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Abstract

More than a century ago, G. Kowalewski stated that for each n continuous functions on a compact interval [a, b], there exists
an n-point quadrature rule (with respect to Lebesgue measure on [a, b]), which is exact for given functions. Here we generalize
this result to continuous functions with an arbitrary positive and finite measure on an arbitrary interval. The proof relies on a new
version of Carathéodory’s convex hull theorem, that we also prove in the paper. As an application, we give a discrete representation
of second order characteristics for a family of continuous functions of a single random variable.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction and main results

By the end of the 19th century, G. Kowalewski [3] published the following result, in a paper entitled (in translation
from German language) “A mean value theorem for a system of n integrals.”

Theorem 1. Let x1, . . . , xn be continuous functions in a variable t ∈ [a, b]. There exist real numbers t1, . . . , tn in [a, b]
and non-negative numbers λ1, . . . , λn, with

∑n
i=1 λi = b − a, such that

b∫
a

xk(t)dt = λ1xk(t1) + · · · + λnxk(tn) for each k = 1,2, . . . , n.

In [4], Kowalewski generalized Theorem 1, with dt replaced with F(t)dt , where F is continuous and of the same
sign in (a, b), and with

∑n
i=1 λi = ∫ b

a
F (t)dt . It seems that these results have not found their proper place in the

literature; they were simply forgotten. Except citations to Kowalewski’s Theorem 1 in [1] and [7], related to Grüss’
and Chebyshev’s inequalities, we were not able to trace any other attempt to use, or to generalize these results. In fact,
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Theorem 1 and its generalization, presented in [3,4], were honestly proved there only for n = 2; nevertheless there is
an appealing beauty, and a potential for applications in those statements.

In this paper, we offer a generalization of Theorem 1, for an arbitrary interval I (not necessarily finite), with respect
to any positive finite measure, and with functions xi that are continuous, but (if I is open or infinite) not necessarily
bounded.

Our main result is the following theorem.

Theorem 2. For an interval I ⊆ R, let μ be a finite positive measure on the Borel sigma-field of I . Let xk , k = 1, . . . , n,
n � 1, be continuous functions on I , integrable on I with respect to the measure μ. Then there exist points t1, . . . , tn
in I , and non-negative numbers λ1, . . . , λn, with

∑n
i=1 λi = μ(I), such that∫

I

xk(t)dμ(t) =
n∑

i=1

λixk(ti), k = 1, . . . , n.

In Section 2 we prove Theorem 2 as a consequence of the following version of Carathéodory’s convex hull theorem,
which is also of an independent interest. We show that each point in the convex hull of a continuous curve in R

n is
a convex combination of n points of the curve, rather than of n + 1 points, which would follow from the classical
Carathéodory’s theorem.

Theorem 3. Let C : t �→ x(t), t ∈ I , be a continuous curve in R
n, where I ⊂ R is an interval, and let K be the convex

hull of the curve C. Then each v ∈ K can be represented as a convex combination of n or fewer points of the curve C.

To complete the proof of Theorem 2 we needed a general result from the theory of integration (Lemma 1), which
might be well-known, but we were not able to locate it in the literature.

In Section 3 we discuss Theorem 2 in the context of quadrature rules, and in Section 4 we apply Theorem 2 to derive
a representation of the second order characteristics (expectations, variances, covariances and correlation coefficients)
for a family of continuous functions of a single random variable.

2. Proofs of Theorems 2 and 3

Proof of Theorem 3. According to Carathéodory’s theorem, any point v ∈ K can be represented as a convex com-
bination of at most n + 1 points of the curve C. Applying a translation if necessary, we may assume that v = 0.
Therefore, there exist real numbers tj ∈ I and vj � 0, 0 � j � n, such that t0 < t1 < · · · < tn, v0 + · · · + vn = 1, and

v0x(t0) + v1x(t1) + · · · + vnx(tn) = 0. (1)

