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1. Introduction 

During the recent years a good deal of attention was focused on the following 
(measurable) union problem: let & be a u-algebra of subsets of a space X and 
Xi E Se (i E Z). What conditions on ti and Xi (i E I) guarantee the existence of a 
subfamily Xi (i EJ) whose union is not measurable with respect to a, i.e. does 
not belong to d? Usually it is assumed that the family Xl: (i E I) is point-finite, i.e. 
(i E I :x E Xi} is finite for all x E X, and that the Xi are small, i.e. belong to some 
a-ideal. The main goal of the present paper is to give a general treatment of the 
union problem which yields most of the results in the literature as special cases. 
We begin by reviewing some of the previous work. This will enable us to present 
our result in a proper setting. 

Our own work received impetus from an unpublished result of R. Solovay, 
which is as follows: 

Theorem 1.1 (R. Solovay, 1970). Let Xi (i E Z) be a disjoint partition of the 
interval [0, I] where each Xi has Lebesgue measure zero. Then there is some J G Z 

such that IJ {Xi : i E J} is not Lebesgue measurable. 

As a corollary of Theorem 1.1 Solovay showed: 

Theorem 1.2. Let f : [0, l]+ X be Lebesgue measurable, where X is a metric 
space. Then there is a closed separable Y c X such that f-‘(Y) has Lebesgue 
measure one. 

Theorem 1.2 can also be restated as follows. Letting p denote the Lebesgue 
measure on [0, 11, we can define a Bore1 measure Y on X by setting 

v(B) = H-V)) 
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for B c_ X, B Borel. Theorem 1.2 is then equivalent to: there is a closed separable 
Y such that Y(Y) = 1. 

Another equivalent result is the following generalised Lusin theorem. 

Theorem 1.3. Under the assumptions of Theorem 1.2, there is a compact 
K E [0, l] such that u(K) > 0 and f ) K is continuous. 

Theorem 1.3 is well known when X is separable, being only a slight extension 
of the classical Lusin’s theorem. 

To pinpoint further the nature of the above results it is necessary to comment 
on their relationship to the problem of the existence of real-valued measurable 
(r.v.m.) cardinals, [31], [32]. Assuming there is no such cardinal Theorem 1.1 is 
easy to see (thus Theorems 1.2, 1.3 follow as well). This was pointed out by 
Kuratowski [20]. In outline, supposing that Theorem 1.1 is false, one defines a 
measure Y on P(Z) by setting 

Then Y is a countably additive diffuse probability measure on P(Z), and the 
existence of a real-valued measurable cardinal follows. 

Thus the importance of Theorem 1 .l lies in eliminating the assumption that 
there is no real-valued measurable cardinal. This situation is fairly typical. Thus 
one has, e.g., the following result of Marczewski and Sikorski (1947): 

Theorem 1.4 [22]. Suppose that there is no real-valued measurable cardinal. Let X 
be a metric space and u a Bore1 probability measure on X. Then there is a closed 
separable subspace Y such that u(Y) = 1. 

Theorem 1.4 also easily implies Theorems 1.2 and 1.3 (in the absence of r.v.m. 
cardinals), The main part of the proof of Theorem 1.4 is the construction of a 
covering of a set of positive measure by disjoint measure zero sets, thereby 
creating the situation described at the outset. 

Much work has been done in this direction (Varadarajan [33], Moran [23], 
Haydon [16], Gardner [14]). We mention, for instance, 

Theorem 1.5 [16]. Let X be a metacompact space and ,u a regular Bore1 
probability measure on X. Then either there is a closed Lindelof subspace Y such 
that u(Y) = 1, or X has a discrete subspace whose cardinal@ is real-valued 
measurable. 

Once again, in the proof one considers a covering of a set of positive measure 
by open null sets. Exploiting the metacompactness one refines this covering to a 
point-finite one. Then, after further work, one succeeds in disjointizing the sets. 
Thus, while studying measures on topological spaces it usually suffices to work 
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with disjoint families. This is also true for other cases [ 11, Theorem 3E]. 
However, point-finite coverings enter naturally and it is not always obvious how 
to accomplish an adequate disjointization. In an abstract situation, this constitutes 
a much more difficult problem than the disjoint case. Another interesting point is 
that if the disjointization is not possible, the connection with r.v.m. cardinals in 
no longer clear. Unlike Theorem 1.1, it is clear that the assumption that there is 
no r.v.m. cardinal cannot be omitted in Theorems 1.4 and 1.5 (just consider a 
discrete space X of r.v.m. cardinality). A moment of reflection, however, shows 
that Theorem 1.2 partially restores the validity of Theorem 1.4, without assuming 
the non-existence of r.v.m. cardinals (see also the comment following Theorem 
1.2). A more general result is due to Koumoullis [18] and Pachl [26]: 

Theorem 1.6. Let X be a metric space and ,a a perfect probability Bore1 measure 
on X. Then either u is a Radon measure (that is, for every E > 0 there is a compact 

subset K with u(K) > 1 - E), or there is a closed discrete subset Y whose cardinal 
(Y( is (0, I}-measurable. 

Perfect measures were introduced by Gnedenko and Kolmogorov (see [15, p. 
181). Theorem 1.6 implies Lusin’s Theorem for perfect measures on metric spaces 
and mappings into metric spaces with cardinality < the least measurable cardinal. 
For Radon measure spaces and mappings into any metric space, Lusin’s Theorem 
was obtained by Fremlin [lo]. In the present paper we generalize Theorem 1.6 to 
developable spaces (see Corollary 3.3). The key to Theorem 1.6 is the realization 
that Theorem 1.1 above remains valid for any perfect measure if (II <the least 
((0, l}-) measurable cardinal. An important advantage associated with the setting 
of perfect measures is that the cardinality restrictions are much less severe (the 
least measurable cardinal as opposed to 2”O which is at least implicit in Theorems 
1.1, 1.2, 1.3). 

Having realized the significance of the union problem in measure theory it is 
natural to inquire what happens for other o-algebras and ideals. For example, 
what happens when ti is the u-algebra of sets with the property of Baire and Xj 
(i E Z) are meager? Recall that a subset S of a topological space has the property 
of Baire if S can be expressed as S = &, a S,, where S,, is open and S, is meager. 
Bukovsky proved: 

Theorem 1.7 [4]. Let X, (i E I) be a disjoint partition of the interval [0, l] into 
meager sets. Then there is some J c I such that U {Xi: i E J} does not have the 
property of Baire. 

Another interesting result of this type was recently obtained by Louveau and 
Simpson [21]. To describe their result, let N denote the space of natural numbers 
with the discrete topology. Then 2N traditionally denotes the space of non-empty 
closed subsets of N with the Vietoris topology. Louveau and Simpson consider the 
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subspace Q of 2” consisting of the infinite subsets of N and obtain the analogue of 
Theorem 1.7 for 9. Actually, in their result Xi (i E I) is point-finite. But Fremlin 
[ll] shows that in general if Theorem 1.7 holds for some space X, then it also 
holds when Xi (i E Z) is a point-finite covering of X. The space Sz has recently 
come into prominence due to the work of Ellentuck [7] who showed that Q plays 
an important role in generalizing Ramsey’s Theorem. Such generalizations of 
Ramsey’s Theorem have recently found applications in Banach space theory; see 
e.g. Ode11 [24]. 

Our results on measurable spaces generalize both Theorem 1.7 as well as the 
Louveau-Simpson result. (See also Fremlin [ll, 611 for a topological generaliza- 
tion). The analogue of Theorem 1.7 holds for other spaces (developable, 
Tech-complete [ll] and K-analytic). These results are discussed in Section 3. 

All results discussed so far were connected either with measure or category. A 
general theorem which includes both of these as special cases is due to 
Brzuchowski et al. [3J. In order to be able to state their result we need a 
definition. An ideal 9 c 9’(X), where X is a topological space, is said to have a 
Bore1 base if every set in 9 is a subset of a Bore1 set belonging to 9. 

Theorem 1.8 131. Let X be a Polish space (that is, a complete separable metric 
space) and 9 be a o-ideal with a Bore1 base. Let Xi (i E Z) be a point-jinite 
covering of X by sets from 9. Then there is some J G I such that U {Xi : i E J} does 

not differ from a Bore1 set by a set from 9. 

Theorem 1.8 was obtained by Prikry [27] for the case of measure and category 
for all separable (not necessarily complete) metric spaces. These results are 
presented here (see Corollaries 4.1 and 4.2). They are not covered by the general 
theory of perfect measurable spaces whereas Theorem 1.8 above is. 

