
J. Math. Pures A&., 
78, 1999, p. 353-387 

ON THE BEST SOBOLEV INEQUALITY 

Thierry AUBIN a, Yan Yan LI b* * 
a D+artement de Mathdmatiyues, UniversitP Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedes 05, France 

’ Depurtment of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA 

Manuscript received 18 January 1999 

ABSTRACT. - We prove that the best constant in the Sobolev inequality (WI,” c Lp* with $- = f  - i 
and 1 c p < n) is achieved on compact Riemannian manifolds, or only complete under some hypotheses. 
We also establish stronger inequalities where the norms are to some exponent which seems optimal. 
0 Elsevier, Paris 

1. Introduction 

It is well-known that sharp Sobolev inequalities are important in the study of partial differential 
equations, especially in the study of those arising from geometry and physics. There has 
been much work on such inequalities and their applications. See, for example, Trudinger [36], 
Moser [32], Aubin [5,6], Talenti [34], Lieb [30,31], Brezis and Nirenberg [lo], Cherrier [14], 
Brezis and Lieb [9], Carleson and Chang [ 121, Escobar [17], Carlen and Loss [13], Beckner 
[8], Adimurthi and Yadava [I], Hebey and Vaugon [25,26], Hebey [23,24], Li and Zhu [28,29], 
Zhu [37,38], Druet [ 161, Aubin, Druet and Hebey [7], and the references therein. 

For n > 2, it was shown by Aubin [5] and Talenti [34] that, for 1 < p < II and p* = 

npl(n - PI, 

1 
~ = lnf 
K(n, PI 

is achieved and the extremal functions are found. In particular, 

T(n + 1) 1 
IIn 

r(nlP)r(n + 1 - nlph-I ' 
for 1 < p < n, and 
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where I is the gamma function and wn-t denotes the volume of the standard (n - I)-sphere. All 
the extremal functions for 1 < p < rz are given by 

( 

1 

> 

= 
P 

u(x) = c 
p + Ix - XIPI(P-1) ’ 

where c, p > 0 and X E EP. It is easy to see that for some C, ,G > 0 the corresponding 

(1) ( 
1 

) 

II;p 
I’ 

u(x)=? _ 
p + (x(PI(P-1) 

is the unique minimizer which satisfies: 

u(0) = 1, Vu(O) = 0, and 
s 

u(x)p* dw = 1. 

JR” 

On a compact Riemannian manifold (Mn, R), the Sobolev embedding theorem holds: the 
inclusion W’*P c LP* is continuous for 1 < p < n. Thus there exists a constant Co such that 
any (p E W’,P satisfies ]]p]],.+ ,< CO(]~](~I.,~. Recall that ]]p]] WL~ = IIVVJIIL~J + lldl~.~. The 

first author proved in [5] that the Sobolev theorem holds for complete manifolds with positive 
injectivity radius if the curvature is bounded. It appears now that the result holds if the bound 
on the curvature is only the Ricci curvature is bounded from below. Moreover on a compact 
manifold, the inclusion W’,P c LP’ is continuous but not compact and W’.P c LJ’ is compact 
by the Kondrakov theorem. When we are in this situation, there is a best constant associated to 
the Banach spaces. Namely there are constants C and A such that any cp E W’,P satisfies 

Ibll Lp* G CII~IIWLP + AIIPIILP 

Define K = inf C such that some A exists. Then K > 0. A priori K depends on the three Banach 
spaces, but the first author proved in [5] that K only depends on n and p. So K = K (n, p) is the 
norm of the inclusion W’%P c LP* on R”. Thus for any E > 0 there exists a constant Ap(e) such 
that every cp E W”P(M,) satisfies 

(2) lIdlL,‘* G [WL PI +#WLP +A&)llcpll~~. 

and K (n, p) is the smallest constant having this property. 
A natural question arises: Is the best constant achieved? i.e., does there exist A,(O)? We can 

expect a positive answer. The first author made a conjecture in [5] concerning the following 
inequalities: 

CONJECTURE. - There exist constants A(p) such that any q E W1*f’(M,) satisfies 

(3) IlcdIP Lp* G K(n, ~>~llWll~p + A(~)llvll;p $1 6 P < 2, 

and 

(4) ll~ll~~K(n,~)~llVylll~+A(p)llrpjlL~ if2<p<n. 

A strongerform of (4) is 

(5) lIdI Lp* < K(F P)~IIWI~~ + A(pM~, if2 < P <n. 
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From now on we will always use K to denote K (n, p). The above conjecture was made 
because he proved these inequalities when the manifold is the standard n-sphere S”. He also 
proved that the best constant is achieved for manifolds of dimension two, and for manifolds of 
constant sectional curvature. Related problems on domains of R” were studied by Brezis and 
Nirenberg [lo], Brezis and Lieb 191, and Adimurthi and Yadava [ 11. Hebey and Vaugon, using 
techniques of blow up at a point of concentration and the Pohozaev identity, proved in [25] 
and [26] inequality (3) for p = 2 under the following condition: 

U-0 
(M, , g) has a positive injectivity radius d > 0, 

1 Rijk/ 1 and IV, Rijkl ]are bounded by k. 

Results on compact manifolds with boundaries, also for p = 2, were obtained by Li and Zhu 
in [28] and [29]. Further results were given by Zhu in [37] and 1381. Recently Druet has shown 
in [16] that inequality (3) is false for 4 < p* < n if the scalar curvature is positive somewhere. 
Then Aubin, Druet, and Hebey proved in (71 that inequality (3) holds for all p E (1, n) on 
compact manifolds of dimension 2, 3 or 4 with non-positive sectional curvature. In view of 
our results in Section 6 and the Appendix, this result holds also for complete manifolds of 
dimension 2, 3 or 4 with non-positive sectional curvature and satisfying (H). 

In this paper we establish inequality (3) for 1 -C p < 2 and inequality (5) for 2 < p < n 
for Riemannian manifolds satisfying (H). For a complete Riemannian manifold, the larger the 
exponent of the norms is, the stronger is the inequality, so the conjecture is proved for 1 -C p < n. 

THEOREM 1. I. - Let (M,, g) be u Coo complete Riemannian manifold satisfying (H). Then 
there exist constants A(p), depending also on n. d and k, such thatfor all cp E W’*P(M,, g), 
inequality (3) holds for all 1 < p < 2, and inequality (5) holds for all 2 < p < n. 

Remark 1. I _ - As mentioned earlier, Theorem 1.1 in the special case p = 2 was established 
in [25] and [26]. 

Remark 1.2. - By simple modification of our proof, one can show that A(p) can be chosen as 
a continuous function in (I. n), i.e., A(p) can be chosen so that it remains bounded on compact 
subsets of ( 1,n). 

In fact, we establish results stronger than Theorem 1.1. For n 3 4, let 

r*h p) = 
fZP 

n+2-p’ 
1 <pin, 

and, for n = 2,3, let 

np n+2 

n-l-2-p’ 
pE 1-T ( 1 u (2, n), 

r*(n. p) = ’ n(p - 1) 
___ PE(qGi), 

n-p ’ 

\ P> p E r&L 21. 

THEOREM 1.2. - Let (M,, g) be a Cc0 complete Riemannian maniJold satisjj&zg (H). For 
n > 4, let p E (1, n) and r > r*(n, p); For n = 2.3, let p E (1, J;I) U (2, n) and r > r*(n, p), 
or p E [fi, 21 and r > r*(n, p), there exist some constants A(p, r), depending also on n, d and 
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356 T.AUB1N.Y.Y LI 

k, such that 

llc4l~,,~ < ~“IIWI;,~ + A@, dllvll;r V v E W1*p(Wz, 8). 

Remark 1.3. - For II > 4, 1 < p < 2, we have r*(n, p) < p, so Theorem 1.2 is stronger 
than Theorem 1.1 in this situation. On the other hand, if the scalar curvature of M, is 
positive somewhere, then for 1 < p < (n + 2)/3, there does not exist such A(p, r) for any 
r < np/(n + 2 - p). This shows, to some extent, the sharpness of r*(n, p) when n 3 4 and 
1 <p<n. 

