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Abstract

We compute 5-point classical conformal blocks with two heavy, two light, and one superlight operator 
using the monodromy approach up to third order in the superlight expansion. By virtue of the AdS/CFT cor-
respondence we show the equivalence of the resulting expressions to those obtained in the bulk computation 
for the corresponding geodesic configuration.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Conformal blocks represent important elements of any conformal field theory [1]. In general, 
they are certain functions of conformal dimensions {�i} and Virasoro central charge c which are 
completely defined by the conformal symmetry. In the limit where c goes to infinity they are ap-
proximated by the so-called classical conformal blocks. Recently, a remarkable interpretation of 
the classical conformal blocks in the context of the AdS3/CFT2 correspondence has been inves-
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tigated [2–8]. It was shown that some class of classical CFT2 conformal block can be described 
by means of a particular classical mechanics in AdS3.

There exist different types of the classical conformal blocks depending on the behavior of the 
conformal dimensions as c → ∞ [9]. One can distinguish between two limiting cases: conformal 
blocks with only heavy and only light operators. In this note we focus on the case of two heavy 
operators of equal conformal dimensions producing in the bulk either a conical defect or BTZ 
black hole [2,3,5,6]. The bulk geodesic configuration corresponding to the n-point block with 
only two heavy fields consists of 2n − 5 massive scalar particles propagating in the background 
geometry produced by the heavy operators [7]. It was pointed out in [10,8] that these configura-
tions are nothing but the ordinary Witten exchange diagrams with the difference that there is no 
integration over positions of the vertices of the geodesic graph.

While the 4-point conformal block in the heavy-light approximation1 was explicitly computed 
[5,6] an exact consideration of the n-point case is hampered by technical difficulties related to 
solving associated higher order algebraic equations. To analyze multi-particle configurations we 
proposed to use an additional approximation procedure with respect to a small parameter which 
can be chosen to be a mass of one of the particles whose worldline ends on the boundary (i.e., it is 
a conformal dimension of one of external fields) [7]. This allows to iteratively reconstruct n-point 
heavy-light classical conformal block starting from the (n − 1)-point one. Such a super-light ap-
proximation applies when there is a known expression for the n-point heavy-light conformal 
block. This is the case with the 5-point heavy-light block considered as a deformation of the 
exactly known heavy-light 4-point block with respect to a small classical conformal dimension 
of the third light operator. In this paper we use this procedure to analyze the bulk/boundary 
correspondence of the conformal block/geodesic Witten diagram computation of the 5-point 
heavy-light block in the sub-leading orders of the super-light expansion.

Our computation of the 5-point classical conformal block on the boundary relies on the study 
of the monodromy properties of the auxiliary Fuchsian differential equation. It is reduced to the 
computation of the so-called accessory parameters which are partial derivatives of the conformal 
block function. In the bulk we use the geodesic approach involving a different but related set of 
quantities – angular momenta of external and intermediate geodesic segments, and the mechani-
cal action of the geodesic configuration or, equivalently, the geodesic length. Analogously to the 
accessory parameters, the external angular momenta are defined as derivatives of the mechanical 
action which in turn is related to the classical conformal block [6]. We expect that the geodesic 
description can be successively derived from the monodromy approach by finding counterparts 
of the monodromy approach constituents on the bulk side. In this paper we compare the sys-
tems of algebraic equations describing both the accessory and angular parameters and find out 
that they are generally different but have a common physically relevant root which leads to the 
conformal block function.

The paper is organized as follows. In Section 2 we apply the monodromy approach to find 
equations on the accessory parameters for the classical 5-point conformal block. In Section 3
we formulate the super-light approximation procedure and compute the accessory parameters 
up to the third order in the dimension of the super-light operator. In Section 4 we perform the 
corresponding bulk computation. In Section 5 we discuss explicit relations between the classical 

1 For the general 4-point block the basic computation tool is Zamolodchikov recursion relations [11,12], for the recent 
development see [13]. Alternative recursion in the important case of the vacuum conformal blocks was proposed recently 
in [14]. For multi-point blocks the AGT combinatorial representation is applicable (at finite value of the central charge 
in rational and non-rational CFTs with Virasoro symmetry see [15–17].
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Fig. 1. The 5-point classical heavy-light conformal block. Two bold lines on the right represent heavy operators. As usual 
the projective invariance is used to fix three insertion positions as z1 = 0, z4 = 1, z5 = ∞.

conformal block and the geodesic length, and between the accessory parameters and external 
angular momenta. Then we discuss a relation between two systems of algebraic equations on 
accessory/angular parameters. Using the super-light expansion method we find a perturbative so-
lution to the bulk equations on angular parameters up to the third order. In Section 6 we compute 
the 5-point classical conformal block and the geodesic length up to the third order in the su-
perlight dimension and find out exact match of two answers. Section 7 contains our conclusions.

2. Classical conformal block and monodromy problem

An n-point conformal block function F(zi, �i, �̃j ) is a holomorphic contribution to the 
correlation function of n primary fields in points zi coming from a given set of Virasoro represen-
tations in the intermediate channels. In addition to the central charge c and conformal weights �i

of the external operators the conformal block depends on conformal weights �̃j in the interme-
diate channels. For the spherical topology the fusion channel is represented by the corresponding 
fishbone diagram.

In the classical limit c → ∞ the conformal blocks are exponentiated (see, e.g., [19,20]) as

F(zi ,�i, �̃j ) = exp
[ − c

6
f (zi, εi , ε̃j )

]
, (2.1)

where εi = �i/c and ε̃j = �̃j /c are called respectively external and intermediate classical con-
formal dimensions and f (zi, εi, ε̃j ) is the main object of our study – classical conformal block. 
To compute the classical conformal block in the 5-point case we apply the monodromy method 
(see, e.g., [21,22] for a general discussion). From now on, a function f (zi) denotes the 5-point 
classical block related to the quantum block with the diagram presented on the Fig. 1 (we omit 
conformal dimensions as they always remain the same).

