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Abstract." Symmetrical determinantal formulas for the numerator and denominator of an ordinary rational interpolant are presented 
and discussed. Degenerate cases are analysed. 
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1. Introduction 

Determinantal formulas for the numerator and denominator of a rational interpolant have been known 
for a long time [1,4] and there is an excellent review of their present status [5]. The fundamental problem 
consists of interpolating data values f~ at points x, (f,, x~ ~ C), i = 0, 1, 2 . . . . .  n, and integers l, m are given 
for which l + m = n and which specify the type of the interpolant. 

Define 

and 

) f o / ( X - X o )  fo Xofo "'" x'~-~fo 1 x o . . .  X~o - '  

h f J ( x  x ,)  f~ x,f~ . . .  x~'-'f~ 1 X 1 " ' "  X [  - 1  
p [ l / m l ( x )  ~- ( X - -  X 1 . 

i=0 

l--1 f . / ( x  x . )  f .  x . f .  . . .  x 2 - ' f .  1 x .  . . .  x .  

x,)  1 / ( x - x ° )  fo Xofo "'" x'~-~fo 1 x o . . .  X~o - 

qt t /ml(x)=12-1( 1 / ( x - x , )  f l  x i f l  "'" x~'- ' f l  1 x, . . .  x~- 

i=0 

1 / ( x - x . )  f ,  x . f .  m - - ,  • . .  x .  f .  1 x .  . . .  x .  

(1) 

1 (2)  

Theorem 1 (A modified rational interpolation theorem). With definitions (1) and (2), ptt /ml(x)  and 
qtt/"q( x ) are polynomials satisfying 

3{p t ' / ' l  } ~<1, 3{q I t / ' l  } ~<m, (3) 

pt t / " l (x~)=f~qt t / " l (x~) ,  i = 0 ,  1, 2 , . . . , n .  (4) 
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Corollary. For ordinary rational interpolation, define 

r['/"q( x ) = pU/ml( x )/qtt/ml( x ). 

Then, provided q[I/m](x,) 4= 0, i = 0, 1, 2 . . . . .  n, 

rlZ/"](xi) =fi, i= O, 1, 2 . . . . .  n. 

Proof. From (1) and (2), we see that ptt /"l(x)  and qII/"q(x) are both polynomials in x of degrees n at 
most. Using the identity 

x~ x7 xk -1 1 a ~ + , (5) . . .  +~_z_ + x~ 
x - x i  ~ x ~ + ~  ~ ( ; ~ - x , )  

we see that 

p [ l / m l ( x ) = O ( x t ) ,  q[I/m](X)=O(Xm) a s x ~  oo (6) 

and so (3) is proved. The determinants in (1) and (2) may be combined to show that 

[plZ/ ' l(x)--f iqlt /ml(x)] . . . .  = 0 ,  i = 0 , 1 , 2  . . . . .  n 

and so (4) follows too. The corollary is obvious. [] 

2. Remarks 

(1) Relationships. The determinants in (1) and (2) are (n + 1)× (n + 1) determinants, whereas the 
equivalent Cauchy determinants are (n + 2 ) x  (n + 2); undoubtedly they are closely related. Stoer's first 
identities [6] may also be derived from (1) and (2) using Sylvester's rule. 

(2) Special cases. If m = 0, there are no 'f-type' columns in (1) and (2), qlt/ml(x) is in fact a constant 
and ptl/ml(x)/qtt/ml(X) reduces to the Lagrange interpolating polynomial. 

If l = O, there are no 'x-type' columns in (1) and (2). Provided f, ~ O, i = O, 1 . . . . .  n, ptt/ml(x)/qll/ml(X) 
reduces to the reciprocal of the Lagrange polynomial interpolating fo  1, f~- 1 . . . . .  f~- 1. 

(3) Construction. Prof. J. Meinguet contributes the following ingenious constructive proof of (1)-(4). 

w(~)= (-I (x- x,), 
i = O  

Define polynomials p (x) ,  q(x),  w(x) by 

O{p(x)}  <~l, 3{q(x)}  <~m, 

p(x , )  =f~q(x , ) ,  i =  O, 1, 2 . . . . .  n. 

