WCE) fractions were analyzed by multiplex PCR with primers designed to amplify SHREC target sequences and

the act1 or tRNA controls. Intensity ratios of PCR products in ChIP and WCE lanes were used to calculate relative enrichment values shown below

each lane (see Noma et al., 2001 for details). Sequences analyzed included the following: dg repeat (dg223), cenH element (cenH), a telomere-

associated gene that contains a dh-like element fused to its open-reading frame (SPAC212.11), an intergenic region (IGR), noncoding RNA (ncRNA),

and Tf2 retrotransposon (Tf2).
Ccq1 and Taz1 Cooperate to Recruit SHREC

to the Telomere Ends

Fission yeast employs at least two pathways to maintain

gene silencing at telomeres: Taz1, a telomere binding pro-

tein, and RNAi machinery that acts through dh repeat-like

sequences embedded within subtelomeric regions (Coo-

per et al., 1997; Kanoh et al., 2005). Immunofluorescence

analysis previously showed colocalization of Ccq1 with

Taz1 to telomeres (Flory et al., 2004), and our ChIP analy-

sis showed binding of Ccq1 to the telomere ends and, to

lesser extent, subtelomeres (Figures 3 and S3). Since

Ccq1 interacts with SHREC, we hypothesized that SHREC

also localizes to the telomere ends. ChIP analyses re-

vealed that all four core components of SHREC were en-

riched at telomeres (Figure 4A). Importantly, SHREC was

highly enriched at the telomere-associated sequences

(TAS), which are occupied by Taz1 (Kanoh et al., 2005).

Moreover, SHREC localization pattern overlapped signifi-

cantly with that of Taz1, suggesting that Taz1, in cooper-

ation with Ccq1, could be responsible for recruiting
SHREC to the telomere ends. Consistent with this idea,

the levels of Clr3 at telomeres were reduced to the same

extent in mutant strains disrupted for either Ccq1 or

Taz1, while the levels of Ccq1 at telomeres, relative to

those in wild-type cells, were unchanged in clr3D cells

but decreased in taz1D cells (Figure 4B). However, Clr3

enrichment levels, though further reduced relative to those

in single ccq1 and taz1 mutant cells, still remained at telo-

meres in ccq1D taz1D cells (Figure 4B). This result points

to an additional pathway, such as RNAi, which has been

implicated in telomeric silencing (Kanoh et al., 2005), oper-

ated in conjunction with the Taz1 pathway to recruit

SHREC to telomeres. We found that Clr3 localization at

telomere ends was completely abolished in cells defective

in both Taz1 and RNAi pathways. However, defect in RNAi

pathway had no impact on Ccq1 localization (Figure 4B).

These results support the hypothesis of SHREC recruit-

ment to the telomere ends by dual Taz1/RNAi pathways.

While Taz1 seems to cooperate with Ccq1 to directly re-

cruit SHREC, the RNAi pathway most likely acts indirectly
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Figure 4. Swi6-Dependent and -Independent Binding of SHREC to Chromatin

(A) ChIP analysis of SHREC at a telomeric end of chromosome 1.

(B) Ccq1 and Taz1 contribute to Clr3 recruitment to telomere ends. Effects of indicated mutations on Clr3 (left panel) and Ccq1 (right panel) locali-

zations at telomeric repeats were tested by ChIP.

(C) Stable binding of Clr3 and Mit1 to heterochromatic loci requires Swi6/HP1.

(D) Clr3 and Mit1 localize to euchromatic regions independently of Swi6/HP1. Intensity ratio of PCR products in ChIP and WCE lanes were used to

calculate relative enrichment values shown below each lane. A mitochondrial tRNA or act1 gene was used as a control in ChIP assays.
by targeting H3K9me and Swi6, which in turn serve as

a platform for SHREC localization (see Discussion).