In Section 2 we introduce and study in detail our main new concepts - those of 
perfect and weakly perfect measurable spaces. In Section 3 we examine perfect 
and weakly perfect measurable spaces when the underlying space is a topological 
space. In Section 4 we discuss the union problem for measurable spaces which are 
not necessarily perfect or weakly perfect. 

Notations. For a set I, 9(Z) denotes the power set of Z and 111 denotes the 
cardinal of I. c is the cardinal of the continuum. 

All topological spaces X are assumed to be at least Hausdorff. 93(X) denotes 
the Bore1 a-algebra on X, i.e., the o-algebra generated by the closed sets in X. In 
Section 3, we also consider the Baire u-algebra 9&,(X) which is generated by the 
zero sets of continuous functions. 

2. Perfect and weakly perfect measurable spaces 

As usual, if (X, &) is a measurable space and Y is a topological space, 
f : X-, Y is &-measurable if for all open U E Y (equivalently, for all Bore1 
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II E Y), f-l(A) E d. Most of the subsequent discussion evolves around a triple 
(X, .$ 9) where (X, ~4) is a measurable space and $ is an ideal of subsets of X 
(i.e. $ is closed under taking subsets and finite unions). Usually, we assume that 
4 is a a-ideal (i.e. 9 is closed under enumerable unions). In this case, if we set 

then (X, Se,) is a measurable space. We say that a family Ce c 8(X) is a base for 
9 if every set in 4 is contained in a set in % fl$. If there is a base Ce G s$ we say 
that 4; has an &-base. 

Definition 2.1. (X, ~4, 9) is a perfect (resp. weakly perfect) measurable space if 

whenever f : X + aB is d-measurable there is an analytic A E f(X) such that 

X-f-l(A) E 9 ( resp. f-l(A) +! 9). I n addition, (X, &, 9) is weakly perfect if 

XE9. 

Note. Essentially the same concept of perfect measurable spaces was introduced 
independently by Fremlin [ll] who used the term ‘semi-perfect’. Our results on 
these spaces were obtained in 1981 while the first author was visiting the 
University of Minnesota. 

Clearly, if (X, d, 9) is perfect, then it is weakly perfect. Note that in the above 
definition f-‘(A) does not necessarily belong to d (i.e. might be non- 
measurable). However, in most applications, f-l(A) belongs to 4 or at least to 
d9. This is true if SQ is closed under the Suslin operation, or if 4 is a o-ideal with 
an &-base and (X, A?, 9) is perfect. 

Before proceeding with the statements of our main results we shall give a 
variety of examples and counterexamples concerning perfect and weakly perfect 
measurable spaces. Most of them follow easily from well known results, while 
those for which the underlying space X is a topological space are also covered by 
the results of Section 3. 

The seminal instance of perfect measurable spaces is connected with the 
concept of perfect measures (Gnedenko and Kolmogorov [15]). Here we shall 
give a well known equivalent definition: a probability measure space (X, &, cc) is 
perfect if for every &-measurable f :X ---, [w there is a Bore1 subset B of [w such 
that B E f(X) and ,!~v-l(B)) = 1; see Sazonov [29]. The class of perfect measures 
includes Bore1 probability measures on separable complete metric spaces, or 
more generally Radon probability measures. This follows easily from Lusin’s 
Theorem (see Section 1). Moreover, the completion of a perfect measure space is 
perfect, as is every (0, l}-valued probability measure. It is easy to see that if 
(X, d, ,u) is a probability measure space, it is perfect iff (X, &, 9) is perfect 
where 4 is the ideal of p-measure zero sets. One direction follows from every 
Bore1 set being analytic and the other direction from every analytic set being 
universally measurable. 

We can define (X, &, p) to be weakly perfect if the corresponding (X, ~4, 9) is 
weakly perfect. For a probability Bore1 measure p on a separable metric space we 
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have that p is perfect iff ~1 is Radon (see [29]) and that ,U is weakly perfect iff 
there is a compact set of positive measure. Both of these results follow from the 
proof of Lemma 2.2. 

The a-algebra of sets with the property of Baire and the corresponding 
ideal- that of meager sets- also provide examples of perfect (resp. weakly 
perfect) measurable spaces, which we shall call perfect (resp. weakly perfect) 
category spaces. If the underlying space X is a complete separable metric space, 
then we have an example of a perfect category space. This can be seen by using 
the theorem that if f :X-+ [w has the the property of Baire, then there is a dense 
G,-set G such that f ( G is continuous [25, 381. If, on the other hand, the 
underlying space X is Ellentuck’s space [7] or [24], then we have an example of a 
weakly perfect category space (see Section 3) which is not perfect. 

If X is an analytic separable metric space, then (X, S%(X), {O}) is perfect, and 
thus (X, B(X), ,a), for an arbitrary 9, is likewise perfect. More generally, 
(X, Se, {O}) clearly is perfect iff f(X) is analytic for every d-measurable 
f :X+ [w. These are exactly the smooth spaces of Falkner [8]. 

If (X, ~4, 9) is perfect and $ is a o-ideal with an d-base, then (X, &$, 9) is 
perfect, and similarly for ‘weakly perfect’; see Lemma 2.6. Hence in particular, if 
X is an analytic separable metric space and 4; is a a-ideal with a Bore1 base, then 
(X, S(X),, $) is perfect. 

We are now ready to state our main results. 

Theorem 2.1. Let (X, s4, 9) be a perfect (resp. weakly perfect) measurable space 

and Xi (i E Z) be a point-finite covering of X. Set 

~‘={J~Z:U{Xi:iEJ}E~}, 

4’={JcZ:IJ{X:iEJ}E9}. 

Then if d’ is a o-algebra, (I, a’, 9’) is a perfect (resp. weakly perfect) 

measurable space. 

This theorem is relatively easy to prove if Xi (i E Z) are disjoint. Then ~4’ is 
automatically a u-algebra. In general d’ is not a o-algebra; but it is always closed 
under enumerable unions. Our proof shows that in general the ‘paved’ space 
(I, &‘, 4 ‘) is perfect (resp. weakly perfect). 

Theorem 2.2. Let (X, a) be a measurable space and .9 a o-ideal on X. Let Xi 
(i E I) be a point-finite covering of X. Also suppose that one of the conditions (a), 
(b) below holds: 

(a) (X, &, .!J) is perfect, 111 < the least measurable cardinal and there is no J E Z 
such that (J(6K,,andX-U{Xi:i~J}E9. 

(b) (X, & 9) is weakly perfect, IZl scandXiE9foralliEZandX$4. 
Then there is some J s Z such that U {Xi: i E J} # &. Moreover, if 4 has an 
&-base, then there is some J E Z such that U {Xi : i E J} # &9. 
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Remarks. Theorem 2.2(a) extends [ll, Proposition 311 as 4 need not be 
q-saturated. Other special cases of Theorem 2.2(a) include Theorems 1.1, 1.7, 
1.8, [18, Theorem 2.51 and [9, Proposition 2.31. 

The restriction on (II in Theorem 2.2(a) (resp. 2.2(b)) can be replaced by the 
following condition on (X, ~4, 9): there is a thick set R c X such that IR( <the 
least measurable cardinal (resp. jR( d c). Here R is thick means that R fl A # 0 
for all A E & - 9. Indeed, there is J c I such that R c Y = U {Xi : i E J} and 
IJI<jRI. If Y$& we are done. If Y E L$, then (Y, B(Y) II ~2, 9(Y) fl.Jj) is 
perfect (resp. weakly perfect) and since X - Y E 9, Theorem 2.2 applies. 

However, the cardinality restrictions in Theorem 2.2 cannot be removed in 
general. For the perfect case the counterexample is provided by the space 

(X, g(X), 9) h w ere (X( 2 the least measurable cardinal and 4 is a proper 
maximal a-ideal containing all singletons. For the weakly perfect case the 
counterexample is (X, C?(X), 9) h w ere 1X1> c and 4 is the ideal of at most 
enumerable subsets of X. In both cases the point-finite covering is the family of 

all singletons. 
The cardinality restrictions in Theorem 2.2 can be removed in certain perfect 

product spaces as the next theorem shows (see also Section 3 for other cases). 
The proof combines an idea of Fremlin [lo] with an application of Theorems 2.1 
and 2.2. 