For n 3 3 and 2 < p < n, the exponent 2 in inequality (5) can be improved. Indeed we have 

THEOREM 1.3. - Let (M,, g) be a complete Coo Riemannian manifold satisfying (H). Assume 
p and a satisJjl one of the following: For n = 3,4, 2 < p < n, and 0 < a < p; For n > 4, 
2<p<&andO<a<2; fi<p<(n+2)/3andO<a<2p(n-p)/(-3p2+np+2n); 
(n + 2)/3 6 p < n and 0 < a < p. Then there exist some constant A(p, a), depending also on n, 
d and k, such that 

ll~ll”,,,* < KaIIVvll& + A(p, a)ll~ll&~ V cp E W’3p(K7 8). 

The proofs of Theorems 1. l-l .3 consist of two parts. The first part is to establish such results 

on (B, g) for cp E W;“‘(B) where 

B= (Xl 
i 

,...,ln)tR”~~x;<l 
j=l 1 

is convex with respect to g, when the curvature tensor and its first covariant derivatives are 
bounded by sufficiently small number 6* > 0. The second part is to establish the global results 
from local results. 

The first part is the main part and we briefly describe the proof of this part for Theorem 1.1 in 
the case 1 < p < 2. We want to show that there exists some constant A(p), depending on n, p, 
and 6*, such that 

Il&(B.g) < K(n7 P)“IIV~II~~~~,~~ + A(~)llcpll~~~o,~~ for all cp E W;“(B). 

We prove it by contradiction argument. Suppose the contrary, then for any a! > 0, 

h, := inf InEw;,p(B) za(v0) < K-P1 
where I 

(Y 
(cp> = IIvv4l&J +4lloll~P 

I1441;P* . 

Due to some results and arguments given in the Appendix, there exists some nonnegative 

minimizer (pa E Wd’“(B) fl C’(B), with ll~~Il~,,* = 1. The Euler-Lagrange equation satisfied 
by G is 

(6) -L,qo, + cup,“-’ = hail*-’ in B, 

where L,lo, = V~(lV,c~,l~-~V,cp,) is the p-Laplacian with the metric g. 
Let xU E B denote a maximum point of vu, we show that, after passing to a subsequence, 

pU(xU) -+ 00 and (oa has precisely one point concentration. It is fairly standard to show, by 
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using the previously mentioned classification results on extremal functions for the best Sobolev 
inequality in KY, that 

~~P,&#“(“-“) dist,(x,, 8s) + co as CY -+ 00. 

Moreover 

and 

where u is the function given in (1). 
Using the minimality of v~, we establish the following Pohozaev type inequality: For some 

constant C = C(n, p, a*), 

a s (pCrPdr+. < C 
s 

(distg(x, X)2-pqo,P + d$(x, X)2qo,(x)p*) du, 

B B 

holds for large CI. Since p < 2, we deduce from the above, with a larger C, that 

a! 
s 

p,$‘dv, 6 C 
s 

dist,(x,.Q2~~(~)P*dug, 

B B 

namely, 

(7) a! 
s 

u,p dug, < C&’ 
s 

IYI * 2vp* dvRol, 

f& Qa 

where v~(Y> = nd.~-‘cp~(~~l(~>>~ 1cla,(y) = exp,,(e(d pl(p+)y) is an exponential map 

(the coordinates are normal at x~), y E K& := I,!J;’ (B), g, = ~~(x,)2Pl(“-P)+~g. The left hand 
side of (7) is bounded below by C-l CI since we show that ua. converges uniformly to v on any 
fixed compact subset of Sz,. We will show that the right hand side of (7) tends to zero as o tends 
to infinity. For this, we need the following crucial pointwise estimate of v, on Q,: For some 
constants C = C(n, p, 6*) and D = D(n, p), 

(8) V,(Y) < cv(yPD6*, y E f&l, 

holds for sufficiently large (Y. 
For p = 2, pointwise estimates of this type for radially symmetric solutions of (6) in balls 

of Iw” were obtained by Atkinson and Peletier [2], and Brezis and Peletier [ 111. The estimates 
were extended by Han [21] to general domains of l&Y. Hebey and Vaugon [25] further extended 
such estimates to general Riemannian manifolds, which play a crucial role in their proof of (3) 
for p = 2. Such estimates on Riemannian manifolds with boundaries, also for p = 2, were 
established by Li and Zhu in [28,29]. The proofs of these pointwise estimates for p = 2 rely 
on the conformal invariance of the conformal Laplacian of the metric g, which is not present 
when p # 2. In Section 3 we establish such pointwise estimates by a different method, which 
works for all 1 < p < n. 
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From (8), the right hand side of (7) can be estimated by 

which leads to contradiction. This establishes the first part of the proof of Theorem 1.1. For 
Theorems 1.2, 1.3, this part is more delicate. In particular we need, in addition to an upper bound 
like (8) an appropriate lower bound of u, in certain parts of 52,. 

The second part of the proof of Theorem 1.1 can be done by a partition of unity argument (see 
Section 6). It is reasonable to believe that the second part of the proofs of Theorems 1.2,1.3 could 
also be done in such a way, though we do not see how to do it at this point. Instead, a general result 
which establishes global results from local results, which in particular provides the second part 
of the proofs of Theorems 1.1-1.3, is given in Section 7. The proof relies on heavier machinery 
(though well known) which include the Moser iteration technique and regularity results on p- 
harmonic type equations. 

The results in this paper were announced by the second author in early September of 1998 at 
the lnternational Conference on Partial Differential Equations and Related Topics in Mission 
Beach, Australia. We were informed in late October that Theorem 1.1 was independently 
obtained by 0. Druet. 

2. The local version of Theorem 1.1 in the case 1 < p < 2 

In this section we start to discuss the following local version of Theorem 1.1 in the case 
1 < p < 2. The proof will be completed in the next section. Throughout the paper we use the 
following notation: 

B, = {x E JR” 1 1x1 <a} and B = BI. 

PROPOSITION 2.1. - For n 3 2 and 1 < p 6 2, there exist some constants 6* and A, 
depending only on n and p, such thatfor any C30 Riemannian metric g in B2 with the proper3 
that B2 is convex, and the curvature tensor and its first covariant derivatives are bounded by S* 

in B2, estimate (3) holds,for all cp E W;“‘(B). 

We prove Proposition 2.1 by contradiction argument. Suppose the contrary, then for some 

1 < p < 2 and for any a! > 0, there exists u, E W,“‘(B) such that 

Ilua IIf,,* > ~“(IIV4ll~P +4l4rll~,J. 

This implies 

(10) ii, := inf I,(u) < K-P, 
LEW,; J’(R) 

where 

L(u) = 
IIW;, +4MlfP 

I14fp* . 

It follows from Proposition 8.1 that there exists some non-negative function vU E W:“‘(B) n 
Co(B) satisfying 11~~ [II ,,* = 1 and l,((p,) = h,. The Euler-Lagrange equation of cpcr is 
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ONTHEBESTSOBOLEVINEQUALITY 359 

Here and throughout the paper, L, denotes the p-Laplacian with the metric g, L,q = 

V,(]V,poJP-*V,v). It is well known that (P~ E C(B). The function po, satisfies: 

Consequently, ]lqo, ]]LP --f 0, maxgcpa + 00, ]]pU ]I LS + 0 for all 1 6 s < p*, and, in view of the 
Sobolev embedding theorem, lim infor+oo h, > 0. After passing to a subsequence (still using a! 
to denote the subsequence), we also have (pIy --+ 0 almost everywhere. 

One of the ingredients in the study of the best constants in Sobolev inequalities on manifolds 
in [23,25,26] and [28,29] is the use of some Pohozaev type identity. The usual way to derive 
Pohozaev type identities involves differentiation twice of the solution. In our case, (Pi is not 
known to be twice differentiable. To avoid addressing this technical difficulty, we obtain instead, 
as in [22], a Pohozaev type inequality for (o, by using its minimality. More precisely, we have 

LEMMA 2.1. - There exists some constant C, depending only on n, p and 6*, such that, for 
all X E B, 

a s q,P du, < C 
s 

(distR(X, X)2-pp,P + dist,(x, X)*%(x)“*) dug 

B B 

Remark 2.1. - Results and references on Pohozaev type identities for solutions of p-harmonic 
type equations can be found in [33] and [20]. 

