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1. Introduction

Artin’s 1927 affirmative solution of Hilbert’s 17th problem (Is every nonnegative real polynomial
a sum of squares of rational functions?) arguably sparked the beginning of the field of real algebra and
consequently real algebraic geometry (cf. [BCR,PD]).

Starting with Helton’s seminal paper [Hel], in which he proved that every positive semidefinite
real or complex noncommutative polynomial is a sum of hermitian squares of polynomials, variants of
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Hilbert’s 17th problem in a noncommutative setting have become a topic of current interest with wide-
ranging applications (e.g. in control theory, optimization, engineering, mathematical physics, etc.);
see [dOHMP] for a nice survey. Most of these results have a functional analytic flavor and are what
Helton et al. call dimensionfree, that is, they deal with evaluations of noncommutative polynomials in
matrix algebras of arbitrarily large size.

Procesi and Schacher in their 1976 Annals of Mathematics paper [PS] introduce a notion of order-
ings on central simple algebras with involution, prove a real Nullstellensatz, and a weak noncommu-
tative version of Hilbert’s 17th problem. A strengthening of the latter is proposed as a conjecture [PS,
p. 404]: In a central simple algebra with involution, a totally positive element is always a sum of hermitian
squares.

We explain in Section 5 how these results can be applied to study nondimensionfree positivity
of noncommutative polynomials. Roughly speaking, a noncommutative polynomial all of whose eval-
uations in n × n matrices (for fixed n) are positive semidefinite, is a sum of hermitian squares with
denominators and weights.

A brief outline of the rest of the paper is as follows: in Section 2 we fix terminology and sum-
marize some of the Procesi–Schacher results in a modern language. Then in Section 3 we present
counterexamples to the Procesi–Schacher conjecture, while Section 4 contains a study of examples
(mainly in the split case) where the conjecture is true.

For general background on central simple algebras with involution we refer the reader to [KMRT]
and for the theory of quadratic forms over fields we refer to [Lam].

2. The Procesi–Schacher conjecture

Let F be a formally real field and let A be a central simple algebra with involution σ and center K .
Assume that F is the fixed field of σ (i.e., σ |F = idF ). The involution σ is of the first kind if K = F ,
and of the second kind (also called unitary) otherwise. In this case [K : F ] = 2 and σ |K is the nontrivial
element in Gal(K/F ).

Let D be a division algebra over K with involution τ and fixed field F . Let h be an n-dimensional
hermitian or skew-hermitian form over (D, τ ). Then h gives rise to an involution on Mn(D), the
adjoint involution adh , defined by

adh(X) = H · τ (X)t · H−1,

for all X ∈ Mn(D), where H is the Gram matrix of h, t denotes the transpose map on Mn(D) and
τ (X) signifies applying τ to the entries of X . It is well known that every central simple algebra with
involution (A, σ ) is of the form (Mn(D),adh), where n is unique, D is unique up to isomorphism and
h is unique up to multiplicative equivalence (see [KMRT, 4.A]).

If σ is of the first kind, then σ is called orthogonal or symplectic if σ becomes adjoint to a
quadratic or alternating form, respectively, after scalar extension to a splitting field of A (i.e., an exten-
sion field L of K such that A ⊗K L ∼= Mn(L)). We denote the subspace of σ -symmetric elements of A
by Sym(A, σ ).

Let � be an ordering on F . We identify � with its positive cone P = {x ∈ F | 0 � x} via

x � y ⇔ y − x ∈ P

for all x, y ∈ F . In this case we also write �P instead of �.
Procesi and Schacher [PS, §1] consider central simple algebras A, equipped with a positive involu-

tion σ , i.e., an involution whose involution trace form Tσ is positive semidefinite with respect to the
ordering �P on F ,

Tσ (x) := Trd
(
σ(x)x

)
�P 0 for all x ∈ A.
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Here Trd : A → F (the trace) denotes the reduced trace TrdA/F if σ is of the first kind and the compo-
sition TrdK/F ◦TrdA/K if σ is of the second kind. The form Tσ is a nonsingular quadratic form over F ,
cf. [KMRT, §11]. If dimK A = n, then dim Tσ = n if σ is of the first kind and dim Tσ = 2n if σ is of the
second kind.

Remark 2.1. The notion of positive involution seems to have been considered first by Weil in his
groundbreaking paper [Wei]. Lewis and Tignol [LT] define the signature of an involution σ of the first
kind on A with respect to the ordering �P on F by signP σ := √

signP Tσ . (Quéguiner [Que] deals
with involutions of the second kind.) It is now clear that the involution σ is positive with respect
to �P if and only if its signature with respect to �P is maximal.