Theorem 2.3. Let (Y,, SQ,), (a E K), be measurable spaces, where K is arbitrary, 
and (Y,( < the least measurable cardinal. Set 

and let & be the usual product o-algebra on X. Suppose that 4 is any o-ideal such 
that (X, d, 9) is perfect and Xi (i E I) a point-finite covering of X such that there is 
no J c I with IJI d KO and X - U {Xl : i E J} E 9. Then there is some J c I such that 
IJ {Xi : i E J} 4 &. Moreover, if 9 has an &-base, then there is some J E I such that 
l_{Xi:iEJ}#d9. 

Theorem 2.4. If (X, &, 9) is a perfect measurable space and Xi (i E I) is a 
point-finite covering of X such that Xi $9 and U {Xi : i E J} E d for all J c I, then 
I is at most enumerable. 

We also have useful characterizations of perfect and weakly perfect measurable 
spaces (Theorems 2.5 and 2.6). Either one of Theorems 2.1 or 2.5 and 2.6 can 
serve as a basis for the development of the theory of these spaces. 

Theorem 2.5. For a triple (X, &, 9) the following are equivalent: 
(a) (X, SQ, 3) is perfect. 
(b) For every countably generated o-algebra d’ c_ & there is some f :X+ [w 
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and an analytic set A c f(X) such that 

(9 d’ Gf-‘(B(R)), and (ii) X -f-‘(A) E 9. 

(c) For every Suslin scheme A(s) E .G& where s ranges over finite sequences from 
N, there is an analytic C E NN such that 

(9 fINA(o 1 n) # 0 for o E C, and (ii) &Jf~nA(o 1 n> E 4. 

(d) This is the same as (c), but in addition, A(s) are decreasing and disjoint in 

the sense that if a, t E NN and o # t, then 

n 4aIn)ncNNsin)=8. neN 
Theorem 2.6. For a triple (X, Sp, 9), where 4, is a proper ideal on X, the 
following are equivalent: 

(a) (X, d, 9) is weakly perfect. 
(b) This is the same as in Theorem 2.5(b), except that (ii) becomes f-l(A) 4 9. 

(c) The same as in Theorem 2.5(c), except that (ii) becomes 

Uy,zNA(o 14 #,a. 

(d) The same as (c) with A(s) decreasing and disjoint. 

We shall now prove Theorems 2.1-2.6. For the proof of Theorem 2.1, we need 
the following definition and Lemmas 2.1 and 2.2; we also assume that 4 is a 
proper ideal (i.e. X$.9), the other case being trivial. 

Definition 2.2. Let X = lJ {Xi : i E Z}, where the family {Xi} is point-finite. Also 

let f : I-, [0, 1). Then the associated many-valued function g is defined as follows: 
For each x E X, let F, = {i E Z:x E Xi} (hence F, is finite). 
enumerate cf(i) :i E F,} in increasing order. We set 

rk, l7 1, . . . ) E [0, llN. Thus g :X* [0, 11”. 

Lemma 2.1. Let (X, a) be a measurable space and Xi 
covering of X. Set 

Let lb, rl, . . . , rk) 
g(x) = (6, rl, . . . , 

(i E I) a point-finite 

Let f :I-_, [0, 1) be &‘-measurable and g :X+ [0, llN be the associated many- 
valued function. Then g is &-measurable. 

Proof. Let Jdk : [O, IIN + [0, l] be the k-th projection. It clearly suffices to show 
that for all k, gk = &Og iS &-measurable, that is, g;‘([O, r)) E & for every 
r E [0, 11. We prove this by induction on k. 

We have go(x) < r iff x E Xi for some i E Z such that f(i) < r iff x E U {Xi :f (i) < 
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r}. Since f is &‘-measurable, f-‘([O, r)) E ~4’. Hence lJ {Xi :f(i) < r} E d and go 
is &-measurable. 

For the induction step suppose that gj (j G k) are &-measurable. For every 

open U G [0, 11, set 

c, = lJ {X :f(i) E U}. 

As in the preceding step we conclude that C, E &. In particular, for open 

intervals (s, r), Car, E ~2. We now have gk+l(x) <r iff 

3s < r (s l Q A g&) <s A x E Cc,,,,), 

where Q is the set of rational numbers. Hence 

g&(]O, 4) = ,i;! (gkl(]O, 4) n C(4) 

SCQ 
and we are done. 

Lemma 2.2. the following are equivalent: 
(a) (X, &, 9) ti perfect (resp. weakly perfect). 
(b) Zf Y is a separable metric space and f :X * Y is d-measurable, then there is 

an analytic A E f (X) such that X -f-l(A) E 4 (resp. f-‘(A) 4 9). 

Proof. (b) implies (a) is trival. The other direction follows easily from the 
following well known fact (cf. [20, 436, III]): 

If Y is a separable metric space, then there is a one-to-one function f : Y+ R 

such that f-’ :f (Y)-, Y is continuous and for every open U G R, f-‘(U) is F, in 
Y. 

Proof of Theorem 2.1. Let f :I-, (0, 1) be &‘-measurable. We shall show that 
there is an analytic A’ E f(Z) such that Z - f-‘(A’) E 9 (resp. f-l(A’) # 9’). 

Let g :X-, [0, llN be the associated many-valued function. Then g is &- 
measurable by Lemma 2.1. Since (X, ~4, 9) is perfect (resp. weakly perfect), 
there is, by Lemma 2.2, an analytic A c_ G(X) such that X-g-‘(A) E 9 (resp. 
g-‘(A) #9). Hence all &(A) are analytic subsets of [0, l] and so is lJkeN n,JA). 
Moreover, setting 

A’ = k&N adA) - {l}, 

we have that A’ is analytic and A’ c f(Z). 
We claim that Xi fl g-‘(A) = 0 for all i E Z - f-l(A’). Indeed, if x E Xi fl g-‘(A) 

then, by the definition of g, we have f(i) = n,Jg(x)) for some k and f(i) # 1. 
Since g(x) E A, f(i) E JC,JA) - { 1) G A’. 

If X - g-l(A) E 9, then by the claim 

l__J {X:i EZ-f-‘(A’)} E 9, 

that is, Z - f-‘(A’) E 4’. Similarly, if g-‘(A) 4 9’. This completes the proof. 
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For the proof of Theorem 2.2 we need to analyze perfect and weakly perfect 
spaces of the form (X, B(X), 9). 

Lemma 2.3. If (X, 9(X), S) is perfect, then 9 is CO,-saturated (i.e. there is no 
uncountable disjoint family of sets not belonging to 9). 

Proof. Let Xi (i E I) be a disjoint family of sets not belonging to 4 and assume that 
111 6 c. It suffices to show that III 6X,. Let Z be a totally imperfect (i.e. 
containing no nonempty perfect set) subset of R with IZI = c (see [20, 0401). By a 
well known theorem, every analytic subset of Z is at most enumerable. Now 
consider a function f : X+ R with f(X) c Z, f 1 Xi constant and f (Xi) # f (Xj) for 
every i and j E I, if j. Since (X, 9(X), 9) is perfect and f is trivially P(X)- 
measurable, there is an analytic A s f (X) such that X -f-‘(A) E 9. Thus JAJ =S X0 

and Xi of-l(A). Thus (II s X0 as required. 

Lemma 2.4. The following are equivalent if 9 is a o-ideal on X: 

(a) (X, 9(X), 9) is perfect. 
(b) For every partition of X, Xi (i E I) where 111 s c, there is an at most 

enumerable J G Z such that X - U {Xi : i E J} E 9. 

(c) The same us (b) except that )I[ < the least measurable cardinal. 

Proof. (a)+ (b). As in the previous lemma we consider a totally imperfect set Z 
of reals and a function f : X+ R with f(X) c_ Z, f [ Xi constant and f(X,) f f (Xj) 

for every i and j E Z, if j. Since (X, 9(X), 9) is perfect, there is an analytic 
A c f (X) such that X -f-l(A) E 4. Then (Al G NO and setting 

wehave(JIG&,andX-lJ{Xi:iEJ}E.9. 
(b)+ (a). For every function f :X+ R, we apply (b) for the partition 

cf-‘({y }) : y E f (X)}. Thus there is an at most enumerable, hence also analytic, 
A ~-f(x) such that X-f-l(A) E 9. 

(c)+ (b) is trivial. So it remains to show (a)+ (c). Assume that (X, P(X), 9) 
is perfect and let Xi (i E I) be a partition of X, where 111 <the least measurable 
cardinal. By Lemma 2.3, 9 is ml-saturated, so J = {i E Z:Xi # Y} is at most 
enumerable. We claim that 

X,=X-U{Xi:iEJ}E9. 

