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We introduce and study configuration schemes, which are obtained by “glueing”
usual schemes along closed embeddings. The category of coherent sheaves on a
configuration scheme is investigated. Smooth configuration schemes provide alter-
native “resolutions of singularities” of usual singular schemes. We consider in detail
the case when the singular scheme is a union of hyperplanes in a projective space.
 2001 Academic Press

1. INTRODUCTION

We introduce and study configuration schemes, or rather, coherent
sheaves on them. Namely, let S be a finite poset considered as a category;
i.e., for α�β ∈ S the set of morphisms Mor�α�β� contains a unique element
if α ≥ β and is empty otherwise. Consider a functor X from the oppo-
site category Sopp to the category of schemes. Thus, in particular, for each
α ∈ S we are given a scheme X�α� with a morphism fβα � X�β� → X�α�
if β ≤ α. We require fβα’s to be closed embeddings and then call this data
a configuration scheme X/S. (One could relax this condition by requiring

1 The research described in this publication was made possible in part by Award RM1-2089
of the U.S. Civilian Research and Development Foundation for the Independent States of the
Former Soviet Union (CRDF). It is my pleasure to thank the participants of the seminar in
the Moscow Independent University, where this work was discussed. Special thanks are due
to A. Bondal, V. Golyshev, and D. Orlov for their help and encouragement. Orlov criticized
my original false conjectures and Bondal made some useful suggestions (including the last
argument in the proof of Theorem 4.5). Also Bondal independently had ideas similar to those
of the present work.
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only that fβα’s be affine morphisms.) We say that X/S is smooth if each
X�α� is a smooth scheme.

A coherent sheaf F on X/S is a collection of coherent sheaves �Fα ∈
coh�X��α��	 with morphisms σαβ � f ∗βαFα→ Fβ satisfying an obvious com-
patibility condition. The category coh�X/S� of coherent sheaves on X/S
is an abelian category. If X/S is smooth, the category coh�X/S� has finite
cohomological dimension (which is usually twice what one expects in the
coherent theory).

Configuration schemes appear naturally in the following situation. Let
X0 be a (singular) reducible scheme with smooth components, which inter-
sect along smooth subschemes. Let S be the poset indexing all nonempty
intersections of these components, and for α ∈ S let X�α� be the corre-
sponding intersection itself. We get a smooth configuration scheme X/S
with the obvious inverse image functor (or “localization” functor)

� � coh�X0� → coh�X/S�

The configuration scheme X/S can be considered as a (nontraditional)
resolution of singularities of X0, which may behave better than the usual
resolution X̃0 → X0. For example, one can reconstruct the scheme X0 from
the configuration scheme X/S, whereas X̃0 does not “remember” that it is a
resolution of X0. In the last section of this paper we give examples of some
interesting auto-equivalences of the derived category Db�coh�X0�� and
show that they “extend” to autoequivalences of Db�coh�X/S�� (whereas
they do not extend to Db�coh�X̃0��).

The derived categories Db�coh�X/S�� for smooth configuration schemes
X/S tend to have similar properties to those of the derived categories
Db�coh�Y �� for smooth schemes Y . For example, if each X�α� is a
(smooth) projective variety, then every cohomological functor

Db�coh�X/S�� → Vect

is representable. In particular, Db�coh�X/S�� has a Serre functor [BK].
We work out in some detail the case when X0 is the union of hyper-

planes in general position in a projective space. We call the corresponding
configuration scheme X/S the hyperplane configuration scheme. We prove
that the derived localization functor �� � Db�coh�X0�� → D−�coh�X/S��
is fully faithful when restricted to the full subcategory of perfect com-
plexes in coh�X0� (Theorem 4.5), which again shows the intimate relation
of the singular scheme X0 and its “desingularization” X/S. Also we find a
strong exceptional collection E in Db�coh�X/S�� [Bo] which implies that
the category Db�coh�X/S� is equivalent to the derived category Db��A −
mod�f � of finite right A-modules for a finite dimensional algebra A. This
is again in analogy with Db�coh�Y �� for certain smooth projective schemes
Y (see [Bo]).
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Finally I want to mention that some configuration schemes X/S (or
rather categories coh�X/S�) are intimately related to categories of con-
structible sheaves on algebraic varieties. In the next paper I will use
configuration schemes to construct a mirror-type correspondence between
coherent and constructible sheaves.

