-
brought to you by .. CORE

View metadata, citation and similar papers at_core.ac.uk

provided by Elsevier - Publisher Connector

Physics Letters B 673 (2009) 293-296

Contents lists available at ScienceDirect

Physics Letters B

i

www.elsevier.com/locate/physletb

Entropy bound of local quantum field theory with generalized

uncertainty principle
Yong-Wan Kim, Hyung Won Lee, Yun Soo Myung *

Institute of Basic Science and School of Computer Aided Science, Inje University, Gimhae 621-749, Republic of Korea

ARTICLE INFO ABSTRACT

Article history:

Received 19 November 2008

Received in revised form 24 December 2008
Accepted 25 February 2009

Available online 28 February 2009

Editor: T. Yanagida area.

PACS:
04.70.Dy
04.60.Kz

Keywords:

Entropy bound

Generalized uncertainty principle
Black holes

We study the entropy bound for local quantum field theory (LQFT) with generalized uncertainty principle.
The generalized uncertainty principle provides naturally a UV cutoff to the LQFT as gravity effects.
Imposing the non-gravitational collapse condition as the UV-IR relation, we find that the maximal
entropy of a bosonic field is limited by the entropy bound A3/4 rather than A with A the boundary
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1. Introduction

The counting of degrees of freedom of local quantum field
theory (LQFT) including gravity effects is an important issue. For
example, statistical mechanics implies that a thermal photon gas
could be described by LQFT without gravity. Its entropy takes the
form of S ~ T3L3 when it is confined to a box of size L as an IR
cutoff. If the temperature T could be an arbitrarily chosen param-
eter, one finds that the system has an entropy proportional to the
volume L3. However, this temperature has to be limited by the en-
ergy bound E ~ T*L3 < Egy ~ L, or else the system will undergo
collapse to form a black hole when considering the gravity effects.
Applying this energy bound to the entropy, one finds the entropy
bound of S < Smax ~ A3/4, where A ~ L2 is the boundary area of
the system. The derivation above is firstly given by 't Hooft in [1].
The entropy bound A3/4 for LQFT was also discussed by other au-
thors [2-5].

However, there are still controversies over this topic. Starting
from a bosonic field model and imposing the gravitational stability
condition, a holographic entropy bound of S < Spax ~ A appears
as the covariant entropy bound. This may not describe the local
quantum field theory including gravity effects because the LQFT
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requires a more stricter entropy bound rather than the holographic
entropy bound.

In order to obtain a compact relation from the energy and en-
tropy bounds, the UV cutoff A is necessarily introduced to reg-
ularize the LQFT [2]. Explicitly, the LQFT with E, ~ A%L? and
S~ A313 is able to describe a thermodynamic system at temper-
ature T, provided that T < A. If T 3> 1/L, the energy and entropy
will be those for a thermal photon gas: Eg ~ T4L3 and Si ~ T3L3.
In this case, the modes with momentum more than the UV cutoff
have been excluded from consideration. However, this cutoff could
be justified in an average sense, and hence the states with mo-
mentum p > A should be accounted properly.

On the other hand, one believes that the generalized uncer-
tainty principle (GUP) arises from the Heisenberg uncertainty prin-
ciple when gravity effect is taken into account [6-9]. Its commuta-
tion relation of

(%, Bl =ih(1 + B2p?)

leads to the generalized uncertainty relation [10]

(1)

axs (] + BA 2)
>\ 2 p

which implies the presence of a minimal length scale

AXmin = ﬁ\/ﬁ- (3)

Thus, the leading order correction to the standard formula is ex-
pected to be proportional to the Planck length Ip, if one chooses
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B = G/c3h with the Newton's constant G = c>[3 /h. Hence the GUP
plays the same role as the UV cutoff A does show because the UV
cutoff also determines a minimal detectable length.

In this Letter, we show that the entropy bound for LQFT is A3/4
rather than A by using the GUP and non-gravitational collapse con-
dition, instead of the UV cutoff introduced by hand.

2. State counting with UV cutoff

We consider a massless scalar field confined to three-dimen-
sional spacelike cube of size L in Minkowski space, as has been
done in [11-14]. The modes of the field are then the solution to
the wave equation V3¢ = 0 with periodic boundary conditions.
Any mode of quantized wave vector k_could be labelled by three
positive integers m = (my, my,m;) as k= %rﬁ. The corresponding
energy of the mode is

Ej = howp, = helk] = —~/m -m (4)
where we used the relation of w = ck = p/h. Hereafter we use
the Planck units of G =h =c = kg = 1, which implies a simple

relation of p = w = k. The total number of these quantized modes
is calculated by the replacement

A
S A3L3
/d3]<= 27T—2/U)2dw= 67'[2 ) (5)

0

L3
N = 1
; ~ @)y

where A is introduced to be the UV energy cutoff of the LQFT.
See Fig. 1 for the uniform distribution up to w = A. Thanks to the
UV cutoff, N is finite and thus there exists one-to-one correspon-
dence between the wave vector k and a character i with i € [1, N].
Upon quantization of a massless scalar field which obey the Bose-
Einstein statistics, we can construct the Fock states by assigning
occupying number n; to these N different modes