Suppose that the claim is false and consider the perfect space 

where 9 rl B(X,) is a proper ideal on X1. This space can be ‘extended’ back to X 
by putting X-X, into the new proper ideal on X, the resulting space being 
perfect. So we can assume that J = 0, i.e., Xi E 9 for all i E Z, and that X4 9. 
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Define 

By Theorem 2.1, (I, 9(Z), 9’) is perfect and Lemma 2.3 implies that 9’ is 
ml-saturated. Moreover, we have {i} E 9’ for all i E Z and Z$4’. Hence, by 
Ulam’s Theorem [17, p. 3001, either there exists some J E Z such that 4’ n P(J) is 
a proper maximal o-ideal on J, or there exists a partition of Z into CC sets in 9’. 
If J is as in the first alternative of Ulam’s Theorem, let il be the additivity degree 
of the ideal 9’ fl 9(J), i.e., the least cardinal such that there are sets 

Z,E9’flP(Z) ( (Y E 12) with .Z = lJ {I, : LY E A}. It is known that A is a measurable 
cardinal, which is a contradiction since il d IJ] G 111. If the second alternative 
occurs we come again to a contradiction because (I, P(Z), 9’) is perfect and we 
already know that (a) + (b). This completes the proof of Lemma 2.4. 

Lemma 2.5. The following are equivalent if 4 is a proper o-ideal on X: 

(a) (X, P(X), 9) is weakly perfect. 
(b) For every partition of X, Xi (i E I) where (I) s c, there is an at most 

enumerable J g Z such that U {Xi : i E J} # 4. 

The proof is similar as that of Lemma 2.4, (a) e(b). 

Proof of Theorem 2.2. We start by proving the first conclusion of Theorem 2.2. 
We define a a-ideal 4 ’ on Z as in the statement of Theorem 2.1. Supposing that 
case (a) is false it follows from Theorem 2.1 that (I, P(Z), 9’) is perfect. 
Applying Lemma 2.4 for the partition of Z into singletons, we conclude that 
Z-J E 4’ for some at most enumerable J. Hence it easily follows that 
X-l_{Xi:iEJ}E9, a contradiction. The proof of case (b) follows similarly by 
contradiction applying Lemma 2.5. 

The second conclusion follows from the first and Lemma 2.6, concluding the 
proof of Theorem 2.2. 

Lemma 2.6. Let (X, .~4, 9) be perfect (resp. weakly perfect), where 9 is a o-ideal 
with an d-base. Then (X, d9, 9) is perfect (resp. weakly perfect). 

Proof. Let f :X+ R be &$-measurable. Lemma 2.6 clearly follows if we can find 
an &-measurable g :X+ R such that {x :f (x) # g(x)} E 4. To find such a g we 
proceed as follows. Let U,, (n E N) be an open base for R. Since f is 
.&$-measurable and 4 has an &-base we can pick an S,, E&! n 9 such that 
f -‘( U,) rl (X - S,) E d. Then S = lJ {S .:nEN}e&n.9. Itnowsufficestoset 

f(x), ifx # S, 
g(x)= o l. ifxeS. 
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Proof of Theorem 2.3. As in Theorem 2.2 the second conclusion follows from the 
first and Lemma 2.6. So we shall prove only the first conclusion. Suppose that this 
is false. We proceed as in the proof of Lemma 2.4(a)+(c). So we can assume 
that Xi E 9 for all i E Z and that X 4 9. Then we define 

9’={J~Z:U{Xi:i~J}~$} 

so that (I, 9’(Z), 9’) is perfect and 4’ is q-saturated (Theorem 2.1 and Lemma 
2.3). Again by Ulam’s Theorem, either there exists some J G Z such that 
9’ tl B(J) is a proper maximal ideal on J, or there exists a partition of Z into CC 
sets in 9’. By Theorem 2.2 the second alternative in Ulam’s Theorem cannot 
occur. 

Now if J is as in the first alternative, let ,J be the additivity degree of 
9’ fl 9(J). Then il is a measurable cardinal and there are disjoint sets 
Z, E 9 ’ fl P(J) (a E A) such that 

.Z = lJ {Zm : a E A}. 

We consider the family 

Xb;=lJ{Xi:iEZ,} (aYE). 

This is a point-finite family of sets from 9, the union of every subfamily of X, 
belongs to & and 

x, = lJ {X:,: C-z E n> 4 9. 

Now we can extend the perfect space 

(Xi, 9(X1) n d, 9 n 9(X,)) 

back to X, putting X -Xi to a new ideal, the resulting space being perfect. This 
means that we can assume that Z = A. and 9’ is &complete. 

Now we set 2, = U VssXq (g E A). Since 9’ is &complete Z, 4 4. Since & is a 
product u-algebra and Z, E &‘, we can pick an enumerable E, G A such that 

and 

for every 5 l A. 
By the A-system of Erdijs and Rado (see [6]), there is some E c A and .Z c A 

such that ]Jl = h and for all 5 and r] E A, if 5 # r] then E1- fl Eq = E. Pick t$ E C, for 
E E .Z. Since In {Ya : (Y E E}\ <the least measurable cardinal, there is some K GJ 
and t E fl {Y, : (Y E E} such that /K/ = A and tE ) E = t for c E K. It is now easy to 
find an x E X such that x 1 EE = tg for all 5 E K. Hence x E Z, for all 5 E K, 
contradicting the point-finiteness and the proof is complete. 
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Proof of Theorem 2.4. Define 

By Theorem 2.1, (Z, 9(X), 9’) is perfect and Lemma 2.3 implies that 9’ is 
q-saturated. Since {i} $4’ for every i E Z, it follows that Z is at most 
enumerable. 

Proof of Theorem 2.5. (a)* (b). Let &’ 5 .z4 be a countably generated u- 

algebra. Then there is some f :X + R such that &’ =f-‘(9?(R)) (cf. [5, Theorem 
0.11). Hence f is .&measurable and there is an analytic A G f(X) such that 
X-f-l(A) E 9. 

(b)+ (c). &’ be a-algebra generated all the A(s). Let f and A now 
be as in (b). It suffices to show that 

is analytic. 
Let g : FUN-A be continuous and onto. Pick B(s) E 94(R) such that A(s) = 

f-l(B(s)). We show that 

c=(~~~~:ng-i(~(~~n))#O]. 
n 

First, if t E n, g-l(B(a ) n), then g(r) E n, B(cr / n). Since g(r) E A cf(X), 
there is an x E X such that g(r) =f(x). Hence 

(*) n x E r)A(a ) n) nf-‘(A) 

Secondly, if (*) holds, then f(x) E A = g(N”). Hence f(x) = g(r) for some t. 
Since x E n,f-‘(Z?(a 1 n)), it follows that g(r) =f(x) E n, B(a 1 n), so 

Hence it now follows that C is the projection onto the second coordinate of the 
Bore1 set 

n u g-w)) x I(S), 
n Isj=n 

where Z(s) = (0 E N” : u extends s}. 
(c)+(d) is trivial. 
(d)+ (a). Let f : X-, NN be &-measurable. We shall show that there is an 

analytic C sf(X) such that X-f-‘(C) E 9. This suffices because N” is Bore1 
isomorphic to R. 

Let A(s) =f-‘(Z(s)) where Z(s) is as above. The Suslin scheme A(s) is 
decreasing and disjoint. Let C be as guaranteed by (d). Then C works. 



232 G. Koumoullis, K. Prikry 

The proof of Theorem 2.6 is similar to that of Theorem 2.5. 
As an application of the characterization Theorems 2.5 and 2.6 we shall give 

another proof of Theorem 2.1 for the case &’ = P(Z) - the only case we have 
found a use for. 

With the notation and the assumptions of Theorem 2.1, we shall show that 
(I, 9(Z), 9’) satisfies (d) of Theorem 2.5, resp. 2.6. Let Z?(s) be a decreasing 
Suslin scheme of subsets of I. Set 

This is a Suslin scheme in d since d’ = P(Z). Since (X, &, 9) is perfect, resp. 
weakly perfect, by Theorem 2.5, resp. 2.6, there is an analytic C G N” such that 

(a) QA(oln)#fl (=C) 

and 

Using the fact that {Xi : i E Z} is point-finite, 

nA(oln)=u(Q:ienn(oln)). 
n n 

Hence if CJ E C, then by (a), n, B(a 1 n) # 0. Also by (b), 

&JJU(X:iEfJB(4n)}E.P, 

resp*’ gcU[~:iEnqo(n)}+d. n 
Hence 

O~c~B(oIn)E4’, resp., ,CkQB(oIn)#9’. 