Procesi and Schacher also define a notion of positive elements in (A, σ ), cf. [PS, §V]. For greater
clarity we have adapted their definitions as follows:

Definition 2.2.

(1) An ordering �P of F is called a σ -ordering if it makes the involution σ positive, i.e., if

0 �P Trd
(
σ(x)x

)
for all x ∈ A.

(2) Suppose �P is a σ -ordering on F . An element a ∈ Sym(A, σ ) is called σ -positive with respect
to �P if the quadratic form Trd(σ (x)ax) is positive semidefinite with respect to �P . That is, if

0 �P Trd
(
σ(x)ax

)
for all x ∈ A.

(3) An element a ∈ Sym(A, σ ) is called totally σ -positive if it is positive with respect to all σ -
orderings on F .

Elements of the form σ(x)x with x ∈ A are called hermitian squares. The set of hermitian squares
of A is clearly a subset of Sym(A, σ ). It is also clear that the hermitian squares of K are all in F .

Example 2.3. Sums of hermitian squares and sums of traces of hermitian squares are examples of
totally σ -positive elements, as easy verifications will show.

One of the main results in [PS] explains that these are essentially the only examples. It can be
considered as a noncommutative analogue of Artin’s solution to Hilbert’s 17th problem:

Theorem 2.4. (See [PS, Theorem 5.4].) Let A be a central simple algebra with involution σ , center K and fixed
field F . Let α1, . . . ,αm ∈ F be elements appearing in a diagonalization of the quadratic form Trd(σ (x)x). Then
for a ∈ Sym(A, σ ) the following statements are equivalent:

(i) a is totally σ -positive;
(ii) there exist xi,ε ∈ A with

a =
∑

ε∈{0,1}m

αε
∑

i

σ(xi,ε)xi,ε.

(As usual, αε denotes α
ε1
1 · · ·αεm

m .)

In the case n = deg A = 2, the weights α j are superfluous (we will come back to this later). Procesi
and Schacher [PS, p. 404] conjecture that this is also the case for n > 2:
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The PS Conjecture. In a central simple algebra A with involution σ , every totally σ -positive element is a sum
of hermitian squares. (Equivalently: the trace of a hermitian square is always a sum of hermitian squares.)

Remark 2.5. The two statements in the PS Conjecture are indeed equivalent: the necessary direction
follows from the fact that traces of hermitian squares are totally σ -positive, as observed in Exam-
ple 2.3.

For the sufficient direction, assume that the trace of a hermitian square is always a sum of hermi-
tian squares. Let a ∈ Sym(A, σ ) be totally σ -positive. Then a can be expressed in terms of the entries
in a diagonalization of the form Trd(σ (x)x) as in Theorem 2.4(ii). Let β be such an entry. Thus,
β = Trd(σ (y)y) for some y ∈ A. By the assumption there are x1, . . . , x� ∈ A such that β = ∑

i σ(xi)xi .
Since β ∈ F , the expression in Theorem 2.4(ii) can now be rewritten as a sum of hermitian squares.

As mentioned a few lines earlier, Procesi and Schacher provide supporting evidence for their con-
jecture for the case deg A = 2. Another case where the PS Conjecture is true has been well known
since the 1970s:

Example 2.6. Let A be the full matrix ring Mn(F ) over a formally real field F endowed with the
transpose involution σ = t . Since Trd = tr, every ordering of F is a σ -ordering. We claim that a ∈
Sym(A, σ ) is totally σ -positive if and only if a is a positive semidefinite matrix in A ⊗F R = Mn(R)

for any real closed field R containing F (equivalently: for any real closure of F ).
Indeed, if a is totally σ -positive, then for all x ∈ A, tr(xtax) is positive with respect to every

(σ -)ordering of F , i.e., tr(xtax) ∈ ∑
F 2. A diagonalization of the quadratic form tr(xtax) will contain

only sums of squares in F (as it would otherwise violate the total σ -positivity). Hence this quadratic
form remains positive semidefinite under every ordered field extension of F .

The converse implication is also easy: if a is positive semidefinite over Mn(R) for every real closed
field R ⊇ F , then the trace of xtax for x ∈ A is nonnegative under the ordering of R and hence under
all orderings of F . By definition, this means that a is totally σ -positive.

