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ABSTRACT. — We prove that the best constant in the Sobolev inequality (WhP c LP" with # = % - ;],—

and 1 < p < n) is achieved on compact Riemannian manifolds, or only complete under some hypotheses.
We also establish stronger inequalities where the norms are to some exponent which seems optimal.
© Elsevier, Paris

1. Introduction

It is well-known that sharp Sobolev inequalities are important in the study of partial differential
equations, especially in the study of those arising from geometry and physics. There has
been much work on such inequalities and their applications. See, for example, Trudinger [36],
Moser [32], Aubin [5,6], Talenti [34], Lieb [30,31], Brezis and Nirenberg [10], Cherrier [14],
Brezis and Lieb [9], Carleson and Chang {12}, Escobar [17], Carlen and Loss [13], Beckner
[8], Adimurthi and Yadava [1], Hebey and Vaugon [25,26], Hebey [23,24], Li and Zhu [28,29],
Zhu [37,38], Druet [16], Aubin, Druet and Hebey [7], and the references therein.

For n > 2, it was shown by Aubin [5] and Talenti [34] that, for 1 < p < n and p* =

np/(n— p),

1 [ 1 Vulie ey

o Mue L (R)\ (o) VueL”(]R”)I

|u”[ P* (R

is achieved and the extremal functions are found. In particular,

K(n,p):p—][ n—p :|l/l’|: Cn+1) ]l/n’
n—pln(p=1) Fn/p)F(in+1—n/plw,—)

forl < p <n,and

‘ n i / n
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where I is the gamma function and w, .| denotes the volume of the standard (n — 1)-sphere. All
the extremal functions for 1 < p < n are given by

1 a
Ll(x)———C - B
U+ |x —x|p/tp=b

where ¢, u > 0 and x € R". It is easy to see that for some ¢, fi > 0 the corresponding

1 s
(1) U(X):C(—_———;l+{x|ﬂ/(l"l))

is the unique minimizer which satisfies:

v(0)=1, Vv =0, and /v(x)”*dle.
Rll

On a compact Riemannian manifold (M,, g), the Sobolev embedding theorem holds: the
inclusion W1-P ¢ LP" is continuous for 1 < p < n. Thus there exists a constant Cy such that
any ¢ € Wh7 satisfies lell + < Coll@llwi.r. Recall that ||@lly1, = IVeliLr + li@liLe. The
first author proved in [5] that the Sobolev theorem holds for complete manifolds with positive
injectivity radius if the curvature is bounded. It appears now that the result holds if the bound
on the curvature is only the Ricci curvature is bounded from below. Moreover on a compact
manifold, the inclusion W'-” C L”" is continuous but not compact and W'-# C L? is compact
by the Kondrakov theorem. When we are in this situation, there is a best constant associated to
the Banach spaces. Namely there are constants C and A such that any ¢ € W7 satisfies

el o+ < Cllelwir + AllellLr.

Define K = inf C such that some A exists. Then K > 0. A priori K depends on the three Banach
spaces, but the first author proved in [5] that K only depends on n and p. So K = K (n, p) is the
norm of the inclusion W? < LP" on R". Thus for any € > 0 there exists a constant A ,(¢) such
that every ¢ € WP (M,) satisfies

2) el o+ <[Kn, p)+e]iiVelir + Ap@ el

and K (n, p) is the smallest constant having this property.

A natural question arises: Is the best constant achieved? i.e., does there exist A ,(0)? We can
expect a positive answer. The first author made a conjecture in [5] concerning the following
inequalities:

CONJECTURE. — There exist constants A(p) such that any ¢ € WHP(M,,) satisfies

©) loll? o <K(n, pPIVelL, + APlel], Ffl<p<2,
and
) el /- < Kn, p)r=TIVell, +AlpMel, if2<p<n

A stronger form of (4) is

(5) ol .« < K(n, pY Vol + ADeli, if2<p<n.

TOME 78 — 1999 — N° 4



ON THE BEST SOBOLEYV INEQUALITY 355

From now on we will always use K to denote K (n, p). The above conjecture was made
because he proved these inequalities when the manifold is the standard n-sphere S". He also
proved that the best constant is achieved for manifolds of dimension two, and for manifolds of
constant sectional curvature. Related problems on domains of R” were studied by Brezis and
Nirenberg [10], Brezis and Lieb [9], and Adimurthi and Yadava [1]. Hebey and Vaugon, using
techniques of blow up at a point of concentration and the Pohozaev identity, proved in [25]
and {26] inequality (3) for p = 2 under the following condition:

H) (M, g) has a positive injectivity radius d > 0,
[Rijii| and |V, R;jxs|are bounded by k.

Results on compact manifolds with boundaries, also for p = 2, were obtained by Li and Zhu
in [28] and [29]. Further results were given by Zhu in [37] and [38]. Recently Druet has shown
in [16] that inequality (3) is false for 4 < p? < n if the scalar curvature is positive somewhere.
Then Aubin, Druet, and Hebey proved in [7] that inequality (3) holds for all p € (1,n) on
compact manifolds of dimension 2, 3 or 4 with non-positive sectional curvature. In view of
our results in Section 6 and the Appendix, this result holds also for complete manifolds of
dimension 2, 3 or 4 with non-positive sectional curvature and satisfying (H).

In this paper we establish inequality (3) for 1 < p < 2 and inequality (5) for 2< p <n
for Riemannian manifolds satisfying (H). For a complete Riemannian manifold, the larger the
exponent of the norms is, the stronger is the inequality, so the conjecture is proved for 1 < p <n.

THEOREM 1.1.— Let (M,, g) be a C* complete Riemannian manifold satisfying (H). Then
there exist constants A(p), depending also on n, d and k, such that for all ¢ € WP (M,, ).
inequality (3) holds for all | < p <2, and inequality (5) holds for all2 < p < n.

Remark 1.1. - As mentioned earlier, Theorem 1.1 in the special case p = 2 was established
in [25] and [26].

Remark 1.2. — By simple modification of our proof, one can show that A(p) can be chosen as
a continuous function in (1, n), i.e., A(p) can be chosen so that it remains bounded on compact
subsets of (1, n).

In fact, we establish results stronger than Theorem 1.1. For n 2> 4, let

rin, p) = n——-———+’;p_p, l<p<n,
and, forn =2, 3, let
np n+2
—_, ell, —|U(2,n),
nt2—p 7 ( 3 ] @n
*(n, p) = -1 2
r*(n, p) n_(_p___) pe(n+ ﬁ)
n—p 3
P pelvn. 2l

THEOREM 1.2. - Let (M, g) be a C™ complete Riemannian manifold satisfying (H). For
nzd leepe(l,n)andr >r*(n, p); Forn =23 let pe(l,/n)U(2,n) andr > r*(n, p),
or p €[/n, 2] and r > r*(n, p), there exist some constants A(p, r), depending also on n, d and
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k, such that

lll? .« < KPIV@IT, + Alp, Dlgllr VoW P (M, g).

Remark 13.— For n >4, 1 < p <2, we have r*(n, p) < p, so Theorem 1.2 is stronger
than Theorem 1.1 in this situation. On the other hand, if the scalar curvature of M, is
positive somewhere, then for 1 < p < (n 4 2)/3, there does not exist such A(p,r) for any
r <np/(n+2 — p). This shows, to some extent, the sharpness of r*(»n, p) when n > 4 and
l<p<n.

Forn > 3 and 2 < p < n, the exponent 2 in inequality (5) can be improved. Indeed we have

THEOREM 1.3.— Let (M, g) be a complete C*° Riemannian manifold satisfying (H). Assume
p and a satisfy one of the following: For n =3,4,2 < p<n, and 0 <a < p; For n > 4,
2<p<nandd<a<2; Jn<p<@n+2)/3and0<a<2pn— p)/(=3p*+np+2n);
(n+2)/3< p<nand0 <a < p. Then there exist some constant A(p, a), depending also on n,
d and k, such that

ol » KUVl + Alp,a)ligli, VoW P(My,g).

The proofs of Theorems 1.1-1.3 consist of two parts. The first part is to establish such results
on(B,g)forpe Wol’p(B) where

B:{(xl,...,xn)eR”

E":sz-<1}

J=1

is convex with respect to g, when the curvature tensor and its first covariant derivatives are
bounded by sufficiently small number §* > 0. The second part is to establish the global results
tfrom local results.

The first part is the main part and we briefly describe the proof of this part for Theorem 1.1 in
the case 1 < p < 2. We want to show that there exists some constant A(p), depending on n, p,
and 8*, such that

1,
“‘P”Zp*(&g) < K(n, P)p”V‘P”ip(B‘g) + A(p)lwllip(g,g) forall ¢ € Wy P(B).