Hence (d) holds. 

We conclude this section with a measurable selection theorem for perfect 
measurable spaces. First we need the following concept of measurability: if E; is a 
function from a measurable space (X, a) into the family %(Y) of non-empty 
compact subsets of a topological space Y, we say that F is &-measurable if for all 
open U c Y, {x E X: F(x) II U# @} E ~4. For point-valued functions this is clearly 
equivalent to the ordinary measurability. A selection for F is a function f : X+ Y 
such that f(x) E F(x) for every x. 

Theorem 2.7. Let (X, ~9) be a measurable space, 9 a o-ideal on X with an 
&?-base and Y a metric space. Assume that (X, ~4, 9) is perfect and /Yj < the least 
measurable cardinal. Then if F : X ---, %(Y) is d9-measurable, there is a separable 
E G Y such that X - {x : F(x) E E} E 4 and F admits an &9-measurable selection. 
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The proof of this theorem is similar to that of Theorems 1 and 2 in [19] except 
that Theorem 3 and Lemma 4 in [19] are replaced by Theorems 2.2 and 2.4, 
respectively. 

Theorem 2.7 generalizes [9, Theorem 4.11; for other related results see [ll, 091. 

3. Some examples 

The results of the previous section deal with arbitrary perfect and weakly 
perfect measurable spaces. Here we study such spaces when the underlying space 
X is a topogical space; the a-algebra is usually the family %‘(X) of Bore1 sets. We 
find conditions on X so that for an ideal 9 on X, (X, a(X), S) is perfect or 
weakly perfect. When this is done, the results of the previous section apply and 
yield more concrete results, where the notions of perfect and weakly perfect 
measurable spaces are at least implicit. Such results were stated in Section 1. 

Theorem 3.1. Let X be a metric, or more generally a developable space with 
1x1 <the least measurable cardinal and let 4 be a o-ideal on X. Then 
(X, 53(X), 9) is perfect iff there is an analytic A E X such that X - A E 4. 

Proof. First suppose that there is an analytic A such that X-A E 9. Then if 
f : X+ R is B(X)-measurable it is easily seen that f(A) is analytic and the result 
follows. 

To prove the opposite direction, we shall consider the metric case separately 
since this is the most interesting case and the proof is simpler. Thus suppose that 
X is metric and also separable at first. Let f :X+ R! be as in the proof of Lemma 
2.2. Hence there is an analytic A’ c f(X) such that X - f-‘(A’) E 9. It suffices to 
set A = f-‘(A’). 

We shall now reduce the general metric case to the separable one. We set 

%=(UsX:Uisopenand UE~}. 

Set Y = U %. We shall show that YE 9. Suppose not. By Stone’s theorem, we 
can pick a u-disjoint open refinement ‘V = U { W;, : n E N} of 3, where each family 
W;, is disjoint. We can now pick n E N such that Y, = I.J W;, 44. Let W;, = { Ui : i E Z} 
be a one-to-one indexing of sets from Vn. As usual, we set 

Clearly (I, B(Z), 9’) is perfect and all singletons belong to 4’ while Z 4 9’ and 
)I) <the least measurable cardinal. This contradicts Lemma 2.4. Hence YE 9. Set 
F =X - Y. F is closed, hence in a(X) and thus we can suppose without loss of 
generality that X = F. Hence if 0 # U E X and U is open, then U 4 9. 

Since every C.C.C. metric space is separable, it suffices to show that X is C.C.C. 
Let Ui (i E Z) be a family of non-empty disjoint open subsets. Then if 9’ is defined 
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as above, we have 9’ = (0). Hence (I, P(Z), {O}) is perfect, and thus by Lemma 
2.3, )I) 6 &,. 

This completes the proof of Theorem 3.2 when X is metric. 
Let us recall that a Hausdorff space X is developable if there is a sequence %,, 

(n E N) of open covers such that for every x E X, the family 

U{UE%n:XEU} @ZEN), 

is neighbourhood basis at x. 
Fix a sequence Ou, (n E N) as above. By Bing [ 1, Theorem 91, we can pick ,%rn, a 

closed u-discrete refinement of %&. The union of an arbitrary subfamily of P,, is 
an F,, hence Borel. By using Lemma 2.4 similarly as in the proof of the metric 
case we can find & c y”, such that 1 iTn 1 s X0 and X - lJ %n E 4. Let W;, E Qn be at 
most enumerable and such that for every E E %‘,, there is some U E W;, containing 
E. Set 

y=nww. 
n 

Clearly X - Y E 3. Moreover Y is second countable since 

U{UflY:UEVn} 
n 

is an open base for Y, by the definition of developability. Since Y E s(X) and 
X - Y E 3, we have a reduction of the general case to the second countable case. 
This is handled similarly as the separable metric case. This is because every 
second countable Hausdorff space is Bore1 isomorphic to a subset of R, by an 
open mapping onto its range. 

Theorem 3.2. Let X be a developable space with (XI s c and 4 be a proper o-ideal 
on X. Then (X, 93(X), 4) is weakly perfect iff there is an analytic A c X such that 
A $9. 

Proof. If there is an analytic A E X such that A 4 9, the result follows as in the 
previous theorem. The opposite direction follows from Lemma 2.2 and Lemma 
3.1, concluding the proof of Theorem 3.2. 

Lemma 3.1. Let X be a developable space with 1x1 s c. Then there is a Bore1 
measurable function f : X+ [wN such that: 

(a) for every second countable Y LX, f ( Y: Y-f(Y) is a Bore1 isomorphism; 
and 

(b) for every analytic A s f(X), f-‘(A) is analytic. 

Proof. We claim that there are partitions &, (n E N), of X such that: 
(i) the union of every subfamily of %$ is a Bore1 set (actually an F,-set); 

(ii) every open set in X is the union of some members of lJ { iZn : n E IV}; 
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(iii) for every Y E X, Y is second countable iff 

for every It E N. 
To see this, let %n (n E k4) be as in proof of Theorem 3.1. Then 

where each SE,, is a discrete family of closed sets. Now we set 

8, = %l,, u {X - u R,,) 

and rearraiL Z$, (n E N, m E N) as %& (n E k4). It is easy to see that (i)-(iii) hold. 
The metric case is simpler: we consider a a-discrete base “Ir = U {W;, : n E N} and 

set 

Now we proceed as follows. We choose a totally imperfect set of reals 2 with 
121 =c. Since )gn,) G c, there is fn :X-+ R such that fn(X) E 2, fn ) E is constant 

and ME) #ME’) f or every E and E' E '&, E # E'. Define 

f:X+R” 

by 
f(x) = (fn(x):n EN>. 

Then f is Bore1 measurable by (i). Since X is Hausdorff, (ii) implies that 
U { %‘,, : n E N} separates points and so f is one-to-one. 

By the definition off, it is easy to see that for every E E lJ { iTn : n E kJi> there is a 
closed F s RN such that E =f-'(F). Now, if Y sX is second countable, then by 
(iii) 

for every y1 E N; so by (ii) every relatively open set in Y has the form Y nf-‘(C) 
for some F, set C in RN. This shows that f 1 Y is a Bore1 isomorphism, concluding 
the proof of (a). 

To prove (b) let A be an analytic subset of f(X) and let q, : RN- R denote the 
n-th projection. Then n,(A) E 2 is analytic and by the choice of 2 it follows that 
3t,(A) is at most enumerable. So we have 

J{EE~~:E~~-‘(A)#~}~~K~ 

for every 12 and, by (iii), f-l(A) is second countable. Now (a) implies that f-‘(A) 

is Bore1 isomorphic to A and so (b) follows. 

Remarks. The proof of Lemma 3.1 actually shows that for every second 
countable Y c_ X, f ( Y is a Bore1 isomorphism of class 1, in the sense that both 
functions f 1 Y and (f 1 Y)-’ map open sets to F, sets. 
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The cardinality restrictions in Theorems 3.1 and 3.2 are necessary. Counter- 
examples are those mentioned after the statement of Theorem 2.2, where X is 
considered as a discrete metric space. 

However, for the special case of Theorem 3.1 when 9 = {O}, or more 
generally, if the union of any discrete (equivalently, u-discrete) family of closed 
sets from 9 belongs to 9, no restriction on X is necessary. We indicate the 
necessary modification in the proof of Theorem 3.2 for developable X. Since Pn is 
o-discrete, 

U{FE%n:FE$}E.9. 

Set ~&={FEP~:F#~}. Then 

x-U%nEE, 

and using Lemma 2.3, 1 ‘?&I s i-4,. The rest is as above. 