The 5-point conformal block can be obtained by considering an auxiliary 6-point correla-
tion function 〈V12(z)V1(z1) · · ·V5(z5)〉, where Vi(zi) are primary operators with dimensions 
�i , i = 1, . . . , 5 and V12(z) is the second level degenerate operator. Below we use the stan-
dard Liouville parametrization c = 1 + 6(b + b−1)2 [9]. Because of the decoupling condition 
(b−2L2−1 + L−2)V12(z) = 0 the 6-point correlation function obeys the following second order 
differential equation [1]

[ 1

b2

∂2

∂z2
+

5∑
i=1

( �i

(z − zi)2
+ 1

z − zi

∂

∂zi

)]
〈V12(z)V1(z1) · · ·V5(z5)〉 = 0 . (2.2)

In the classical limit b → 0 the 6-point auxiliary correlation function behaves as

〈V12(z)V1(z1) · · ·V5(z5)〉
∣∣∣ → ψ(z) exp(b−2f (zi)) , (2.3)

b→0
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where the exponential factor f (zi) is the sought 5-point classical conformal block and the aux-
iliary holomorphic function ψ(z) is governed by a Fuchsian equation arising from the above 
decoupling condition

d2ψ(z)

dz2
+ T (z)ψ(z) = 0 . (2.4)

Here T (z) is the holomorphic component of the classical stress–energy tensor

T (z) =
5∑

i=1

( εi

(z − zi)2
+ ci

z − zi

)
, (2.5)

where εi are the classical conformal dimensions and ci are the accessory parameters related to 
the classical conformal block as follows

ci(z) = ∂f (z)

∂zi

, i = 1, . . . ,5 . (2.6)

The asymptotic behavior T (z) ∼ z−4 at infinity implies that the accessory parameters satisfy the 
following linear conditions

5∑
i=1

ci = 0 ,

5∑
i=1

(cizi + εi) = 0 ,

5∑
i=1

(ciz
2
i + 2εizi) = 0 . (2.7)

Fixing z1 = 0, z4 = 1, z5 = ∞ the above conditions are solved as

c1 = −c2(1 − z2) − c3(1 − z3) + ε1 + ε2 + ε3 + ε4 − ε5 ,

c4 = −c2z2 − c3z3 − ε1 − ε2 − ε3 − ε4 + ε5 , c5 = 0 , (2.8)

where accessory parameters c2 and c3 are taken as independent variables. Using (2.8) function 
T (z) takes the form

T (z) = ε1

z2
+ ε2

(z − z2)2
+ ε3

(z − z3)2
+ ε4

(z − 1)2
+

+ c2
z2(z2 − 1)

z(z − z2)(z − 1)
+ c3

z3(z3 − 1)

z(z − z3)(z − 1)
− ε1 + ε2 + ε3 + ε4 − ε5

z(z − 1)
. (2.9)

2.1. Heavy-light approximation

Classical conformal blocks in the heavy-light limit contain two heavy operators while others 
are light [2]. Let ε4 = ε5 ≡ εh be the dimension of two heavy fields, while fields with dimensions 
ε1, ε2, ε3 be light. It means that the dimension of heavy operators is fixed in the semiclassical 
limit while those of light operators tend to zero. The equation (2.4) can then be solved perturba-
tively. Let us expand all functions as

ψ(z) = ψ(0)(z) + ψ(1)(z) + ψ(2)(z) + . . . ,

T (z) = T (0)(z) + T (1)(z) + T (2)(z) + . . . ,

c2(z) = c
(0)
2 (z) + c

(1)
2 (z) + c

(2)
2 (z) + . . . ,

c3(z) = c
(0)

(z) + c
(1)

(z) + c
(2)

(z) + . . . , (2.10)
3 3 3
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where expansion parameters are light conformal dimensions. We assume that the accessory pa-
rameter expansion starts with terms linear in the conformal dimensions so that c(0)

2,3 = 0. In the 
case of the heavy-light conformal blocks it is sufficient to consider just the first order corrections 
(see [2,6] for the discussion of the 4-pt case). The lowest order equations are then

( d2

dz2
+ T (0)(z)

)
ψ(0)(z) = 0 ,

( d2

dz2
+ T (0)(z)

)
ψ(1)(z) = −T (1)ψ(0)(z) , (2.11)

where the stress–energy tensor components are directly read off from (2.9),

T (0)(z) = εh

(z − 1)2
,

T (1)(z) = ε1

z2
+ ε2

(z − z2)2
+ ε3

(z − z3)2
+ c2

z2(z2 − 1)

z(z − z2)(z − 1)
+ c3

z3(z3 − 1)

z(z − z3)(z − 1)

− ε1 + ε2 + ε3

z(z − 1)
. (2.12)

Here and below we use notation c2(z) for c(1)
2 (z) and c3(z) for c(1)

3 (z) as they are the only 
coefficients which will come in further calculations.

The two branches in the zeroth order are given by

ψ
(0)
± (z) = (1 − z)γ± , γ± = 1 ± α

2
, α = √

1 − 4εh . (2.13)

Using the method of variation of parameters and noting that the Wronskian of the zeroth order 
solutions is W(z) = α we find the first order corrections

ψ
(1)
+ (z) = 1

α
ψ

(0)
+ (z)

∫
dzψ

(0)
− (z)T (1)(z)ψ

(0)
+ (z)

− 1

α
ψ

(0)
− (z)

∫
dzψ

(0)
+ (z)T (1)(z)ψ

(0)
+ (z) ,

ψ
(1)
− (z) = 1

α
ψ

(0)
+ (z)

∫
dzψ

(0)
− (z)T (1)(z)ψ

(0)
− (z)

− 1

α
ψ

(0)
− (z)

∫
dzψ

(0)
+ (z)T (1)(z)ψ

(0)
− (z) . (2.14)

Since both ψ(0)
± (z) and T (1)(z) have poles then ψ(1)

± (z) has branch points identified with the 
punctures at z2 and z3.

2.2. Contour integration and monodromy

To find the monodromy we evaluate the following integrals

I
(k)
++ = 1

α

∮
γk

dzψ
(0)
− (z)T (1)(z)ψ

(0)
+ (z) , I

(k)
+− = − 1

α

∮
γk

dzψ
(0)
+ (z)T (1)(z)ψ

(0)
+ (z) ,

I
(k)
−+ = 1

α

∮
γk

dzψ
(0)
− (z)T (1)(z)ψ

(0)
− (z) , I

(k)
−− = − 1

α

∮
γk

dzψ
(0)
+ (z)T (1)(z)ψ

(0)
− (z) ,

(2.15)
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over two contours γ2 and γ3 enclosing points {0, z2} and {0, z2, z3} respectively. We find