We prove it by contradiction argument. Suppose the contrary, then for any « > 0,

Vol?, +alell?
hoi=  inf Iu(@) < K~P.  where Iy(p) = 1V PlLr . el
o<Wy (B) ol

Due to some results and arguments given in the Appendix, there exists some nonnegative
minimizer ¢, € WOl P (B) N CO(B), with [|¢q || 10+ = 1. The Euler-Lagrange equation satisfied
by @q is
(6) —Lygg +apl ' = Aawg'_l in B,
where Lgpy = Vg(|Vg<pa|P_2Vg<pa) is the p-Laplacian with the metric g.

Let xo € B denote a maximum point of ¢,, we show that, after passing to a subsequence,
$a(xy) — 00 and @, has precisely one point concentration. It is fairly standard to show, by
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ON THE BEST SOBOLEV INEQUALITY 357

using the previously mentioned classification results on extremal functions for the best Sobolev
inequality in R", that

Qo (X )P/ P) distg(xq, dB) - 00 as a — oo.

Moreover
Jim [ oo () = @a (xe) v(0a (6) P x) | 1 ) =0,
and
Jim | Ve (9 () — ga ()0 (@a () /O x)) | 5 ) =0,

where v is the function given in (1).
Using the minimality of ¢y, we establish the following Pohozaev type inequality: For some
constant C = C(n, p, §%),

a/goé’dvg < C/(distg(x,)?)z“”(pg +distg(x,i)2<pa(x)”*)dvg
B B

holds for large «. Since p < 2, we deduce from the above, with a larger C, that

a / ol dvy < C / disty (x, ¥)20y (x)”" dug,
B B

namely,

(7 o / vh dug, < Cu2™? f Iy12vE" du,,
Pa @

where vy(¥) = 0u(%a) ™ 0a (Vo (1)), Var(¥) = exp,_ (9a(xa)?/?~™y) is an exponential map
(the coordinates are normal at x,), y € 24 := Wa—l (B), 8o = Pu (xa)2p/("~P)¢;g. The left hand
side of (7) is bounded below by C ' since we show that v, converges uniformly to v on any
fixed compact subset of £2,. We will show that the right hand side of (7) tends to zero as « tends
to infinity. For this, we need the following crucial pointwise estimate of v, on §2,: For some
constants C = C(n, p,8*) and D = D(n, p),

8) ve(y) < Co' 7P,y e 2,

holds for sufficiently large .

For p = 2, pointwise estimates of this type for radially symmetric solutions of (6) in balls
of R" were obtained by Atkinson and Peletier [2], and Brezis and Peletier [11]. The estimates
were extended by Han {21] to general domains of R". Hebey and Vaugon [25] further extended
such estimates to general Riemannian manifolds, which play a crucial role in their proof of (3)
for p = 2. Such estimates on Riemannian manifolds with boundaries, also for p = 2, were
established by Li and Zhu in [28,29]. The proofs of these pointwise estimates for p = 2 rely
on the conformal invariance of the conformal Laplacian of the metric g, which is not present
when p # 2. In Section 3 we establish such pointwise estimates by a different method, which
works forall 1 < p <n.
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From (8), the right hand side of (7) can be estimated by

uimpflylzvé’* dvg, < Cpy" / o2 dy < C,

2a IVI<Cuz'

which leads to contradiction. This establishes the first part of the proof of Theorem 1.1. For
Theorems 1.2, 1.3, this part is more delicate. In particular we need, in addition to an upper bound
like (8), an appropriate lower bound of v, in certain parts of $2,.

The second part of the proof of Theorem 1.1 can be done by a partition of unity argument (see
Section 6). It is reasonable to believe that the second part of the proof's of Theorems 1.2, 1.3 could
also be done in such a way, though we do not see how to do it at this point. Instead, a general result
which establishes giobal results from local results, which in particular provides the second part
of the proofs of Theorems 1.1-1.3, is given in Section 7. The proof relies on heavier machinery
(though well known) which include the Moser iteration technique and regularity results on p-
harmonic type equations.

The results in this paper were announced by the second author in early September of 1998 at
the International Conference on Partial Differential Equations and Related Topics in Mission
Beach, Australia. We were informed in late October that Theorem 1.1 was independently
obtained by O. Druet.

2. The tocal version of Theorem 1.1 in the case 1 < p <2

In this section we start to discuss the following local version of Theorem 1.1 in the case
1 < p < 2. The proof will be completed in the next section. Throughout the paper we use the
following notation:

B;={xeR"| (x| <o} and B=B.

PROPOSITION 2.1.~ For n 22 and | < p < 2, there exist some constants §* and A,
depending only on n and p, such that for any C* Riemannian metric g in By with the property
that By is convex, and the curvature tensor and its first covariant derivatives are bounded by §*
in By, estimate (3) holds for all ¢ € WS'p(B).

We prove Proposition 2.1 by contradiction argument. Suppose the contrary, then for some
1 < p <2 and for any « > 0, there exists uy € Wnl (B such that

&) lualll o > KP(IVua ], + allugllf,)-

This implies

(10) hoi= inf  lm) < K7,
ueW, "(B)

where

. ”VMHZP +a“u”2p

P
lull?

1o ()

It follows from Proposition 8.1 that there exists some non-negative function ¢, € W&"" (B)N
C%(B) satisfying llgqll; » = 1 and Iy(@s) = Aq. The Euler-Lagrange equation of g, is

-1

~Lygo +apl ™' =20l ¢a >0, inB.
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Here and throughout the paper, L, denotes the p-Laplacian with the metric g, Lgp =
Vg(1Vg<p|”_2Vg(p)‘ It is well known that ¢, € C(B). The function ¢, satisfies:

”V(Pa”ip Sha < K77, a”‘ﬁa”ﬁp She < K77, and gy =1

Consequently, [[¢qllLr — 0, maxg @e — 00, [|@alls — Oforall 1 <5 < p*, and, in view of the
Sobolev embedding theorem, liminf,_, o Ay > 0. After passing to a subsequence (still using o
to denote the subsequence), we also have ¢, — 0 almost everywhere.

One of the ingredients in the study of the best constants in Sobolev inequalities on manifolds
in [23,25,26] and [28,29] is the use of some Pohozaev type identity. The usual way to derive
Pohozaev type identities involves differentiation twice of the solution. In our case, ¢, is not
known to be twice differentiable. To avoid addressing this technical difficulty, we obtain instead,
as in [22], a Pohozaev type inequality for ¢, by using its minimality. More precisely, we have

LEMMA 2.1. - There exists some constant C, depending only on n, p and 8%, such that, for
allx e B,

o f gldv, <C f (diste (x, £)* Pl + dist, (x, )2 0a (X)) dug.
B B

Remark 2.1. — Results and references on Pohozaev type identities for solutions of p-harmonic
type equations can be found in [33] and [20].

Proof. — Let (p, w) be some geodesic polar coordinates centered at x. In this coordinate
system, the metric g takes the form

g =dp* + p’hij(p, w) dwiw;,

where {w;) is a coordinate system on " and hy; satisfies h;j(p, w) = 8;; + O(p?). Let
R(w) > 0 be determined by (R(w), w) € 3B. In the proof, we drop the subscript « from ¢, .
Fort > 1, we introduce, using the convexity of B with respect to g,

(0. w) = p(tp,w), 0< p< Rw)/t,
P97 = ] o, R(@)/t < p < R(w).

We will show that I,(g;) is differentiable with respect to ¢ and will calculate its derivative at

t = 1. The desired Pohozaev type inequality will be derived from

d
a—tla(wr)lr=1 >0,

guaranteed by the minimality of ¢.
Making a change of variable, we have

R(w)/t
/ Vrl? dvg = f / {18112 + ™21 0y 9y, 00} P20 ety dp doo
B Q0 gn-1

R(w)
=" / / {8090, )|* + 072k (1710, )3, 00, )8, (0, )}
0

gn—1
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X a”",/det(h,-j (t~ 1o, w))do dw.