Hence we have the following result, due to Falkner [8, Theorem 4.61 for metric 

spaces. 

Corollary 3.1. Let X be a developable space. Then (X, B(X), {0}) is perfect 

(“(X, S(X)) is smooth” in Falkner’s terminology) iffX is analytic. 

Corollary 3.2. Let (X, ~4, 9) be perfect (resp. weakly perfect) and f :X* Y be 
&-measurable, where Y is developable and ) Yj < the least measurable cardinal 
(resp. jY1 s c). Then th ere is an analytic A c Y such that X -f-l(A) E 4 (resp. 
f-l(A) 4 9 if $ is a proper ideal). 

Proof. Set 2 E 9’ iff f-‘(Z) E 4. Then (Y, B(Y), 9’) is perfect (resp. weakly 
perfect). Hence the result follows from Theorems 3.1 and 3.2. 

For measure and category spaces we have: 

Corollary 3.3. Let X be a developable space with 1x1 <the least measurable 
cardinal (resp. 1x1 s c). A probability Bore1 measure u on X is perfect (resp. 
weakly perfect) iffy is a Radon measure (resp. there is a compact subset of X with 
positive u-measure). 

Proof. If A G X is analytic, then A is measurable with respect to any Bore1 
measure on X and every Bore1 measure on A is a Radon measure (see [30, Ch. 
II, Theorem lo]). Hence the result follows from Theorems 3.1 and 3.2. 

Remark. Corollary 3.3 for perfect measures was proved in [18, Theorem 4.131 
when X is in addition regular and weakly metacompact, generalizing Theorem 
1.6. 
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Corollary 3.4. Let X be a complete metric space with (XI <the least measurable 
cardinal (resp. (X( s c) and let $ denote the ideal of meager sets in X. Then 

(X, 93(X), 9) is perfect (resp. weakly perfect) iff X is separable (resp. there exists a 

nonempty open separable subset of X). 

Proof. Assume that (X, a(X), 9) is perfect and 1x1~ least measurable cardinal. 
By Theorem 3.1, there is an analytic A E X such that X-A is meager. Then 
X -A is open meager, hence A = X. Since A is separable, so is X. The converse 
is obvious since X is now assumed to be a Polish space. 

Now assume that (X, C%(X), 9) is weakly perfect and 1x1 s c. By Theorem 3.2, 
there is an analytic set A 5 X of the second category. Since A is separable, the 
interior of A is a nonempty open separable set. Again the converse is obvious 
since any nonempty open separable set in X is a Polish space. 

We shall now present several results concerning perfect measurable spaces 
when the underlying space X is K-analytic. 

Lemma 3.2. Let X be a topological space and 9 a proper ideal on X. Then 
(X, 93&X), 9) is perfect (resp. weakly perfect) iff for every continuous f : X+ Y, 
where Y is separable metric, there is an analytic A c f (X) such that X -f-‘(A) E 9 

(resp. f-‘(A) .# 9). 

Proof. The implication from left to right follows by Lemma 2.2. In the opposite 
direction it suffices to show that (b) of Theorem 2.5, (resp. 2.6) holds. Let 
A, E 2&,(X) (n E N) and &’ be the a-algebra generated by the sets A,. For every n, 
let fn :X+ RN be a continuous function such that A, = fzl(Bn) for some 
B,, E 93(RN). Define 

f :x+ (FPqN 

bY 
f(x) = (fn(x):n EN> 

Then f is continuous and by our assumption there is an analytic A c f(X) such 
that X -f-l(A) E 9, (resp. f-‘(A) # 9). Moreover, we have 

zz’ !&f -l(%?((RN)N)). 

Since (RN)’ is Bore1 isomorphic to R, we have (b) of Theorem 2.5 (resp. 2.6). 
We recall that a Hausdorff space X is K-analytic, if there is an upper 

semicontinuous f from NN into the family of compact subsets of X such that 

x=lJ{f(a):aEfVJmr}. 

We refer to [28] for results on K-analytic spaces. Here we shall use the following 
facts: (i) The class of K-analytic spaces is preserved under taking continuous 
images, closed subspaces, countable unions and countable intersections; (ii) 
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Every regular K-analytic space is Lindelof (hence, every regular K-analytic space 
is completely regular); and (iii) Every metrizable K-analytic space is analytic. 
Lemma 3.2 in conjunction with (i) and (ii) yield immediately the following: 

Lemma 3.3 [S, Proposition 4.41. Zf X is K-analytic, then (X, 9&(X)) is smooth, 
hence (X, S&(X), 9) is perfect for every ideal 9. 

Theorem 3.3. Let X be a K-analytic regular space and 4 the ideal of meager sets. 
Then (X, 93(X), 9) is perfect iff X has a closed comeager C.C. c. subset. 

Recall that a space Y is C.C.C. if every disjoint family of open sets in Y is at 
most enumerable. 

Proof. Suppose (X, a(X), 4) is perfect. Set 

%={iJGX:Uopenandmeager}, V=U%. 

By Banach’s category theorem [25, 3161, V is meager. Set Y =X - V. Then if 
0 # U c Y, and U is relative open, U 4 4. Hence by Theorem 2.4 (or an easy 
argument using Lemma 2.3), Y is C.C.C. 

Now for the converse let Y be closed, C.C.C. and corneager. It suffices to show 
that (Y, 93(Y), $‘), where 9’ = 4; fl9(Y), is perfect. Y is K-analytic as a closed 

subspace of a K-analytic space. Hence by Lemma 3.3, (Y, 9&(Y), 9) is perfect. 
Thus by Lemma 2.6, it suffices to show that B(Y) is included in the $‘- 
completion of 9&(Y). 

Let G be an open subset of Y. Let V be a maximal family of non-empty 
pair-wise disjoint cozero subsets of G. Then 7” is at most enumerable and thus 
V = IJ 5”” E 9&(X) and is dense in G by the complete regularity. Hence 
G - V E 4’ and the proof is complete. 

Corollary 3.5. Let X be either (i) a regular K-analytic Baire space or (ii) a 
Cech-complete space. Then (X, 93(X), 9), w h ere $ is the ideal of meager sets, is 

perfect iff X is c.c.c. 

Proof. First note that a Cech-complete space is also a Baire space. As in 
Theorem 3.4, this fact alone suffices to show that if (X, 93(X), 9) is perfect, then 
X is C.C.C. 

For the opposite direction first suppose (i). Then X is a closed comeager C.C.C. 
subset of itself. Hence the result follows from Theorem 3.3. 

Now suppose (ii), i.e., X is a Gg-subset of fix, the Stone-Tech compactification 
of X. Let 9’ be the ideal of meager subsets of /3X. By Theorem 3.3, 

(BX, %(PX), 3’) 

is perfect. Hence since X E 9?(pX), (X, %3(X), 4’ II 9(X)) is perfect. But since X 
is comeager in /3X, 4’ n P(X) = 9. 
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The next two corollaries follow directly from Theorem 2.2 (resp. Theorem 2.4) 
and Lemma 3.3. Corollary 3.7 follows also from [13, Lemma 11. 

Corollary 3.6. Let X be a K-analytic space and 9 a proper o-ideal on X with a 
Baire base. Let Xi (i E Z) be a point-finite covering of X by sets from 4, where 
lZ[< the least measurable cardinal. Then there is some J c Z such that IJ {xl : i E J} 
does not differ from a Baire set by a set from 9. 

Corollary 3.7. Let X be a K-analytic space and Xi (i E Z) be a point-finite covering 
of X by nonempty sets such that U {Xi : i E J} E 9&(X) for all J E I. Then Z is at 
most enumerable. 

Case (ii) of the next corollary is due to Fremlin [ll]. 

Corollary 3.8. Let X be either (i) a regular K-analytic Baire C.C.C. space or (ii) a 
Cech-complete C.C. c. space. Let Xi (i E Z) be a point-finite covering of X by meager 
sets. Then there is some J E Z such that U {Xi: i E J} does not have the Baire 

property. 

Proof. As in Corollary 3.6, the result follows directly from Theorem 2.2 and 
Corollary 3.5, if we assume that (I] <the least measurable cardinal. Here the 
cardinality restriction is dropped in view of a theorem of Fremlin [ll, Theorem 
3H] because (X, a(X),, 9), w h ere $ is the ideal of meager sets, is Ku-regular; 
i.e. for every E E B(X), there is a K-analytic set H c E such that E -HE 9. We 
prove this fact for case (i) only (see [ll] for case (ii)). If E is closed, take H = E. 
If E is open the argument of the last paragraph of the proof of Theorem 3.3 
shows that there is a Baire set H in X such that E -H E 9; but a Baire set in a 
K-analytic space is K-analytic. Finally, it is easy to see that this property of E is 
preserved by countable unions and countable intersections, completing the proof. 