I
(2)
+− = +2πi

α

[ + αε1 + c2(1 − z2) − ε2 + c3(1 − z3) − ε3

− (1 − z2)
α[c2(1 − z2) − ε2(1 + α)]] ,

I
(2)
−+ = −2πi

α

[ − αε1 + c2(1 − z2) − ε2 + c3(1 − z3) − ε3

− (1 − z2)
−α[c2(1 − z2) − ε2(1 − α)]] ,

I
(2)
++ = −I

(2)
−− = 2πi

α

[
c3(1 − z3) − ε3

]
, (2.16)

and

I
(3)
+− = +2πi

α

[ + αε1 + c2(1 − z2) − ε2 + c3(1 − z3) − ε3 −
− (1 − z2)

α[c2(1 − z2) − ε2(1 + α)] − (1 − z3)
α[c3(1 − z3) − ε3(1 + α)]] ,

I
(3)
−+ = −2πi

α

[ − αε1 + c2(1 − z2) − ε2 + c3(1 − z3) − ε3 −
− (1 − z2)

−α[c2(1 − z2) − ε2(1 − α)] − (1 − z3)
−α[c3(1 − z3) − ε3(1 − α)]] ,

I
(3)
++ = I

(3)
−− = 0 . (2.17)

Within the heavy-light expansion two monodromy matrices M = {Mij , i, j = ±} associated 
with the contours γ2 and γ3(

ψ+(z)

ψ−(z)

)
→

(
M++ M+−
M−+ M−−

)(
ψ+(z)

ψ−(z)

)
(2.18)

are expanded as

M = M0 +M1 +M2 + . . . . (2.19)

The first order M0 defines the monodromy of ψ(0)(z). As the contours do not enclose the point 
z = 1 it follows that M0 = I. In the linear order the monodromy matrices are given by

M(γ2) =
(

1 + I
(2)
++ I

(2)
+−

I
(2)
−+ 1 − I

(2)
++

)
, M(γ3) =

(
1 I

(3)
+−

I
(3)
−+ 1

)
. (2.20)

On the other hand, the monodromy matrices over contours γ2 and γ3 are defined by the con-
formal dimensions of the fields in the intermediate channels. Up to similarity transformation they 
are

M̃(γ2) = −
(

e+πi	1 0
0 e−πi	1

)
, M̃(γ3) = −

(
e+πi	2 0

0 e−πi	2

)
, (2.21)

where 	1 = √
1 − 4ε̃1 and 	2 = √

1 − 4ε̃2 parametrize intermediate dimensions. Computing 
corresponding eigenvalues we arrive at the following equation system√

I
(2)
++I

(2)
++ + I

(2)
+−I

(2)
−+ = 2πi ε̃1 ,

√
I

(3)
+−I

(3)
−+ = 2πi ε̃2 . (2.22)
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3. Solving the monodromic equations

In what follows we solve the monodromic equations (2.22) for the special choice of the pa-
rameters

ε1 = ε2 , ε̃1 = ε̃2 . (3.1)

Equations (2.22) being squared take the form(
X + (1 − a)Y

)
X = aI 2 ,(

X + (1 − b)Y + bE
)(

bX + a(1 − b)Y + aE
) = abI 2 , (3.2)

where

X = (1−a)(x −ε1)+ (1+a)αε1 , Y = (y −ε3) , E = αε3 , I = αε̃1 , (3.3)

and

x = (1 − z2)c2 , y = (1 − z3)c3 ,

a = (1 − z2)
α , b = (1 − z3)

α . (3.4)

Thus, the monodromic equation system consists of two quadratic equations on two accessory 
parameters. Following the Bézout’s theorem the system has at most four different solutions (more 
precisely, none, two or four). Each equation describes a conic and their intersection points (at 
most four) are the solutions. The first equation in (3.2) is easily solved as Y = Y(X) and thereby 
isolating variable X one arrives at a fourth order equation that can be solved explicitly using the 
well-known formulas for roots. However, the corresponding expressions containing square and 
cubic radicals are too complicated. One can also check that the discriminant is not zero so that 
all roots are different.

Exact solutions to the monodromic system are yet to be found. Instead, we propose to use 
an expansion which treats a solution as a deformation of some seed solution with respect to 
one of the conformal dimensions. As a seed solution we take the 4-point accessory parameter 
while the deformation parameter is the third conformal dimension ε3. Thus, the 5-point accessory 
parameters are expanded as

c2 = c
(0)
2 + ε3c

(1)
2 + ε2

3c
(2)
2 + · · · ,

c3 = ε3c
(1)
3 + ε2

3c
(2)
3 + · · · , (3.5)

where the zeroth-order c(0)
2 is the 4-point accessory parameter [2,6], while c(k)

2,3 are corrections, 
k = 1, 2, . . . (see our notational comment below (2.12)). Taking ε3 = 0 yields c3 = 0 so that two 
equations (3.2) are reduced to a single equation

X2 − aI 2 = 0 . (3.6)

Recalling variable changes (3.4) and (3.3) we solve the above equation as

X = ±√
aαε̃1 : x = ε1 + (a + 1)

(a − 1)
αε1 ± α

√
a

(a − 1)
ε̃1 , c

(0)
2 = x

1 − z2
, (3.7)

where the conformal block asymptotics fixes the sign to be +.
Having exact solution c(0)

2 and using the expansion procedure one can easily generate higher 
order corrections to find series (3.5). The point is that substituting the power series into the 
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monodromic equations we find out that the zeroth order term satisfies the quadratic equation 
(3.6) while all higher order terms are subjected to some linear equations. In terms of variables x
and y (3.4) the perturbation series is

x =
∞∑

n=0

εn
3 xn , y =

∞∑
n=1

εn
3 yn , (3.8)

where x0 is the exact seed solution (3.7). All corrections up to the third order are given by

x0 = ε1 + ε1α
(a + 1)

(a − 1)
+ ε̃1α

√
a

a − 1
, x1 = α

2

a + b2

a − b2
,

x2 = α

2ε̃1

[
b
√

a(a − 2ab + b2)(a − 2b + b2)

(a − b2)3
+ (a − 1)(a + b2)2

4
√

a(a − b2)2

]
,

x3 = α

2ε̃2
1

[
ab(b − 1)(a − 2ab + b2)(a − 2b + b2)(a − 3ab + 3b2 − b3)

(a − b2)5

]
, (3.9)

and

y1 = 1 − α
a + b2

a − b2
, y2 = α

ε̃1

[
b
√

a(−a + 2ab − b2)(a − 2b + b2)

(a − b2)3

]
,

y3 = α

2ε̃2
1

[
b(a − 2ab + b2)(a − 2b + b2)(a2 + a3 − 8a2b + 6ab2 + 6a2b2 − 8ab3 + b4 + ab4)

(a − b2)5

]
.