In the sequel, we assume that all n+1 points x(tj ) do not belong to one hyperplane in R
n, and that the numbers vj are

all positive; otherwise, one term from (1) can be obviously eliminated. Denote by pj (x), 0 � j � n, the coordinates
of the vector x ∈ R

n with respect to the coordinate system with the origin at 0, and with the vector base consisted
of vectors x(tj ), j = 1, . . . , n (that is, x = ∑n

j=1 pj (x)x(tj )). Then from (1) we find that pj (x(t0)) = −vj /v0 < 0,
j = 1, . . . , n, i.e. the coordinates of the vector x(t0) are negative. The coordinates of vectors x(tj ), j = 1,2, . . . , n,

are non-negative: pj (x(tj )) = 1 and pk(x(tj )) = 0 for k �= j . Since the functions t �→ pj (x(t)) are continuous, the
set of points t � t0 at which at least one of these functions reaches zero is closed, and since it is non-empty, it has the
minimum. Denoting that minimum by t̄ , we conclude that the numbers pj (x(t̄ )), j = 1, . . . , n, are non-positive and
at least one of them is zero. Let pk(x(t̄ )) = 0 and pj (x(t̄ )) � 0 for j �= k. Then

x(t̄ ) −
k−1∑
j=1

pj

(
x(t̄ )

)
x(tj ) −

n∑
j=k+1

pj

(
x(t̄ )

)
x(tj ) = 0,

and it follows that 0 is a convex combination of points x(t̄ ) and x(tj ), j = 1, . . . , n, j �= k. �
Proof of Theorem 2. Without loss of generality, we may assume that the measure μ is a probability measure, i.e.
μ(I) = 1. Since the Lebesgue integral of a function x(t) = (x1(t), . . . , xn(t)) with respect to μ is in the convex hull
of the set x(I) ⊂ R

n (see Lemma 1 below), the statement follows from Theorem 3. �
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Lemma 1. Let (S,F ,μ) be a probability space, and let xi : S → R, i = 1, . . . , n, be μ-integrable functions. Let x(t) =
(x1(t), . . . , xn(t)) for every t ∈ S. Then

∫
S
x(t)dμ(t) ∈ R

n is in the convex hull of the set x(S) = {x(t) | t ∈ S} ⊂ R
n.

Proof. Without loss of generality we may assume that
∫
S
xi(t)dμ(t) = 0 for i = 1, . . . , n. If K = K(x,S) ⊂ R

n is
the convex hull of the set x(S), we then need to prove that 0 ∈ K . We give a proof by induction.

For n = 1, let (S,F ,μ) be an arbitrary probability space and let x(t) be a μ-integrable function with∫
S
x(t)dμ(t) = 0. Then there exists t ∈ S such that x(t) = 0 or there exist t1, t2 ∈ S such that x(t1) < 0 and x(t2) > 0.

In both cases it follows that 0 ∈ K(x,S).
Let n > 1 and assume that the statement is true for n− 1 functions on any probability space. Let now x1, . . . , xn be

integrable functions on a probability space (S,F ,μ). Assume, contrary to what has to be proved, that 0 /∈ K(x,S).
Then there is a hyperplane that separates 0 and K , hence there are real numbers a1, . . . , an, such that

L(t) :=
n∑

k=1

akxk(t) � 0 for every t ∈ S. (2)

Here we may assume that an �= 0. By linearity,
∫
S
L(t)dμ(t) = 0, hence (2) yields L(t) = 0 for all t ∈ S \ N , where

μ(N) = 0. Therefore,

xn(t) = −
n−1∑
k=1

ak

an

xk(t) for every t ∈ S \ N. (3)

Now observe a probability space (S \ N,F |S\N,μ|S\N) and the system of functions x1, . . . , xn−1. By the induction
assumption, 0 belongs to the convex hull of the set {(x1(t), . . . , xn−1(t)) | t ∈ S \ N} ∈ R

n−1, so we find that

m∑
i=1

λixk(ti) = 0, k = 1, . . . , n − 1, (4)

with some t1, . . . , tm ∈ S \ N , 0 � λi � 1 and
∑m

i=1 λi = 1, and for some integer m � 1. Now from (3) and (4) it
follows that (4) holds also for k = n, which implies that the statement holds for n. This ends the proof by induction. �
3. Theorem 2 from a viewpoint of quadrature rules

Theorem 2 claims that, given any set of continuous functions on I , and a finite measure μ on I , there exists an
n-point quadrature rule which is exact for those functions. As it can be seen by inspection of the proofs in Section 2,
this quadrature rule is not unique; a point in the interior of a convex hull can be expressed as a convex combination in
infinitely many ways. This interpretation of Theorem 2 can be compared with a well-known result from [2], regarding
Gaussian quadratures with respect to Chebyshev systems of functions. A brief explanation of these terms is in order.