Remarks. It is clear from Lemma 3.3 that for a K-analytic space X, (X, B(X)) is 
smooth if 53(X) = 5!&(X). The problem whether a(X) = a,(X) whenever X is 
regular K-analytic and (X, a(X)) is smooth, is undecidable in ZFC. This follows 
from Theorem 44H, (xiii) I$ (ii), and Example 44J(b) in [12]. 

Let 4 be the ideal of meager sets in a K-analytic space X. By Theorem 3.3, 
(X, .5%(X), 9) is weakly perfect if there is a closed non-meager C.C.C. subset. We 
don’t know if the converse is also true. 

Fremlin [l l] proved that the analogue of Corollary 3.8 holds for Radon 
measure spaces (X, d, 9). That is, X is a topolotical space, ti is the a-algebra of 
p-measurable sets for some nonzero Radon measure ~1 on X and $ is the ideal of 
p-measure zero sets. As in Corollary 3.8, ths follows from the (easily seen) fact 
that (X, &, 9) is Ku-regular [ll]; see also [19] for another proof. Still another 
proof of this result follows from Theorem 2.3. Indeed, if X = (0, l}“, for 
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arbitrary K, and p is the usual product measure, the result is a special case of 
Theorem 2.3 because p is perfect. As observed by Fremlin the general case 
reduces to the above (see [lo, Proposition lD]). 

We conclude this section with a useful example of a weakly perfect category 
space. The underlying space is Ellentuck’s space [7]. We shall use the following 
notation. If A E N is infinite, let 

Q(A) = {B E A : B is infinite}. 

ForA, BsubsetsofNdefineA<Bifn<mforeverynEAandmEB.Ifs~~is 
finite and A G N is infinite, let 

!&,A)={BEQ(N):~EB~~UA ands<B-s}. 

Thus 52(0, A) = D(A). The Ellentuck’s space if Sz = G?(N) with the topology which 
has for a base all sets of the form Q(s, A). 

A set P c 52 is called completely Ramsey if for every finite s c N and every 
infinite A G N, there is B E Q(A) such that sZ(s, B) c P or a(s, B) E D - P. 

Lemma 3.4 (Ellentuck [7]). A set P E Q is completely Ramsey if P has the 
property of Baire. 

Ellentuck [7] also proves that every meager set in Sz is nowhere dense. Thus Q 
is a Baire space. 

Theorem 3.4. If 4 is the ideal of meager sets in S2, then (Q, 232(Q), 9) is weakly 

perfect. 

Proof. Let f : 9+ (0, 1) be a Bore1 measurable function. Let no = 0 and A0 = N. 
Suppose we have defined no, ni,. . . , IZ,+~ in N and Ao, A,, . . . , Ak_-l infinite 
subsets of N. Then we choose Ak E LS(A~-~) such that {r~~-~} <A, and for all 

s E {no, . . . , n/c> 

(*) diameter off (Q(s, Ak)) < 1/2k. 

We can do this by considering a finite partition {r,, . . . , T,} of (0, 1) to intervals 
of length <1/2k. Then Lemma 3.4 implies that each f-‘(T) (i = 1, . . . , m) is 
completely Ramsey and Ak is found easily by applying the Ramsey property 
finitely many times. Now we set nk = min Ak. 

By the above construction 

n,<n,<...<n,<**-, 

Ao~Al~~-~~Ak~... 

and nj eAk for all iZ k. Let A = {no, nl, . . .}. Since Q(A) $9 it suffices to 
show that f (L?(A)) is analytic. 
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Let 2 = Q(A) endowed with the relative topology from (0, l}“, where (0, l}” 
has the usual product topology. Observe that Z is G6 in (0, l}“, so Z X (0, 1) is a 
Polish space. If we show that the graph off ) Z, Gr(f 1 Z), is closed in Z x (0, l), 
then f(Q(A)), being the projection of Gr(f ( Z) to (0, l), must be analytic. 

To do this, let {Xl} be a sequence in Z with X,+X E Z and f(X!)-t t E (0, 1). 
It suffices to show that t =f(X). X is of the form 

X={nkO<nkl<...}~A. 

Let E > 0 and choose lo E N such that 

l/2% < &/2 and If(X[) - tl < c/2 for all I> lo. 

Since X, += X, there is some 13 E. such that 

s = @kO’ %c*, . . . J Q[“_,) 

is the set of the first lo elements of Xi. Then X and X, belong to Q(s, Ak,O), so (*) 
implies that If(X1) -f(X)1 < 1/2kl[j. Thus we have 

If(X) - tl s If(X) -f(X)1 + If(X) - tl< c. 

Therefore t = f(X). 

The following corollary, due to Louveau and Simpson [21], is now immediate 
from Theorems 2.2 and 3.4. See also Fremlin [ll] for another proof. 

Corollary 3.9. If X, (i E I) is a point-$nite covering of Q by meager sets, then there 
is some J E Z such that lJ {Xi : i E J} does not have the property of Baire, hence is 
not Ramsey. 

Remark. Given a triple (X, &, 5J), where $ is a proper a-ideal on X, a sufficient 
condition in order that (X, d, 9) be weakly perfect is the existence of some 
Y E zz2 - $ such that (Y, J& II g(Y), $ n B(Y)) is perfect. We have already used 
this fact when X is developable or K-analytic. However, this condition is not 
necessary in general. The weakly perfect space (Q, 5%‘(Q), 9) of Theorem 3.4 
provides a counterexample. Indeed, let Y E %3(Q) such that (Y, C%‘(Q) rl 
B(Y), 4 fl 8(Y)) is perfect. Since Y is completely Ramsey (Lemma 3.4), it 
follows easily that Y - int(Y) is nowhere dense. Since Q is a Baire space, Y is 
C.C.C. (see Theorem 2.4). But Q is nowhere c.c.c., hence int(Y) = 0. It now 
follows that Y is nowhere dense, hence YE 4. 

4. Related results 

In this section we prove a result on the union problem for not necessarily 
perfect, or weakly perfect, measurable spaces (Theorem 4.1). We assume instead 
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that (X, J&‘, 9) satisfies a countability condition and has a Fubini-type property 
defined below. We also relate the union problem to the rectangle problem 
(Theorem 4.2). 

First we need some notation. If %? is a family of subsets of X, define 9& 
(a < ol) as follows: %‘0 = %‘; for a odd (resp. even) let %‘= be the family of 
intersections (resp. unions) of at most enumerable subfamilies of Us+ %&. 

For each 2 GX x X and x E X, let 2, (resp. .Z*) be the vertical (resp. 
horizontal) section at x of Z. As usual, q :X x X*X (i = 1, 2) denote the first 
and second projection. 

Definition 4.1. A triple (X, ~4, 9) has the weak Fubini property if for every Z in 
the product a-algebra & @ & with Z, E 9 for all x E X and n,,(Z) 4 4, there exists 
some y E n,(Z) such that Zy E 9. 

Theorem 4.1. Let (X, ~4) be a measurable space and 4 a proper o-ideal on X. 
Assume that : 

(a) there exists %’ c .~4 with 1 %I s K o and some 0 < (Y < o1 such that %& is a base 
for 4 ; and 

(b) (X, ti9, 9) satisfies the weak Fubini property. 
Then for every point-finite covering Xi (i E I) of X with Xi E .9 there is some J c Z 

such thatU{Xi:iEJ}#ti9. 

Proof. Suppose that the theorem is false and let X, (5 E K) be a counterexample 
to the theorem. Let p be minimal such that 

X=U{X,:~E:p}#$. 
Then 

(k,a,nX,9nn) 

satisfies (a) and (b) and 

for all T E p. Thus without loss of generality we assume that p = K, so that 
X=Xand 

U{X,:cEr}E9 

for all t < K. Obviously, we can also assume that X E % and % is closed under 
finite unions and finite intersections; so each VP (/3 < ol) has the same properties. 

For every 5 E K, let 

and, by (b), choose C, E %& fl4 such that YE c C,. We set 

Z= EyK& x C*) 
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and claim that 

Ze(d.9 x qe), 
where 

s~~x%={AxC:AE~~,CE%}. 

The claim is proved by induction on a (cf. [2, Theorem 31). 
If n! = 1, we set 

A,=U{X,:C&}d_cz 

for every C E %. Then we have 

2=l_{A,xC:C~%}~(d~x(e),. 