Moreover, every totally σ -positive element of (A, σ ) is a sum of hermitian squares. Essentially,
this goes back to Gondard and Ribenboim [GR] and has been reproved several times [Djo,FRS,HN,KS].
It also follows easily from Theorem 2.4 for it suffices to show that the trace of a hermitian square is
a sum of hermitian squares. But this is clear: if a = [aij]1�i, j�n ∈ A, then

Trd
(
σ(a)a

) =
n∑

i, j=1

a2
i j

is obviously a sum of (hermitian) squares in F .
The reader will have no problems extending this example to the case K = F (

√−1) and A = Mn(K )

endowed with the conjugate transpose involution t .

3. The counterexamples

When the transpose involution in the previous example is replaced by an arbitrary orthogonal in-
volution σ on Mn(F ) (i.e., an involution which is adjoint to a quadratic form over F ), the equivalence
between totally σ -positive elements and sums of hermitian squares is in general no longer true, as
we proceed to show in this section. We assume throughout that F0 is a formally real field.

Lemma 3.1. Let F = F0((X))((Y )), the iterated Laurent series field in two commuting variables X and Y . The
quadratic form

q = 〈X, Y , XY 〉
does not weakly represent 1 over F . In fact this is already true over the rational function field F0(X, Y ).
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Proof. Assume for the sake of contradiction that m ×q represents 1 for some positive integer m. Then
the form

ϕ := 〈1〉 ⊥ m × 〈−X,−Y ,−XY 〉
is isotropic over F . This leads to a contradiction by repeated application of Springer’s theorem on
fields which are complete with respect to a discrete valuation, cf. [Lam, Chapter VI, §1]. Since F0(X, Y )

embeds into F the proof is finished. �
Theorem 3.2. Let F = F0(X, Y ). Let A = M3(F ) and σ = adq, where

q = 〈X, Y , XY 〉.
The (σ -symmetric) element XY is totally σ -positive, but is not a sum of hermitian squares in (A, σ ).

Proof. It is clear that XY ∈ Sym(A, σ ) since XY ∈ F .
We first show that XY is totally σ -positive. Since Tσ � q ⊗ q (see [Lew, p. 227] or [KMRT, 11.4])

we have

signP Tσ = (signP q)2 ∈ {1,9}
for any ordering P ∈ X F . Hence, the set of σ -orderings on F is not empty. It is exactly the set of
P ∈ X F with signP Tσ = 9. (Note that F has orderings for which both X and Y , and thus XY , are
positive so that the value signP Tσ = 9 can indeed be attained.)

Let P be any σ -ordering on F . Then we have for any a ∈ A,

Trd
(
σ(a)a

)
�P 0

(by definition) and so for any a ∈ A,

Trd
(
σ(a)XY a

) = XY Trd
(
σ(a)a

)
�P 0,

since XY �P 0 (for otherwise signP Tσ = 1 and P would not be a σ -ordering on F ). Hence, XY is
totally σ -positive. An alternative argument showing that XY is totally σ -positive can be given by
observing that XY = Trd(σ (b)b) for

b =
[0 X 0

0 0 0
0 0 0

]
.

Next we show that XY is not a sum of hermitian squares in (A, σ ) = (M3(F ),adq). We identify XY
with XY I3 in M3(F ), where I3 denotes the 3×3 identity matrix. Assume for the sake of contradiction
that XY I3 is a sum of elements of the form σ(a)a with a = [aij]1�i, j�3 ∈ M3(F ). Recall that

σ(a)a = adq(a)a =
[ X

Y
XY

]
· at ·

[ X
Y

XY

]−1

· a.

The (3,3)-entry of σ(a)a is equal to

Y a2
13 + Xa2

23 + a2
33.
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By our assumption there are s1, s2, s3 ∈ ∑
F ×2 such that

XY = Y s1 + Xs2 + s3,

which is equivalent with

1 = X−1s1 + Y −1s2 + X−1Y −1s3.

Thus, 1 is weakly represented by the quadratic form

〈
X−1, Y −1, X−1Y −1〉 � 〈X, Y , XY 〉 = q,

which is impossible by Lemma 3.1. This finishes the proof. �
The previous theorem gives us a counterexample to the PS Conjecture. It shows that the conjecture

is in general not true for full matrix algebras equipped with an orthogonal involution. In contrast,
when we equip a full matrix algebra with a symplectic involution, we will show in Theorem 4.7 below
that the conjecture does hold.