R(w)

=(p—n) /VP"2V|2
tzlpn/ IVo|?~*{ Ve

0 st
+0(0)0 2 |3upl* o1 /det(h;;) do do
R(w)
+/ /[V@lpO(oz)U”_ldadw
0 sn-l

—(p—n) / VolPdu, + / 0(0?)IVel” du,
B B

So,

d
& [ 1veiran,
B

where p = dist, (x, X). Recall that [, ¢?" dvg = 1. Similarly,

d
— | of dv, =—n/(p”dvg+/0(p2)<p”dvg,
t=1
B

dr
B

d . p/p*
il [ a)
B

t=1

=(p—n)+f0(p2)¢p*dvg.
B

It follows that

= ~pa/ [1 +O(p2)](pp du, +/O(p2)(|V<p|” +(p”*)dvg.
=t B B

d
3 L)

Due to the minimality of ¢, we know

from which we deduce

a/[l +0(p?) ]o” dv, <C/p2(;V<p|"+go"*)dug.
B B

Multiplying the equation of ¢ by p?¢ and integrating by parts yield

/\afpzq)”* =/|V¢|”‘2V¢V(p2<ﬂ) +a/p2¢”
B B B

=/02|V¢I”+2fp<p|\7¢l”*2V¢Vp +afp2¢”
B B B

1 _
>§/p2!V¢I"+afpztp”—C/p2 PP,
B B B
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Lemma 2.1 follows immediately. O
Next we provide some asymptotic estimate of ¢ in WP norm by a blow up analysis. Let
Xq € B be a maximum point of ¢y, ¢o (Xe) = Mmaxg @q, then gy 1= @y (xa)!7P/P 5 0. Set

Va(¥) = pa” pa(Va(y)) = %L),

where ¥, (y) = exp, (Uay) is an exponential map, y € £, := ¥ 1(B), we suppose that the
coordinates are normal at x,. It is clear that 0 < vy < 1, v (0) =1, vy = 0 on 9524, and v,
satisfies

an —Lg Vo +apfvl ™ = aqvl ™! in £2,.

where g = 1, 21//&‘ g. Multiplying (11) by v, and integrating by parts lead to

oe,ug(/vgdvga) glajv(f* dvg, <Aa/vgdvga

o 24 24
which implies
Bg =aub <io <K7P.

We also know that

(12) / v? dug, =1 and / Vg, Vel dvg, + &4 / vl dvg, = g
Ln jo 2y
Since the coefficients of (11) are bounded, it is well known (see [18,35,15], and the references

therein) that for some g € (0, 1) independent of «, vy ||Cﬁ(§a) and |vg “C‘~ﬁ(di5tgo,()’,89a)>1) are
bounded by some constant independent of . So, after passing to a subsequence,

n
—Zai(wvv’—za,u) +&0P ' =0 inOCRY,
=1
where v e W-P(0),
E=lim £, €0, K77}, A= lim &, €(0,K77],
oq—>00

a— 00
(13) ve — v in C'#" norm on any compact set, 0 < g’ < 8,

and, after a rotation of y-coordinates,

0={y€]R”

> — lim distg(xa,BB)]

a—>00 Ha

with v =0 on 00 when limy -, o distg (xy, 0B) /e < 0.
1t follows from Proposition 8.2 that limg,_, o diste(xy, 3B)/pe = 00 (so, O =R”"), v is the
function given by (1), =0, A = K7, and

o—> 00

2,

(14) lim ‘/(fvga(va—v)fp+lva——vl”*)dvgazo.
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3. The crucial pointwise estimate for blow-up solutions and the proof of Proposition 2.1

Let 2 C B C R" be a C* domain, g be a C® Riemannian metric on By, such that B is
convex for g, and the curvature tensor and its first covariant derivatives are bounded by §* > 0.
Lletl<p<n 1<s<p*x€2, 620 0<h <A, ui = 0%, ¢i(y) =exp,, (u;y) for

y€ 2= 1//,.'1 £2), g = ul._zt//fg, v; € Wol’p(.Q,-) be a solution of

*—1

(15) —Lgvi+sillvill g, gy¥i T =hvf T in g,
with
(16) vi(0) =1, 0wl Vyes.
We assume

diste (x;, 052 )
(17 disty (xi, 92) = distg, (0, £2/) — 00,

Hi

and
(18) f(ng,-(vi —0)|P + v — v]?" ) dug, — 0,

2
where v is the function given in (1). Then we have the following crucial pointwise estimate of v;
in Q,‘.

PROPOSITION 3.1.— Forn>2, 1 < p <n, 1 <s < p* let v; be a sequence of solutions
of (15) satisfying (16), (17) and (18). Then there exist some constant C =C(n, p, s, A, §*) and
D = D(n, p, s, A) such that, for large i,

v <Co' 2%, yes.

First we have

LEMMA 3.1.— Let h = hij()')dyi dy/ be a C*® Riemannian metric on B such that [Rijki
and |V, Rijxi| are bounded by 1. Assume 1 < p <n and f is some measurable function with
HFT Loty S Co for some 8y > 0. Then there exists some constant C, depending only on

n, p, Co and 8y, such that for any u € W2 (B)N L®(B) satisfying
—Lyu < flulP?u in B,

we have

lut Loy ) < Cllutll L1 s)-

Proof. — The proof is standard and we only give a sketch. An application of the Moser iteration
technique (see, for example, [19] for p = 2 case) leads to ||u™ llzoo(By 0 < Cllut | Lo 5y for some
po> p-ForO <t <s <1 and x € By, an application of the above estimate to u(x + (s — t)x)
leads to

po-! 1

n n 207 4
-+ ~ o 2
la* isomy < CCs =07 20wt llLrogp, < Cls =07 a1, 2g a3

1 _
< Enu*uma‘a +Cs =0 uT g,
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ON THE BEST SOBOLEV INEQUALITY 363

The desired estimate then follows from some elementary calculus lemma (see, for example,
Lemma 1.7 in [22]).

Remark 3.1. —InLemma 3.1, L?(B) can either be L?(B, k) or LP(B, dyz). In the rest of this
paper we will not specify the metric when there is no need to do so, like here.

We also need the following lemma.

LEMMA 3.2.—Let h = hj;(y) dy'dy/ be a C® Riemannian metric on B such that B is
convex, |Riju| and |V, Riju| are bounded by 1. Assume 1 < p < n. Then there exist some
positive constants gy and C, depending only on n and p , such that any u € WH-P(B) N L°(B)
with

* -
—Lpu < |ul? _214, inB, and ||u+”Lp*(3) < €0
satisfies

||u+”L°°(B|/z) < C““+||L'(B)-

Proof. — This lemma is deduced from Lemma 3.1. The reduction is standard, though we
include it for reader’s convenience. We will use V to denote V;, and C to denote various constants
depending only on n and p. For non-negative € CS°(B), multiplying the equation of u by
nP )P for 1 < B< p* — pand integrating by parts lead to

/fvuﬂP“ZVu*V(n”(u*)‘“) <f(u+)"’*+ﬂ"n”
B

B

Let w = (ut)P+A=D/P then
+B-1\"
|Viw|P = (P B ) WHE vt
p

A simple calculation yields

/[vu+|l7'2vu+v(np(u+)f’)
B

=ﬂ(£—%ﬂ) f InVw|? + / IVut1P=2 )P Vut v (nP)

—_ — 1-p
(”“3 ) mewlP (”*’3 ) /(ninl)”“(wIan)
B
BiptB-1 p_ p
>2( ’ ) B/Ianl CB/IanI .

f InVuwl|? < c/(m"**ﬁ“‘np + C/lenl”,
B B B
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which yields, in view of
/IV(nw)l”<2”/|an|”+2”/lenlp
B B B

and the Sobolev embedding theorem that

p/p*
( f (nw)l’*) <C f WP P (qw)? + C / lwVnl?.
B B B

Consequently, using Holder inequality and the hypothesis ||u™ ]|, ) S €0,

NP . N\P/P
(/(nw)” ) < Cef ”(/(nw)" ) +C/lenI”,
B B B

which implies, once &g s chosen to be small enough from the beginning, that
“u+”Lp*+(p*/p)(ﬂ-l)(33/4) <C.

Lemma 3.2 then follows from Lemma 3.1 with f = |u|?"=? and & = pr (B — D/[p(p* -
p)l. O

Using Lemma 3.2, we establish the following initial pointwise estimate of v;.

LEMMA 3.3.~ There exists some constant C, depending only on n, p, s, A, and 8%, such
that, for large i,

- it - -
vi(y) <Cu(p) 7w ”LP*(BW,/ZG')) Yyesy, Iyl 2L
Proof. — Multiplying the equation of v; by v; and integrating by parts lead to & |}v; llffs <C.
Then by the regularity resuits for p-harmonic type equations, v; — v in Cllo‘c’9 and C? for some
B € (0,1). So we only need to find some R > 1 and to show the estimate for |¥| > 2R. Let

|| = 2R = 2R and we will determine the value of R in the proof. Consider

8 nmp
v =R 7 vi(y+Ry), IyI<L

Then
(19) 10ill o (). gy = W0l Lo* By, g S WVillLo 2\ B.000
and
- - ap-s) o pogag] ~pr—1
—Lg b < —Lg ¥+ & RPT (|07 5 =000 7,

where g; = ()im (y) dy' dy™ with (8)im(y) = (8)im(3 + R¥), y € B.
Because of (18), we can find sufficiently large R so that, for large i,

“)‘il/(p*np)ﬁi ”LP*(B) < €0,
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where ¢ is the number in Lemma 3.2. Applying Lemma 3.2 with u = Al.l 1P*=P)5. we have

5 (0) < I19ill1 gy < CllUill o ()

which yields the desired estimate. 0O
We also need the following comparison lemma.