2. CONFIGURATION CATEGORIES

1. Poset Categories and Configuration Categories. Let S be a poset,
which we consider as a category. That is, for α�β ∈ S the set Mor�α�β�
consists of a single element if α ≥ β and is empty otherwise. Let �
be a functor from S to the category Cat of all categories. That is, for
each α ∈ S we have a category ��α� and if α ≥ β we have a functor
φαβ � ��α� → ��β� such that φαγ = φβγφαβ in case α ≥ β ≥ γ.

The pair �S��� defines a new category ��S��� which may be considered
as a glueing of categories ��α� along the functors φαβ. Namely, objects of
��S��� are collections

F = �Fα ∈ ��α��α∈S
together with morphisms

σαβ�F� = σαβ � φαβ�Fα� → Fβ

such that σαγ = σβγ · φβγ�σαβ�. Morphisms f ∈ Mor�F�G� are collec-
tions f = �fα ∈Mor��α��Fα�Gα�	, which are compatible with the structure
morphisms σαβ.

Definition 2.1. We call ��S��� a poset category over S. We say that
��S��� is an abelian poset category if each ��α� is an abelian category and
the functors φαβ are right exact.

Lemma 2.2. An abelian poset category ��S��� is an abelian category.
Proof. Indeed, given two objects F�G in ��S��� and a morphism

f � F → G, define Ker�f � and Coker�f � componentwise. Namely, put
Ker�f �α �= Ker�fα��Coker�f �α �= Coker�fα�. Note that Coker�f � is a well
defined object in ��S��� since the functors φαβ are right exact.

In this paper we will only be interested in abelian poset categories. For
simplicity we only consider �-linear abelian categories.

Definition 2.3. An abelian poset category ��S��� is called a configu-
ration category if the set S is finite and each functor φαβ has a right adjoint
ψβα, which is exact.
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Example 2.4. Our main example of an abelian poset category comes
from geometry. Namely, let X � Sopp → Sch/� be a functor from the oppo-
site category Sopp to the category of schemes (say, of finite type over �).
We call this data a poset of schemes and denote it X/S. Then for α ≥ β in
S we have a morphism of schemes fβα � X�β� → X�α�. This induces the
inverse image functor φαβ �= f ∗βα � coh�X�α�� → coh�X�β�� between the
categories of coherent sheaves. This functor is right exact. Thus we obtain a
functor � � S→ Cat, such that ��α� = coh�X�α�� and φαβ as above, which
gives rise to the corresponding abelian poset category ��S���. An object
F of ��S��� is a collection of coherent sheaves F = �Fα ∈ coh�X�α��	
with morphisms σαβ � f ∗βαFα→ Fβ, satisfying the compatibility condition.

Definition 2.5. In the notation of the previous example assume that
the set S is finite and all morphisms fβα are closed embeddings. Then we
call the poset of schemes X/S a configuration scheme.

Definition 2.6. Let X/S be a configuration scheme. The direct image
functor ψβα �= fβα∗ � coh�X�β�� → coh�X�α�� is the right adjoint to φαβ
and it is exact. Thus ��S��� becomes a configuration category, which is
called the category of coherent sheaves on X/S and denoted coh�X/S�. Sim-
ilarly, we define the category qcoh�X/S� of quasicoherent sheaves on X/S.
Clearly, coh�X/S� is a full subcategory of qcoh�X/S�. We say that X/S is
a smooth configuration scheme, if all schemes X�α� are smooth.

Remark 2.7. Note that we could weaken the condition that the fαβ are
closed embeddings and require only that they be affine morphisms. Then
the category coh�X/S� is still a configuration category.

2. Motivation. Our main interest lies in the categories coh�X/S� and
Db�coh�X/S�� for smooth configuration schemes X/S. Such schemes arise
from degenerations of families of smooth schemes. (More precisely, this
happens when the singular fiber has smooth components which intersect
along smooth subschemes.) We will show that for a smooth configuration
scheme X/S the category coh�X/S� inherits many of the good properties
of the categories coh�X�α��. For example, coh�X/S� has finite cohomo-
logical dimension (Corollary 3.5). Consider the bounded derived category
Db�coh�X/S��. If each (smooth) scheme X�α� is projective, then every
covariant or contravariant cohomological functor from Db�coh�X/S�� to
Vect is representable (Theorem 3.14). In particular there exists a Serre
functor in Db�coh�X/S�� (Theorem 3.18).