Real functions x1, . . . , xm defined on an interval [a, b] are said (see [2]) to constitute a Chebyshev system on [a, b]
if all functions are continuous on [a, b] and∣∣∣∣∣∣∣∣

x1(t1) x1(t2) . . . x1(tm)

x2(t1) x2(t2) . . . x2(tm)
...

...
. . .

...

xm(t1) xm(t2) . . . xm(tm)

∣∣∣∣∣∣∣∣
�= 0 (5)

for any choice of points t1, . . . , tm ∈ [a, b] with ti �= tj whenever i �= j . A classical example of a Chebyshev sys-
tem on any interval [a, b] is furnished with functions xi(t) = t i−1, i = 1, . . . ,m. The condition (5) is equivalent
to the requirement that no m points of the curve parametrized by x1 = x1(t), . . . , xm = xm(t), t ∈ [a, b], belong
to a hyperplane which contains the origin. Another way to express (5) is to require that any function of the form
g(t) = c1x1(t) + · · · + cmxm(t), ci ∈ R,

∑m
i=1 c2

i > 0, must not have more than m − 1 different zeros on [a, b].
According to [5], for a positive and finite measure μ on [a, b], a quadrature rule of the form∫

f (s)dμ(s) =
n∑

k=1

Akf (tk) + Rn(f ), Ak ∈ R, tk ∈ [a, b], (6)
[a,b]
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is called Gaussian with respect to a collection of functions x1, . . . , x2n if (6) is exact for all functions xi in place of f ,
i.e. if Rn(xi) = 0 for i = 1, . . . ,2n. A quadrature rule of the form (6) is determined by a choice of coefficients Ak and
points tk , k = 1, . . . , n.

The next theorem, which can be derived from [2, Chapter 2], claims the existence and uniqueness of a Gaussian
quadrature rule with respect to a Chebyshev system of continuous functions x1, . . . , x2n on [a, b].

Theorem 4. (See [2].) There exists a unique n-point Gaussian quadrature rule (6) with respect to any Chebyshev
system of continuous functions x1, . . . , x2n on a finite interval [a, b]. Moreover, all coefficients A1, . . . ,An are positive.

There are variations and generalizations of Theorem 4 in various directions, see, for example, [5] or recent pa-
per [6].

Clearly, Theorem 4 yields a particular case of Theorem 2 if functions x1, . . . , xn can be complemented with suit-
ably chosen functions (for example 1, t, t2, . . . , tn) to make a Chebyshev system of 2n functions on interval [a, b].
However, Theorem 2 is much more general, it is not limited to compact intervals, it allows unbounded functions, and
above all, it does not require the condition (5), which is very restrictive and difficult to check.

Let us finally note that Theorem 2 can be applied to a system of n integrals with respect to different measures
which are absolutely continuous with respect to one measure, with continuous Radon–Nikodym derivatives. Indeed,
suppose that μ1, . . . ,μn are positive finite measures on an interval I , with continuous Radon–Nikodym derivatives
ϕ1, . . . , ϕn with respect to a measure μ. Then applying Theorem 2 to the system of 2n integrals with respect to μ, we
get, for k = 1, . . . , n:∫

I

xk(t)dμk(t) =
∫
I

xk(t)ϕk(t)dμ(t) =
2n∑
i=1

λ′
ixk(ti)ϕk(ti), (7)

μk(I) =
∫
I

ϕk(t)dμ(t) =
2n∑
i=1

λ′
iϕk(ti), (8)

for some λ′
i and ti , i = 1, . . . ,2n. Introducing λki = λ′

iϕk(ti), we have that∫
I

xk(t)dμk(t) =
2n∑
i=1

λkixk(ti), where
2n∑
i=1

λki = μk(I), k = 1, . . . , n.

Hence, the points t1, . . . , t2n are common for all n quadratures, whereas the weights are specified for each one.