Swi6-Dependent and -Independent Localization

of SHREC to Chromatin

Clr3 can be recruited to the mat locus via the Atf1/Pcr1

pathway independent of Swi6 but needs to interact with

Swi6 to spread throughout the silent mat interval (Yamada

et al., 2005). We determined whether similar mechanisms

operate to localize SHREC to other heterochromatic and

euchromatic loci. Levels of Clr3 and Mit1 were dramati-

cally reduced at subtelomeres in swi6 mutant strains

(Figure 4C), indicating that localization of SHREC across

subtelomeric regions also requires Swi6. Moreover, al-

though our analysis showed reduction in Clr3 and Mit1 lo-

calization at centromeric repeats, Mit1 binding could still

be detected (Figure 4C). These data are consistent with

the idea that SHREC components are recruited to centro-

meric repeats independent of Swi6, but their stable bind-

ing and spreading requires Swi6. In contrast to hetero-

chromatic loci, SHREC recruitment to euchromatic sites

was unaffected in the absence of Swi6, as shown by

Clr3 and Mit1 localization at a locus encoding a noncoding
496 Cell 128, 491–504, February 9, 2007 ª2007 Elsevier Inc.
RNA and an intergenic region (Figure 4D). These results in-

dicate the existence of distinct mechanisms for localizing

SHREC to heterochromatin and euchromatin. Whereas

SHREC localization at heterochromatic loci involves a

combination of sequence-specific targeting machinery

and the sequence-independent spreading via the

H3K9me-Swi6 platform, euchromatic loci seem to rely

solely on the Swi6-independent mechanism to recruit

SHREC to specific sites.

SHREC Is an Effector Complex for Silencing

Transcription at Heterochromatic Loci

The ubiquitous presence of SHREC at all heterochromatin

domains indicated possible involvement of SHREC in si-

lencing heterochromatic transcription. Indeed, reporter

genes inserted at major heterochromatin domains includ-

ing pericentromeric repeats, the silent mat locus, telo-

meres, and rDNA loci were derepressed in strains lacking

any individual core component of SHREC (Figure 5A). De-

letion of ccq1, however, affected silencing of markers in-

serted at telomeres, consistent with its localization

pattern (Figure 2), but any detectable silencing defects at

other heterochromatic loci were not observed (Figure 5A).



Figure 5. SHREC Is Essential for Heterochromatic Transcriptional Silencing

(A) Silencing defects of reporters inserted at pericentromeric repeats (otr1R::ura4+), silent mat locus (Kint2::ura4+), telomeric region (tel2::ura4+), or

tandem rDNA repeats (rDNA::LEU2) in SHREC mutants were examined by serial dilution analyses on nonselective (N/S), uracil-lacking (-Ura), and

FOA-containing (+FOA) medium.

(B) H3K14ac and Pol II occupancy at otr1R::ura4+ are enhanced in SHREC mutants. ChIPs were carried out using anti-H3K14ac and anti-Pol II

antibodies.

(C) Heterochromatic repeats show elevated levels of H3K14ac and Pol II in clr3D background.

(D) Deletion of clr3 does not affect RITS localization at otr1R::ura4+. Cells expressing tagged Ago1 (myc-Ago1) were used to perform ChIPs. Com-

parable levels of Ago1 at otr1R::ura4+ were detected in wild-type and clr3D cells.

(E) Deletions of SHREC components result in elevated levels of siRNAs corresponding to dg and dh repeats. siRNAs from each strain were analyzed

by northern blot analysis with a probe specific for dg/dh sequences.
The weak telomeric silencing defect observed in ccq1D

cells is most likely due to redundant pathways contribut-

ing to recruitment of SHREC to telomeres (Figure 4).

In S. pombe, Pol II localizes to heterochromatin to direct

transcription of repeat elements, the transcripts of which

serve as substrates for production of siRNAs (Cam et al.,

2005; Djupedal et al., 2005; Kato et al., 2005). However,

many heterochromatin functions require the assembly of
condensed chromatin, which limits Pol II occupancy to re-

peat elements. Mutations in Clr3 or defects in its localiza-

tion (e.g., in swi6 mutant cells) correlate with increases in

histone acetylation and Pol II levels at heterochromatic

loci (Yamada et al., 2005). Because Clr3 is a core compo-

nent of SHREC, we hypothesized that Clr3 affects hetero-

chromatic silencing primarily through SHREC, and defects

in other core components of SHREC would similarly
Cell 128, 491–504, February 9, 2007 ª2007 Elsevier Inc. 497



destabilize heterochromatin. Indeed, we found increases

in H3K14ac levels and greater Pol II occupancy at the re-

porter embedded within pericentromeric heterochromatin

(otr1R::ura4+) in mutant strains lacking SHREC compo-

nents (Figure 5B). As expected, ccq1D did not affect

H3K14ac or Pol II occupancy at otr1R::ura4+ (Figure 5B).