3. Operations in Configuration Categories. Let � = ��S��� be an
abelian poset category. For F ∈ � define its support Supp�F� = �α ∈
S�Fα �= 0	.

Define a topology on S by taking as a basis of open sets the subsets
Uα = �β ∈ S�β ≤ α	.



sheaves on configuration schemes 383

Note that Zα = �γ ∈ S�γ ≥ α	 is a closed subset in S.
Let U ⊂ S be open and Z = S − U the complementary closed. Let �U

(resp. �Z) be the full subcategory of � consisting of objects F with support
in U (resp. in Z). For every object F in � there is a natural short exact
sequence

0→ FU → F → FZ → 0�

where FU ∈ �U� FZ ∈ �Z
 Indeed, take

�FU�α =
{
Fα� if α ∈ U ,
0� if α ∈ Z.

�FZ�α =
{
Fα� if α ∈ Z,
0� if α ∈ U .

We may consider U (resp. Z) as a subcategory of S and restrict the func-
tor � to U (resp. Z). This gives abelian poset categories ��U���U� and
��Z���Z�.

Denote by j � U ↪→ S and i � Z ↪→ S the inclusions. We get the obvious
restriction functors

j∗ = j! � �→ ��U���U�� i∗ � �→ ��Z���Z�

Clearly these functors are exact. The functor j∗ has an exact left adjoint
j! � ��U���U� → � (“extension by zero”). Its image is the subcategory
�U . The functor i∗ has an exact right adjoint i∗ = i! � ��Z���Z� → �
(also “extension by zero”). Its image is the subcategory �Z . It follows that
j∗ and i∗ preserve injectives (as right adjoints to exact functors). We have
j∗j! = Id� i∗i∗ = Id.

Note that the short exact sequence above is just

0→ j!j
∗F → F → i∗i

∗F → 0�

where the two middle arrows are the adjunction maps.
For α ∈ S denote by jα � �α	 ↪→ S the inclusion. The inverse image

functor j∗α � � → ��α	 = ��α�� F �→ Fα has a right-exact left adjoint jα+
defined as

�jα+P�β =
{
φαβP� if β ≤ α�
0� otherwise.

Thus for P ∈ ��α�� Suppjα+P ⊂ Uα.
We also consider the “extension by zero” functor jα! � ��α� → � defined

by

jα!�P�β =
{
P� if α = β�
0� otherwise.
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Lemma 2.8. Assume that ��S��� is a configuration category. Then the
functor j∗α � ��S��� → ��α� has a right adjoint jα∗. The functor jα∗ is exact
and preserves injectives. For P ∈ ��α�� Supp�jα∗P� ⊂ Zα.
Proof. Given P ∈ ��α� we set

jα∗�P�γ =
{
ψαγ�P�� if γ ≥ α�
0� otherwise.

and the structure map

σγδ � φγδ�jα∗P�γ → �jα∗P�δ
is the adjunction map

φγδψαγP = φγδψδγψαδP → ψαδP

if α ≤ δ ≤ γ and σγδ = 0 otherwise.
It is clear that jα∗ is exact (since the ψ’s are such) and that Supp �jα∗P� ⊂

Zα.
Let us prove that jα∗ is the right adjoint to j∗α.
Let P ∈ ��α� andM ∈ ��S���. Given fα ∈ Hom�Mα�P� for each γ ≥ α

we obtain a map fα · σγα�M� � φγαMγ → P and hence by adjunction fγ �
Mγ → ψαγP = �jα∗P�γ. The collection f = �fγ	 is a morphism f � M →
jα∗P . It remains to show that the constructed map

Hom�Mα�P� → Hom�M� jα∗P�
is surjective or, equivalently, that the restriction map

Hom�M� jα∗P� → Hom�Mα�P�� f �→ fα

in injective.
Assume that 0 �= f ∈ Hom�M� jα∗P�, i.e., fγ �= 0 for some γ ≥ α. By

definition we have the commutative diagram

φγαMγ
φγα�fγ�→ φγαψαγP

σγα�M�
� �εP
Mα

fα→ P�

where εP is the adjunction morphism. Note that εPφγα�fγ� � φγαMγ → P
is the morphism, which corresponds to fγ � Mγ → ψαγP by the adjunction
property. Hence εPφγα�fγ� �= 0. Therefore fα �= 0. This shows the injectiv-
ity of the restriction map f �→ fα and proves that jα∗ is the right adjoint
to j∗α. Finally, jα∗ preserves injectives being the right adjoint to an exact
functor.
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4
 Cohomological Dimension of Configuration Categories.