Thus, we could ask if the PS Conjecture also holds for nonsplit central simple algebras with sym-
plectic involution. The answer is “no”:

Theorem 3.3. Let F = F0(X, Y ). Let A = M3(F )⊗F H ∼= M3(H), where H = (−1,−1)F is Hamilton’s quater-
nion division algebra over F . Equip A with the involution σ = adq ⊗γ , where γ is quaternion conjugation and
σ = adq for

q = 〈X, Y , XY 〉.

The algebra A is central simple over F of degree 6 and the involution σ is symplectic. The (σ -symmetric)
element XY is totally σ -positive, but is not a sum of hermitian squares in (A, σ ).

Proof. The assertion about (A, σ ) is clear, as is the fact that XY ∈ Sym(A, σ ) since XY ∈ F .
It is easy to verify that the involution trace form of γ , Tγ , is isometric to 〈2〉 ⊗ NH , where NH =

〈1,1,1,1〉 is the norm form of H . Here NH (x) := NrdH (x) for all x ∈ H , where NrdH denotes the
reduced norm on H . Since Tσ = Tadq ⊗γ � Tadq ⊗ Tγ , we have

signP Tσ = (signP Tadq )(signP Tγ ) = 4 signP Tadq ∈ {4,36}

for any ordering P ∈ X F . Hence, the set of σ -orderings on F is not empty. It is exactly the set of
P ∈ X F with signP Tσ = 36. (Note again that this value can indeed be attained since there are order-
ings on F for which both X and Y , and thus XY , are positive.) Arguing similarly as in the proof of
Theorem 3.2 we can verify that XY is totally σ -positive.

Before proceeding, note that the involution γ is adjoint to the hermitian form 〈1〉γ over (H, γ ).
Hence, σ is adjoint to the hermitian form h = q ⊗ 〈1〉γ = 〈X, Y , XY 〉γ over (H, γ ). Thus

h(x, y) = γ (x1)X y1 + γ (x2)Y y2 + γ (x3)XY y3

for vectors x = (x1, x2, x3) and y = (y1, y2, y3) in the right H-vector space H3.
Next we show that XY is not a sum of hermitian squares in (A, σ ) = (M3(H),adh). We identify XY

with XY I3 in M3(H), where I3 denotes the 3×3 identity matrix. Assume for the sake of contradiction
that XY I3 is a sum of elements of the form σ(a)a with a = [aij]1�i, j�3 ∈ M3(H). Recall that
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σ(a)a = adh(a)a =
[ X

Y
XY

]
· γ (a)t ·

[ X
Y

XY

]−1

· a,

where γ (a) = [γ (aij)]1�i, j�3. The (3,3)-entry of σ(a)a is equal to

γ (a13)Y a13 + γ (a23)Xa23 + γ (a33)a33 = Y NH (a13) + X NH (a23) + NH (a33).

Since NH = 〈1,1,1,1〉, each of NH (a13), NH (a23), NH (a33) is a sum of four squares in F . Thus, by our
assumption there are s1, s2, s3 ∈ ∑

F ×2 such that

XY = Y s1 + Xs2 + s3.

We can now finish the proof with an appeal to Lemma 3.1, as in the proof of Theorem 3.2. �
Remark 3.4. By tensoring (M3(F ),adq) with Hamilton’s quaternion division algebra, equipped with a
unitary involution one obtains a counterexample in the nonsplit unitary case. We leave the details,
which are similar to those in the proof of Theorem 3.3, to the diligent reader.

Remark 3.5. From a real algebra perspective it is clear that these counterexamples to the PS Con-
jecture can easily be seen to work over any formally real field F that admits a proper semiordering
(see [PD, §5] for details and unexplained terminology). Given such a field F , endowed with a proper
semiordering, take negative a,b ∈ F such that ab is negative as well. Then q = 〈a,b,ab〉 does not
weakly represent 1 (the quadratic module generated by {−a,−b,−ab} is proper) and thus in M3(F ),
endowed with the involution σ = adq , the element ab is totally σ -positive, but not a sum of hermitian
squares (as the proof of Theorem 3.2 shows).

4. Positive results

Procesi and Schacher [PS, pp. 404 and 405] prove their conjecture for central simple algebras A
of degree two, i.e., quaternion algebras, with arbitrary involution σ by appealing to matrices and the
Cayley–Hamilton theorem. We start this section by giving an alternative argument motivating some
of the generalizations that follow.

Throughout this section we assume that the base field F is formally real.

Proposition 4.1. Let A be a quaternion algebra (not necessarily division) with center K , equipped with an
arbitrary involution σ . Let F be the fixed field of (A, σ ). Each entry occurring in a diagonalization of Tσ is a
sum of hermitian squares.