The resultant ‘‘open’’ chromatin structures, due to im-

paired SHREC function, also allowed enhanced Pol II oc-

cupancy at naturally silenced heterochromatic repeats,

as indicated by increased levels of Pol II and H3K14ac at

these sequences (Figure 5C). Based on these analyses,

we conclude that SHREC serves as an effector complex

for transcriptional silencing of heterochromatic repeats

by limiting the occupancy of Pol II machinery.

SHREC Is Not Required for RNAi-Mediated

Posttranscriptional Silencing In Cis

In addition to the transcriptional regulatory activity of

SHREC, RNAi machinery processes repeat transcripts

into siRNAs (Cam et al., 2005; Motamedi et al., 2004;

Noma et al., 2004; Sugiyama et al., 2005; Verdel et al.,

2004). We investigated whether SHREC affects RNAi-

mediated silencing of heterochromatic repeats. The role

of SHREC in transcriptional silencing could be decoupled

from the cis-PTGS function of the RNAi machinery since

impaired SHREC had no effect on the localization of

RITS Agol subunit at heterochromatin (Figure 5D). En-

hanced transcriptional-machinery occupancy at hetero-

chromatic repeats in SHREC defective cells, however,

should result in elevated repeat transcripts and, thus, cor-

responding increase in siRNA production. Indeed, we ob-

served increased levels of siRNAs corresponding to cen-

tromeric repeats in SHREC mutant strains (Figure 5E).

Clr3 and Mit1 Activities Are Required

for Transcriptional Regulatory Function of SHREC

We next explored whether SHREC mediates transcrip-

tional silencing through enzymatic activities associated

with Clr3 and Mit1, HDACs, and SNF2 ATPase homologs,

respectively. For this purpose, we employed yeast strains

that carry a substitution mutation either in the HDAC do-

main of Clr3 (Clr3D232N) or the ATP binding domain of

Mit1 (Mit1K587A). These mutations have no effect on the

protein levels of Clr3 (Yamada et al., 2005) and Mit1

(Figure S4). However, both clr3D232N and mit1K587A mutant

alleles alleviated silencing of a marker gene inserted at

pericentromeric repeats (Figure 6A), and at naturally si-

lenced repeat elements embedded within heterochroma-

tin domains at the mat locus (cenH), centromeres (dg223)

and subtelomeres (SPAC212.11) (Figure 6B). Loss of si-

lencing occurred at the transcriptional level since we de-

tected elevated levels of both Pol II and H3K14ac at repeat

elements in the mutant strains (Figure 6C). To test whether

Clr3 has HDAC activity and whether the D232N substitu-

tion abolishes this activity, we affinity-purified both Clr3

and Clr3D232N and measured their HDAC activities.

Whereas Clr3 activity, which is sensitive to trichostatin A

(TSA), was readily detected, Clr3D232N mutant is defective
498 Cell 128, 491–504, February 9, 2007 ª2007 Elsevier Inc.
in HDAC activity (Figures 6D and S5). Similarly, while

ATPase activity could be detected in wild-type Mit1 pro-

tein, this activity is abrogated in the MitK587A mutant

(Figure S6). We also noticed that Mit1-K587A mutation

did not affect Clr3 activity in vitro (Figure 6D). These results

suggest that HDAC and ATP-dependent nucleosome-

remodeling factors might act in concert via SHREC to

maintain sequences coated with heterochromatin in a

repressed state.