LEMMA 3.4.— Let_n > 1, D be a bounded domain of R*, h be a C* Riemannian_{rietric
in a neighborhood of D, 1 < p < 00, a(y) € L™(R2). Suppose that u € W'»(D) N C'(D) and
w € C2(D) N CO(D) satisfy

—Lpu+a(®)uP?u<0, inD,

and
—Lyw+a@®)|wPw>0, inD.

In addition we assume
wx)>0 VYxeD, |[Vhw(x)| #£0 YxeD,

and
wis ChVin any open set where Vyu # 0.
Then ifu < won adD, we have u < w inD.

Remark 3.2.— Results and references on the maximum principle for p-harmonic type
equations can be found in [35] and [20].

Proof. —-For 0 <e < 1, setug = gu, and
E=sup{e|0<e <1, uslx) <wix), ¥xeD)
Clearly £ > 0. We need to prove £ = 1. Suppose the contrary, £ < 1; then
uz(x) =w(x) >0 forsomexeD,

and, by the definition of &,
uz(x) <w(x), VxeD.

Let x be any such point, it follows from the hypothesis that
Vu (%) = Vw(x) #0.
Since both « and w are C!, we can find a small neighborhood O of x so that
|Vus (x) — Vw(¥)| < %|Vw(£)[, [Vw(x) — Vw(®)| < %wa(f)[,

and

|ug () — w(@)| < %w(i) VxeoO,
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which ensure that the equation is not degenerate in O and, due to our hypothesis, u € C1(0).
Let

E=w—u;z.
Then & satisfies
~Vi(A@)VhE) +b)E 20 in O,

where

1
1 [o2(X|P

Alx) = (A () = —/—(—I——l—) dr
p 0X;X; X=tVw(x)+(1—1)Viue (x)

is positive definite and is Lipschitz in O, and
b(x) = a(x)[wx)? " —ug ()P ']/ (w(x) — us(x))
is in L*°(0). Furthermore
Ex)=0, and &(x)=20 VxeO.
Since A;;(x) is Lipschitz, we have
~ A (DY E = Vi (A5 ()V)E + (0§ > 0.
It follows from the strong maximum principle [19] that
Ex)=0 VxeO.

This implies that uz = w in D, violating u < w on 3 D. Lemma 3.4 is established. O

Proof of Proposition 3.1. — It follows from Lemma 3.3 that for |y| > 4R > 2R, we have
Prp
il

v ()P P <
' Nk

Thus, in view of (15) and (18), for any given C§* < § < n — p, there exists R> R /2 such that,
for large i,

€2 p-i

(20) —Lg,. v — Wl}i < O, Q,’ \BR?,
where

s[n—p—87""
Qe £ = —[(—"—i—)] > 0.

2 p—1

Next we select a positive test function

_{(r=p=8)
w(y)=|y| 77
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A calculation yields, for large i,

&P
~Lgw(y) = (5[@%1—6)‘] - DS*)|Y|_"+6‘

Here and in the following, C, C’, C” denote constants independent of o, while D, D', D” denote
constants independent of @ and 8*. So, for § > D§* (for a larger D) and for large i,

22) —Lgw(y) — —=wPl >0, 2\ B
y

Multiplying w by some constant c=C (ﬁ), we have
v <Cw ondB B

Let u = v; /C, since v; satisfies (15), u is in C"# for some 8 > 0 due to the previously mentioned
regularity results. Furthermore, in view of the classical results of [27],  is C%# in any open set
where Vu is nonzero. It then follows from Lemma 3.4 that

v < Cw on 2i\ Bg.
Proposition 3.1 is established. O

Proof of Proposition 2.1. — Rewriting the estimate in Lemma 2.1 in terms of v,, we have, using
also p < 2,

(23) a/vé’dvga gC,aﬁ‘P/IyIzva’,’* dug, .
2 fo

It follows from Proposition 3.1 that
ve (y) < Cu(y)' 0%
When 8* is small, we have 0 < D8* < (n+2 —2p)/(np), so
Ha " / e dvg, < Cpg™” / P27y <
$2a yI<Cha’

and, in view of (13), that

liminfoz/v‘f dvg, > lim « / v” dy = cc.
a—>0Q a—00

S0 <!

The above two estimates contradict to (23) for large «. Proposition 2.1 is established. O

4. The local version of Theorem 1.2

In this section we establish the following local version of Theorem 1.2.
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PROPOSITION 4.1.— Forn >4, let p € (1,n) and r > r*(n, p);, for n = 2,3, let p e
(1, /n) U (2,n) and r > r*(n, p), or p € [/n,2] and r > r*(n, p), then there exist some
constants 8% and A, depending only on n, p and r, such that for any C* Riemannian metric
g in By with the property that By is convex, and the curvature tensor and its first covariant
derivatives are bounded by §* in B>, we have

1,
117 e oy < KPIVOUL s gy + AN 5y ¥ 0 € Wy P (B).

In view of the Holder inequality, if the desired inequality holds for some r, then it also holds
for any r’ > r. So we can assume that r is very close to r* (or equal to r*, when n = 2, 3, and
p € [/n,2]), we assume that r < p*. We establish Proposition 4.1 by contradiction argument.
Suppose it were false for some p and r. Let

D
_Ivullf, +elullf,

r
lull?,

I (u)

As in Section 2, there exists some non-negative function g, € Wo1 "P(BYNCO(B) with ||gg |, =
1 and

Ii(pe) = Ay := inf  Iy(u) < K7,
ueWy'"(B)

The Euler-Lagrange equation of ¢, takes the form

—Lgga +allgell? @i = 2ol 7!, @a 20, inB.

We also need a Pohozaev type inequality for g,

LEMMA 4.1.— There exists some constant C, depending only on n and p such that, for all
X € B,

1o . . . _ .
(24) [; — ;;]O!”(pa Iy, < Cf (disty (x, £)> Pl + disty(x, $) 00 (x)7") du,.
B

Proof. — Let (p, w) be some geodesic polar coordinates centered at x and we use the same
notation as in the proof of Lemma 2.1. We only need to calculate the derivative of |¢, ”’Z, at
t=1:

np _ ,
=="Liigl}, + ol / O(d2)¢ du.
B
The rest of the proof of Lemma 4.1 is essentially the same as that of Lemma 2.1. O

d p
a el

=1

Let x, € B be a maximum point of ¢y, fty = @y (xa)l’/’*/”. It is easy to see, as in Section 2,
o — 0, liminfy 00 ke > 0, g lls — Oforall 1 < s < p*, and, after passing to a subsequence,
@y — 0 almost everywhere. Define v, as in Section 2 and its equation now takes the form

—Ly vyt et =20 in 2
Qo VX oy — Ma by (2]

n—p]r

where

I
| pm—
~ S
|
]

ca=aublloa}", B
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Applying Proposition 8.2, we have Ay, — K7, g4 — 0,

distg(xy, 8B)
— 5

o
and
(25) /(|Vgo,(va—v)|P+lva—v|”*)dvga——>0.
20
It follows from Proposition 3.1 that
(26) v () < Cu(y)' =P

Here and in the following, C, C’, C” denote constants independent of ¢, while D, D', D" denote
constants independent of & and §*.
Rewriting the estimate in Lemma 4.1 in terms of v, , we have

9y Blp=r) B .
olvallfrig, g < Ca f (P77 +1y1%f).
o
When §* > 0 in (26) is chosen to be small enough from the beginning, we have

1202 = (Iy17el =PIy 2Pl < C(IyIPu(y) =PI =Py 2Pyl < Cly P~ Puf.