(3.10)

Corrections c(k)
2,3 at k = 1, 2, . . . in (3.5) can be reproduced using the variable change (3.4).

4. Bulk geodesic approach

In this section we shortly discuss the basic ingredients of the multi-particle mechanics in 
the bulk used to compute classical conformal blocks in the 4-point case [6] and in the n-point 
case [7]. Let us consider a massive point particle propagating in the three-dimensional space with 
a conical singularity. The corresponding metric is given by

ds2 = α2

cos2 ρ

(
dt2 + sin2 ρdφ2 + 1

α2
dρ2

)
, (4.1)

where t ∈ R, ρ ∈ R
+, φ ∈ [0, 2π). The angle deficit is 2π(1 − α) where α ∈ [0, 1]. Here, α = 1

corresponds to the global AdS3 space, α = 0 corresponds to the BTZ black hole threshold, while 
α = 1/n, where n ∈ Z+ gives AdS3/Zn conifold. The angle deficit metric (4.1) describes the 
constant negative curvature space with the Ricci scalar R = −8, while the conformal boundary 
is reached at ρ → π/2.

The action associated with the interval (4.1) reads

S = ε

λ′′∫
λ′

dλ

√
gtt ṫ2 + gφφφ̇2 + gρρρ̇2 , (4.2)

where ε is a classical conformal dimension identified with a mass, the metric coefficients are read 
off from (4.1), λ is the evolution parameter and the dot stands for the corresponding derivative. 
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As the action (4.2) is reparameterization invariant the evolution parameter can be conveniently 
chosen so that the proper velocity is unit. We observe that the boundary coordinates φ and t are 
cyclic, that is the corresponding Lagrange function has no explicit time and angular dependence

∂L
∂φ

= ∂L
∂t

= 0 , (4.3)

and therefore both angular and time momenta are conserved ṗφ = ṗt = 0. The particle dynamics 
can be reduced to the level surface characterized by constant values of the conserved momenta. 
However, the corresponding Rauth function is rather complicated. It can be simplified by taking 
either pφ = 0 and/or pt = 0 in which case the Rauth function is just the Lagrange function (4.2)
at φ̇ = 0 and/or ṫ = 0.

In our case we are interested in 2n −5 massive particles subjected to particular boundary con-
ditions meaning that n − 2 of their worldlines puncture the conformal boundary at fixed points 
w1, . . . , wn−2, where w = φ + it . In general, each particle travels on geodesic characterized by 
its own angular and time momenta. There are two natural configurations of boundary attachment 
points when either time or angular momenta of all particles can be simultaneously set to zero. 
In the t = const case the surface level is a space-like disk with a number of attachment points 
placed on the boundary circle. Heavy operators can be visualized as sitting in the center of the 
disk. In the φ = const case the surface level is a time-like infinite strip with a number of attach-
ment points placed on the boundary line. Heavy operators are on the opposite edge at infinitely 
separated points. In each case both external and intermediate worldlines have different constant 
angular/time momenta according to their attachment points and vertex positions.

We note that both the disk and the infinite strip turn out to be constant negative curvature 
two-dimensional surfaces with equal Ricci scalars R = −2. Both metrics can be cast into the 
Poincaré disk form ds̃2 = 1

4
dudū

(1−uū)2 , where u, ū are images of the complexified coordinates φ±iρ

or ρ± it , and the conformal boundary is mapped to the circle uū = 1. It follows that the dynamics 
in both slices can be described quite uniformly. In particular, the length of a given geodesic 
graph in a constant angle slice can be explicitly computed and be shown that it is related to the 
length of the same graph in a constant time slice by virtue of Wick rotation of attachment points 
coordinates.

In the sequel we consider a fixed time slice with the boundary attachments arranged circle-
wise. In this case the Rauth function describes a massive particle moving in the disk ds̃2 =
dρ2+α2 sin2 ρ dφ2

cos2 ρ
. The geodesic length of a given segment characterized by a constant angular 

parameter s ≡ |pφ |/α is the disk line element integrated along a given path

S = ε ln
√

η√
1 + η + √

1 − s2η

∣∣∣∣∣
η′′

η′
, (4.4)

where η′ = cot2 ρ′ and η′′ = cot2 ρ′′ are initial/final radial positions. As the metric blows up at 
the conformal boundary ρ = π/2 the length is to be regularized by introducing a near boundary 
cutoff. Then, the geodesic length of a multi-line graph is obtained by summing (4.4) with various 
angular parameters. On the other hand, the angular parameters are uniquely fixed by conditions 
that follow from extremizing the total action with fixed boundary attachments.

As an example we consider a geodesic between two boundary points 0 and φ. Using (4.4)
one finds that up to the boundary cutoff the geodesic length is given by S(φ) = ln sin(αφ/2). As 
the angular coordinate φ runs from 0 to 2π we find out that the geodesic is the arc stretched be-
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Fig. 2. A constant time disk. Solid lines 1, 2, 3 represent external operators with dimensions εi , i = 1, 2, 3, wavy lines 
1̃, ̃2 represent intermediate operators with dimensions ε̃j , j = 1, 2.

tween the boundary points.2 The arc along with a radial geodesic line and bulk-to-bulk geodesic 
segments are the basic elements of any n-point geodesic graph.

The geodesic graph in the 5-point case consists of five segments three of which have boundary 
attachments 0, w2, w3 and meet two inner segments in two vertices, see Fig. 2. Positions of the 
vertices are defined through the equilibrium conditions on the angular and radial momenta

s̃2 = 0 , ε3s3 − ε̃1s̃1 = 0 , ε1s1 − ε2s2 − ε̃1s̃1 = 0 , (4.5)

ε1

√
1 − s2

1η1 + ε2

√
1 − s2

2η1 = ε̃1

√
1 − s̃2

1η1 , ε3

√
1 − s2

3η2 + ε̃1

√
1 − s̃2

1η2 = ε̃2 ,

(4.6)

and the angular conditions saying that angular separations between the first and second lines and 
between the first and the third lines are w2 and w3, respectively,

eiαw2 =
(√

1 − s2
1 η1 − is1

√
1 + η1

)(√
1 − s2

2 η1 − is2
√

1 + η1
)

(1 − is1)(1 − is2)
, (4.7)

eiαw3 =
(√

1 − s2
3η2 − is3

√
1 + η2

)(√
1 − s̃2

1η2 − is̃1
√

1 + η2
)(√

1 − s2
1η1 − is1

√
1 + η1

)
(1 − is3)

(√
1 − s̃2

1η1 − is̃1
√

1 + η1
)
(1 − is1)

,

(4.8)

where s1, s2, s3 and s̃1, ̃s2 are respectively external and intermediate angular parameters, and η1
and η2 are radial positions of the vertices. In total, we have seven algebraic (irrational) equations 
on seven variables.