SHREC Regulates Chromatin Organization

at a Heterochromatin Domain

Based on results showing that Clr3 and Mit1 activities are

critical for heterochromatic TGS, we hypothesized that

SHREC might be involved in facilitating proper positioning

of nucleosomes required to assemble repressive chroma-

tin. We explored this possibility by comparing micrococcal

nuclease (MNase) digestion patterns at the silent mat re-

gion in wild-type, clr3D232N, and mit1K587A strains. Our

analysis revealed dramatic changes in MNase digestion

patterns across a broad region consistent with altered nu-

cleosome positioning in strains defective in either Clr3 or

Mit1 activity (Figure 6E). Notably, in mutant strains, there

were pronounced differences in MNase digestion patterns

near CAS, an Atf1/Pcr1-dependent recruiting site for Clr3

to the mat locus (Yamada et al., 2005). SHREC also affects

nucleosome positioning at a region downstream of the

CAS toward mat2P, consistent with the ubiquitous pres-

ence of SHREC and its critical role in maintaining TGS

across this region. Mutant cells also displayed noticeable

differences in MNase digestion pattern at mat3M, the si-

lencing of which requires SHREC components (Ekwall

and Ruusala, 1994; Thon et al., 1994; Thon and Klar,

1992). Despite similar overall changes in nucleosome po-

sitioning patterns in both mutants, we noticed that chro-

matin structure was relatively less perturbed in mit1K587A

cells than in clr3D232N cells (Figure 6E). This result is in

agreement with a slightly weaker silencing defect ob-

served in mit1K587A cells than in clr3D232N (Figure 6A), indi-

cating involvement of additional redundant remodeling

factors in heterochromatic silencing. Taken together,

these data suggest that a critical aspect of condensed

heterochromatin formation involves proper positioning of

nucleosomes by activities such as SHREC.

DISCUSSION

Heterochromatin possesses a remarkable ability to re-

press transcription and recombination across large chro-

mosomal domains. The binding of HP1 to H3K9me and

their subsequent spreading across the entire heterochro-

matin domain are critical for heterochromatin to exert

long-range repressive effects. The oligomerization of

HP1 may mediate chromatin condensation (Grewal and

Elgin, 2002). However, recent evidence, especially from

fission yeast, has illuminated a more complex heterochro-

matin landscape, with Swi6/HP1 not only being dynami-

cally bound to heterochromatin (Cheutin et al., 2004;



Figure 6. Clr3 and Mit1 Activities Are Essential for SHREC-Mediated Transcriptional Silencing

(A) Mutation in Clr3-HDAC domain (Clr3D232N) or Mit1 ATP binding domain (Mit1K587A) results in loss of otr1R::ura4+ silencing.

(B) Mutant strains show accumulation of transcripts derived from heterochromatic repeats as measured by RT-PCR analysis. Primers used were dh

repeats (dh383), cenH element (cenH), and telomere-associated SPAC212.11 locus (SPAC212.11). act1 was used as a control. otr1R::ura4+ expres-

sion was also analyzed and compared with an endogenous ura4 carrying a small deletion (ura4DS/E). -RT, no reverse transcription.

(C) Clr3D232N and Mit1K587A mutants show elevated levels of H3K14ac and Pol II occupancy at heterochromatic repeats, as determined by ChIP

assays.

(D) Clr3 has HDAC activity that is abolished by Clr3D232N mutation. Purified Clr3 from cells expressing either Clr3-FLAG or Clr3D232N-FLAG was used to

perform HDAC assay. Effect of mit1K587A mutation on Clr3-HDAC activity was investigated by purifying Clr3-FLAG from cells expressing Mit1K587A

protein.

(E) Clr3 and Mit1 activities are critical for proper positioning of nucleosomes at the silent mat locus. MNase-treated chromatin fractions from indicated

strains were digested with EcoRI and HindIII and then analyzed by Southern blotting with a mat-specific probe (black bar). Lane N indicates naked