Since r > np/(n+2 — p), wehave 2 — p —n(p —r)/r > 0. It follows that

z_p_l(pr r) _
@7 vallfr (g, S Cha e
24

Casel.1<p<(n+2)/3andr >np/(n+2—p). Since 1 < p < (n+2)/3, we have
2—p—pin—p)/(p—1)<—n,soforde(0,2—p—nip—r)/r),

27— p— n p r) 9_ n ”-}-5 2__p_n(g:r) 5
fa (L+ 1y 7T " dy < Cug pgl < C.
yI<Cug'

Using (27) and (26) (recall that §* is small), we obtain:

2 p--2e=t) . -
a“va”Lr(Q \ga) \ClLa ]yl l’v(y)(l D&*)p

¢

2-p- =) _ pti=p)
<ol / PP ) gy < e
[yI<Cus’

Sending o to oo leads to contradiction as in Section 2.

Case2.2< p<nandr>np/(n+2—p). For p=2,theresult follows from Theorem 1.1.
So we only treat 2 < p < n here. Since r > np/(n +2 — p), we have r > p and (p — 2)r/(r —
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p) < n. So, by using the Holder inequality,

/dlStL’(-X x)h ﬂ C“dIStg(x x) I|L"/(r-p) (05 Lr/p \C”(pd”Lf‘#

B

2_/)_1]([)*?‘) 5
Mo ’ IYIF770f < Clivallg
24

which contradicts (27) for o > C.

Case 3. n=2,1<p<2;orn=3,1<p<3. Weonly need to consider (n + 2)/3 <
p < «/n since the remaining cases follow from Case 1, Case 2, and Theorem 1.1 in the case
l < p<2.

We derive from (26) that

nH=pip %
/IH“"" b /I\’I"”v(v)“ DY < i =~(nt2—p— "R O(S") .

Using the above to estimate the right hand side of (27), we have

PLEE—2140(5%)
a<Cug "™

When 8* is chosen to be small enough from the beginning, the exponent p[" F—2]4+0%) is
positive. This leads to contradiction for large . Proposition 4.1 is therefore establlshed O
5. Local version of a result related to Theorem 1.3

In this section we establish the local version of Theorem 1.3. In fact, for the local version, the
restriction on « is less than that stated in Theorem 1.3. For this reason we define, for n = 2, 3,

2, l<p<(n+2)/3,
a*(n,.py=y(n—p)/(p—1. (n+2)/3<p</n,
P, Vn<p<n,
and, forn > 4,
2, < p</n,
a*(n,py =4 2pn— p)/(=3p* +np+2n), Jn<p<(n+2)/3,
P, (n+2)3<p<n.

Itis easy to see that a™(n, p) is a continuous function of p in (1, n) and satisfies p < a*(n, p) <2
forn=23and (n+2)/3<p<+/n,and2 <a*(n,p) < pforn>4and /n < p < (n+2)/3.

PROPOSITION 5.1.— Forn>4,let] < p<./nand0 <a <a*(n,p), or Jn < p <n and
O<a<a*(np)forn=23let 1l <p<.nand0<a<a*n,p), or Jn<p<nand
0 < a < a™(n, p), then there exist some positive constants 8* and A, depending only on n, p and
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a, such that for any C* Riemannian metric g in By with the property that By is convex, and the
curvature tensor and its first covariant derivatives are bounded by §* in Ba, we have

1,
”(p“zp*(&w < K¢ ||V(P||L£p(3‘g) + A“‘p”LIIIP(B‘g)# YoeW, ’(B).

The proof is again by contradiction. We suppose, for some p and a, that for any o > 0, there
exists uy € WOI‘”(B. g) such that

”ua”a s K ”Vua”([iﬂ + allug ”(1{/) .
Li

This implies
Ay 1= inf Iy(w) < K¢,
ueW, " (B\(0}
where
Vull, +ollul4,
oty = 1VHE el
lull -

It follows from Proposition 8.1 that there exists some non-negative minimizer @y € Wol‘p (B)N

CO(B), with llgall, = = 1 and Iy(ga) = Aq. It is clear that C™! < ||V, 1» < C. Here and
throughout this section, C denotes various positive constants which are independent of ¢ and §*.
The Euler-Lagrange equation is

—Loga +allgall] " 1Veall], "0l = hallVoull ], gl " in B.
Using the minimality of ¢,, we show as in Section 2, for any x € B, that
allgall]» < Callgall]s” / pel +C f P Vgal” +C / Pl
B B B
where p := dist, (x, X) and C is some constant independent of « and x. Multiplying the equation

of 9o by p@q and integrating by parts yield, as in Section 2, that

~ .1 _ _ .
xa||\7<pa||ip“fp2¢5 >Efpzww+au<oa||’z,z”nv%uip“/pzrp;:—C/f Pob.
B B B B

We deduce from the above two estimates

(28) allgallf, < C/ (P> Pl + p2l").
B

Let x, € B be a maximum point of ¢, and then 1, := ¢4 (xa)’_/’*/p — (. Set

n=p

ve(¥) = ta” Qo (‘//a(y))’

where Y, (y) = exp,, (Ka¥) is an exponential map, y € £2, := 1//,1_1 (B). Itis clear that 0 < vy <
1, v(0) =1, v, =0 0n 382,, and v, satisfies

= —a_ p—1 —a_  p*— :
(29) —Lg, Vo +Eal| Ve Voll], v = hall Ve vallh, 08" in 2.

JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES



372 T. AUBIN, Y.Y. LI

where go = p13 %Yk g and & = aul |ve |7,
It follows from Proposition 8.2 A, — K79, /1,;1 distg (xy, 9B) — 00, and

a0
£2q

lim / (|Ve0 Wa = )" + 0 — vI?") dvg, =0,

where v is the extremal function given by (1). Consequently, A, || Vg, vy ||f,7“ - K77,
Applying Proposition 3.1 to v,, we have

(30) e (0) < Cv()' P Vye,

Here and in the following, C, C’, C” denote constants independent of o, while D, D’, D" denote
constants independent of « and 8*. As in Section 4, we deduce from (30) that, when §* is

chosen to be small from the beginning, ly[zvg* < Cly|>~Pvf and therefore (28), with ¥ = xq, is
simplified as a[|ga 1, < C [y dist(x, x)* P4, i,

31 allvalld, < Cpl f 2Pl
24

Case 1. n 2 4. We divide this case into four sub-cases.
Sub-case 1.1. n 24,1 < p<(n+2)/3 and 0 <a < 2. Since §* is small, it follows
from (30) that

limsupug_“/fyl2"’vgglimsupC,ug"“/|y|2_”v(1_D5*)” < 00.
o> 00 a—>x0

24 24
On the other hand,

limsupave ], = limsupallvll‘i,,uykl) = 0.
oa—> 00 oa—>00

Contradicting (31) for large o.

Remark 5.1.— The proof for Sub-case 1.1 works for all n 22, 1 < p < (n + 2)/3, and
O<a<?2

Sub-case 1.2. n =4 and p=a =2. Obviously (31) can not hold for large .
Sub-case 1.3.n 24, (n+2)/3<p<nand 0 <a < p. We first estimate the right hand
side of (31). Since p > (n + 2)/3, it follows from (30) that

_ _ _ o (1—Ds* —la—=41+0(5%)
(32) pul ”/lylz Pol < Cul ”/lyP Py=DP < Cuy ,
24 24

where |0(8*)| < D§*. To estimate the left hand side of (31), we need an appropriate lower
bound of vy. As in [28,29], we use the maximum principle to establish such a lower bound of v,
in |y| < Ry for appropriate R, — oo, which gives an appropriate lower bound of vy ||zr. We
derive from (29), in view of (30), that

—Lgva(v) 2 *Cf_fa’y’_(nhp)+0(5*), Y E 2.
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For§ = D'8* letd = %minwzl v(y) and

_n=p+b
w(y)=dly|” 7T .

Then, when we make D’ 3> D (but independent of & and §*), we have, for « large,

R _ 517! .
—Lgw(y) < <_5dp—l[n . f‘:‘ :I + Da*)'y|~(n+5)

n PO )
g_édﬂ*] f_‘_"_P_‘f'é g |y’—(n+5)_
2 p—1

Define, for D” > D’ (but independent of « and §*),
Ry =D""1(E) VP > o0.
Then, for « large,

(33) Lg,va — Ly, (w — w(Ry)) €0, 1< |y|< Ry

Since v, converges strongly to v on compact sets, we have, for a large,
Ve (¥) Z w(y) — w(Ry), yl=1.