Modulo regulator terms the total multi-particle action is given by a sum of geodesic segments

S(w2,w3) = ε1L1(w2,w3) + ε2L2(w2,w3) + ε3L3(w2,w3) + ε̃1L1̃(w2,w3)

+ ε̃2L2̃(w2,w3) , (4.9)

2 Let us note that function S(φ) is periodic with the period 4π/α which is greater than the period of the angular variable 
φ. This gives rise to the interesting case of the so-called “long geodesics” which are the curves stretched between the 
two points and winding around the conical singularity. In the case of the conifold AdS3/Zn they are the images of the 
true geodesic lines in AdS3 and compute the entwinement [18]. It would be crucial to consider the long geodesics as new 
elements of n-point bulk graphs and find an interpretation in terms of the boundary conformal theory.
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where

L1,2 = − ln
√

η1
√

1 + η1 +
√

1 − s2
1,2η1

, L3 = − ln
√

η2
√

1 + η2 +
√

1 − s2
3η2

,

L1̃ = ln
√

η1
√

1 + η1 +
√

1 − s̃2
1η1

− ln
√

η2
√

1 + η2 +
√

1 − s̃2
1η2

, L2̃ = ln
√

η2

1 + √
1 + η2

.

(4.10)

Solving equations (4.5)–(4.8) we find all variables as functions of boundary attachment positions 
w1, . . . , wn−2 and all classical conformal dimensions. However, exact solutions are not known 
yet and therefore we shall use the expansion method which computes a solution as a perturbative 
series over some exactly known seed solution.

5. Monodromy vs geodesic approach

Finding the geodesic length can be viewed from a slightly different perspective. As the 
geodesic length is just the multi-particle action with particular boundary conditions given by 
fixed attachment points of external lines one finds out that corresponding canonical momenta are 
partial derivatives of the action with respect to boundary attachment coordinates. The resulting 
system of partial differential equations can be explicitly integrated so that its solution certainly 
coincides with geometric computation of the geodesic length given in Section 4.

It follows that both the monodromy and the geodesic methods deal with potential vector fields 
whose components are identified with accessory or external angular parameters, while potentials 
are identified with respectively the classical conformal block or the geodesic length. Given vector 
field components as functions of puncture coordinates we easily find the corresponding potential 
function. However, finding the components which are subjected to algebraic equation system 
turns out to be quite complicated problem. Within the monodromy approach such a system arises 
from studying monodromy properties of the conformal block while within the geodesic approach 
analogous system follows from studying geometric characteristic of geodesic segments. Below 
we analyze the respective algebraic equation systems on the both sides and show that they have 
a common root while the systems themselves are different. The two systems are then related by 
virtue of a combined transformation that can be viewed as the AdS/CFT correspondence.

Let us consider the action (4.2) describing a geodesic segment attached somewhere to the 
boundary. The on-shell variation is δS = pμδxμ, where pμ is the momentum in the attachment 
point, while δxμ is the variation of the boundary coordinate. In our case there are three boundary 
attachments w1 = 0 and w2, w3 (see Fig. 2) so that

αε2s2(w2,w3) = ∂S(w2,w3)

∂w2
, αε3s3(w2,w3) = ∂S(w2,w3)

∂w3
. (5.1)

As noted in [6] in the 4-point case the angular momenta relations (5.1) are analogous to the 
definition of the accessory parameters (2.6). Indeed, the accessory parameters are defined in 
much the same way as

c2(z2, z3) = ∂f (z2, z3)
, c3(z2, z3) = ∂f (z2, z3)

, (5.2)

∂z2 ∂z3
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cf. (2.6). Note that there are the following consistency conditions3

∂c3

∂z2
− ∂c2

∂z3
= 0 , ε3

∂s3

∂w2
− ε2

∂s2

∂w3
= 0 . (5.3)

Formally, the two systems above define potential vector fields in two dimensions which can be 
related to each other by means of a coordinate transformation along with a particular transfor-
mation of the respective potentials. A transition from the boundary insertion points z1,2,3 to the 
attachment points w1,2,3 in the bulk is given by

wm = i ln(1 − zm) , m = 1,2,3 . (5.4)

In particular, z1 = 0 maps to w1 = 0, cf. Figs. 1 and 2. Naturally, (5.4) maps the complex plane to 
the cylinder interpreted as conformal boundary of the asymptotically AdS3 space. The transfor-
mation is diagonal in the sense of the corresponding diagonal Jacobian matrix. The multi-particle 
action and the classical conformal block are related as

f (z2, z3) = S(w2,w3) + iε2w2 + iε3w3 , (5.5)

where coordinates are related by (5.4). We find that three accessory parameters and three external 
angular parameters are related as

cm = εm

1 ± iαsm(w)

1 − zm

, m = 1,2,3 , (5.6)

where ± depends on the direction of the sm flow. According to Fig. 2 and relations (4.5) mo-
menta s2, s3 and s1 have opposite signs in (5.6), it is − and + respectively. Note that the accessory 
parameter c1 is implicit within the monodromic approach since only two of the accessory param-
eters are left independent, cf. (2.8). On the other hand, relations (4.5) say that ε1s1 = ε2s2 + ε3s3, 
and using (5.6) it is exactly mapped to (2.8).

As discussed above both accessory parameters and angular momenta are subjected to al-
gebraic equation systems (2.7), (2.22) and (4.5)–(4.8). Within the monodromy approach there 
are five variables c1, . . . , c5 (accessory parameters) subjected to three linear and two irrational 
equations Mα(c) = 0, α = 1, . . . , 5. Within the geodesic approach there are seven variables 
s1, s2, s3, ̃s1, ̃s2 (external/intermediate angular momenta) and η1, η2 (radial vertex positions) sub-
jected to three linear and four irrational equations GI(s, ̃s, η) = 0, I = 1, . . . , 7. In principle, one 
might expect that after isolating two independent bulk variables (say, s2 and s3) the residual two 
geodesic equations should match exactly with the monodromic equations (2.22) provided (5.6). 
However, this is not the case. Instead, a weaker version of the equivalence turns out to be true – 
the systems are required to have at least one common root.