DNA treated with MNase. The diagram shows the positions of restriction enzyme sites, CAS (Clr3 attracting sequence) and the mat3M locus. Arrows

indicate MNase sensitive or insensitive sites in mutant strains.
Festenstein et al., 2003) but also acting as recruiting plat-

form for factors that can facilitate or restrict transcription

(Yamada et al., 2005; Zofall and Grewal, 2006). Hetero-
chromatin also allows RNAi machinery to become stable

component of extended domains to actively target re-

peat-sequence-derived transcripts for degradation (Cam
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Figure 7. Models Showing Mechanisms

of SHREC Recruitment to Heterochro-

matic Loci and the Role of SHREC in

Assembly of Higher-Order Chromatin

Structures

(A) Distinct DNA binding factors recruit SHREC

to different heterochromatic regions. RNAi ma-

chinery (such as RITS, RDRC, and Dicer),

which target transcripts produced by dg and

dh elements present at all major heterochro-

matic loci to generate siRNAs, and chromatin

bound SHREC along with other factors inde-

pendently target Clr4 complex to methylate

H3K9. H3K9me not only facilitates stable teth-

ering of RNAi machinery to chromatin via RITS

but also allows heterochromatin proteins (HPs)

such as Swi6 and Chp2 to be recruited to chro-

matin. H3K9me bound HPs create a self-

assembling platform that allows spreading of

SHREC across the entire domain to affect

heterochromatic TGS.

(B) SHREC via activities associated with Clr3

and Mit1 facilitates organization of nucleo-

somes into condensed higher-order structures

that are essential for various heterochromatin

functions. Other chromatin-modifying activities

such as HDACs and nucleosome-remodeling

factors also likely participate in assembly of

higher-order chromatin structures. Chromatin state is determined by dynamic balance between activities that lead to the assembly of nucleosomes

into condensed structures and activities associated with anti-silencing factors such as Epe1 and HATs that favor the disassembly of condensed

structures to a more open chromatin.
et al., 2005). Although these studies have considerably ad-

vanced our understanding of heterochromatin, it is still not

clear how condensed heterochromatic structures refrac-

tory to transcription and other factors are established.

Here we describe the identification of SHREC as a TGS ef-

fector complex that has an important role in shaping the

heterochromatin landscape. SHREC localizes throughout

heterochromatin domains and to various genetic elements

dispersed across euchromatic regions. Moreover, SHREC

restricts the occupancy of transcriptional machinery that

depends upon its two distinct activities associated with

Clr3 and Mit1. These analyses suggest that SHREC func-

tions as a versatile effector complex that could be tar-

geted to different loci via specialized recruitment mecha-

nisms to assemble repressive higher-order chromatin

structures.

SHREC Recruitment to Heterochromatic

and Euchromatic Loci

Our analyses suggest the involvement of distinct mecha-

nisms for recruiting SHREC to different genomic locations.

At major heterochromatic loci where transcription and re-

combination are repressed across large regions, the sta-

ble binding of SHREC requires Swi6/HP1, which is known

to coat these domains (Cam et al., 2005; Kanoh et al.,

2005; Noma et al., 2001; Partridge et al., 2000). However,

SHREC recruitment to heterochromatic loci is not solely

dependent on Swi6/HP1. SHREC can also be targeted to

heterochromatic regions via sequence-specific DNA bind-

ing proteins such as Atf1/Pcr1, independent of Swi6/HP1
500 Cell 128, 491–504, February 9, 2007 ª2007 Elsevier Inc.
(Yamada et al., 2005). We find that both Swi6-dependent

and -independent mechanisms mediate SHREC recruit-

ment to all major heterochromatic loci (Figure 7A).

Telomeres are specialized structures that protect chro-

mosome ends. It has been shown previously that Taz1, a

telomere binding protein, contributes to heterochromatin

assembly (Cooper et al., 1997; Kanoh et al., 2005). How-

ever, how Taz1 mediates heterochromatin formation and

silencing was not known. Our results suggest Taz1-

dependent recruitment of SHREC to the telomere ends as

one likely mechanism of telomeric silencing. Taz1 appears

to function cooperatively with another telomere binding

protein Ccq1 to recruit SHREC to telomeric loci. Although

it is still unknown whether Taz1 interacts directly with

SHREC, we found that Ccq1 associates with Clr3 and

likely is directly involved in recruiting SHREC to telomeres.