Now assume that 1 < (Y < w1 and the claim is true for every /?, 0 < /3 < o. 
Case 1: a! is even. 
We fix a sequence y,, (n E /Vi> of ordinals less than (Y as follows: if a: is limit, then 

sup{y,:n~N}=aandifaisnonlimit,saya=~~+l, theny,=a,foralln 
By our assumption on %, for every f E K there is a decreasing sequence 

(n E kJ) such that G, E %ye,n and 

E N. 

co 

C, = 6 C,,,. 
n=O 

Then 

where the last equality is proved as follows: if (x, y) belongs to the right side, 
then there are E, E K (n E FV) such that x E X5” and y E C,,, for all n E fU Since XE 
(g E K) is point-fi mte, there is an infinite M c_ N and some E E K such that &, = E 

for all it E M. Hence (x, y) E X, X C,,, for II E M. But C,,, is decreasing, so 

(x7 Y) E x, x c,,?z for all it. The other direction is obvious. By the induction 
hypothesis, it follows that Z E (s?, X Ce),. 

Case 2: IX is odd. 
We have LX = cue + 1. Let C,,, (n E k4) be a sequence in %&., such that 

c, = iIJ c,,,. 
n=O 

Then 

Thus the proof of the claim is complete. 
Now ifxexand 
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then it is easy to see that 

2, = tJJ c,,. 
j=l 

Thus Z, E 9 for every x E X. 
Since q(Z) = Xi 9, by (b) there is some y E X such that Zy E 4. Let 7 E K 

with YEX,. For every c>n we have YEY~EC~, hence XE~{y}~XE~CE. 
Therefore 

i.e., Ur>o X, E Zy. Since UsGl, X, E 9, this contradicts the fact that Zy E 9 and 
completes the proof of the theorem. 

We now present two applications of Theorem 4.1 for measure and category 
spaces; Corollary 4.1 is also obtained in [ 111. 

Corollary 4.1. Let (X, 5$, u) be a probability measure space, where s$ is 
countably generated. Then for every point-finite covering Xi (i E I) of X with 
u*(Xi) = 0, there is some J E Z such that U {Xi : i E J} is not u-measurable. 

Proof. We apply Theorem 4.1, when 4 = {A E X : u*(A) = 0} and .& is the 
a-algebra of p-measurable sets. Since condition (b) of Theorem 4.1 is trivially a 
special case of Fubini’s Theorem, it suffices to verify condition (a). 

Since ti is countably generated, there is f :X* R such that ti = f-1(!33(R)) (cf. 
[5, Theorem 0.11). Let f(,u) be the image measure on R defined by 

f(P)(B) = /W(B)) 

for every B E a(R) and let ‘V be a countable base for the topology of R’. Since 
f(u) is regular, “v; is a base for the ideal off &)-measure zero sets. Thus, if we set 
% = f-‘(V), then Q& is a base for 9. 

Corollary 4.2. Let X be a separable metric space, which is not meager in itself. 
Then for every point-finite covering Xi (i E I) of X with each Xi meager, there is 
some J c Z such that U {Xi : i E J} does not have the property of Baire. 

Proof. Let & = W(X) and 9 be the ideal of meager sets in X, so that d9 is the 
o-algebra of sets with the property of Baire. Condition (b) of Theorem 4.1 
follows from Kuratowski-Ulam Theorem [25, 0151, the category analogue of 
Fubini’s Theorem. Moreover, using the fact that every meager set is included in 
an F, meager set and that X is second countable, we conclude that condition (a) 
holds. Thus the result follows from Theorem 4.1. 
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Remarks. Neither of the conditions (a) and (b) of Theorem 4.1 can be dropped 
as the following examples (i) and (ii) show. 

(i) Assume that K is a real-valued measurable cardinal and ,U is a probability 
measure defined on all subsets of K and vanishing on singletons. Then 
(K, P(K), .9), where 9 = {A G K: u(A) = 0}, has the weak Fubini property but 
the conclusion of Theorem 4.1 fails. 

(ii) Let X be a non-enumerable subset of 1w and 9 be the u-ideal of at most 
enumerable subsets of X. If %’ is an enumerable base for the relative topology on 
X, then 9 c Y&. Thus condition (a) for (X, P(X), 9) holds, but the conclusion of 
Theorem 4.1 fails. 

We don’t know if condition (a) in Theorem 4.1 can be replaced by 
(a’) There exists %’ E & such that [%‘I s X0 and YU, = U,<,, %& is a base for 9. 
Corollary 4.1 (resp. 4.2) can be stated in the more general setting of Theorem 

2.2. Thus, instead of saying that each Xi is of measure zero (resp. meager) we 
may assume that there is no J 5 I such that (J( 6 HO and X - U {Xi : i E .Z} is of 
measure zero (resp. meager). This is because the ideal considered is w,-saturated. 

Let (X, a) be a measurable space and 8 a point-finite covering of X. Let ‘& 
denote the family of all finite intersections of elements from %‘. It is clear that ?$ 
is also a point-finite covering of X. Thus we may consider the union problem for 
each of the coverings ‘8 and ‘Z$. The next theorem shows that the equivalence of 
the two problems depends on the rectangle property for the cardinal of 8. Recall 
that a cardinal K has the rectangle property if every subset of K X K belongs to the 
a-algebra generated by the rectangles AI x A2, where Ai E K (i = 1, 2); see [2]. It 
is easy to see that if K has the rectangle property and IZ E N, then every subset of 
K” belongs to the a-algebra generated by the sets A, X A2 x - * * X A,, where 
Ajc_K(i=1,2 ,..., n). 

Theorem 4.2. Let (X, ~4) be a measurable space and 8Y a point-finite covering of 
X such that )%I has the rectangle property. Then the following are equivalent: 

(a) There exists 92 G 8 such that U 93 # ~4. 
(b) There exists 93 G ‘8” such that U 623 $ ~4. 

Moreover, if ) 81 does not have the rectangle property the result fails. 

For a family of sets 8, let ‘8,, be the family of all unions of elements from 8 and 
a(%) be the o-algebra of sets generated by E. Then we have the following lemma 
which immediately implies Theorem 4.2. 

Lemma 4.1. (a) Let 8 be a point-finite covering of a set X such that K = 181 has 
the rectangle property. Then 

(*) +%u) = 4%“). 

(b) Zf K is a cardinal without the rectangle property, then there is a point-finite 
covering 8 of a set X such that (X( = 1%‘) = K and (*) fails. 
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Proof. (a) Clearly, a(&J =, 0(&u), so it suffices to show that 8&u G a(‘ZS,,). Let 

~={A&EK} 

and define 

~={SE~(KXK):(~~;~J~(A~“A,)E~J(~“)}. 
> E 

We claim that 9’ has the following properties: 
(i) If S, and S, E 9(~), then S, x S, E Y. 

(ii) If Si E 9’ (i E N), then lJ,S, E 3 

(iii) If Si E Y and Si 1 S,+r (i E N), then ni Si E 9’. 
To prove (i)-(iii), it is enough to observe that 

and 

where Si are as in (i), (ii) and (iii), respectively. We prove only the inclusion ‘2’ 
in the last equation; the rest is verified directly without using the point-finiteness. 
Let 

x E CT\ (&JS (A, ” -4,). 
> I 

Choose (&, vi) E Si such that x E AEi n A,,,. By the point-finiteness of 8, the same 

(gi, vi) occurs infinitely often and since Si is decreasing, there is (5, q) E ni Si 
such that x E A, n A,. Hence 

Now, since the family of finite unions of rectangles is an algebra, it follows 
from (i)-(iii) that 9 contains the a-algebra generated by rectangles. But K has the 
rectangle property, so 9 = P(K x K). Thus we have proved that 

holds for every S G ~~ when IZ = 2. By the comments before Theorem 4.2, this is 
proved similarly for every finite IZ > 2, while the case n < 2 is trivial. 

Finally, observe that an arbitrary member of kYddu has the form 

where S,, E K”. Hence, by the above, it belongs to a( &). 
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(b) LetX=KxKand 

Then, (X( = I’%‘( = K and 8 is point-finite. (In fact, every subfamily of with 
nonempty intersection has cardinal ~2.) Moreover, a(%&) = .Y(K x K) and ~$8”) 
is the a-algebra generated by the rectangles in K X K. Since K does not have the 
rectangle property, o( &J # u( %&). 

We would like to thank Fred Galvin for his help concerning the above lemma. 
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