Proof. (i) We first consider involutions of the first kind on A. Let A be the quaternion algebra (a,b)F
with F -basis {1, i, j,k} where i, j and k anti-commute, i j = k, i2 = a and j2 = b.

If σ is symplectic, then σ is the unique quaternion conjugation involution γ on A. An easy com-
putation gives Tσ = Tγ � 〈2〉 ⊗ 〈1,−a,−b,ab〉. We have

1 = γ (1)1, −a = γ (i)i, −b = γ ( j) j, ab = γ (k)k.

If σ is orthogonal, then σ = Int(u) ◦ γ , where u ∈ A satisfies γ (u) = −u. From [KMRT, 11.6] we
know that

Tσ � 〈2〉 ⊗ 〈
1,NrdA(u),−NrdA(s),−NrdA(su)

〉
for some s ∈ A with σ(s) = s = −γ (s). Now,



I. Klep, T. Unger / Journal of Algebra 324 (2010) 256–268 263
NrdA(u) = uγ (u) = uγ (u)u−1u = σ(u)u;
−NrdA(s) = −γ (s)s = σ(s)s;

−NrdA(su) = −NrdA(s)NrdA(u) = −γ (s)s NrdA(u) = σ(s)σ (u)us = σ(us)us.

(ii) Finally, let K = F (
√

δ) and let A be a quaternion algebra over K with unitary involution σ
whose restriction to K is τ , where τ is determined by τ (

√
δ) = −√

δ. By a well-known result of
Albert [KMRT, 2.22] there exists a unique quaternion F -subalgebra A0 ⊆ A such that

A = A0 ⊗F K and σ = γ0 ⊗ τ ,

where γ0 is quaternion conjugation on A0. Then Tσ � Tγ0 ⊗ Tτ � Tγ0 ⊗〈1,−δ〉. Since τ (
√

δ)
√

δ = −δ,
we are finished by the symplectic part of the proof. �

This shows in particular that the PS Conjecture is true for full matrix algebras of degree two over
a formally real field F since these are just split quaternion algebras.

Part (ii) of the proof of Proposition 4.1 motivates the following more general result:

Theorem 4.2. Let A and B be central simple algebras with center K , equipped with arbitrary involutions σ
and τ , respectively. Assume that (A, σ ) and (B, τ ) have the same fixed field F . If the PS Conjecture holds for
(A, σ ) and (B, τ ), it also holds for the tensor product (A ⊗K B, σ ⊗ τ ).

Proof. This is a simple computation, using the fact that Tσ⊗τ � Tσ ⊗ Tτ and that elements of A
commute with elements of B in the tensor product A ⊗K B . �
Corollary 4.3. Let (Q 1, σ1), . . . , (Q �,σ�) be quaternion algebras with arbitrary involution over K and with
common fixed field F . The PS Conjecture holds for the tensor product

⊗�
i=1(Q i, σi).

Proof. This is an immediate consequence of Proposition 4.1 and Theorem 4.2. �
Corollary 4.4. Let A = Mn(F ) be a split algebra of 2-power degree n = 2� , equipped with an orthogonal
involution σ which is adjoint to an n-fold Pfister form over F . The PS Conjecture holds for (A, σ ).

Proof. By Becher’s proof of the Pfister Factor Conjecture [Bec], (A, σ ) decomposes as

(A,σ ) ∼=
�⊗

i=1

(Q i,σi),

where (Q 1, σ1), . . . , (Q �,σ�) are quaternion algebras with involution. An appeal to Corollary 4.3 fin-
ishes the proof. �
Corollary 4.5. Let A = Mn(K ) be a split algebra of 2-power degree n = 2� , equipped with a hyperbolic invo-
lution σ of any kind. Let F be the fixed field of (A, σ ). The PS Conjecture holds for (A, σ ).

Proof. Recall from [BST, Theorem 2.1] that the involution σ is hyperbolic if there exists an idempotent
e ∈ A such that σ(e) = 1 − e or, equivalently, if the adjoint (quadratic, alternating or hermitian) form
of σ is hyperbolic.

If � = 1 this is just the split version of Proposition 4.1. Assume now that � � 2. By [BST, Theo-
rem 2.2], (A, σ ) decomposes as
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(A,σ ) ∼=
�⊗

i=1

(Q ,σi),

where Q = M2(K ) and σ1, . . . , σ� are involutions on Q . An appeal to Corollary 4.3 finishes the
proof. �
Corollary 4.6. Let A = Mn(F ) be a split algebra of 2-power degree n = 2� , equipped with a symplectic invo-
lution σ . The PS Conjecture holds for (A, σ ).