Proo$ - Let (p, w) be some geodesic polar coordinates centered at X. In this coordinate 
system, the metric g takes the form 

g = dp* + p*hij (P, W) dwioj, 

where {O/J is a coordinate system on S’-’ and hij satisfies hij(P, w) = Sij + O(p*). Let 
R(o) > 0 be determined by (R(w), w) E a B. In the proof, we drop the subscript cr from (pa. 
For t > 1, we introduce, using the convexity of B with respect to g, 

We will show that ZU((ol) is differentiable with respect to t and will calculate its derivative at 
t = 1. The desired Pohozaev type inequality will be derived from 

guaranteed by the minimality of q. 
Making a change of variable, we have 

= tl’-n 
ss 

{la~cp(o,~~)1~+n-“h’i(t-‘o,w)a,~cp(a,w)a,~cp(~,~)}~‘* 
0 cjy-I 
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so, 

XC7 ‘-I J det(hij(t-‘a, w)) da dw. 

+ O(CJ~)CT-~~&~~~}C”-’ det(hij) da dw 

R(o) 
+ JS tV&‘O(a2)an-’ da do 

0 s-1 

=(P-n)~tV~l~dufi+~O(~2)IV~IPd~x~ 
B B 

where p = dist,(x, X). Recall that jB $‘* dv, = 1. Similarly, 

It follows that 

Due to the minimality of p, we know 

$I, (fpoy) 3 0, 
r=l 

from which we deduce 

a 
s 

[l +O(,02)]ppdug G C P~(IV& +40P*)+ 
s 

B B 

Multiplying the equation of p by p2p and integrating by parts yield 

kz / P2@* = 1 Iv~l~-2vcov(P210) + a!/ p2g 
B B B 

= 
s 

p21vq4p + 2 p~lv~lp-2vqJvp +a! 
s s 

p2qp 

B B B 2; s p21V~lP+aSp2p’-CSp2-P~P. 
B B B 
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Lemma 2.1 follows immediately. q 

Next we provide some asymptotic estimate of qU in W’,J’ norm by a blow up analysis. Let 
X, E B be a maximum point of (Ok, (Ok (x,) = maxz cpcr, then ,u~ := ~~(x~)‘-J’*/p --+ 0. Set 

where l(ILy(y) = expx,(prry) is an exponential map, y E 52, := $;’ (B), we suppose that the 
coordinates are normal at x,. It is clear that 0 < va 6 1, v,(O) = 1, va = 0 on a52,, and v, 
satisfies 

(11) -L&U, +apk- =h,VP*-1 a in a,, 

where g, = &21cr,g. Multiplying (11) by u, and integrating by parts lead to 

w-4(/v,Wgo) a a , < Lx v{* du, < A, 
s 

4 %u 

Q, Q2, f& 

which implies 

Ecr :=a/& , p<h,<K-P. 

We also know that 

(12) 

Since the coefficients of (11) are bounded, it is well known (see [18,35,15], and the references 
therein) that for some /I E (0,l) independent of o, llu, ((c~(~U) and (tv~l((C~.~(di~~~,~~,an,~,~~ are 
bounded by some constant independent of a. So, after passing to a subsequence, 

II 

- ~&(l~VlPp2&V) +Fd- =hVP*-’ in 0 cRn, 
i=l 

where v E W’*P(O), 

E =,l~nnE, E [O, K-“1, A =alimmA., E (0, K-“1, 

(13) vu -+ u in C1sp’ norm on any compact set, 0 < #I’ < fi, 

and, after a rotation of y-coordinates, 

distg (n,, a B) 
cY+m Pcu 

with v =0 on a0 when lim,-,,dist&,, aB)/pL, < co. 
It follows from Proposition 8.2 that lima+oo dis$&, tlB)/~~ = 00 (so, 0 = IV), v is the 

function given by (I), E = 0, A. = K-J’, and 

(14) ;Gc 
s 

(IV&, - v)I’+ (u, - vIP*)dvXo =O. 

fL 
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3. The crucial pointwise estimate for blow-up solutions and the proof of Proposition 2.1 

Let 52 c B c R” be a Coo domain, g be a Coo Riemannian metric on B2, such that B2 is 
convex for g, and the curvature tensor and its first covariant derivatives are bounded by 6* > 0. 
Letl<p<n, 16s<p*,xiE52,&i30,O~~i~A,~.i~O+,~i(Y)=eXp,,(~iy)for 

y E S2i := $,r’(Q), gi := ,LL;~$~!~, vi E K’i’“(s2i) be a solution of 

with 

(16) 

We assume 

Vi(O) = 1, O<Ui(y)<l VyEQi. 

(17) 

and 

dist,(xi, an) 

Pi 

E distgi (0, Szi) + 00, 

(18) 
s 

(IV&i -~)(~+lui -~I~*)du~; +O, 

Q, 

where ‘u is the function given in (1). Then we have the following crucial pointwise estimate of ui 
in Szi. 

PROPOSITION 3.1. - For n > 2, 1 < p < n, 1 < s < p*, let ui be a sequence of solutions 
of (15) satisfying (16), (17) and (18). Then there exist some constant C = C(n, p, s, A, S*) and 
D = D(n, p, s, A) such that, for large i, 

vi(Y) < CU(y)l-Ds*, y E 52i. 

First we have 

LEMMA 3.1. - Let h = hij(y) dy” dyj be a Co3 Riemannian metric on B such that 1 Rijkt ) 
and IV,,, Rijkt 1 are bounded by 1. Assume 1 < p < n and f  is some measurable function with 
)I f  + J(t,~~la)+so(BI < CO for some 60 > 0. Then there exists some constant C, depending only on 

n, p, CO and 60, such thatfor any u E W’,J’(B) fI LOO(B) satisfying 

-L+U 6 f  Jzpu in B, 

we have 

Pmo$ - The proof is standard and we only give a sketch. An application of the Moser iteration 
technique (see, for example, [ 191 for p = 2 case) leads to (Iu+I(L~(B,,~) < Cllu+llp~(~) for some 
po > p. For 0 < t < s < 1 and X E Bt, an application of the above estimate to u(X + (S - t)x) 
leads to 

IlU+IILyB,~ < C(s - t)-~IIu+lILm(B,,, < C(s -t) 
” PO-1 
PO llu+ll~~~~,~llU+/l~(B,I 

6 ~llu+llL~(o,, +ccs -‘nlu+ll~qB,,). 

TOMEX-I!??&No4 
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The desired estimate then follows from some elementary calculus lemma (see, for example, 
Lemma 1.7 in [221). 

Remark 3.1. - In Lemma 3.1, LP(B) can either be LP(B, h) or LP(B, dy2). In the rest of this 
paper we will not specify the metric when there is no need to do so, like here. 

We also need the following lemma. 

LEMMA 3.2. -&t h = hij (y) dy’ dyj be a Cc0 Riemannian metric on 3 such that B is 
convex, IRijki 1 and IV,,,Rijkr 1 are bounded by 1. Assume 1 < p < n. Then there exist some 
positive constants 60 and C, depending only on n and p , such that any u E W’,p(B) fl LOO(B) 
with 

satisfies 

-Lhu < IuI~*-~u. in B, and IIu+II~~*(~) < EO 

Proo$ - This lemma is deduced from Lemma 3.1. The reduction is standard, though we 
include it for reader’s convenience. We will use V to denote Vh and C to denote various constants 
depending only on n and p. For non-negative n E C?(B), multiplying the equation of u by 
f(u+)p for 1 < B < p* - p and integrating by parts lead to 

s (vu+~p-2vu+v(~p(~+)~) < s (U+)P*+-?y. 
B B 

Let w = (u+)(P+B-‘)/P, then 

lVwlP = (p+g - l)p(U,)~-yi7*+l~. 