Lemma 2.9. Let � = ��S��� be a configuration category. Assume that
each category ��α� has enough injectives. Then so does �.
Proof. We will prove the assertion by induction on the cardinality of

S. Let β ∈ S be a smallest element. Put U = Uβ = �β	� Z = S − U . Let
j = jβ � U ↪→ S and i � Z ↪→ S be the corresponding open and closed
embedding.

For F in � we need to find a monomorphism F → I, where I is an
injective object in �. It suffices to do so for FU = j!j∗F and FZ = i∗i∗F . Let
j∗F → I1� i

∗F → I2 be similar monomorphisms in categories ��U���U� =
��β� and ��Z���Z� (this is possible by the induction assumption). Then

j∗j
∗F → j∗I1� i∗i

∗F → i∗I2

are monomorphisms in � with j∗I1 and i∗I1 being injective. It remains to
note the obvious monomorphism j!j∗F → j∗j∗F .

Proposition 2.10. Let � = ��S��� be a configuration category. Assume
that each category ��α� has enough injectives and has finite cohomological
dimension. Then � also has finite cohomological dimension.

Proof. We argue by induction on the cardinality of S as in the proof of
the last lemma. In fact we will use the notation of that proof.

Given F in � we need to find a finite injective resolution of F . It suffices
to do so for j!j∗F and i∗i∗F . Let j∗F → I•1 � i

∗F → I•2 be such resolu-
tions in categories ��U���U� and ��Z���Z�, respectively. Then j∗j∗F →
j∗I

•
1 � i∗i

∗F → i∗I
•
2 will be injective resolutions in �. Consider the short

exact sequence

0→ j!j
∗F → j∗j

∗F → G→ 0


Then Supp�G� ⊂ Z and so by induction G = i∗i∗G has a finite injective
resolution in �. Therefore the same is true for j!j∗F .

5. Derived Categories of Configuration Categories. Let � = ��S��� be a
configuration category. Denote by Db��� its bounded derived category.

Let U
j
↪→ S i←↩ Z be embeddings of an open U and a complemen-

tary closed Z. The exact functors j∗� j!� i∗� i∗ extend trivially to corre-
sponding functors between derived categories Db����Db���U���U���
Db���Z���Z��. If jα � �α	 ↪→ S is the inclusion, then the same is true for
the exact functor jα∗. When this causes no confusion we will denote the
derived functor again by the same symbol; i.e., we will write j! for �j!, etc.

Recall that functors j! and i∗ identify categories ��U���U� and
��Z���Z� with �U and �Z , respectively. Denote by DbU��� and DbZ���
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the full subcategories of Db��� consisting of complexes with cohomology
objects in �U and �Z , respectively.

Lemma 2.11. Assume that all categories ��α� have enough injectives.
Then in the above notation the functors i∗ � Db���Z���Z�� → Db��� and
j! � Db���U���U�� → Db��� are fully faithful. The essential images of these
functors are the full subcategories DbZ��� and DbU���, respectively.
Proof. We need to prove that functors i∗ and j! preserve Ext’s between

objects.
Let F�G ∈ ��Z���Z� and let G→ I• be an injective resolution (it exists

by Lemma 2.9). Then i∗G→ i∗I• is still an injective resolution. We have

Extk�i∗F� i∗G� = HkHom•�i∗F� i∗I•�
= HkHom•�i∗i∗F� I•�
= HkHom•�F� I•�
= Extk�F�G�


Thus i∗ preserves Ext’s.
Let F�G ∈ ��U���U�. Let j!G → J• be an injective resolution. Then

G = j∗j!G→ j∗J• is still an injective resolution. We have

Extk�j!F� j!G� = HkHom•�j!F� J•�
= HkHom•�F� j∗J•�
= Extk�F�G�


We immediately obtain the following corollary

Corollary 2.12. Assume that all categories ��α� have enough injectives.
Then the categories Db��U� and Db��Z� are naturally equivalent to DbU���
and DbZ���, respectively.
Corollary 2.13. Assume that each category ��β� has enough injectives.