Multiplying (33) by (w — w(Ry) — vo)" and integrating by parts on 1 < |y| < Ry yield
Vg 2 W — W(Ry) on 1 < |y| < Ry, which implies

n—p+é

n—1 —"‘%
(34) va(M) 2 C" (1 +1y)) 77T Vy| < Re/2.
It follows, since p > /n, that
ik l/p n_(n=p) 2
_i=ptd)p L = E¥ et
NoallLria, = Cu—l( f (1 + |y|) =T dy) > C//—]Rap =T 1H0( )’

IS Ra/2

ie.,

- \— § * 1 - 1
lvallLr(g) = €' (Ea) yHO@F0CY  Ghere y = —[Z b p)] € (O, —).
ptp p—1 p

Using the definition of £,, we have

.y g *
(35) (| “L”(.Qa) > C”-1 (aﬂg) 1_y(p_a)+0(5)+0(3 )‘

Using the above estimate and (32), we derive from (31) that

2 N
-t T g —la= 5140 +06™)
(36) a Ty, S C py .

The exponent of « is, in view of yp < 1, positive. It is elementary to check

va® TPy d0
>a— < < 1 an <a<p.
l-y(p—a) p—1 P P
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Choosing from the beginning §* small enough so that

ya*

™~
I-y(p-a)

a-""L 0@ +006,
p—1

and letting o — oo in (36) lead to a contradiction to (31).

Remark 5.2. — The proof for Sub-case 1.3 works for all #n > 2, max{/n, (n +2)/3} < p < n,
and 0 <a < p.

Sub-case1.4.n 24, /n<p<(n+2)/3and 0 <a <2p(n— p)/(—3p2 +np+2n). We
first point out that

=2 if p=./n,
2p(n — p) n+2 . n+2
= 1fp= .
~3pt+np+2n 3 3
: 2
>2 if J/n<p <235

Since p > /n, we still have (35) for 8 = D'8*. On the other hand, since p < (n+2)/3,
estimate (32) must be replaced by

— — o I — —_ * — - *
/‘LZ a/'y‘Z pv‘fgcua a/’y'Z pv(l D§ )pgcua[a 214+0(8 )'

2o 24

So, instead of (36), we have

2
y I L .
1- [—y(;~u) Mo I—y(p-a) < Cu;[a—2]+0(5)+0(5*)_

x
It is easy to see that

ya?

—_—
l-y(p—a)
and we reach a contradiction the same way as in Sub-case 1.3.

a—?2,

Case2.n=2,3. We divide this case into three sub-cases.

Sub-case2.1.n=2,3,1<p<(n+2)/3and 0 <a 2. This follows from Remark 5.1.

Sub-case 2.2. n =2,3, n+2)/3< p<SJ/nand 0 <a < (n— p)/(p —1). Since
p=2m+2)/3 pn—p)/(p—1)+ p—2<n, so when §* is sufficiently small, it follows
from (30) that

— _ _ _ _Ds* - ‘%524-0(5*)]
e "/Iyl2 Pyl < Cu? “fl.vl"‘ Py(=D8P  Cpy
Qq 24
Contradicting (31) for large «.
Sub-case2.3.n=2,3, /n<p<nand0 <a < p. This follows from Remark 5.2.
6. The proof of Theorem 1.1

In this section we establish Theorem 1.1 by using Proposition 2.1, Proposition 5.1, and
partition of unity arguments.
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For n > 2, let (M, g) be a complete n-dimensional Riemannian manifold (without boundary)
satisfying (H). Let | < p <2 and | < a < p, we assume that there exists some & > ( such that

- _ 1, _
B N0l e 51, S KNVOULoi, 20 T ANGN Loy YT €M, @ € Wy (Be(D)),
where A is independent of X and ¢ and B;(x) denotes the geodesic ball of radius £ centered at x.
Then we have the following theorem which, together with Proposition 2.1 and Proposition 5.1,
imply Theorem 1.1.

THEOREM 6.1.— For n = 2, let (M,g) be a C® complete n-dimensional Riemannian
manifold (without boundary) satisfying (H). For | <a=p<2orl <a<2<p<n, we
assume (37). Then we have, for some A depending only on p,a, &, A, and (M, g), that

112 4100 < KAUVONE it g+ A0S par gy Y0 € WP (M, ).

Proof. — We consider geodesic normal coordinates at x, |3g;; (y)| < Cp with p =d(x, y) and
C a constant which depends on the bound of the sectional curvature (see [5, p. 152]). Let us
consider a covering of the manifold by balls of radius 8, § smaller than the injectivity radius
and small enough so that the balls are convex (there exists a constant Cy such that if C 82 < Cy
the ball is convex). We know that we can choose the covering uniformly locally finite (each
point has a neighborhood whose intersections with the balls are empty except at most k of
them), see [5, p. 151]). Let {A,} be a partition of unity subordinated to this covering such that
{h‘.] /r } are bounded in C? uniformly in i. For instance we start with a C* radial function y (o)
which is equal to e=0=97 for 8/2 < p < 8 and which is positive inside the ball. We choose
h; = y”(p,-)/[zj yP(p;)] with p; =d(x;, y), x; being the center of the jth ball.

Casel.1 <a=p<2. Wewould like to prove for any ¢ € W' positive
(38) lpll?. < KPIVel), + Allellp.
When § < &, we know from (37) that

on;’”

I 1/py|» i 1/pyp
D SKP|V(eh )|+ Alen .

So we can write for such ¢

ol = 7], =

SN
{

Z l@”h

,Z:w”hi <
i Pip i

<K IS M)+ A Jonl”7 ),

p*/p

It follows that
(39) ol K231V (e M)} + Cliol.
!

The main thing is then to estimate
1
S v,
1
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Write
”V(Whil/p)“ﬁ:/[h/'Z/pIV‘MZ‘l’(OVj‘PVj(hiZ/P)+¢2|V(hi[/p)|2]p/2'
Let
={xeM||Vo)|<px)} and O ={reM||Vp(x)|>p()).
The contribution of the integral on V is easy:
X [ 50 + 0969 (527) + 29 (7))
Fainv
(40) <2y / [h7 + |V (h)P))? ]”/2<CZ/ P<Ck/go”

I oinv

To estimate the contribution on @, we need the following elementary lemma.

LEMMA 6.1.~ Let f and g be two functions with compact support, f >0, f +g 2 0. Then,

fort < p<2,
[r+ors [+ ff1 g

Applying the above lemma with f = h/”lV(pl2 and g = <pr(ij(hi2/") + (ple(hil/p)lz, we
have
2 ; 2 1/py (27272
[ IR g, 0) ) P
i 2;NE

, P oVIpVi(h'") + ¢ MUNSTS
4 <2 / mivel+ 2 2. / (7 |V pp2|1=r/2

I oine t pne
We estimate the right hand side term by term:

OV (R
2 f (127 |VgPy=rr2 ( ) Z /

I one 2:NO

ccfo

where we have used the fact |VA;|2 < Ch;, with C not depending on /. Next,
v/ Vj(h; 2/p VioV:h:
Z f eVIpVih"") _ Z / ¢VIieVihi _ 0.
2 (WP |V2)1-p2 & [Ve|2—P
i Qine L Qine

and

> [ miver< [1ver

b pine
Putting the above three estimates into (41), we have

42 ) / [h?/pr¢|2+<pr¢Vj(h?/”)+¢2W(”i]/p)’2]p/2</IV¢I”+C/¢p-
i @ne
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The desired estimate (38) follows easily. Theorem 6.1 in this case is established.

Case2.1<a <2< p<n. Wewould like to prove for any ¢ € W17 positive

43) lels < K1Vl + Allg].
We write
el =lel -/, = ” 2 e"hi “ <2 llom prip 2 leh; e,
i rt/p i ;

Asin Case 1, when 8 < g, we have

1 1/ a T 1/pya

So, using p 2 a,

gl < 3" [K[V(on )5 + Alor! 517"

i

<Kok )G+ 3o ChV ons )T lohi " 15, + Dl

for some C and D. In the following we divide into two sub-cases.
Sub-case 1.1. 1 <a <2< p<nand p 24. We make use of the following elementary
inequality, which holds for r > —1,

: k <k <
(1+t)l‘—1-—kt<{b|t|’ when 1 <k <2,

br? + c|t|k, when k > 2,

where b and ¢ are some constants depending on k but independent of ¢. Thus, for p > 4,

A=) f (171901 + V0¥, (1/7) + 92|V (7)1
< /|V¢’|p+gZ/h}_z/pIpr!”_z(fﬂijVj(h,.z/”)+<p2fv(h}/")\2)
i
+CZ/((ijwvj(h?/p)+g02lV(h‘.l/p)lz)p/2

b Y [ Wi, (1) + 2.
But as

S w7 Zv hi =0,

i
we obtain

A< IIVelh +ENVels el + Fligl)

for some constants E and F, where we have used p -2 > p/2,ie., p > 4.
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So
leliZ. < KPIVelh + GIVells el + Hlplh
(44) < (KUNVell +klleld)"

with G, H, and k some constants. We have obtained the desired inequality (43).
Sub-case 1.2. 1 <a <2< p<nand 2 < p <4. We have the inequality for ¢ € W'-?,
¢ 20

el <KP Y [V(gh/") |2+ CIVels ™ lells + Dlilly.