A simple calculation yields 

J JVu+lP-2Vu+V(~P(u+)~) 
B 

>/3(p+g-l)-pJ 
B 

,vVwlP- P(P+~-l)l-p~(~~“wl)p’(wlv~l) 

B 

~~(p+pp-l)-p/lrivw,~-c~,wvvl~. 
B B 

so, 

s IqVwJP < c .I (u+)p*+p-’ ‘7 + c p 
s 

IwVvIP, 
B B B 
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which yields, in view of 

and the Sobolev embedding theorem that 

Consequently, using Holder inequality and the hypothesis /Iu+[[~P(~, < ~0, 

( jhNJ*)p’p* < cry.‘( /(rlw)p’)p’P* + q ,wvo,p, 

B B B 

which implies, once EO is chosen to be small enough from the beginning, that 

Lemma 3.2 then follows from Lemma 3.1 with f = (uIP*--P and 60 = p*(jI - I)/[p(p* - 

PII. 0 

Using Lemma 3.2, we establish the following initial pointwise estimate of ui. 

LEMMA 3.3. - There exists some constant C, depending only on n, p, s, A, and S*, such 
that, for large i, 

Pmofi - Multiplying the equation of Ui by ui and integrating by parts lead to Ei (Ivi IleSs < C. 

Then by the regularity results for p-harmonic type equations, ui -+ u in C:d,B and Cfl for some 
/? E (0, 1). So we only need to find some I? > 1 and to show the estimate for ljl > 2R. Let 
ljl = 2R > 2R and we will determine the value of 1? in the proof. Consider 

Gi(y)=Ry~i(j+Ry), IYI G 1. 

Then 

(19) 

and 

-LKiVi ~ -L,iVi + eiRP+~ Il~iII~-“~i”-l = hip”*-‘, 

where Si = (ii)jrn(y) dy’df’ with (iih(y) = (gih(Y + RY), y E B. 
Because of (18), we can find sufficiently large I? so that, for large i, 

(Ih;“P*-P)Gj JILp*(B) 6 EO, 
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where EO is the number in Lemma 3.2. Applying Lemma 3.2 with u = A;‘(‘*-‘)&, we have 

which yields the desired estimate. q 

We also need the following comparison lemma. 

LEMMA 3.4. - Let n > 1, D be a bounded domain of IF, h be a Coo Riemannian metric 
in a neighborhood ofB, 1 < p < CXI, a(y) E L”(Q). Suppose that u E W’lP(D) fl C’(D) and 
w E C’(D) n Co(D) satisjj 

-LhU + a(X)lulP-2u < 0, in D, 

and 

In addition we assume 

-Lhw +a(X)lw(P-2w > 0, in D. 

w(x)>0 VXED, Ivhw(X)j # 0 VX E D, 

and 

u is Cl,’ in any open set where vf,u # 0. 

Then if u < w on 8 D, we have u < w in n. 

Remark 3.2. - Results and references on the maximum principle for p-harmonic type 
equations can be found in [35] and [20]. 

Prooj-ForO<~<l,setu,=~u,and 

?=SUp{E lo<&< 1, Us(X)< W(X), VX ED). 

Clearly ? > 0. We need to prove E = 1. Suppose the contrary, E < 1; then 

u,(X) = w(X) > 0 for some X E D, 

and, by the definition of g, 

U?(X) < w(x), v x E 0. 

Let X be any such point, it follows from the hypothesis that 

Vu,(X) = VW(X) # 0. 

Since both u and w are C’, we can find a small neighborhood 0 of X so that 

and 

Ju,(x) - w(X)1 < iw(X) vx E 0, 
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which ensure that the equation is not degenerate in 0 and, due to our hypothesis, u E C”’ (0). 
Let 

6 = w -u,. 

Then < satisfies 

-vh(A(x)V~&) + b(x)< b 0 in 0, 

where 

A(x) = (A+)) = 

is positive definite and is Lipschitz in 0, and 

b(x) = atx>[ww-’ - ua(x)P-‘]/(w(x> - Ui(X)) 

is in LQ3( 0). Furthermore 

t(i) = 0, and c(x)30 VXEO. 

Since Aij (x) is Lipschitz, we have 

It follows from the strong maximum principle [ 191 that 

C(X)‘0 VXEO. 

This implies that UE E w in 0, violating u < w on a D. Lemma 3.4 is established. q 

Proof of Proposition 3.1. -It follows from Lemma 3.3 that for ]y] > 4k 3 2l?, we have 

Thus, in view of (15) and (18), for any given C6* < S < n - p, there exists k > R/2 such that, 
for large i , 

(20) 

where 

(21) F22[+--;@]P1 >o. 

Next we select a positive test function 

W(Y) = IYI 
-kp 
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A calculation yields, for large i, 

367 

Here and in the following, C, C’, C” denote constants independent of cx, while D, D’, D” denote 
constants independent of a and 6*. So, for 6 > DC?* (for a larger D) and for large i, 

(22) -I$; w(y) - ZwP-’ > 0, 
IYP 

J2i\Bi. 

Multiplying w by some constant 6 = e(k), we have 

Let u = Ui /C?, since vi satisfies (15), u is in C ‘J for some /I > 0 due to the previously mentioned 
regularity results. Furthermore, in view of the classical results of [27], u is C2,fl in any open set 
where Vu is nonzero. It then follows from Lemma 3.4 that 

Proposition 3.1 is established. q 

ProofofProposition 2. I. - Rewriting the estimate in Lemma 2.1 in terms of v,, we have, using 
also p < 2, 

(23) cz 
s 

v,p dv,, < C&p 
s 

IYI (y 2vP* dug,. 

J-L Q, 

It follows from Proposition 3.1 that 

v,(y) < cv(y)*-D8*. 

When 6* is small, we have 0 < D6* < (n + 2 - 2p)/(np), so 

2-p CL, 
s 

Iy12v,p* dug, 6 C/L;-~ 
s 

)y~2v(‘-Ds*)p* dy 6 C, 

fla IYl~CPLor~ 

and, in view of (13), that 

lim inf cx 
(Y-+03 s 

v,” dv,, 2 lim a, vPdy =co. 
Ly-+oo s 

a lYl<l 

The above two estimates contradict to (23) for large 4. Proposition 2.1 is established. q 

4. The local version of Theorem 1.2 

In this section we establish the following local version of Theorem 1.2. 

JOURNAL DE MATHBMATIQUES PURES ET APPLIQUfiES 



368 T.AUB1N.Y.Y LI 

PROPOSITION 4.1. - For n 3 4, let p E (1, n) and r > r*(n, p); jbr n = 2,3, let p E 
(1, fil U (2, n) and r > r*(n, p>, or p E ifi, 21 and r 3 r* (n, p), then there exist some 
constants 6* and A, depending only on n, p and r, such that for any CcQ Riemannian metric 
g in B2 with the property that B2 is convex, and the curvature tensor and its first covariant 
derivatives are bounded by S* in B2, we have 

In view of the Holder inequality, if the desired inequality holds for some r, then it also holds 
for any r’ > r. So we can assume that r is very close to r* (or equal to r*, when n = 2,3, and 
p E [fi, 2]), we assume that r c p*. We establish Proposition 4.1 by contradiction argument. 
Suppose it were false for some p and r. Let 

As in Section 2, there exists some non-negative function qa E W:“(B) (7 Co(g) with (1~~ ]ILp* = 
1 and 

Zy(poLy) = h, := inf Icy(u) < K-“. 
ueW,;“(B) 

The Euler-Lagrange equation of pU takes the form 

We also need a Pohozaev type inequality for qo, 

LEMMA 4.1. - There exists some constant C, depending only on n and p such that, for all 
X E B. 

(24) 
1 I [---I r P* 

alI% llfr < C 
s 

(dist,(x, .?)“-“p,P + dist,(x, X)2qo,(x)P*) du,, 

B 

Proof - Let (p, w) be some geodesic polar coordinates centered at X and we use the same 
notation as in the proof of Lemma 2.1. We only need to calculate the derivative of J]vt Ilel- at 
t= 1: 

$llvtll:l 
j=l 

= -~llcdl~r + ll~lI~;r~O(d2)p’d~,. 