Once recruited, SHREC components may cooperate with

DNA binding factors to facilitate the recruitment of Clr4, as

suggested previously (Yamada et al., 2005), resulting in

H3K9me and Swi6 recruitment, thus establishing a plat-

form for the spreading of SHREC across an entire domain.

Additionally, RNAi factors acting through dh-like elements

(SPAC212.11) recruit H3K9me and Swi6, which in turn

could also mediate the recruitment and spreading of

SHREC. Consistent with this argument, we find that

Taz1/Ccq1 acts in a parallel pathway to RNAi to recruit

SHREC to subtelomeric regions, and SHREC spreading

throughout heterochromatin domains requires Swi6.

Taz1/Ccq1- and RNAi-based recruitments of SHREC at

telomeres resemble mechanisms operating at the silent



mat region, at which Atf1/Pcr1 and RNAi machinery inde-

pendently nucleate heterochromatin (Jia et al., 2004a;

Noma et al., 2004). While Atf1/Pcr1 targets Clr3 to a spe-

cific site, H3K9me-Swi6 platform established by both

DNA- and RNAi-based mechanisms is essential for

spreading of Clr3 across entire heterochromatin domains

(Yamada et al., 2005). Similar DNA-based mechanism(s)

operated in conjunction with the RNAi machinery likely

mediates SHREC recruitment to rDNA arrays and pericen-

tromeric regions.

SHREC also localizes to several sites dispersed across

euchromatic regions of the S. pombe genome, which in-

clude protein-coding genes, noncoding RNAs, and Tf2

retrotransposons. However, the mechanism(s) of SHREC

recruitment to these loci is not known. One component

of SHREC, Clr1, contains Zn fingers that could potentially

bind DNA to target SHREC to different loci. Moreover,

PHD domains have been shown to specifically bind

H3K4 di- and trimethylation (Mellor, 2006). Thus, it is pos-

sible that Mit1 mediates SHREC recruitment to chromatin

via its PHD domain.

Our analyses also revealed an unexpected enrichment

of Clr2 at the cnt domain of centromeres. The recruiting

mechanism and the role of Clr2 at cnt domain are not

known. Clr2 could contribute to histone modifications

such as H4 hypoacetylation (Hayashi et al., 2004;

Walfridsson et al., 2005), which is known to impact kinet-

ochore assembly, by acting as a loading platform for re-

cruitment of other SHREC components whose localization

at cnt may be cell-cycle regulated.

Possible Mechanism for SHREC-Mediated

Transcriptional Silencing

Studies from several different systems have suggested

that, in general, heterochromatic sequences are less ac-

cessible to factors involved in different aspects of DNA

transactions (Eissenberg, 2001; Sun et al., 2001). More-

over, Elgin and colleagues have demonstrated that the

formation of condensed heterochromatic structures corre-

lates with the establishment of regularly spaced nucleoso-

mal arrays indicative of higher-order chromatin organiza-

tion (Sun et al., 2001). While long-range nucleosome

ordering associated with heterochromatin packaging is

known to require HP1 (Cryderman et al., 1998), the molec-

ular mechanism responsible for these structural changes,

however, remains undefined. In this regard, it is interesting

that SHREC contains both HDAC (Clr3) and SNF2 family

ATPase (Mit1). Our analyses suggest that SHREC distrib-

uted across heterochromatin domain via H3K9me-Swi6/

HP1 platform mediates the assembly of condensed chro-

matin by facilitating organization of nucleosomes into

higher-order structures (Figure 7B). This process depends

upon activities associated with both Clr3 and Mit1 since

mutations in these factors that disrupt their functions also

abolish heterochromatic silencing and alter nucleosome

positioning, resulting in ‘‘open’’ chromatin structures.