Proof. If σ is a symplectic involution, it is hyperbolic (since it is adjoint to an alternating form over F
which is automatically hyperbolic) and we are finished by Corollary 4.5. �

In fact, the PS Conjecture is true for any split algebra with symplectic involution. Such an algebra
is always of even degree.

Theorem 4.7. Let A = Mn(F ) be a split algebra of even degree n = 2m, equipped with a symplectic involu-
tion σ . The PS Conjecture holds for (A, σ ).

Proof. Since σ is symplectic, the quadratic form Tσ is hyperbolic (see [Lew, p. 227] or [KMRT, Proof
of 11.7]). Thus Tσ � m × 〈1,−1〉 and it suffices to show that −1 is a sum of hermitian squares in A.
We identify −1 with −In , where In denotes the n × n identity matrix in A = Mn(F ).

Since σ is symplectic, we have σ = Int(S) ◦ t , where t denotes transposition and S ∈ GLn(F ) satis-
fies St = −S . Since S is skew-symmetric, there exists a matrix P ∈ GLn(F ) such that P t S P = B , where

B is the block diagonal matrix with m blocks
[

0 1
−1 0

]
on the diagonal.

Let X be the block diagonal matrix with m blocks
[

0 1
1 0

]
on the diagonal. Then Xt B X = B−1. Hence

with Y = P X P t , we have Y t SY = S−1. Thus

σ(SY )SY = S(SY )t S−1 SY = SY t St Y = SY t(−S)Y = −S S−1 = −In. �
5. Positive noncommutative polynomials

5.1. Algebras of generic matrices with involution

After studying the PS Conjecture in the setting of central simple algebras with involution, we
proceed to interpret these results as well as Theorem 2.4 for nondimensionfree positivity of noncom-
mutative (NC) polynomials.

Motivated by problems in optimization and control theory, Helton [Hel] proved that a symmetric
real or complex NC polynomial, all of whose images under algebra ∗-homomorphisms into Mn(R),
n ∈ N, are positive semidefinite (i.e., a dimensionfree positive NC polynomial), is a sum of hermitian
squares. What we are interested in, is positivity under evaluations in Mn(R) for a fixed n.

To tackle this problem we introduce the language of generic matrices, cf. [Pro1, Chapters 1 and 3]
or [Row, §1.3]. Verifying a condition on evaluations of an NC polynomial in the algebra of n × n
matrices is often conveniently done in the algebra of generic matrices. In this subsection we recall
the definition of generic matrices with involution, while our main result on positive NC polynomials
(i.e., a Positivstellensatz) is presented in the next subsection.

As in the classical construction of the algebra of generic matrices, it is possible to construct the
algebra of generic matrices with involution, see e.g. [Pro2, §20] or [PS, §II]. To each type of involution
(orthogonal, symplectic and unitary) an algebra of generic matrices with involution can be associated,
as we now explain. We assume from now on that K is a field of characteristic 0 with involution ∗
and fixed field F .
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Let K 〈X, X∗〉 be the free algebra with involution over (K ,∗), i.e., the algebra with involution, freely
generated by the noncommuting variables X := (X1, X2, . . .). Its elements (called NC polynomials) are
(finite) linear combinations of words in the (infinitely many) letters X, X∗ .

Fix a type J ∈ {orthogonal, symplectic,unitary}. Let aJn ⊆ K 〈X, X∗〉 denote the ideal of all identities
satisfied by degree n central simple K -algebras with type J involution. That is, f = f (X1, . . . , Xk,

X∗
1, . . . , X∗

k ) ∈ K 〈X, X∗〉 is an element of aJn if and only if for every central simple algebra A of degree
n with type J involution σ and every a1, . . . ,ak ∈ A,

f
(
a1, . . . ,ak,σ (a1), . . . , σ (ak)

) = 0.

Then GMn(K , J) := K 〈X, X∗〉/aJn is the algebra of generic n × n matrices with type J involution.

Remark 5.1. An alternative description of the algebra of generic matrices with involution can be
obtained as follows. Let ζ := (ζ

(�)
i j | 1 � i, j � n, � ∈ N) denote commuting variables and form the

polynomial algebra K [ζ ] endowed with the involution extending ∗ and fixing ζ
(�)
i j pointwise. Con-

sider the n × n matrices Y� := [ζ (�)
i j ]1�i, j�n ∈ Mn(K [ζ ]), � ∈ N. Each Y� is called a generic matrix.