B 

The rest of the proof of Lemma 4. I is essentially the same as that of Lemma 2.1. o 

’ Let X, E B be a maximum point of (ocr, pLLn = am - P*Ip. It is easy to see, as in Section 2, 
pa + O,liminLm~, > 0, llqbll~~ -+ 0 for all 1 $ s < p*, and, after passing to a subsequence, 
pU -+ 0 almost everywhere. Define Us as in Section 2 and its equation now takes the form 

where 
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Applying Proposition 8.2, we have h, -+ K-p, 6, -+ 0, 

dist, tx, , a W ~ o. 

Pa 

and 

(25) 

It follows from Proposition 3. I that 

(26) vu(y) 6 cu(y)‘-*. 

Here and in the following, C. C’, C” denote constants independent of cx, while D, D’, D” denote 
constants independent of (II and 6*. 

Rewriting the estimate in Lemma 4.1 in terms of u, , we have 

2.,,- !LL!?+ “II~&‘(Q,,&) G CPL, s (ly12-“u,p + Iy12u,p*). J&i 
When 6* > 0 in (26) is chosen to be small enough from the beginning, we have 

14’1 %g* = (IyIpu~*-p )lY12-pu~ < C(lyl”vty) (~-~s*)(P*-P))ly12-Pv,p < CJy12-Pu,p, 

Since r > np/(n + 2 - p), we have 2 - p - n(~ - r)/r > 0. It follows that 

(27) 

Case 1.1 x p < (n + 2)/3 and r B np/(n + 2 - p). Since 1 < p < (n + 2)/3, we have 
2 - p - p(n - p>/(p - 1) 6 -n, so for S E (0,2 - p - n(p - r)/r), 

2-&L!5d 
Pa s N-I’1 I (y (I + ly))2-p- p-1 dy 6 Cpry 

2-P-+5Lj 6 c, 

IVWP, 

Using (27) and (26) (recall that 6* is small), we obtain: 

pp- Q!yi 
~Y(I% Il&&g,) 6 c/k 

s 
lypu(y)u-~“*)” 

f&Y 
2-p-!+‘) G CPU, s ly12-“(I + Jyl)--+D”* dy < C. 

Sending cx to 00 leads to contradiction as in Section 2. 

Case 2.2 < p -c n and r > np/(n + 2 - p). For p = 2, the result follows from Theorem 1.1. 
So we only treat 2 < p -c n here. Since r > np/(n + 2 - p), we have r > p and (p - 2)r/(r - 

1OURNAL DE MATHgMATIQUES PURES ET APPLlQUh 



370 T AUBIN,Y.Y. LI 

p) < n. So, by using the Holder inequality, 

i.e., 

which contradicts (27) for CY > C. 

Case 3. n = 2,1 -z p -c 2; or n = 3, 1 < p < 3. We only need to consider (n + 2)/3 < 
p < fi since the remaining cases follow from Case 1, Case 2, and Theorem 1.1 in the case 
1 <P<2. 

We derive from (26) that 

Using the above to estimate the right hand side of (27), we have 

When S* is chosen to be small enough from the beginning, the exponent p[ z - :] + O(S*) is 
positive. This leads to contradiction for large (Y. Proposition 4.1 is therefore established. 0 

5. Local version of a result related to Theorem 1.3 

In this section we establish the local version of Theorem 1.3. In fact, for the local version, the 
restriction on a is less than that stated in Theorem 1.3. For this reason we define, for 12 = 2,3, 

I 
2, 1 < p < (n + 2)/X 

a*(ll, p) = (n - P)/(P - 1). (n + 2)/3 < P G fi, 

P> fi<p<n, 

and, for n 3 4. 

2, ICP<fi, 

a*@, P) = 2ph - /d/C-3p2 + np + 2n), 1/;; < p < (n + 2)/3, 

Pl (n + 2)/3 < p -c n. 

It is easy to see that u*(n, p) is a continuous function of p in (1, n) and satisfies p < a*(n, p) < 2 
for II = 2,3 and (n f 2j/3 c p < 2/;1’, and 2 < u*(n, p) < p for n 3 4 and ,/% < p < (n + 2)/3. 

PROPOSITION 5.1. - For n 3 4, let 1 < p < fi and 0 -C a < u*(n. p), or fi -C p < n and 
0 < a -C a*(n, p); for n = 2,3, let 1 -C p < 2/;; and 0 < a < u*(n, p), or fi < p -C n and 
0 c a < a*(n, p), then there exist some positive constants S* and A, depending only on n, p and 
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a, such that for any Cc0 Riemannian metric g in B2 with the property that B2 is convex, and the 
curvature tensor and its,first covariant derivatives are bounded by 6* in B2, we have 

lMl;,~*,,,,, G WIWl&,R~ + W~lla,,~~,,,,, Vv E @“‘UO 

The proof is again by contradiction. We suppose, for some p and a, that for any o > 0, there 

exists u, E Wi”‘(B. g) such that 

II& II;,,* ’ ~“(IlwY/I~,~ +~lIkiIl(t,‘). 

This implies 

h, := inf Ia <K-“. 
uGW,p(B)\(O) 

where 

Lx(u) = 
llV4l’t,~ +4Ml’l,~ 

lb II;,‘- . 

It follows from Proposition 8.1 that there exists some non-negative minimizer pa E W;‘“(B) n 

C’(B), with IJ(pLyIIL,,* = I and &((P~) = h,. It is clear that C-’ 6 lIVcp,ll~~ < C. Here and 
throughout this section, C denotes various positive constants which are independent of CY and S*. 
The Euler-Lagrange equation is 

-L,cp, + alIp, ll~~“IlVq~~ Ilfi,“cp~-’ = h, /IV~p,ll~~~q~*-’ in B. 

Using the minimality of (pa, we show as in Section 2, for any j E B, that 

where p := distK(.r, .i) and C is some constant independent of cr and X. Multiplying the equation 
of qo, by p2pa and integrating by parts yield, as in Section 2, that 

iLllv~.l,:T”p~~* ~~~~~lvip,l”+olJl~~ll~,“1/V~~ll~l”Sp~~~-c~~’-”p~. 
B B B B 

We deduce from the above two estimates 

(28) 4% II;,, G c 
s 

(p2-“(pup + p2p;*). 

B 

Let x, E B be a maximum point of pa and then pa := ~~((x,)‘--I’*IP + 0. Set 

where $u.(y) = expx, &y) is an exponential map, y E Q(y := @i’(B). It is clear that 0 < u, < 
1, Us (0) = 1, u, = 0 on 8 a,, and ucr satisfies 
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where g, = p;*@zg and E, = cz& I/v, I]“,;“. 
It follows from Proposition 8.2 h, -+ K-“, &t d&,(x,, as) -+ 00, and 

where u is the extremal function given by ( I ). Consequently, h, ]] VRIl v, ]I zi” + K-P. 
Applying Proposition 3.1 to u,, we have 

(30) u,(y) ,< cu(ypDs* v y E i&. 

Here and in the following, C, C’, C” denote constants independent of a, while D, D’, D” denote 
constants independent of 01 and 6*. As in Section 4, we deduce from (30) that, when S* is 

chosen to be small from the beginning, Iy]‘v{* < C(y]*-Pui and therefore (2X), with X = nry, is 
simplified as c”]((o, I]“,, < CsB dist(x, x,)*-P~~, i.e., 

Case 1. n 2 4. We divide this case into four sub-cases. 
Sub-case 1.1. n 2 4, 1 < p < (n + 2)/3 and 0 -c a < 2. Since S* is small, it follows 

from (30) that 

On the other hand, 

limsupaIlu,Il~,j 3 limsupcrllull~,(,y,<l) = m 
a+m (Y-+00 

Contradicting (3 1) for large LY. 

Remark 5.1. - The proof for Sub-case 1.1 works for all n 3 2, 1 -=z p < (n + 2)/3, and 
O<L7<2. 