The HDAC activity of Clr3, in principle, could be required

for establishing ‘‘histone code’’ for recruitment of Swi6/
HP1. Our previous analysis, however, has shown that

acetylation of H3K14, which is the main target of Clr3

(Wiren et al., 2005), does not directly interfere with Swi6

binding to H3K9me2 or H3K9me3 peptides (Yamada

et al., 2005). Nonetheless, since hyperacetylated histones

can disrupt higher-order chromatin compaction (Tse et al.,

1998), it is possible that removal of acetyl group from his-

tones by Clr3 is critical for Mit1 function and intramolecu-

lar nucleosome interactions required for higher-order

chromatin organization. Indeed, it has been shown re-

cently that histone acetylation inhibits both ACF-mediated

nucleosome sliding and the folding of nucleosome arrays

in vitro (Shogren-Knaak et al., 2006). The assembly of

higher-order structures, therefore, may require concerted

action of HDACs and nucleosome-remodeling enzymes

operating in tandem. SHREC may be the cellular appara-

tus that could fulfill such a task critical for transcriptional

silencing. In this model, heterochromatin defects caused

by H3K14 to alanine substitution (Mellone et al., 2003),

which mimics H3K14ac, could be manifestation of defects

in nucleosome packaging.

Given that SHREC components and RNAi machinery

both contribute to stabilizing heterochromatic structures,

small RNAs produced in cis could have a structural role

in further compaction of higher-order structures. As

such, similar defects in maintenance of higher-order

structures in pericentromeric heterochromatin were ob-

served in mouse cells subjected to RNase treatment or

HDAC inhibitors (Maison et al., 2002), and siRNAs contrib-

ute to higher-order chromatin organization in S. pombe

and Drosophila (Grimaud et al., 2006; Hall et al., 2003;

Sugiyama et al., 2005).

In addition to transcriptional silencing, SHREC-medi-

ated chromatin organization is expected to have wide-

ranging implications for other chromosomal processes.

SHREC via its activities may orchestrate assembly of

specialized structures essential for centromere and telo-

mere functions (Kanoh and Ishikawa, 2003; Pidoux and

Allshire, 2004). SHREC components are also required

for the developmentally controlled choice of donor mat-

ing-type cassettes during the switching process and for

recombination suppression considered necessary to

prevent ectopic recombination between repeat elements

(Hall and Grewal, 2003; Jia et al., 2004b; Thon et al.,

1994).

Relationship of SHREC-Mediated Heterochromatic

Repression to Other Systems

Multienzyme SHREC complex containing HDAC and

chromatin remodeling factors is reminiscent of the Mi2/

NuRD (nucleosome-remodeling histone deacetylase) si-

lencing complex, which, among other factors, contains

HDAC1/2 and SNF2 ATPase Mi2 (Bowen et al., 2004;

Feng and Zhang, 2003). Similar to SHREC, targeting of

Mi2/NuRD to its target loci is also mediated by multiple re-

cruitment mechanisms. Besides sequence-specific DNA

binding factors, both complexes utilize sequence-

independent platforms for binding to chromatin (Schultz
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et al., 2002; Yamada et al., 2005; this study). While

H3K9me-Swi6 provides a loading platform for SHREC,

methylated DNA bound by MBD (methyl-CpG binding do-

main) proteins is believed to target NuRD (Bowen et al.,

2004). NuRD has been shown to maintain epigenetic si-

lencing of specific genes (Kehle et al., 1998). However,

the precise contribution of HDAC and remodeling activi-

ties of NuRD in gene silencing in vivo, and their role in as-

sembly of constitutive heterochromatin are not well under-

stood. To this end, our analysis suggests that activities

associated with both Clr3 and Mit1 are required for

SHREC-mediated heterochromatic silencing.

Several SNF2-related proteins, possessing similarity to

Mit1, have been shown to play an important role in silenc-

ing, especially silencing induced by DNA methylation in

higher eukaryotes. For instance, ATRX, which possesses

a PHD-like Zn finger and SNF2-like ATPase domains, lo-

calizes to repetitive sequences such as pericentromeric

heterochromatin and rDNA arrays and is required for

maintenance of DNA methylation at repeated sequences

(Gibbons et al., 2000). In Arabidopsis, mutations in SNF2

(DDM1 and DRD1) and HDAC (HDA6) proteins result in

the upregulation of transposable elements and a certain

subset of endogenous genes (Aufsatz et al., 2002; Chan

et al., 2006; Huettel et al., 2006; Kanno et al., 2004,

2005; Lippman et al., 2003). While DRD1 is essential for

RNA-directed de novo DNA methylation (Huettel et al.,

2006; Kanno et al., 2004), DDM1 cooperates with HDA6

to stably maintain heterochromatin at domains containing

transposable elements (Aufsatz et al., 2002; Lippman

et al., 2003). DDM1 and HDA6 could also form a complex

similar to SHREC that not only regulates heterochromatic

silencing but is also targeted to euchromatic targets in-

cluding retrotransposons and LTRs located near genes.