Fix α ∈ S. Let i � �α	 ↪→ Uα and j � Uα ↪→ S be the closed and the open
embeddings, respectively. Then the composition functor

j!i∗ � Db���α�� → Db���S����

is fully faithful. In particular, the derived category Db���α�� is naturally a full
subcategory of Db���S����.



sheaves on configuration schemes 387

Proof. Indeed, by Lemma 2.11 above the functors

i∗ � Db���α�� → Db���Uα���Uα��
and

j! � Db���Uα���Uα�� → Db���S����
are fully faithful. So is their composition.

Recall the following definitions from [BK].

Definition 2.14. Let � be an additive category, and let � ⊂ � be a
full subcategory. A right orthogonal to � in � is a full subcategory �⊥ ⊂ �
consisting of all objects C such that Hom�B�C� = 0 for all B ∈ �.

Definition 2.15. Let � be a triangulated category, and let � ⊂ � be a
full triangulated subcategory. We say that � is right-admissible if for each
X ∈ � there exists an exact triangle B→ X → C with B ∈ �� C ∈ �⊥.

Lemma 2.16. (a) In the category � we have �⊥
U = �Z .

(b) Assume that all categories ��α� have enough injectives (so that, in
particular, Db��U� and Db��Z� are full subcategories of Db���). Then

(i) in Db��� we have Db��U�⊥ = Db��Z�,
(ii) the subcategory Db��U� ⊂ Db��� is right-admissible.

Proof. (a) Given F ∈ �U�G ∈ � we have Hom�F�G� = Hom�F�GU�.
Hence Hom�F�G� = 0 for all F iff GU = 0 or, equivalently, G ∈ �Z .

(b) (i) Let G• ∈ Db���. If G• ∈ Db��U�⊥, then G•U is acyclic, i.e.,
G• ∈ DbZ���. Vice versa, and injective complex G• in Db��Z� stays injec-
tive in Db���. Thus Db��Z� ⊂ Db��U�⊥.

(ii) Given X• ∈ Db��� the required exact triangle is X•U → X• →
X•Z .

3. CATEGORIES coh�X/S� AND qcoh�X/S� FOR SMOOTH
CONFIGURATION SCHEMES X/S

We now turn to the subject of our primary interest: the category
coh�X/S� for a smooth configuration scheme X/S. This category does not
have enough injectives, so we will study coh�X/S� (as usual) by embedding
it in a larger category qcoh�X/S�.

So let X/S be a smooth configuration scheme.

Lemma 3.1. The category qcoh�X/S� has enough injectives.
Proof. This is a direct consequence of the general Lemma 2.9.
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Corollary 3.2. The category qcoh�X/S� has finite cohomological
dimension.

Proof. This follows from Lemma 3.1, Proposition 2.10, and the well
known fact that the category qcoh�Y � has finite cohomological dimension
if Y is smooth.

Consider the bounded derived categories Db�coh�X/S�� and
Db�qcoh�X/S��. Let Dbcoh�qcoh�X/S�� ⊂ Db�qcoh�X/S�� be the full
subcategory consisting of complexes with cohomologies in coh�X/S�. The
next proposition is the analogue of a similar well known result for usual
schemes.

Proposition 3.3. The categories Db�coh�X/S�� and Dbcoh�qcoh�X/S��
are equivalent.

Lemma 3.4. Let f � F → T be an epimorphism, where F ∈ qcoh�X/S�
and T ∈ coh�X/S�. There exists a subobject G ⊂ F such that G ∈ coh�X/S�
and f �G � G→ T is still an epimorphism.

Proof. The lemma is well known for usual noetherian schemes. For each
α ∈ S choose a coherent subsheaf Pα ⊂ Fα such that fα�Pα � Pα → Tα is an
epimorphism. The inclusion Pα ↪→ Fα defines the corresponding morphism
tα � iα+Pα→ F . Put

P �=⊕
α

iα+Pα ∈ coh�X/S�� t = ⊕tα � P → F


Then the composition f · t � P → T is an epimorphism and we can take
G = Im�t�.
Proof (of Proposition). The proposition follows from the above lemma

by standard homological algebra as (for example) in [ST, pp. 12, 13].