Sub-case 1.2. n = 4 and p = a = 2. Obviously (3 1) can not hold for large o. 
Sub-case 1.3. n 2 4, (n + 2)/3 < p -z n and 0 < a -z p. We first estimate the right hand 

side of (3 1). Since p > (n + 2)/3, it follows from (30) that 

where ]O(S*)] < Da*. To estimate the left hand side of (31), we need an appropriate lower 
bound of u,. As in [28,29], we use the maximum principle to establish such a lower bound of u, 
in (y] 6 Ra for appropriate R, -+ co, which gives an appropriate lower bound of (]ua ]]Q, We 
derive from (29), in view of (30) that 

-.&u,(y) 3 -cEaly)-(“-p)+o(6*), y E c&. 
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For $ = D’S*, let d = i mini+1 v(y) and 

-9 
W(Y) =dlyl . 

Then, when we make D’ > D (but independent of o and a*), we have, for cz large, 

Define, for D” >> D’ (but independent of CI and S*), 

R, = D”-‘&-*/P + oo. 

Then, for CI large, 

(33) &aua -L&J - wW) GO, 16 lyl G&x. 

Since ua converges strongly to v on compact sets, we have, for cx large, 

U,(Y) 3 W(Y) - w(&)> IYI = 1. 

Multiplying (33) by (W - w(R,) - II,)+ and integrating by parts on I < IyI < R, yield 
ua. > w - w(RIY) on 1 < lyl < R,, which implies 

(34) Q(Y) 2 c”-‘(1 + ,y,,-Y+ V IYI < RaP. 

It follows, since p > ,I%, that 

II% IIL”(f2,) 3 c”-’ (‘I -“+b > l/P 
(1 +Iyl)- “-’ dy > elf-I R;;- 

lMQfL/2 

$+‘1+0(6, 

i.e., 

IIU, Ilp(f&) > c”-’ (EJy+o(s^)+o(8*~, wherey=i[$-%]c(O,-!-), 

Using the definition of Ea., we have 

(35) /Iv, IILa(SZ,) > c”-1 (uw~)-*+o’~‘+o’~*~. 

Using the above estimate and (32), we derive from (31) that 

(36) 

The exponent of (11 is, in view of yp < 1, positive. It is elementary to check 

ya2 n-p 
1 -Y(P-a) 

>a-- Vl <p<nandO<a<p. 
P-1 
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Choosing from the beginning 6* small enough so that 

w2 
1 - Y(P -a> > a - s + Ohi) + o(s*), 

and letting (Y -+ 00 in (36) lead to a contradiction to (31). 

Remark 5.2. - The proof for Sub-case 1.3 works for all n > 2, max( fi, (n + 2)/3) < p < n, 
and 0 < a < p. 

Sub-case 1.4. n 2 4, fi < p < (n + 2)/3 and 0 -z a -z 2p(n - p)/(-3p2 + np + 2n). We 
first point out that 

1’2 ifp=&, 

2Pb - P) 

I 

n+2 n+2 

-3p2 + np + 2n 
=- 1fp=--- 

3 3 ’ 
r2 ifJ?kp<y. 

Since p > &, we still have (35) for i = D’S*. On the other hand, since p < (n + 2)/3, 
estimate (32) must be replaced by 

So, instead of (36), we have 

2 
Y -yu 

ff l- I-&l, pa I-Y(P-“) < q@z-2l+o(s)+o@*)~ 

It is easy to see that 

ya2 
1 - y(p -a) 

>a-2, 

and we reach a contradiction the same way as in Sub-case 1.3. 

Case 2. n = 2,3. We divide this case into three sub-cases. 
Sub-case 2.1. n = 2,3,1 -c p < (n + 2)/3 and 0 < a < 2. This follows from Remark 5.1. 
Sub-case 2.2. n = 2,3, (n + 2)/3 < p < fi and 0 < a -x (n - p)/(p - 1). Since 

p > (n + 2)/3, p(n - p)/(p - I) + p - 2 < 12, so when 6* is sufficiently small, it follows 
from (30) that 

Contradicting (31) for large o. 
Sub-case 2.3. n = 2,3, fi K p < n and 0 < a x p. This follows from Remark 5.2. 

6. The proof of Theorem 1.1 

In this section we establish Theorem 1.1 by using Proposition 2.1, Proposition 5.1, and 
partition of unity arguments. 
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For n 3 2, let (M, g) be a complete n-dimensional Riemannian manifold (without boundary) 
satisfying (H). Let 1 < p < 2 and 1 < a < p, we assume that there exists some E > 0 such that 

where i is independent of X and q and BE(X) denotes the geodesic ball of radius E centered at i. 
Then we have the following theorem which, together with Proposition 2.1 and Proposition 5.1, 
imply Theorem 1.1. 

THEOREM 6.1. - For n 3 2, let (M, g) be a C30 complete n-dimensional Riemannian 
manifold (without boundary) satisfying (H). For 1 < a = p < 2 or 1 < a < 2 < p < n, we 
assume (37). Then we have, ,for some A depending only on p, a, E, A, and (M, g), that 

ProoJ: - We consider geodesic normal coordinates at X, (agij (y)l < Cp with p = d(x, y) and 
C a constant which depends on the bound of the sectional curvature (see [5, p. 1521). Let us 
consider a covering of the manifold by balls of radius S, S smaller than the injectivity radius 
and small enough so that the balls are convex (there exists a constant CO such that if CL%~ < CO 
the ball is convex). We know that we can choose the covering uniformly locally finite (each 
point has a neighborhood whose intersections with the balls are empty except at most i of 
them), see [5, p. 1511. Let (hi] be a partition of unity subordinated to this covering such that 
(h,!‘“) are bounded in C2 uniformly in i. For instance we start with a Cm radial function v(p) 

which is equal to e&Q-‘)-’ for S/2 < p < 6 and which is positive inside the ball. We choose 
h; = ~“(pi)/[c,~ y”(p,j)] with PJ = d(xi, y), xj being the center of the jth ball. 

Case 1.1 -z a = p < 2. We would like to prove for any q~ E W’,P positive 

(38) Ildl~* 6 KPllWl:: + 4lvll; 

When S -K 2, we know from (37) that 

So we can write for such q~ 

It follows that 

(39) 

i i i 

lIdI;* < KP c [[“(@;;“)[I; + Clldl;. 

The main thing is then to estimate 

c I( Whf ‘“I 11;. 
i 
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Write 

p((Ph(‘“) 11; = / [h,?‘“IVp12 f cpV’(oVj(hf’“) + (p2(v(h;‘“))2]p’2. 
Let 

v = {x EM I JV(o(-q 6 c4-4) and 0 = (x EM) /V&r)/ 3 p(x)}. 

The contribution of the integral on V is easy: 

cS[ hfiP~V$O12 + (pVj$OVj(h,?‘“) + (p21V(h~‘“)12]“‘2 

’ f2;nv 

(40) <2JJf2C /- ~~[h~‘~+Iv(h~‘i’)12]p’2gc~~ylP$CESlpP. 

; sz;nv i f2i 

To estimate the contribution on 0, we need the following elementary lemma. 

LEMMA 6.1. - Let ,f and g be two functions with compact support, f > 0, ,f + g 2 0. Then, 
for I < p < 2, 

Applying the above lemma with f = hfi”lVlp12 and g = ~Vj~Vj(h~‘“) + p21V(hi’P))2, we 
have 

hf’“(Vp12 + pV”pVj (hf”) + p2/V(hI!‘p)/2]P’2 

We estimate the right hand side term by term: 

cs cp2/V(h)“‘) I2 

i a,nr-, 
[h;‘P(Vq12]1-P/’ 

where we have used the fact JOhi I2 < Chi, with C not depending on i. Next, 

(pVjpVj(hf’“) 

[h;‘p(Vq/2]‘-p/2 = 

and 

rf hiIVPIP 6 

i f2in* 
s 

IVVI’. 

Putting the above three estimates into (41), we have 

(42) C 1 

i gnc-, 

[h~‘“IV~12 + ~V’(pVj(hf’“) + q2)V(h,!‘f)/2]P’2 6 / JVvIP + C/a”. 
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The desired estimate (38) follows easily. Theorem 6.1 in this case is established. 

Case 2.1 -z a < 2 < p < n. We would like to prove for any (D E W’,P positive 

(43) Ml”,* G ~allWl; + Allvll;. 