For future reference, recalling the definition of quantities a and b (3.4) and introducing angle 
positions θ2 = αw2/2 and θ3 = αw3/2 we find out that two types of variables are related as

a = exp(−2iθ2) , b = exp(−2iθ3) . (5.7)

Parameters θ2,3 proved to be convenient when describing solutions of the bulk equations and 
now we see that they are directly related to the quantities a and b naturally introduced within the 
monodromic framework.

3 It is worth noting that the first condition can be represented as the Cauchy–Euler type equation a ∂y
∂a

= b ∂x
∂b

, where 
a, b and x, y are given by (3.4). Recalling expressions for the accessory parameters (3.9) and (3.10) we see that this is 
indeed the case in each particular order of the ε3 expansion.
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5.1. 4-point case

The geodesic equations read off from the general system in the 4-pt case with coinciding 
conformal dimensions ε1 = ε2 (3.1) are given by

2ε1

√
1 − s2 η = ε̃1 , (

√
1 − s2 η − is

√
1 + η) = (1 − is)√

a
, (5.8)

where we denoted s1 = s2 ≡ s. The first equation here expresses η as a function of s. Isolating 
independent variable s one can show that the second equation has the polynomial representation

(s + i)(s + i
(a + 1) − √

a�

1 − a
) = 0 , � = ε̃1

ε1
. (5.9)

We see that modulo pre-factor iαε1 the second root of this residual geodesic equation coincides 
with the root (3.7) of the monodromic quadratic equation (3.6), i.e., x − ε1 = −iαε1s, where x
is related to the accessory parameter c2 via redefinition (3.4). The final relation between c2 and 
s is exactly (5.6).

It is instructive to have both monodormic (3.6) and geodesic (5.9) equations expressed in the 
same notation. By making use of the change (5.6) the bulk and boundary quadratic equations are 
uniformly given by

Monodromic equation:
(
s + i

(a + 1) − √
a�

1 − a

)2 = 0 ,

Geodesic equation: (s + i)(s + i
(a + 1) − √

a�

1 − a
) = 0 . (5.10)

Indeed, we see that the above equations do not coincide but have a common root. Note the 
second root in the geodesic equation s = −i. Recalling that s defines the angular momentum 
as pφ = αs we find out that the second root yields a pure imaginary momentum pφ = −iα. 
The corresponding vertex does not admit an original geometric interpretation since the radial 
position ρ defined by variable η = cot2 ρ from (5.8) is also imaginary by virtue of the constraints 
for classical conformal dimensions [7]. Nonetheless, it would be interesting to study both formal 
and physical meaning of the corresponding solution for S(w) and f (z) elsewhere.

5.2. 5-point case

A polynomial representation of the geodesic equations in the 5-point case analogous to (5.9)
is unknown yet. Instead, from the previous discussion we learn that computing all the roots is 
superfluous. Analyzing the first angular equation (4.7) we obtain exact results, while the sec-
ond angular equation (4.8) can be considered only perturbatively by virtue of the expansion 
method used to find solutions to the monodromic equations. In particular, we show that, roughly 
speaking, the first and the second monodromic equations in (3.2) follow from respectively the 
first and the second angular equations. Indeed, seven bulk variables include two vertex positions 
which can be explicitly solved in terms of five external and intermediate angular parameters, 
η1,2 = η1,2(s, ̃s|ε, ε̃). Then, the remaining five geodesic equations include three linear relations 
(4.5) and two irrational angular equations (4.7) and (4.8). This structure is analogous to that of 
the monodromic equations which include three linear equations (2.7) and two irrational equations 
(2.22) on five accessory parameters.
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Exact relations. By a direct computation we show that the second equation in (4.6) and the first 
angular equation (4.7) can be conveniently represented as a third order equation on variables 
s1 + s2 and s1s2 [7]. Two of three roots should be discarded while the remaining root yields the 
following constraint

s2 = σ + cos 2θ2 + s1 sin 2θ2

−s1 + s1 cos 2θ2 − sin 2θ2
, σ = 1 − ε̃2

1

2ε2
1

, (5.11)

while relations (4.5) in this case reduce to s1 = s2 + ε3
ε1

s3. Equation (5.11) is the second order 
equation in variables s2 and s3. It is not equivalent to the first angular equation in the bulk but 
instead represents one of its roots. Parameterizing coefficients in (5.11) as cos 2θ2 = (1 +a2)/2a, 
sin 2θ2 = (1 − a2)/2ia, and cot θ2 = i(1 + a)/(1 − a) (see (5.7)), and denoting

X = −iαε1(1 − a)(s2 + cot θ2) , Y = −iαε3s3 , (5.12)

we show that quadratic equation (5.11) can be cast into the form

X2 + (1 − a)XY − aI 2 = 0 , (5.13)

which is exactly the first monodromic equation (3.2), while the coordinate changes (5.12) and 
(3.4) yield relation (5.6). In this way we see that the equivalence can be achieved just for roots 
of the algebraic equations and not for the equations themselves.

Expanding over the root. The remaining part of the geodesic equations is given by the first ver-
tex equation in (4.6) and the second angular equation (4.8) which is much more complicated than 
the first angular equation. For convenience, we use the first angular equation (4.7) to represent 
the second angular equation (4.8) as follows

e2i(θ3−θ2)(1 − is3)(

√
1 − s2

2η1 − is2
√

1 + η1)(

√
1 − ν2s2

3η1 − iνs3
√

1 + η1)

= (1 − is2)(

√
1 − s2

3η2 − is3
√

1 + η2)(

√
1 − ν2s2

3η2 − iνs3
√

1 + η2) , (5.14)

where the angular positions of the vertices defined by equations (4.6) are given by simple func-
tions η1,2 = η1,2(s2, s3|ε, ε̃) along with s1 = s2 + ν�s3, where ν = ε3/ε̃1 and � = ε̃1/ε1 (see [7]
for more details). In this form the second angular equation depends on s2 and s3 only. Using the 
coordinate change (5.12) the above equation can be rewritten as irrational equation f (X, Y) = 0. 
Therefore, combining it with (5.13) we arrive at a couple of algebraic equations, quadratic and 
irrational ones which should have a common root with the monodromic equations (3.2). By anal-
ogy with (5.11) we expect that of all roots of equation (5.14) considered as f (X, Y) = 0 we shall 
find a root X = X(Y) which is to be treated as the second monodromic equation (3.2).