W) = [nki), nka), ..., nkn)) — 11,12, ..., 1N), (6)

where the normalized state contains n(Ell particles with momen-
tum kq, n(ky) particles with momentum k;, and so on. Thus, the
basis of the Hilbert space H of the system is spanned by each dif-
ferent set of {n;}, and the number of occupancies {n;} gives the
corresponding dimension of the Hilbert space (dim7). Usually,
the dimension of the Hilbert space is infinite for bosons unless
the number of particles in each mode i is constrained by a finite
bound. However, the non-gravitational collapse requirement makes
the permissible dimension of Hilbert space finite as

N
E= Zn,wi < Epy=L. (7)
i=1

The number of solutions or occupancies {n;} satisfying the above
bound gives the dimension W = dimH of physically permitted
Hilbert space. In other words, in order to determine the dimension
of Hilbert space, one has to know the number of admissible so-
lutions {n;} satisfying Eq. (7). This corresponds to the knapsack or
counting lattice points problem. When confining {n;} to a Cartesian
coordinate system {x;}, the question refers to the counting lattice
points contained within the convex polytopes determined by

N
inwi <Epn, X 20, (8)
i=1

with right-angle side lengths

E
Li=—1,

Wi

with i € [1, N]. (9)

Actually, it is difficult to find an exact solution to this question. For
L; > 1, one may use the volume of the corresponding polytopes to
approximately evaluate the number of lattice points within them.

We note that an N particle state with one particle occupying
one mode (n; = 1) corresponds to the lowest energy state with
N modes simultaneously excited. In this case, it should satisfy the
gravitational stability condition of Eq. (7). Hence, the energy bound
is given by

L3 A4
E— F/aﬁdw: o7 <Ean. (10)
0

The last inequality implies the UV-IR relation
1
A%< -, 1
; (11)
On the other hand, the entropy associated with the system is given
by

w
sz_zpjlnpj, (12)
j=1

where p; is the possible distribution of the Hilbert state basis. It is
clear that the maximum value of the entropy is realized by taking
a uniform distribution of p; =1/W. Then, the maximum entropy
is given by

Y11
Smaxz_z_ln_, (13)
= w W

where the bound of W is determined by

N
W:dimH<Z

m=0

2 eZﬁ

o0 Zm
< —— =1Ip(2 ~ .
(m1)? n; e =@V~ =

Here Iy is the zeroth-order Bessel function of the second kind.
Since z is given by

(14)

N 3 4 214
L Eu] , A2L
zZ= L; — — |wdw = s 15
Z'_)anf[w] 472 (15)
i=1 0
we find the bound
z< 13, (16)

where we used the UV-IR relation in Eq. (11). Therefore, we have
the bound for the maximum entropy
Smax = InW < A3/4. (17)

This is a brief derivation of the entropy bound by using the LQFT.
3. State counting with GUP

The GUP relation of Eq. (2) has an effect on the density of states
in momentum space [10] as

d3p
(1+Bp?)3
with an important factor of 1/(1+ 8p2)3, which effectively cuts off
the integral beyond p = 1/./B. Intuitively, this can be understood
from the observation that the right-hand side of Eq. (1) includes
a p-dependent term and thus affect the cell size in phase space
as “being p-dependent”. Rigorously, making use of the Liouville

theorem, one could show that the invariant weighted phase space
volume under time evolution is given by [10]

Brd>p
(1+pp»3’

(18)

(19)
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Density function

Fig. 1. Density functions for regularization of LQFT as function of w. The dashed line
denotes “uniform density function” as the UV cutoff, while the solid curve repre-
sents the GUP density function in Eq. (18) with 8 = 1. If one considers the solid
curve within the box, it provides the density function for UV cutoff and GUP for
Section 4. The dotted curve denotes density function for an all-order result in Ap-
pendix A. Here we choose A =1//B=1.

where the classical commutation relations corresponding to the
quantum commutation relation of Eq. (1), as {x;, p;j} = (1 +,3p2)8,-j,
{pi,pj} =0, and {x;,x;} = 2B(pix; — pjx;), are used. This factor
plays a role of the UV cutoff of the consequent momentum inte-
gration, as shown in Fig. 1.