We write 

lkll$* = lI’p”I/,*,, = C&i 
II II i 

p*,p G c Ilv% IIp*,p = c ll~~~‘pIl;Y. 
i i 

As in Case 1, when S < F, we have 

So, using p > a, 

for some C and D. In the following we divide into two sub-cases. 
Sub-case 1.1. 1 -z a < 2 6 p -z n and p 2 4. We make use of the following elementary 

inequality, which holds for I > - 1, 

(1 + t)” - 1 - kt < bltlk, when 1 < k < 2, 

bt2 + cltlk, when k > 2, 

where b and c are some constants depending on k but independent oft. Thus, for p 3 4, 

A :=C 
s 

[hf!'"(Vq1* +~Vj~Vj(h~'p)+~2(~(h~'p)(2]P'2 
i 

< / IVcpIP + ; ~~h;-*~pIvQlp-2(pvj~vj(h;~p) +q*/v(h;‘p)12) 
I 

But as 

+CC (~Vj~Vj(h~'p)+(p2~V(h~'P)12)p'2 
i 

s 

+bx h~~-4'"~V~~"-4((oVj~V,i(h;'P)+~2~V(h~'P)~2). 
i s 

Chl-““Vj (hi”) = ’ C Vjhi = 0, 
i ’ i 

we obtain 

A .S lIWI:: + WW~-‘ll~11; + W4I; 
for some constants E and F, where we have used p - 2 > p/2, i.e., p > 4. 
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SO 

Ilcoll~. G ~PIIWl; + GllWl~-%4l; + Wlvll; 

(44) G (~“IIVdI; +m4ya 

with G, H, and k some constants. We have obtained the desired inequality (43). 
Sub-case 1.2. 1 -z a < 2 < p < rz and 2 -c p < 4. We have the inequality for cp E W’.P, 

(0 3 0: 

lIdI;* 6 KP c jlV(cp~;‘“)/j; + W’dl;-“llc~ll; + WPII;. 

Let V = (x E M I (V&T)/ < p(x)) and 8 = {x E M I IVp(x)l ,) cp(x)). We have 

w h~‘p)V~~2+cpV+9vj(h~‘p) + qJ*p(h;‘p)j2]p’2 ,< c q?p. ; L?,nv s 
For the integral on 52i n 0 we will use the equality 

s (f + g)P’2 = s p/2 + E 
s 

gfP/24 + !I! !! _ 1 
2 I 

s2, ne 
2(2 ,i(l-r) [ (f+?$)2-“/?. 

52, nc-) Ri n(9 0 sz,no 

here f > 0, ,f + g > 0, with f = hf’” (Vpj* and g = ~V’~Vj(h~‘“) + q21V(h;‘“)12. 

&P/2-l = @‘j(pVjhi + p2~V(hI!‘p)j2] 

= h!-2’“IV~l”-2~2~V(hf/p)(2 6 C~lVcp~$,‘Il&,. I 

Let fit? be the set where g 3 0 and Q, the set where g < 0, then: 

s if2 
(f + tg)*-PP G s [~~hf’“-‘V’~Vjhi + $~2h~‘P-21Vhi12]2 

n,+ n8 q?ns 
h;'"-'(Vql4-P 

<2 
4 (p2(VjvVjhi)2 

3 hi (Vq14-P 
+ _i_ (041Vhi14 

n,+ne 
p4 h@p14-P 

<c 
s 

((P2mr2 +‘p”). 
a,? nc- 
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Thus 

On the other hand, 

since g 3 -f, f + tg 3 (1 - t)f. It follows that 

Thus 

Ildl;~ 6 ~PIIWl~, + W’~oll~,~II~4l~~ -t-W&, 

6 (~all~pll~P + k tk4”rp 

with k some constant. Theorem 6.1 in Case 2 is established. 

Proof of Theorem I. I. - Obviously we can find i; E (0, d) so that for any X E A4 we can dilate 
the metric g on &((x) to g on B2 such that, with respect to g, B2 is convex, and the curvature 
tensor and its first covariant derivatives are bounded by 6* in &. The Z depends on S”. Since 
the first constant in the Sobolev inequality is invariant under dilation, Theorem 1,l follows from 
Theorem 6.1 and the local results Proposition 2. I and Proposition 5.1. 

7. From local to global, and the proof of Theorems 1.2 and 1.3 

Though it is more natural to derive global results from local results by partition of unity, we 
do not see at this point how to do that for the more general situations in Theorems I .2 and I .3. In 
this section we provide a different argument which allows us to establish global results as stated 
in Theorem I .2 and Theorem 1.3 from local results established in previous sections. 

For II 3 2, let (M, g) be a complete n-dimensional Riemannian manifold (without boundary) 
satisfying (H). Let 1 < p < n, I < r < p*, and 1 < a < p, and we assume that there exists some 
E > 0 such that 

where A is independent of .? and q and B:(X) denotes the geodesic ball of radius Z < d centered 
at X. Then we have the following global inequality. 
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THEOREM 7.1. - For n 3 2, let (M, g) be u Cc0 complete n-dimensional Riemannian 

manifold (without boundary) satisjjing (H). For 1 < p < n, 1 K r < p*, and 1 < a 6 p, we 
assume (45). Then we have, for some A depending only on p, r, a, E, A, n, d, und k, that 

ProoJ - Suppose the contrary, for all Q! > 0, 

We can find, for a sequence of Q! -+ 30, compact exhaustion M, of M, with the second 
fundamental form of a Ma bounded by some constant independent of o (we need the hypothesis 
on aM, for Proposition 8.2 to hold), such that 

Aa := inf Io((40) < K+ 
&v,;.“(M,) 

We note that when M is a compact manifold (without boundary), we take M, = M and 

Wi’“(M,) below simply means W’,J’(M). It follo ws from Propositions 8.1 and 8.2 that there 

exists non-negative minimizer w. of Ia in Wi”(M,) such that II~,JIL,,* = 1 and, for some 
xa E M,. 

(46) ‘im (II’PallWl.P(MU\B,(.ru), v 6 ’ 0. LY-IOO + llG%Y IIL”(M,\E,(r,))) = 07 

The Euler-Lagrange equation of pa is 

For 0 <: E c E/9. let n s nU be a smooth cutoff function satisfying Q = I in B2E(~,), n = 0 in 
M \ Z&(x,), 0 < n 6 1 and lV~l 6 (4.5-I in M. By our assumption (45), 

Recall that h, K” c 1. So we can simplify (49) as 

(50) 
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Now let n be any cutoff function with support in M \ B,(x,) and we multiply equation (47) by 
$‘~o, and integrate by part to obtain 

from which we easily deduce 

We point out that in the above derivation we have used the obvious fact that (11 VP, lli,“] is 
bounded above by positive constants which are independent of o (a < p is used here). Selecting 
n appropriately we have 

Using the above and (46), we deduce from (50) that: 

all% Itr G Cll~,ll~:,*(U,,H~,(I.,) + ctl~aIl$~~a\~,(x~)) + cll~~ll~p(8,t(,),~,(,~,)) 

(51) 6 Cll% II;~~:~a,HFcs~)) + Cll~cx llaL/,(BSF(X,)\B,(X,)). 

We know from (47) that 

-L,(o, < Ccp,P*-’ on I&. 

Because of (46) we can apply Lemma 3.1 (Moser iteration) to obtain 

for all 0 < 61 < 82 and BJ~(x) c h!, \ Bcp(x,). It follows immediately that 

and, by a suitable partition of unity with finite overlapping (using also I < p*), 

The above two estimates and (5 1) lead to contradiction for large o. We have established 
Theorem 7.1. q 

Proof of Theorems 1.2 and 1.3. - The proof is the same as that of Theorem 1.1, only use 
Theorem 7.1 instead of Theorem 6.1, and also use in addition the local result Proposition 4.1. 