4. A representation of second order characteristics for continuous functions of a single random variable

Given a measurable function f and a probability measure μ on the Borel sigma field B on R, with μ(I) = 1, the
integral∫

I

f (x)dμ(x)

can be thought of as the expectation Ef (X), where X is a random variable on some probability space (Ω,F ,P ) with
P(X ∈ B) = μ(B) for B ∈ B, concentrated on I , i.e. P(X ∈ I ) = 1. The covariance between f (X) and g(X) is then

Cov
(
f (X),g(X)

) = E
(
f (X) − Ef (X)

)(
g(X) − Eg(X)

)
=

∫
I

f (x)g(x)dμ(x) −
∫
I

f (x)dμ(x)

∫
I

g(x)dμ(x).

A probabilistic statement that directly corresponds to Theorem 2 is the following one: For any given random
variable X and continuous functions f1, . . . , fn, there exists a discrete random variable T , taking at most n values,
t1, . . . , tn, with probabilities λ1, . . . , λn, such that

Efi(X) = Efi(T ), i = 1,2, . . . , n.
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A similar statement holds for the second order characteristics, as in the next theorem.

Theorem 5. Let X be a random variable concentrated on an interval I ⊆ R. Suppose that f1, . . . , fn are continuous
functions on I , with finite Efi(X)2, i = 1, . . . , n. Then there exist m = n(n + 3)/2 points t1, . . . , tm from I , and
non-negative numbers λ1, . . . , λm with

∑
λk = 1, such that

Efi(X) =
m∑

k=1

λkfi(tk), i = 1, . . . , n, (9)

Cov
(
fi(X),fj (X)

) =
m−1∑
k=1

m∑
l=k+1

λkλl

(
fi(tk) − fi(tl)

)(
fj (tk) − fj (tl)

)
. (10)

Proof. Let Fi = Efi(X) and Cij = Cov(fi(X),fj (X)), i, j = 1, . . . , n. Since Cij = Cji , the total number of different
expectations is m = n(n + 3)/2. By Theorem 2, there are points t1, . . . , tm and non-negative coefficients λ1, . . . , λm,
with

∑
λi = 1, such that

Fi =
m∑

k=1

λkfi(tk), i = 1, . . . , n, and (11)

Cij =
m∑

k=1

λk

(
fi(tk) − Fi

)(
fj (tk) − Fj

)
, i, j = 1, . . . , n. (12)

For a fixed i � j , expressions (11) and (12) yield

Cij =
m∑

k=1

λk

(
fi(tk) −

m∑
l=1

λlfi(tl)

)(
fj (tk) − Fj

)
,

which, after some organizing reduces to (10), and the theorem is proved. �
Let us note that (10) can be represented in a symmetric form

Cov
(
fi(X),fj (X)

) = 1

2

m∑
k=1

m∑
l=1

λkλl

(
fi(tk) − fi(tl)

)(
fj (tk) − fj (tl)

)
.

Clearly, Theorem 5 yields representations for variances, correlation coefficients and the covariance matrix in terms
of m points and weights. For a single covariance Cov(f (X),g(X)), where f,g are continuous functions, there is a
simpler representation. Indeed, we can start with the representation of Theorem 2,

Cov
(
f (X),g(X)

) = λ
(
f (t1) − F

)(
g(t1) − G

) + (1 − λ)
(
f (t2) − F

)(
g(t2) − G

)
,

F = λf (t1) + (1 − λ)f (t2),

where F = Ef (X), G = Eg(X), and, in the same way as in the proof of Theorem 5, we find that

Cov
(
f (X),g(X)

) = λ(1 − λ)
(
f (t1) − f (t2)

)(
g(t1) − g(t2)

)
, (13)

for some λ ∈ [0,1] and t1, t2 ∈ I . The term λ(1 − λ) reaches its maximum 1/4 for λ = 1/2, and by continuity of
functions f , g, there are another two points, call them again t1 and t2, so that (13) holds with λ = 1/2. Hence, we
have the following result.

Theorem 6. Given a random variable X concentrated on an interval I ⊆ R, and functions f and g that are continuous
on I , there exist points t1, t2 ∈ I , such that

Cov
(
f (X),g(X)

) = 1

4

(
f (t1) − f (t2)

)(
g(t1) − g(t2)

)
. (14)

The representation (14) is a generalization of Karamata’s result [1] for the Lebesgue measure on a compact inter-
val I , i.e. the uniform distribution of X.
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