Corollary 3.5. The category coh�X/S� has finite cohomological
dimension.

Proof. This follows from Corollary 3.2 and Proposition 3.3.

Let U
j
↪→ S i←↩ Z be embeddings of an open and a complementary closed

subset. Consider the functors

j! � Db�coh�X/U�� → Db�coh�X/S���
i∗ � Db�coh�X/Z�� → Db�coh�X/S��


Proposition 3.6. (i) The functors j! and i∗ are fully faithful. Thus
Db�coh�X/U�� and Db�coh�X/Z�� can be considered as full triangulated
subcategories of Db�coh�X/S��.
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(ii) Db�coh�X/Z�� is the right orthogonal to Db�coh�X/U�� in
Db�coh�X/S��.

(iii) Db�coh�X/U�� is right-admissible in Db�coh�X/S��.
Proof. (i) By Lemma 2.11 the analogous fact holds for the cate-

gories Db�qcoh� instead of Db�coh�. Hence it also holds for the categories
Dbcoh�qcoh�. Therefore it holds for Db�coh� by the above proposition.

(ii) By Lemma 2.16(b)(i) the analogous fact holds for the categories
Db�qcoh� instead ofDb�coh�. Actually, the same proof shows that the asser-
tion is true for categories Dbcoh�qcoh�. Hence by Proposition 3.3 it is also
true for Db�coh�.

(iii) The required exact triangle is FU → F → FZ .

Corollary 3.7. Fix α ∈ S
 Let i � �α	 ↪→ Uα and j � Uα ↪→ S be closed
and open embeddings, respectively. Then the composition of functors

j!i∗ � Db�coh�X�α��� → Db�coh�X/S��
is fully faithful. In particular, the derived category Db�coh�X�α��� is naturally
a full subcategory of Db�coh�X/S��.
Proof. By Proposition 3.6 above the functors j! and i∗ are fully faithful.

So is their composition.

Recall the following definitions from [BK].

Definition 3.8. A triangulated category � is of finite type if for all
B�C ∈ � the space Hom�B�C� is finite dimensional and Exti�B�C� = 0
for �i� � 0.

Definition 3.9. Let � be a triangulated category and h � �→ Vect be
a contravariant cohomological functor. We say that h is of finite type if for
all E ∈ � the vector spaces hi�E� = h�E�−i�� are finite dimensional and
are equal to zero for almost all i. Similarly, for covariant cohomological
functors.

Definition 3.10. Let � be a triangulated category of finite type. We
say that � is right-saturated if every contravariant cohomological functor
h � �→ Vect of finite type is representable, i.e., h�·� = Hom�·�X� for some
X ∈ �. Similarly we define left-saturatedness using covariant cohomological
functors. The category � is saturated if it is left- and right-saturated.

One of the main results in [BK] is the following theorem.

Theorem 3.11. Let X be a smooth projective variety. Then the category
Db�coh�X�� is saturated.
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The technique developed in [BK] allows us to extend the above theo-
rem to the category Db�coh�X/S�� for a smooth configuration scheme with
projective X�α�’s.
Lemma 3.12. Assume that each X�α� is a (smooth) projective variety.

Then the category Db�coh�X/S�� is of finite type.
Proof. Put � = coh�X/S�. Let β ∈ S be a smallest element, U = Uβ =

�β	 the corresponding open subset, and Z = S − U the complementary
closed. Given F�G ∈ � consider the short exact sequences in �.

0→ FU → F → FZ → 0� 0→ GU → G→ GZ → 0


To show that ⊕k dim Extk�F�G� <∞ it suffices to prove the same for the
other four members of the above exact sequences. By induction on the
cardinality of S (and using Proposition 3.6(i)) we may assume that⊕

k

dim Extk�FU�GU� <∞�
⊕
k

dim Extk�FZ�GZ� <∞


Also by Proposition 3.6(ii), Ext•�FU�GZ� = 0. It remains to consider
Extk�FZ�GU�.