8. Appendix 

In this appendix, we present some results and arguments used in this paper. Let (M, g) be a 

Cm compact Riemannian manifold with or without boundary. For p 3 1, let Wi” (M) denote the 
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usual Sobolev space with zero boundary value when M has boundary, and W:‘“(M) = W*vp(M) 
when M does not have boundary. For 0 < a < p*, 1 < r < p*, a! 2 (ro > 0, let 

We assume 

(52) h, := V)E;~fM) Ict (cp) < ra 
0 

PROPOSITION 8.1. - For p > 1, 0 < a < p*, 1 < r < p*, and 01 > K-OVa(h-i), V = 

[m dv, we assume (52). Then there exists some non-negativefunction ~0, E Wd’p(M) n Co(M) 
satisfying IJpallLP* = I, I,(V~) = AU, and 

LEMMA 8.1. - Let (M, g) be a Co3 compact Riemannian manifold with or without boundary, 

and 1 < p < n. Then any non-negative.function q E Wi”(M, g) satisfying 

(54) -,!,,cp < pc~(p~*-~ and llvllLp* = 1 

is uniformly bounded if p < K-P, where K is the best constant K (n, p) in the Sobolev 
embedding theorem and L, is the p-Luplacian. 

ProoJ: - Multiplying (54) by ~‘+~f’ and integrating by parts lead to 

1 +kp 
(55) ____ 

(1 + k)P .I IQ I ‘+k ‘d&p 
J 

Ipll*+kP&-IL( j-~P*~~+~~~v]p’p*~ 

The Sobolev inequality yields 

Choose E > 0 so that K P( 1 + 8)~ < 1, and then pick ko > 0 such that 

(l+ko)PKP(I+~),u<l with(l+ku)p<p*. 
1 +kop 

We obtain lJ(~I(~(l+t~)~* < C. Now we return to (55) with k = kl = p*ko/p. We have p* + klp = 

p*(l fko). Thus ll~ll L(~+k,)p* < C. So we prove that p is bounded in any L’. The Moser iteration 
technique yields sup (D < C. 

COROLLARY 8.1. - The same result holds for non-negative function cp E WdlP(M, g) 
satisfying 

with 1 < q < p*, 

-L,p < ,u@-’ and JJc~JILY = 1 
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Indeed if ]]cp]] Lcl+ku,p* < 1 we have nothing to do. Otherwise we write 

s (gq+k”P du < 

which holds because 

kp P <-. 
p*k+ p* -q p* 

ProofofProposition 8.1. - It follows from the Sobolev embedding theorem that & > 0. Since 

cY>K-nV a(+-;) h, can not be achieved by a constant function. We use the Yamabe method. 
For max(p, r) < 4 l p*, let 

A minimizing sequence is bounded in Wd’” (M, g). Using the Banach theorem and the 

Kondrakov theorem ( W’,J’ c Z,q is compact) yields a subsequence which converges weakly in 
l,P 

Wo ’ strongly in LY and a.e. to a non-negative function z+, which satisfies 

(56) - L,uq + Q!Iluq ll~;‘llVz4qll~;nU;-’ = 1, llVk&,a4-1 in M. 

As in the Yamabe problem, we can prove [5, p. 1521 that h, -+ h, as q + pt. So for 

qo < q < p*, h, < fi < K-‘, and ]]VU~]]LP > 0 (recall that a! > K-‘V ‘(k+)). This implies 

-Lguq < /Au;-l with p < K-J’. According to Corollary 8.1, sup uq < C. The function {uq ] 

(qo < q < p*) are bounded in Wd’“. The Kondrakov theorem then implies that there exists a 
sequence of q; + p* such that uqi -+ vG in .@ for any /l, and uqi -+ qo, a.e. Thus 

II’Pallp* = pc Ilk?, IIL% = 1. 

Applying the Banach theorem, uq, converges to (Pi weakly in W ‘+P. It follows that I, (pa) < &. 
Since vu E A, Z,((p,) = &. As pointed out earlier, qa is not a constant, so ]/VP@ ]]LP > 0. 
Equation (53) is the Euler-Lagrange equation of the minimizer va of 1,. Since qa is in L”, we 
know from the regularity results for p-harmonic type equations that 4~~ E Co(M). Proposition 8.1 
is established. q 

In the rest of this appendix, (M, g) denotes a Coo complete connected Riemannian manifold 
(without boundary) satisfying (H). Let a --+ 00 be a sequence of real numbers and let I& = M 
when A4 is compact, and, when A4 is not compact, let (Ma) be a compact sequence of connected 
submanifolds such that the injectivity radius of Ma is bounded from below by some positive 
constant independent of a and the second fundamental form of aM, is bounded in absolute 
value by some constant independent of a’. We assume 

(57) ;i, := inf 
w,:%w 

L((P) < K-O, 

and there exist non-negative functions qa E Wi’” ( Ma) fl C”( Mu) such that 

(58) Il%Y lip* = 1 and I, =i,. 
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The Euler-Lagrange equation of pa is 

Since all~~ll~~ 6 Kpa, IIv~IIL~ + 0. After passing to a subsequence, (pa -+ 0 a.e., 

IIV~aII~, + 6 < KpaT and~llv~ll~r --+ r] < K-“. The Sobolev inequality holds for any E > 0: 

lIdI&,* < Ka(l +~~IlWll~~ + &Ildl(lr~ 

take ye = %, and let cx tend to infinity, we have 1 < Ka (1 + E),$. Since E > 0 is arbitrary, 4 = K-a 
and r] = 0. 

Since r -C p*, we have 

SO maxMU pa -+ CO. Let X, E MO be some maximum point of pa, i.e., qU(xa) = maxMa pa. Let 
E > 0 be some positive number, independent of o, such that BE(x), the &-geodesic ball centered 
at X, is convex with respect to g for all x E M. Define 

9 

G(Y) = PIYP (P&b(Y)), 

where pU := cprr (x,) I -P*lP -+ 0, $U(y) =exp,&y), y E Sz, := $~‘(B,(n,)). Itisclearthat 
0 < V~ < 1, vu (0) = 1, u, = 0 on a&, and uIy satisfies 

where 

PROPOSITION 8.2. - Let p > 1, 0 < a -C p*, 1 < r < p*, and (M,} be as above for a 

sequence of a --+ CXI such that (57) is satisjied. Assume that (pa E Wd’p(Mol) n C”(M,) are non- 

negative functions with I/CJI~ II,+ = 1 and I, = ia, and let xa be a maximum point of pa. 
Then, 

h, -+ K-“, 
,im dist&,, aM4 = o. 

a+m Pu, 

where v is the extremal function given in (1). 
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ProoJ - Multiplying (59) by qU and integrating by parts over I& lead to 

= i, II Vpcv lI;;u&8 
s 

~0; dv. 

It follows that 

(61) & 6 h,pqo,II~,a <i;,“‘” < K-p. 

The coefficients of (60) are bounded by K-P, so by the regularity results for p-harmonic type 
equations we have, after passing to a subsequence, v, -+ 2~ in Cfi’(zU) for some 0 < /I’ < 1 and 
w E C@‘(o) tl W’sJ’(s), where (after a possible rotation of the y-coordinates) 

0= yEW”/y”z-al~m~~U 
1 

-’ dist, (x,, 8 A.&)) 

andwsatisfiesw(O)=1andw=Oona0ifa0#~. 

Next we show Ed -+ 0. Since & II Us llLr = 11~~ llLr, 

Due to the uniform convergence of v, to w on compact set and w(0) = 1, (11 v, II L’ } is bounded 
from below by some positive constant. We have shown crll~~ lltr + 0 and IIVqU II&” < Ka-P, 
so E, + 0. Let o + 00 in (60), w satisfies 

-Lg,w = KpwP*-‘, in 0. 

where go is the Euclidean metric. Multiplying the above equation by w and integrating by parts 

over 0 lead to IIVwIl& = K-Pllwll~‘,. . Since v, weakly converges to w both in W’.P and LP*, 

we infer JIVwll~,p < K-’ and llwllLp * 6 1. Thus w is an extremal function to the best Sobolev 
constant in W”. Indeed, 

llVwll~,,llwll~~ = K-“llwll~,lP < K-p 

implies 

llVwll~pllwll~,$ = KmP, IlwllLp* = 1, and IIVWIILP = K-l. 

So 0 = B” and (recall that w(0) = 1 and VW(O) = 0) w = v, the function given in (1). Thus v, 
converges strongly in WI,“. The rest of the statements in Proposition 8.2 follow easily. 
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