In mammals, loss of Lsh/HELLS, closely related to

DDM1, results in hyperacetylation of histones and sub-

stantial DNA hypomethylation at repetitive sequences

such as the long interspersed element (LINE) and short in-

terspersed element (SINE) (Dennis et al., 2001). These

findings suggest that transposon suppression by SNF2

and HDAC may be conserved from fission yeast to mam-

mals. Further analysis of SHREC-mediated higher-order

chromatin assembly in fission yeast may have direct impli-

cations for mechanisms of heterochromatic silencing in

higher eukaryotes.

EXPERIMENTAL PROCEDURES

Strains

Strains expressing epitope-tagged proteins (Clr1-[13x]myc, Clr3-

[3x]FLAG, Clr3D232N-[3x]FLAG, Ccq1-GFP and Mit1-[13x]myc) and de-

letion strains (clr1D, clr2D, clr3D, ccq1D, and mit1D) were constructed

by a PCR-based method. To construct a strain expressing Clr2 tagged

at its N terminus, a DNA fragment containing 50UTR of clr2+, V5 epitope

tag, and clr2 ORF was used to replace the endogenous clr2. The resul-

tant strain expresses V5-Clr2 under its native promoter. To generate

mit1K587A mutant, wild-type strain was transformed with a DNA frag-

ment consisting of mutated mit1 fragment fused to myc tag and

KanR cassette. The mutation was confirmed by DNA sequencing.
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Immunoaffinity Purification

Whole-cell extracts (WCEs) from untagged control or Clr3-FLAG were

purified by FLAG immunoaffinity purification protocol as described (Jia

et al. 2005). The eluted fractions were visualized by silver staining and

subjected to mass spectrometry.

Immunoprecipitation

WCEs from strains expressing tagged proteins were incubated with

anti-myc (A-14, SantaCruz), anti-V5 (A190-120A, Bethyl), or anti-GFP

(ab290, Abcam) antibody. Bound proteins were recovered by adding

protein G sepharose beads. After washing, eluted proteins were sub-

jected to western blotting using anti-FLAG M2 antibody (Sigma).

ChIP and ChIP-Chip Analysis

ChIP and ChIP-chip were carried out as previously described (Cam

et al., 2005) using anti-myc (A-14, Santa Cruz), anti-V5 (ab9116, Ab-

cam), anti-GFP (ab290, Abcam), anti-Pol II (8WG16, Covance) or

anti-histone H3 K14ac (07-353, Upstate) antibody. Microarray data

can be accessed at National Cancer Institute (http://pombe.nci.nih.

gov/) and at NCBI GEO under the accession number GSE6568.

RNA Analyses

Total RNA samples were subjected to RT-PCR using Onestep RT-PCR

kit (Qiagen). For siRNA detection, small RNAs (< 200 nt) were purified

with mirVana miRNA isolation kit (Ambion). Twenty micrograms of

small RNA were resolved on a 15% denaturing acrylamide gel and

subjected to northern blotting analysis with 32P-labeled single-

stranded RNA probes (�50 nt) corresponding to dg and dh repeats.

HDAC and Nucleosome-Mapping Assays

Clr3-FLAG, Clr3D232N-FLAG or Clr3-FLAG mit1K587A were affinity puri-

fied using anti-FLAG M2 antibody (Sigma), and the purified fractions

were subjected to HDAC activity assay using a colorimetric HDAC ac-

tivity assay kit (BioVision). Nucleosome mapping was carried out by

MNase digestion assay as described previously (Jia et al., 2004b).

Supplemental Data

Supplemental Data include six figures and can be found with this arti-

cle online at http://www.cell.com/cgi/content/full/128/3/491/DC1/.
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