For a massless scalar field confined to three-dimensional space-
like cube of size L, the total number of modes can be calculated
as

o0
L3 w?dw 1 I3 L3

e L 20
272 A _|_‘3w2)3 3271 ﬁ3/2 ﬁ3/2 ( )
0

As expected, due to strong suppression of density of state at high

momenta, the total number is rendered finite with 1/,/8 acting

effectively as the UV cutoff. This result is in strong contrast to the

previous calculations where the UV cutoff A is an arbitrary scale

which must be introduced by hand, and where one must assume

that the physics beyond this cutoff does not contribute (see Fig. 1).
The energy bound is given by

/ @’ dw 1L 1)
T o2 ) U+ pw?)}  gmzpr S B

The last inequality implies the important UV-IR relation
L<B. (22)

In order to calculate the maximum entropy, we need to know z
which is calculated to be

o
L3 Epn]| o?dow 1 14
zZ—> — — | —=——— (23)
272 o |(1+Bw?3  8n2 B
0
Using Eq. (22), one has the bound for z as
z< 13 (24)

Finally, we arrive at the same bound for the maximum entropy

Smax = InW < A3/4, (25)

4. State counting with UV cutoff and GUP

For a massless scalar field confined to 3-dimensional spacelike
cube of size L, the mode counting method is changed to include
the GUP effect (see the solid curve in the box in Fig. 1)

A
L3 2 L3 A3 AS
w'do ( 3A°8 > (26)

_ — _ &~ — — —
272 ) (1+Bw?)3 272\ 3 5

0
That is, the total number of states is decreased when we include

the GUP effect.
The energy bound is modified up to g

A
L3 w?dw L3 /A% BaAS
~ < Eph. (27)

Tt ) G+pp2? 272\ 4 2
0

The last inequality implies
1 B

A2<—(14+L8). 28
L( n L) (28)

The maximum entropy is given by

Y1

Smax:_Z:_ln (29)
P w o w’

with W ~ e2VZ, Since z is given up to 8 by

A
L3 Epn] o?dw L* /A% 38A%
zZ—> — — === - , (30)
272 o |(1+Bw?)3 272\ 2 4
0
one finds the bound when using Eq. (28)

BL?
Z<L3— T

Therefore, we have a modified bound for the maximum entropy

(31)

Smax =InW < A4 — §A1/4 (32)
which shows clearly that the upper bound is decreased due to the
GUP.

5. Discussions

In this Letter, we show how gravity effects offer a way to cal-
culate the maximal entropy bound of the LQFT. Gravity effects
provide UV and IR cutoffs to the LQFT. If the GUP is really con-
sidered as a reflection of gravity effects, it gives a UV cutoff which
makes the total number of modes N finite. On the other hand,
the energy bound implies that the number of particles n; is lim-
ited and the total energy of the system is less than that of the
same-sized black hole. The former makes the dimension of Hilbert
space finite, while the latter leads to the bound as the UV-IR re-
lation. Then, we obtain the maximal entropy bound of A3/4. This
is consistent with the picture that the gravity effects make the di-
mension of Hilbert space finite.

We wish to emphasize why our work is meaningful by com-
paring it with two known approaches. Without the UV cutoff, we
could derive the entropy bound of S < Smax ~ A3/4, as suggested
by 't Hooft in [1], if the UV cutoff is much larger than the temper-
ature and the energy bound is imposed. However, this corresponds
to a heuristic derivation because the LQFT was not explicitly used
for calculation. As was briefly reviewed in Section 2, we introduce
UV and IR cutoffs to calculate the entropy bound of a massless field
when using the LQFT. This means that we need both UV-control
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and IR-control to get an important UV-IR relation of Eq. (11). How-
ever, as is shown Fig. 1, the UV cutoff A may correspond to an ad
hoc density function because it was introduced by hand. In this
work, we introduce the new cutoff 8 based on the GUP which
effectively cuts off the short distance region. This case provides
a more natural derivation of A3/4 than using the UV cutoff A
because the GUP is considered as a meaningful extension of the
first principle “Heisenberg uncertainty principle” when taking into
gravity effects account.

We mention that as was shown in Eq. (20), the total number
of modes N is clearly determined by imposing the GUP. In order
to confirm this, we introduce an all-order result to the Heisen-
berg uncertainty relation. As is shown in Appendix A, we choose
the commutation relation as a way of implementing all-order GUP
corrections. Then, the total number N of modes in Eq. (35) takes a
similar form as in Eq. (20). This supports that the GUP corrections
to the Heisenberg uncertainty relation is equivalent to a UV cutoff
to the LQFT.

Finally, we note that the non-gravitational collapse condition
plays the important role: it makes the dimension of Hilbert space
finite and thus provides the bound of maximal entropy.
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Appendix A. An all-order result in GUP

The GUP commutation relation in Eq. (1) can be extended
into [15]

[%, p] = ihef’P", (33)
which includes all order corrections to the Heisenberg uncertainty
principle. In this case, the weighting factor is given by [16]
d3pef’P’ (34)
The total number of modes is calculated to be

L3 L3

s " B (32)

L3 002 2.2
N»ﬁ/we’ﬁwda):
T
0

without any ambiguity. The energy bound is obtained as

o0

L3 L3

E sy / wle P’ do = T Epn=L, (36)
0

where the last equality implies the UV-IR relation as the bound
L< B2 (37)

In order to compute the maximal entropy, one has to know the
variable z

o

L3 E L
PN —/ B e Pt = (38)
272 10) 4282

Using the energy bound of Eq. (36), one finds the bound for z as
z< 13, (39)
Thus, the maximum entropy bound is confirmed to be

Smax =InW < A34, (40)
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