From Lagrange's interpolation formula (or by partial fraction decomposition), we have 

p(x )  ~ p(xi) n (  fi ) q ( x i )  
= w ' ( x , ) ( ~ - x i ) - E  ~ - x  ' W ( X )  i=O / = O k  i !  w t ( x i )  

n 1 
q(x) = ~ . , ( ~ _ x i  } q! xi) 
w(x) ~ '  

i = 0 \  - -  . /  

(7) 

(8) 

where we have made use of the fact that p(xi)=f ,q(xi)  for all i. By using Jacobi's device for obtaining 
identities from Lagrange's formula, we find 

~, xikq(xi) 
i=o w'(xi) - 0  f o r k = O ,  1 . . . . .  l - 1 ,  

" x[p(xi)  " (x[fi)q(xi)  - 0  for j =  O, 1 . . . . .  m -  1 
E w'(x,) E w'(z,) 

i = 0  i = 0  
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because the degrees 
follows that  

of  the polynomials  q ( x )  and p ( x )  are not greater  than m and l, respectively; hence it 

)Co Xofo "'" x $  if0 1 x 0 . . .  x/0 -1 
/ 1 

]'1 x l f l  " ' "  x~ ' - l f~ 1 x I " ' "  x I 

. . .  x ,  f ,  1 x ,  . . .  x ,  L x.L ~ '  ' '  

q(xo) q(x.) ) 
w'(xo) . . . . .  w ' (x°)  

= 0. (9) 

Provided only that  this (n + 1) × n matr ix  is of m a x i m u m  rank, the de terminanta l  formulas  (1) (resp. (2)) 
immedia te ly  follow by el imination of the (n + 1) unknown quantit ies q ( x j ) / w ' ( x i )  between (7) and (9) 
(resp. (8) and (9)). 

(4) Confluence. Suppose,  for example,  that  derivative values fo, f~, f0 C2) . . . . .  fo ~k) are the da ta  supplied at 
the point  x o. This corresponds  to the Hermi te  p rob lem of confluence of x o, x I . . . . .  x k. The first k + 1 rows 
of  each of the de terminants  in (1) and (2) become  a (k  + 1) × (n + 1) block. F r o m  (1), we find that  the first 
co lumn of the block has entries 

fo f o + ( X - X o ) f o  f o + ( X - X o ) f o  + "'" + ( X - - X o ) k f o ~ k ) / k !  

X _ X o ,  ( x - x ° )  2 . . . . .  ( X _ X o ) , +  , (10) 

The  numera tors  of  (10) are the first k + 1 t runcat ions of  the Taylor  series expansion of the implicit  funct ion 
abou t  x 0. Similarly, the first co lumn of (2) contains the entries 

1 1 1 (11) 

x -  x0 '  ( x _  x0) 2 . . . . .  ( x _  ~0) ~-+,' 

after  confluence. The  entries in the remaining columns,  numbered  2, 3 . . . . .  n + 1, which are c o m m o n  to 
bo th  the numera to r  and denomina to r  polynomials  retain their p roper ty  of  order  reduct ion (9), which may  
be based on the rule 

rx o r ( r + l ) x o  2 ( ; + k - l )  x0k + 1 _ _ 1 +  + + - - . +  . . . . .  
( X  - -  X o )  r x r  X r + l  x '+22!  - 1 x k+" ' 

valid for Ixl > Ix01, and where as usual 

(aft) F ( a +  1) 
=°G = r(• + a ) r ( ~ -  B + 1 )  

The  effect of  co lumn m + s + 1 may  be thought  of as dealing with O(x  - s )  in (11), and the entry  in row r of 
this column is 

(; Mr're+s+1= 1 x°  ' r = l , 2 , . . . , k + l ; s = l , 2  . . . . .  l. (12) 

The  effect of  co lumn s + 1 may  be thought  of  as dealing with O ( x - ' )  in (10), and the entry in row r of this 
co lumn is 

1 J0 s j (13) Mr. s+ l=  ~ JJ t r _ : ~ ! X o  , r = l , 2  . . . . .  k + l ; s = l , 2  . . . . .  m. 
j = l  

N o t e  that  Mr,,,+~+l = M~,~+ 1 = 0 if r > s. 
A full explicit solution similar to (1) and (2) for the Hermi te  interpolat ion p rob lem now follows using 

blocks composed  of the entries of  the types in (10)-(13).  However ,  much  of the elegance of (1) and (2) has 
been lost. 