Getting rid of the radicals in the second angular equation produces some higher order poly-
nomial equation which defies exact solution. Using the super-light approximation we expand the 
angular equations in small parameter ε3 around the seed solutions obtained by setting ε3 = 0 in 
(5.13) and (5.14). The expansion of angular momenta up to the third order is given by

s2 = s
(0)
2 + νs

(1)
2 + ν2s

(2)
2 + ν3s

(3)
2 + . . . ,

s3 = s
(0)
3 + νs

(1)
3 + ν2s

(2)
3 + . . . , (5.15)

where we used for convenience a rescaled deformation parameter ν = ε3/ε̃1. Note that the above 
power series expansions have different highest orders in ε3. This is because the angular parameter 
s3 enters the left-hand-side of the second equation in (5.1) with ε3 prefactor so that to have the 
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mechanical action S = S(w2, w3) up to terms of order εm
3 it is sufficient to have s2 and s3 up to 

terms of order εm
3 and εm−1

3 , respectively.4

The expansion coefficients are found to be

s
(0)
2 = − cot θ2 + �

1

2 sin θ2
, s

(1)
2 = �

2
cot(2θ3 − θ2) ,

s
(2)
2 = �

{[9 cos(2θ3) + 7 cos(2θ2 − 2θ3) − cos(4θ2 − 6θ3) + cos(2θ2 − 6θ3)

− 4 cos(2θ2 − 4θ3) − 12]}/{32 sin3(θ2 − 2θ3)
}

,

s
(3)
2 = �

sin θ3[sin(θ2 − 3θ3) − 3 sin(θ2 − θ3)]
8 sin5(θ2 − 2θ3)

× [3 + cos(2θ2 − 4θ3) − 2 cos(2θ2 − 2θ3) − 2 cos(2θ3)] , (5.16)

and5

s
(0)
3 = − cot(2θ3 − θ2) , s

(1)
3 = 1

2
csc3(θ2 − 2θ3)[sin2 θ2 + 4 sin2(θ2 − θ3) sin2 θ3] ,

s
(2)
3 =− 1

16
csc5(θ2 − 2θ3))[6 cos θ2 + cos(θ2 − 4θ3) + cos(3θ2 − 4θ3) − 8 cos(θ2 − 2θ3)]

× [3 + cos(2θ2 − 4θ3) − 2 cos(2θ2 − 2θ3) − 2 cos(2θ3)] . (5.17)

One can also check that the consistency condition (5.3) rewritten in terms of variables θ2 and 
θ3 as ε2∂s2/∂θ3 = ε3∂s3/∂θ2 is satisfied. To conclude, we note that in each order in ν or equiv-
alently ε3 angular momenta corrections (5.16)–(5.17) are related to the accessory parameters 
corrections (3.9)–(3.10) according to the general relation (5.6). In this way we have shown that 
the monodromic equation system does have the same root as the geodesic equation system.

6. Classical conformal block vs multi-particle action

Below we present the resulting expressions for the classical heavy-light conformal block ob-
tained on the boundary and in the bulk using respectively the monodromy and the geodesic 
approaches. The results obtained are in agreement with the computation by means of the AGT 
combinatorial representation [15] performed for the lower level coefficients of the coordinate 
expansion of the classical conformal block. The corresponding expressions are collected in the 
Appendix A.

6.1. Classical conformal block

The power series expansion of the 5-point classical conformal block f (z) (2.1) is given by

f (z) = f (0)(z) + ε3f
(1)(z) + ε2

3f (2)(z) + ε3
3f (3)(z) + . . . . (6.1)

Using explicit expressions for the accessory parameters (3.4) and (3.9)–(3.10) and integrating 
(5.2) we find that expansion coefficients in (6.1) are given by

4 In principle, this fact must follow directly from the geodesic length formula (4.9)–(4.10). We explicitly checked that 
substituting s3 = s

(0)
3 + νs

(1)
3 + ν2s

(2)
3 + ν3s

(3)
3 + . . . into the length formula gives the same answer in the third order in 

ν exactly as if one sets s(3)
3 = 0.

5 In [7] we used another but equivalent representation of the first expansion coefficient s(1) .
3
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f (0) = −2ε1 ln
[a − 1

2
√

a

] + ε̃1 ln
[√

a − 1√
a + 1

] − ε1

α
lna ,

f (1) = − ln
[a − b2

2
√

ab

] − 1

α
lnb ,

f (2) = − (a + b2)(a + a2 − 4ab + b2 + ab2)

4ε̃1
√

a(a − b2)2
,

f (3) = (b − 1)b(a − b)(a + b2)(a + a2 − 4ab + b2 + ab2)

2ε̃2
1(a − b2)4

, (6.2)

where a = (1 − z2)
α and b = (1 − z3)

α , see (3.4). The leading contribution f (0) is the 4-point 
classical heavy-light conformal block [2,6].

6.2. Multi-particle action

The power series expansion of the bulk multi-particle action S(w) (4.9) is given by

S(w) = S(0)(w) + ε3S
(1)(w) + ε2

3S(2)(w) + ε3
3S(3)(w) + . . . . (6.3)

Using explicit expressions for the angular momenta (5.16)–5.17 and integrating (5.1) we find 
that expansion coefficients in (6.3) are given by

S0(θ) = −2ε1 ln sin θ2 + ε̃1 ln tan
θ2

2
, S1(θ) = − ln sin(2θ3 − θ2) ,

S2(θ) = −cos θ2 + 2 csc2(θ2 − 2θ3) sin(θ2 − θ3) sin θ3

2ε̃1
,

S3(θ) =−cos θ2 + 2 csc2(θ2 − 2θ3) sin(θ2 − θ3) sin θ3

2ε̃1

× 4 csc2(θ2 − 2θ3) sin(θ2 − θ3) sin θ3

2ε̃1
, (6.4)

where we switched to θ2 and θ3, see (5.7). Expansion coefficients (6.4) are related to (6.2) ac-
cording to the general identification formula (5.5). The same results follow from the explicit 
geodesic length formula (4.9)–(4.10). We note that (5.1) as well as (5.2) allow to define the 
action (the conformal block) up to some coordinate independent constant, while explicit expres-
sions (4.9)–(4.10) allow to fix the constant.