LetV={xeM]||Vex)|<ex)and @ ={x e M | |[Ve(x)| = ¢(x)}. We have
2 ' 2 1/p\121p/2
> f 57196l + V09, (h]'7) + 0| 9 (1, 7) "] <C/‘0p‘
i 2NV

For the integral on £2; N & we will use the equality

1
2
P12 _ pj2 P p/2—t PP _ _ &
f(f+g) = / f +2 / 8f +2(2 l)f(l ) / (f +1g)2—p/2’
0 2iNnE

;N0 £2,NE 2;iNE

here f >0, f+g >0, with f = h>/"|Vo|? and g = 9 VI V;(h7) + 0|V (h)/P) 2.

> / EEDD / hilVel? = [ IVel” <|IVell],.

L ane i 200 o
-p/2— 1-2 o2 9021 Upi2
> f af"=3 f b PVl 2[;"/” fPV’rijth(pziV(hi“’)]]
I 2ine i @ne

=y / b PVl 2GR V(AT < CIVell S o2,
I Qine

Let Qi+ be the set where g 2> 0 and £2;” the set where g < 0, then:

2/p=lj 2/p=2 2
g’ [ [3oh"™VigVih; + L o?hi! P2 1Vh; P

— K
(f +19)%=p2 =
2Fne erne

<2 / ( 4P (VIpVin)? w“lvmr‘)
h N e A I

KP Vgla-r

2rne

<C / (P 1VelP 2+ pP).

2rne
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Thus
g 2
[ R (o e A
»rne
On the other hand,
1 !
2 2
8 g
A= (-1 Mg/(l_;)f ———t
/( ) / (f +1g)?—p/? (1 —~0)2=p/2f2=p/2
0 2 ne 0 27N
1
2
_ /-t _&
o |
0 27Ne

since g = —~f, f+1tg = (1 —1)f. It follows that

2
Sa<y [ A <clve e il

Y 2rne

Thus
lellp- < KPIVelZ, +GIVelL leli, + Hllwl,
< (KUl +klgll], )"
with & some constant. Theorem 6.1 in Case 2 is established.

Proof of Theorem 1.1. — Obviously we can find z € (0, d) so that for any ¥ € M we can dilate
the metric g on Bz(X) to £ on B, such that, with respect to g, Bz is convex, and the curvature
tensor and its first covariant derivatives are bounded by 8* in B;. The & depends on §*. Since
the first constant in the Sobolev inequality is invariant under dilation, Theorem 1.1 follows from
Theorem 6.1 and the local results Proposition 2.1 and Proposition 5.1.

7. From local to global, and the proof of Theorems 1.2 and 1.3

Though it is more natural to derive global results from local results by partition of unity, we
do not see at this point how to do that for the more general sitvations in Theorems 1.2 and 1.3. In
this section we provide a different argument which allows us to establish global results as stated
in Theorem 1.2 and Theorem 1.3 from local results established in previous sections.

Forn > 2, let (M, g) be a complete n-dimensional Riemannian manifold (without boundary)
satisfying (H). Let ] < p <n, I <r < p*,and | < a < p, and we assume that there exists some
& > 0 such that

(45) NfP“Z,,*(BE(m < Ka”VVJ”(Zp(BE(j)) + l‘i“(o”ar(gg(;)) VieM, pe W()]‘p(BE()E)),

where A is independent of ¥ and ¢ and B; () denotes the geodesic ball of radius & < d centered
at x. Then we have the following global inequality.
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THEOREM 7.1.— For n = 2, let (M,g) be a C®™ complete n-dimensional Riemannian
manifold (without boundary) satisfying (H). For | < p <n, 1 <r < p*, and 1 <a < p, we
assume (45). Then we have, for some A depending onlyon p,r,a, &, A, n,d, and k, that

101 o g o) < KONV a1+ ANy Y90 € WP (M, g).

Proof. — Suppose the contrary, for all @ > 0,

Vel +allellf,
inf  Iu(p) < K™, where Iy(9) = LP¢M) L)

a
peW!.r(M) 12 o ary

We can find, for a sequence of @ — oo, compact exhaustion M, of M, with the second
fundamentai form of 3 M, bounded by some constant independent of « (we need the hypothesis
on 3 M,, for Proposition 8.2 to hold), such that

o= inf  I,(p) < K7¢.
peW, " (M,)

We note that when M is a compact manifold (without boundary), we take My, = M and
W(l”’ (M) below simply means WP (M). It follows from Propositions 8.1 and 8.2 that there

exists non-negative minimizer ¢, of I in W(;‘p (My) such that ||ggll; » = 1 and, for some
Xg € My,

(46) (N0 llwrrat B gy + 100 LMo\ Bexany) =0, V&> 0.

lim
X —>00
The Euler—Lagrange equation of ¢, is

]

(47) ~Lo@a + Vol NeallsT 0 = Al Va7 02 ™" on My,

For 0 < ¢ < &/9, let n = 5y be a smooth cutoff function satisfying n =1 in By.(xy), n =01n
M\ Byg(x4), 0< n < 1 and |V} < (4e)~! in M. By our assumption (45),

(48) Ingall? o < K| Vo), + Allngallf -
It follows, using a < p, that;

I P alp
M2l o ey < K UNVLN L3, (0 + M0l en et} + NPT (B
< KUUVgaltr + Cloallynn s, s o + Clalls.

Since |Voull], + all@all], = Aq. we have

(49) SAa K — (@K = Oligalize + Cligall

”(/’a”a * “ 1 .
LI (B, (xa)) W2 (Bye (X0 )\ Bas (X))

We easily see, in view of (46) and @ l|; » =1,

a 1 * Pt
heal e gy =1 = L0/ P +"(1)]“%‘”Lv*wa\szg(m)‘
Recall that A, K < 1. So we can simplify (49) as

a P a
(30) algalier < Cleallyom 11,0y, NP8 o By vy
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Now let 1 be any cutoff function with support in M \ B:(xy) and we multiply equation (47) by
nPy, and integrate by part to obtain

/ IVeal”*Veu V(npa) < C / el
M M
from which we easily deduce

/n”IV«)aI"’éC / ol +C / ol

M suppn supp

We point out that in the above derivation we have used the obvious fact that {||Vgaa||£;a] is
bounded above by positive constants which are independent of « (a < p is used here). Selecting
n appropriately we have

p*/p
IV @allLr (B ran Baetxa) S CllOallLrBseixanBetrar) + CUOally 2y g i)

Using the above and (46), we deduce from (50) that:
p* ap*{p a
allogll]r < Cllge ”L/’*(ML,\Bzé(xu)) + Cllgg ”Ll’*(Ma\Be(xu)) + C”%l||LI’(B5E(x<,)\Bg(xa))

ap*(p
(5 ! ) < ¢ ”wa ”L/’:‘< (Ma\ Be(xy)) + ¢ ”wﬂ' “‘;—p(Bﬁg(xa)\Bs(xa)) '
We know from (47) that
—Lewa <CpP™™' on M,.
Because of (46), we can apply Lemma 3.1 (Moser iteration) to obtain
| lle*<B§](x)) + 1 €allLoss, ) < €81, 82, &)lI@allLr (8, (x))

forall 0 < 6; < &2 and Bs, (x) C My \ Bej2(xy). It follows immediately that

1P | L2 (Bse (o) \ Be(xa)) S Clli@ellirs

and, by a suitable partition of unity with finite overlapping (using also r < p*),

oo ”LI’*(MG\BF(XQ)) SCll@allrr.

The above two estimates and (51) lead to contradiction for large . We have established
Theorem 7.1. O

Proof of Theorems 1.2 and 1.3. — The proof is the same as that of Theorem 1.1, only use
Theorem 7.1 instead of Theorem 6.1, and also use in addition the local result Proposition 4.1.

8. Appendix

In this appendix, we present some results and arguments used in this paper. Let (M, g) be a
C™ compact Riemannian manifold with or without boundary. For p > 1, let Wol‘p (M) denote the
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usual Sobolev space with zero boundary value when M has boundary, and WOl P(M)=WLP(M)
when M does not have boundary. For0 <a < p*, 1 <r < p*,a 2 ag > 0, let

V a + ar
L(p) = I ‘P“LP aan‘/’ﬂ
el .
We assume
(52) Ao = inf  Iy(e) <K%
peWy 7 (M)

11
PROPOSITION 8.1.— For p>1,0<a< p* 1<r < p* and a > Koy r), V=
f v dv, we assume (52). Then there exists some non-negative function @y € WOI'P (M)NCOM)
satisfying 0ol p* = 1, In(@e) = Ay, and

(53) —Loo +all@all s NVl s 0f ™ = Al Ve ll5 500" .