(5) Calculations. Equat ions  (1) and (2) are unsui table  for numerical  work, for which the algori thms of 
Werner  [7] or G r a v e s - M o r r i s  and Hopkins  [3] are recommended ,  see [2]. 
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3. Degeneracies 

It is well known that not all rational interpolation problems are soluble. Wuytack [8] gave a comprehen- 
sive analysis of these problems by correlating and ordering common factors of the solutions of the modified 
rational interpolation problem. His treatment is the closest possible approximation to a representation 
independent analysis. We now consider the question of unattained points and related issues in the context 
of the specific representations (1) and (2). The alternatives are characterised by the results of Theorems 2 
and 4. 

Define Fj to be cofactor of the element (x - xj) -1 in (2) and let F denote the matrix occurring in (9). 
For conciseness, we also define 

N ( x )  = p t ; / m l ( x ) ,  D ( x )  = qt ; /ml(x) ,  

to be polynomials expressed by (1) and (2). 

Theorem 2. A necessary and sufficient condition that D( x ) =- 0 is that 

F j = 0 ,  j = 0 , 1 , 2  . . . . .  n. (14) 

Proof. Suppose that D ( x )  =- O. Then 

D ( x j ) = O ,  j = O ,  1 ,2  . . . . .  n 

and (14) follows. For the converse, expand the determinant representation of D ( x )  by its first column. [] 

Theorem 3. For l >~ 1 and m >~ 1, a necessary and sufficient condition for D( x ) = O  is that polynomials 
n( x )and d( x ) exist, at least one of which is non-null, for which 

O ( n ( x ) } < ~ l - 1 ,  8 ( d ( x ) } < ~ m - 1  (15) 

and 

n ( x , )  = f , d ( x , ) ,  i =  0, 1 . . . . .  n. (16) 

Proof. First, suppose that D ( x )  = O, so that 

F , = 0 ,  k = 0 , 1 , 2  . . . . .  n, (17) 

by Theorem 2. Because F is an (n + 1) × n matrix, its rank does not exceed n. Suppose that rank F = n, so 
that F has n linearly independent rows. This is contradicted by (17), so that the row rank, and therefore the 
column rank, of F is at most n - 1. Hence numbers (a , ,  fl; }, not all zero, exist such that the following 
linear combination of the columns of F vanishes: 

m - 1  1--1  

~.~ aix~fi+ ~ flix~i=O, j = 0 ,  1, 2 . . . . .  n, (18) 
i = 0  i = 0  

i.e. 

) ,1 
a,x; f ( x ) +  E f l ,  x ; = O ,  x = x  o , x  I . . . . .  x , ,  (19) 

\ i = 0  i = 0  

and the necessity result is proved. For the converse, suppose that a result of the form (19) holds. Then (18) 
also holds, and represents a vanishing linear combination of columns of F. Hence D ( x )  =- O. [] 

Theorem 4. Let D(x )~:  0 and m >~ 1. A 
unattained point, i.e. 

lim N ( x ) / D ( x )  ~ fj. 
x ---~ X/ 

necessary and sufficient condition that Fj = 0 is that X; is an 

(2o) 
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Proof .  If  xj is an unat ta ined point,  then Theorem 1 shows that  Fj = 0 and the sufficiency condit ion is 
proved.  To  prove  necessity, we consider a value o f j  for which Fj = 0. 

Consider  first the case l = 0. Then 

f ,D(x,)=N,  i = 0 , 1 , 2  . . . . .  n, 

where N is a constant ,  independent  of  i. Since ~ = 0, D(xj)= 0 and therefore N = 0. If  fj = 0 also, by 
inspect ion of (2) we see that D(x)= O, contrary  to hypothesis.  Therefore  fj :~ 0 and so XJ is an unat ta ined 
point .  

Next,  consider the case of l >~ 1. Since ~ = 0, 

N(xj )=D(xj )=O,  

and we may  define polynomials  n(x) and d(x) by 

n(x) = N ( x ) / ( x -  xj) and d(x) = D ( x ) / ( x -  x j ) ,  (21) 

which satisfy (15). F rom (4) and (21) it follows that 

n(x,) = f i d ( x i )  for all i, e x c e p t / = j .  

However ,  if xj is an at ta ined point,  

.(xj) = d(xj) 
and therefore the condit ions of  Theorem 3 are satisfied. Therefore,  D(x) = 0, cont rary  to hypothesis.  Hence  
xj is necessarily an unat ta ined point.  [] 
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