(a) If J ∈ {orthogonal,unitary}, then the (unital) K -subalgebra of Mn(K [ζ ]) generated by the Y� and
their transposes is (canonically) isomorphic to GMn(K , J).

(b) If J = symplectic, then n is even, say n = 2m. Consider the usual symplectic involution

[
x y
z w

]
�→

[
wt −yt

−zt xt

]

on M2m(K [ζ ]). Then the (unital) K -subalgebra of Mn(K [ζ ]) generated by the Y� and their images
under this involution is (canonically) isomorphic to GMn(K , J).

If n = 1, then J ∈ {orthogonal,unitary} and GM1(K , J) is isomorphic to K [ζ ] endowed with the
involution introduced above. Hence in the sequel we will always assume n � 2.

Let J ∈ {orthogonal, symplectic,unitary}. For n � 2, GMn(K , J) is a PI algebra and a domain (cf. [PS,
§II]). Hence its central localization is a division algebra UDn(K , J) with involution, which we call the
universal division algebra with type J involution of degree n. As we will only consider the canonical
involution on GMn(K , J) and UDn(K , J) we use ∗ to denote it.

Remark 5.2. Our approach to generic matrices is purely algebraic. A representation-theoretic view-
point with a more geometric flavor can be found in [Pro2].

5.2. A Positivstellensatz

Let K ∈ {R,C} be endowed with the complex conjugation involution . Our aim in this subsection
is to deduce a nondimensionfree version of Helton’s sum of hermitian squares theorem. We will
describe symmetric NC polynomials all of whose evaluations in Mn(K) are positive semidefinite, see
Theorem 5.4.

The main line of reasoning is the same as in [PS, §4], while the dependence on Tarski’s trans-
fer principle from real algebraic geometry is isolated and emphasized in Lemma 5.3 below. The
lemma characterizes total ∗-positivity in the algebra of generic matrices GMn(K, J). Its proof uses
some elementary model theory, e.g. Tarski’s transfer principle for real closed fields. All the necessary
background can be found in [PD, §1 and §2] or, alternatively, [BCR, §1].

Lemma 5.3. Let n ∈ N. If K = R, let J = orthogonal and if K = C, let J = unitary. If a = a∗ ∈ GMn(K, J) is
totally σ -positive under each ∗-homomorphism from GMn(K, J) to Mn(K) endowed with a positive type J
involution σ , then a is totally ∗-positive (in UDn(K, J)).
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Proof. Suppose a ∈ GMn(K, J) is not totally ∗-positive. Then there is a ∗-ordering � of the fixed
field Z of the center of UDn(K, J) under which Trd(x∗ax) is not positive semidefinite. Let 〈α1, . . . ,αm〉
be the diagonalization of Trd(x∗x) with αi = α∗

i ∈ Z . (Here m = n2 if the involution is of the first kind
and m = 2n2 otherwise.) Given that Z is the field of fractions of the symmetric center Z0 of GMn(K, J),
we may even assume αi ∈ Z0. We also diagonalize Trd(x∗ax) as 〈β1, . . . , βm〉 with βi ∈ Z0. Clearly,
αi > 0 and one of the βi , say β1, is negative with respect to the given ∗-ordering �. Let Z rc denote
the real closure of Z with respect to this ordering and form A := UDn(K, J) ⊗Z Z rc endowed with
the involution σ = ∗ ⊗ id. Then A is a central simple algebra over a real closed (if J = orthogonal)
or algebraically closed field (if J = unitary). Moreover, its involution σ is positive. Hence by the clas-
sification result [PS, Theorem 1.2] of Procesi and Schacher, A is either Mn(Z rc) endowed with the
transpose (if J = orthogonal) or Mn(Z) endowed with the complex conjugate transpose involution
(if J = unitary). Here Z is the algebraic closure Z rc(

√−1) of Z rc and the complex conjugate maps
r + t

√−1 �→ r − t
√−1 for r, t ∈ Z rc.

For b ∈ GMn(K, J) let b̂ ∈ K〈X, X∗〉 denote a preimage of b under the canonical map K〈X, X∗〉 →
GMn(K, J). Every ∗-homomorphism GMn(K, J) → Mn(L) for a ∗-field extension L of K, where Mn(L)

is given a type J involution, yields a ∗-homomorphism K〈X, X∗〉 → Mn(L), so is essentially given by
a point s ∈ Mn(L)N describing the images of the Xi under this induced map.