7. Conclusion

We have computed the 5-point heavy-light conformal block in the super-light approximation 
up to the third order with respect to the conformal dimension of one of the three light fields. The 
computation has been done in two independent ways: using the monodromy and the geodesic 
approaches. The resulting expressions coincide. We observe different aspects of the correspon-
dence between the two methods. In particular, we find that the boundary variables and equations 
find their counterparts in the bulk consideration. There is also a precise relation between the 
accessory parameters and the conserved angular momenta of the different geodesic segments.

The similarity between bulk and boundary computations leads to the natural assumption that 
in the present context the AdS3/CFT2 correspondence is to be understood in a strong sense, 
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i.e. as two different descriptions of the same Liouville theory. Indeed, in the semiclassical limit 
the correlators of the primary fields are dominated by the stationary-point configuration which 
is given by the Liouville equation with the delta-function sources corresponding to the heavy 
fields. The light fields do not affect the stationary-point configuration and are considered as 
propagating in the background geometry formed by the heavy ones. In our case there are two 
heavy operators with equal conformal weights so that we are dealing with the dynamics of the 
light fields propagating in the geometry of the Poincaré disk with two singularities inside. One 
can see that this geometry is nothing other than the two-dimensional slice geometry of the angle 
deficit/BTZ black hole in three dimensions. In particular, we have seen that the geodesic method 
deals with a constant time or angle slices which are Poincaré disks.

This link can be traced also in the opposite direction. Indeed, provided the Brown–Henneaux 
boundary condition is satisfied, the three-dimensional gravity with the negative cosmological 
constants is described by the Liouville theory [23]. Another way to see this theory inside the 
three-dimensional gravity is to represent the bulk metric as a stack of the Poincaré disks so 
that the exponential scale factor satisfies the residual Einstein equation which is again the Li-
ouville equation [24].6 Adding light particles moving in the background geometry generated 
by static heavy sources one arrives at the Liouville equation with the heavy source terms sup-
plemented with the standard geodesic equations for interacting light particles. This corresponds 
to decomposing the semiclassical correlation functions into conformal blocks and introducing 
intermediate channels.

Following the above heuristic arguments we tend to conclude that the Lagrangian description 
of the classical Liouville theory has to allow for establishing literal matching of the boundary and 
the bulk descriptions in the semiclassical limit. Current developments strongly indicate that this 
is indeed the case but an exact method of deriving the bulk geodesic description starting from the 
semiclassical Liouville theory is not yet available.
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Appendix A. The classical block from the AGT representation

Here we compare the results of Section 6 with those coming from the semiclassical compu-
tation for the combinatorial AGT representation [15] of the conformal blocks sketched in [7]. 
Introducing parameters q1 and q2 which define coordinates of the 5-point block as z2 = q1q2 and 
z3 = q2 the classical conformal block in the q-representation is given by

F̃(q1, q2) = e− c
6 f̃ (q1,q2) , c → ∞ , (A.1)

where c is the central charge and F̃(q1, q2) is the conformal block in the AGT representation 
normalized as F̃(0) = 1 so that f̃ (0) = 0. We note that the classical conformal block in (2.1) has 
different asymptotic behavior: f (z) ∼ log z at z → 0.

6 The above Einstein/Liouville relation conforms with the well-known correspondence between two-dimensional Vira-
soro conformal blocks and physical states in three-dimensional quantum SL(2, C) Chern–Simons theory [25]. See, e.g., 
Refs. [26–30] for more discussion of quantum 3d gravity and the Liouville theory.
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Using the power series expansion of the classical conformal block in the new coordinates

f̃ (q) = f̃ (0)(q) + ε3f̃
(1)(q) + ε2

3 f̃ (2)(q) + ε3
3 f̃ (3)(q) + . . . , (A.2)

and applying the AGT combinatorial computational scheme we can find the expansion coeffi-
cients f̃ (k)(q) in the from of q1 and q2 power series expansions. It is convenient to introduce an 
auxiliary parameter t such that tm term takes into account all contributions of the terms qm1

1 q
m2
2

with m = m1 + m2. Up to m = 5 we get

f̃ (0)(q1, q2|t) = −1

2
(ε̃1q1q2)t

2 + 1

48
(−4ε1q

2
1q2

2 − 10ε̃1q
2
1q2

2 + 4ε1q
2
1q2

2α2

+ ε̃1q
2
1q2

2α2)t4 + 1

48
(−4ε1q

3
1q3

2 − 6ε̃1q
3
1q3

2 + 4ε1q
3
1q3

2α2

+ ε̃1q
3
1q3

2α2)t6 +O(t7) , (A.3)

f̃ (1)(q1, q2|t) = −1

2
(q1 + q2)t + 1

24
(−3q2

1 + 6q1q2 − 7q2
2 + 4q2

2α2)t2

+ 1

24
(−q3

1 − 3q2
1q2 + q1q

2
2 − 5q3

2 − 4q1q
2
2α2 + 4q3

2α2)t3

+ 1

2880
(−45q4

1 − 180q3
1q2 + 330q2

1q2
2 + 60q1q

3
2 − 469q4

2 + 120q2
1q2

2α2

− 240q1q
3
2α2 + 440q4

2α2 − 16q4
2α4)t4 +O(t5) , (A.4)

f̃ (2)(q1, q2|t) = − 1

16ε̃1
(q2

1 + q2
2α2)t2 + 1

16ε̃1
(−q3

1 + q2
1q2 + q1q

2
2α2 − q3

2α2)t3

+ 1

192ε̃1
(−9q4

1 + 6q3
1q2 − q2

1q2
2 − 11q2

1q2
2α2 + 6q1q

3
2α2 − 11q4

2α2

+ 2q4
2α4)t4 +O(t5) , (A.5)

f̃ (3)(q1, q2|t) = 1

128ε̃2
1

(−q4
1 + 2q2

1q2
2α2 − q4

2α4)t4

+ 1

64ε̃2
1

(−q5
1 + q4

1q2 + q1q
4
2α4 − q5

2α4)t5 +O(t6) . (A.6)

Setting t = 1 yields expansion coefficients in the decomposition (A.2). We find out that up to 
coordinate independent terms

S(θ2, θ3) = f̃ (q2, q3)−ε1 ln(1−q1q2)−ε3 ln(1−q2)+(2ε1 − ε̃1) lnq1q2 −ε3 lnq2 . (A.7)

Recalling the difference in the asymptotic behavior of f̃ (q) and f (z) (modulo the standard 
prefactor z2ε1−ε̃1

2 z
−ε3
3 ) we see that the above identification conforms (5.5).
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