LEMMA 8.1.- Let (M, g) be a C™ compact Riemannian manifold with or without boundary,
and 1 < p < n. Then any non-negative function ¢ € WOl "P(M, g) satisfying

(54) —Lgp <ue” "' and gl =1
is uniformly bounded if © < K7, where K is the best constant K(n, p) in the Sobolev
embedding theorem and L, is the p-Laplacian.

Proof. — Multiplying (54) by ¢!**7 and integrating by parts lead to

*

(55) L+kp IVo! ™ Pdv < [ P P du <l [ 97 0 do o
(1+ky» = =

The Sobolev inequality yields

[ KP4+ V0|7, + Acle"| 7,

(1+k)?

1+ kp

Choose & > 0 so that K”(1 + ) < 1, and then pick ko > O such that

< KP(L+eufe |7 . + Ace"¥)7,.

(1 + kg)?

K?(1+e)u<1 with(1+kp)p < p*.
1+kop

We obtain [|¢]l, 141+ < C. Now we return to (55) with k = kj = p*ko/p. We have p* + k| p =
p*(L+ko). Thus {|@]l, a+kpp+ < C. So we prove that ¢ is bounded in any L”. The Moser iteration
technique yields supgp < C.

COROLLARY 8.1.— The same result holds for non-negative function ¢ € Wg'p (M, 2)
satisfying

—Lep <pe?™! and gl =1
with 1 < g < p*.
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Indeed if fj@l; a+4ppr < 1 we have nothing to do. Otherwise we write

r/p*
/(ptH—koPdv < I/wl’*(Hko) dv} .

kp ya

_— <
p*k+p*—q p*
Proof of Proposition 8.1. — 1t follows from the Sobolev embedding theorem that A, > 0. Since

which holds because

11 .
a> K-V ’), Ao can not be achieved by a constant function. We use the Yamabe method.
For max(p,r) < g < p*, let

by = inf (IVuld, +alull), where Ay = {ue Wy P (M) | fullzs = 1}.

A minimizing sequence is bounded in Wol'p (M, g). Using the Banach theorem and the
Kondrakov theorem (W!:? C L9 is compact) yields a subsequence which converges weakly in
W(;’p , strongly in L9 and a.e. to a non-negative function u, which satisfies

— —a y_ - -1 .
(56) —Lgug +ollug 1§71 Vugll 2, ul ™ = 2l Vug 7, %ug ™ in M.

As in the Yamabe problem, we can prove [5, p. 152] that A, — A, as ¢ — p*. So for
A1

qo < g < p*, Ay <t < K74 and [|Vugylirr > 0 (recall that « > K¢ Ve r)). This implies

—Lgug < uugﬂl with 4 < K7P. According to Corollary 8.1, supu, < C. The function {u,)}

(g0 < g < p*) are bounded in Wol"’ . The Kondrakov theorem then implies that there exists a
sequence of ¢; — p* such that u,, — ¢, in L# for any B, and Ug, — g a.e. Thus

@all,,+ = lim lugllpa = 1.
i—00

Applying the Banach theorem, u,, converges to ¢, weakly in WP Tt follows that I (¢g) < Aq.
Since @y € A, Iy(py) = Ao. As pointed out earlier, ¢, is not a constant, so [[Vgullrr > 0.
Equation (53) is the Euler-Lagrange equation of the minimizer ¢, of I,. Since ¢y is in L, we
know from the regularity results for p-harmonic type equations that g, € C%(M). Proposition 8.1
is established. [

In the rest of this appendix, (M, g) denotes a C* complete connected Riemannian manifold
(without boundary) satisfying (H). Let @ — oo be a sequence of real numbers and let My, = M
when M is compact, and, when M is not compact, let {M,} be a compact sequence of connected
submanifolds such that the injectivity radius of M, is bounded from below by some positive
constant independent of o and the second fundamental form of dM, is bounded in absolute
value by some constant independent of «. We assume

(57) A= inf  Iu(p) < K74,
PEW, " (My)

and there exist non-negative functions ¢, € WOl P (My) N C%(M,,) such that
(58) lgall,p» =1 and Iy(py) = ia-
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The Euler-Lagrange equation of ¢, is

—a r—1

(59) —Lo@a +all@all}r 1Vl 0t = AallVealll of

*—1

in M.

Since aflgallir < K74, llgallLr — 0. After passing to a subsequence, ¢, — 0 ae.,
IVoell, — & < K7, and a|lg|f, — n < K™%. The Sobolev inequality holds for any & > 0:

lell] « < KA+ Vel + Acllol,,

take ¢ = @y, and let ¢ tend to infinity, we have 1 < K?(1+¢)&. Since € > O is arbitrary, § = K¢
and n=0.
Since r < p*, we have

» prer e\ pror
! :/(pa < (ﬂx/!a)((pa) lPallyr < ;’ <n/tlfx¢a) .
M

o a

So maxy, @, ~> 00. Let xo € M, be some maximum point of ¢, i.e., Yo (x,) = maxy, ¢,. Let
£ > () be some positive number, independent of «, such that B, (x), the £-geodesic ball centered
at x, is convex with respect to g for all x € M. Define

Ll_—_B
Vo (¥) = tta” @a(Va (1)),

where 1= (pa(xa)’“p*//’ —> 0, Yo (¥) = exp,, (oY), Y € 2o = lﬁ‘;‘l(Bg (xo)). It is clear that
0< vy <1,v,(0) =1, vy =0o0n 352,, and v, satisfies

(60) Ly Vo + 8aV ' = o IVeall57 02" in 2,

where

- - n o n—p _
ta =l IV, B= [; - ]r, and g =y *Ylg.
PROPOSITION 82.— Let p> 1, 0 <a < p* 1< r < p* and {M,} be as above for a
sequence of ¢ — oo such that (57) is satisfied. Assume that ¢, € Wol’p (M) N C%M,) are non-
negative functions with ||@ull; » =1 and Iy(pa) = Xe, and let x, be a maximum point of ¢g.
Then,

)_»a e lim disty (xq, IMy)

=00 Ha

IVoallr = K7' gy — 0,

lim f(’Vga(va—v)|p+|vo,—vl”*)dvga=0, and

s Ede]
S

al-i-)n;o / (lngpalp+<P§ )=0 Ve>0,
Mo\ B (xa)

where v is the extremal function given in (1).
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Proof. — Multiplying (59) by ¢, and integrating by parts over M, lead to
alpull 10l [ oo
3 p—a p* 7 p—a P r
<TalVeall (7" [ o dv < Tal Vel ;" (maxea)” [ hdv

= Ao | Veu Ilf?“u;ﬂffﬂé dv.
It follows that
(61) o < AallVoallhnd <AEM < KTP.

The coefficients of (60) are bounded by K7, so by the regulari/ty_zesults for p-harmonic type
equations s we have, afga_r passing to a subsequence, vy — w in C B (24) for some 0 < B’ < 1 and
we Cﬁ,(O) N W1P(0), where (after a possible rotation of the y-coordinates)

O=|yeR |y >~ lim u7! disty(va, M) |

and w satisfies w(0)=1land w=00n 30 if 30 # ¢.

Next we show g, — 0. Since ,ug Nvellyr = l@ally

ea = lvall L IVeall?, “aligalf:-

Due to the uniform convergence of v, to w on compact set and w(0) = 1, {||vg||z-} is bounded
from below by some positive constant. We have shown «||¢q |9, — 0 and ||V, ||Z,7‘Z £ K4P,
80 8¢ — 0. Let @ — o0 in (60), w satisfies

— *_— .
—Lgow =K "PwP ' ino,

where gg is the Euclidean metric. Multiplying the above equation by w and integrating by parts
over O lead to | Vuw]|}, = K‘Pllwlll’:p* . Since v, weakly converges to w both in W!-? and L?",

we infer |[Vw|r < K =l and |jw] 1t < 1. Thus w is an extremal function to the best Sobolev
constant in R". Indeed,

IVwif lwl ;% = K2 jwl? P < K~7
implies

IVwiflwl =K, Jwly =1, and [[Vwllzr =K.
So O =R" and (recall that w(0) = 1 and Vw(0) = 0) w = v, the function given in (1). Thus v,
converges strongly in W7 The rest of the statements in Proposition 8.2 follow easily.
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