By construction, the image β1 ⊗ 1 of β1 under the embedding of algebras with involution
GMn(K, J) → A is not σ -positive. Let s denote the corresponding evaluation point. By Example 2.6,
this means that β̂1(s, st) = β1 ⊗ 1 is not positive semidefinite. Consider the following elementary
statement:

∃n × n matrices x = (x1, . . . , xN ): α̂i
(
x, xt) is positive semidefinite

∧ β̂1
(
x, xt) is not positive semidefinite. (1)

(N is the maximal number of variables appearing in one of the α̂i, β̂1.)
Obviously such n × n matrices xi can be found over Z rc or Z ; just take xi = si . By Tarski’s transfer

principle, the above elementary statement (1) can be satisfied in K. This yields a ∗-homomorphism
K〈X, X∗〉 → Mn(K) endowed with the (positive) involution t and in turn (by universality) a
∗-homomorphism GMn(K, J) → (Mn(K), t). By the construction, the image of a under this mapping
will not be positive semidefinite. This finishes the proof. �

In order to state the Positivstellensatz, we need to recall the notion of central polynomials for n × n
matrices. These are f ∈ K 〈X, X∗〉 whose image in GMn(K , J) is central. Equivalently, the image of f
under a ∗-homomorphism from K 〈X, X∗〉 to Mn(K ) endowed with a type J involution, is always a
scalar matrix. If it is nonzero, we call f nonvanishing. The existence of nonvanishing central polyno-
mials is nontrivial; we refer to [Row, §1; Appendix A] for details.

Theorem 5.4 (Positivstellensatz). Suppose K ∈ {R,C} is endowed with the complex conjugate involution .
Let g = g∗ ∈ K〈X, X∗〉, n ∈ N and fix a type J ∈ {orthogonal,unitary} according to the type of involution
on K. Choose α1, . . . ,αm ∈ K〈X, X∗〉 whose images in GMn(K, J) form a diagonalization of the quadratic
form Trd(x∗x) on UDn(K, J). Then the following are equivalent:

(i) for any s ∈ Mn(K)N , g(s, st) is positive semidefinite;
(ii) there exist a nonvanishing central polynomial h ∈ K〈X, X∗〉 for n × n matrices and pi,ε ∈ K〈X, X∗〉 with

h∗gh ≡
∑

ε∈{0,1}m

αε
∑

i

p∗
i,ε pi,ε (mod aJn ).

Proof. Given a congruence as in (ii), it is clear that (i) holds whenever h(s, st) �= 0. As the set of all
such s is Zariski dense, (i) holds for all s ∈ Mn(K)N .
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For the converse implication note that by Lemma 5.3, g + aJn is totally ∗-positive in UDn(K, J).
Hence by Theorem 2.4 we obtain a positivity certificate

g + aJn =
∑

ε∈{0,1}m

(α + aJn )
ε
∑

i

(
x′

i,ε

)∗
x′

i,ε

for some x′
i,ε ∈ UDn(K, J). Clearing denominators, there are xi,ε ∈ GMn(K, J) and a nonzero central

r ∈ GMn(K, J) with

r∗(g + aJn )r =
∑

ε∈{0,1}m

(α + aJn )
ε
∑

i

x∗
i,εxi,ε.

Lifting this equality to the free algebra yields the desired conclusion. �
When n = 2, the weights α are redundant (cf. Section 4 or [PS, p. 405]) and we obtain the follow-

ing strengthening:

Corollary 5.5. Suppose K ∈ {R,C} is endowed with the complex conjugate involution . Let g = g∗ ∈
K〈X, X∗〉, n ∈ N and fix a type J ∈ {orthogonal,unitary} according to the type of involution on K. Then the
following are equivalent:

(i) for any s ∈ M2(K)N , g(s, st) is positive semidefinite;
(ii) there exist a nonvanishing central polynomial h ∈ K〈X, X∗〉 for 2 × 2 matrices and pi ∈ K〈X, X∗〉 with

h∗gh ≡
∑

i

p∗
i pi (mod aJ2).

Remark 5.6. By Tarski’s transfer principle, Theorem 5.4 and Corollary 5.5 hold with K replaced by any
real closed or algebraically closed field of characteristic 0.

We conclude the paper with a problem: can Theorem 5.4 be used to give a proof of Helton’s sum
of hermitian squares theorem?
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