Denote by j � U ↪→ S the open embedding. Consider the short exact
sequence

0→ GU → j∗j
∗GU → P → 0


Then P ∈ �Z and by induction ⊕k dim Extk�FZ� P� < ∞. We claim that
Ext•�FZ� j∗j∗GU� = 0. Indeed, let j∗GU → I• be an injective resolution
(in qcoh�X�β��). Then j∗j∗GU → j∗I• remains an injective resolution
(Lemma 2.8), so that Ext•�FZ� j∗j∗GU� = H•Hom•�FZ� j∗I•�. But for any
T ∈ qcoh�X�β��

Hom�FZ� j∗T � = Hom�j∗FZ� T � = Hom�0� T � = 0


Hence also ⊕k dim Extk�FZ�GU� <∞.

The next theorem is again from [BK].

Theorem 3.13. Let � be a triangulated category of finite type, and � ⊂ �
a right-admissible triangulated subcategory, � = �⊥. Assume that � and �
are right- (resp. left-) saturated. Then so is �.

We have the following counterpart of Theorem 3.11.

Theorem 3.14. Assume that each X�α� is a (smooth) projective variety.
Then the category Db�coh�X/S�� is saturated.
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Proof. We will use Theorem 3.11 as a basis for induction on the car-
dinality of S. By Lemma 3.12 the category Db�coh�X/S�� is of finite
type. Let U ⊂ S be open and Z = S − U . By Proposition 3.6 the full
subcategory Db�coh�X/U�� ⊂ Db�coh�X/S�� is right-admissible and
Db�coh�X/U��⊥ = Db�coh�X/Z��. By the induction hypothesis the cat-
egories Db�coh�X/U�� and Db�coh�X/Z�� are saturated. Hence by
Theorem 3.13 so is Db�coh�X/S��.

1. The Serre Functor.

Definition 3.15 [BK]. Let � be a tringulated category with finite
dimensional Hom’s. Let F � �→ � be a covariant auto-equivalence which
commutes with the translation functor [1]. We call F a Serre functor if there
exist bifunctorial isomorphisms

φE�G � Hom�E�G� → Hom�G�F�E��∗

(for E�G ∈ �) with the property that the composition(
φ−1
F�E��F�G�

)∗ ·φE�G �Hom�E�G�→Hom�G�F�E��∗→Hom�F�E��F�G��
coincides with the isomorphism induced by F .

In fact the compatibility condition in the above definition is superfluous,
as was proved in [RVdB].

Example 3.16. Let X be a smooth projective variety, n = dimX�� =
Db�coh�X��, and KX = -nX the canonical sheaf. Then F�·� = �·� ⊗KX�n�
is a Serre functor in �.

Proposition 3.17 [BK]. Let � be a triangulated category of finite type.

(i) A serre functor F � � → � is exact; i.e., it takes exact triangles to
exact triangles.

(ii) Any two Serre functors in � are canonically isomorphic.
(iii) If � is saturated, then it has a Serre functor.

We immediately obtain the following theorem.

Theorem 3.18. Assume that each X�α� is a (smooth) projective variety.
Then the category Db�coh�X/S�� has a Serre functor.
Proof. Follows from Theorem 3.14 and Proposition 3.17.

2. Cohomology of Coherent Sheaves on Configuration Schemes. Let X/S
be a configuration scheme.

Definition 3.19. Consider the object G ∈ coh�X/S� such that Gα =
	X�α� and for β ≤ α the map σαβ � φαβ�Gα� → Gβ is the identity. We call
this object the structure sheaf of X/S and denote it 	X/S .
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Definition 3.20. Let F ∈ coh�X/S�. We define the cohomology of F
as

Hi�F� = Hi�X/S� F� �= Exti�	X/S� F�

Note that any G ∈ coh�X/S� has a finite left resolution by sheaves which

are finite direct sums of GUα ’s for various α ∈ S �
0→⊕GUβ → · · · → ⊕GUα → G→ 0


Hence, in particular, 	X/S has such a resolution. Thus to compute
Hi�X/S� F� we can use a spectral sequence with the E1 term equal
to a direct sum of vector spaces Hi�X/Uα� F� for various α ∈ S� i ≥ 0.

The next lemma shows how to compute the cohomology H•�X/Uα� F�.
Lemma 3.21. Assume that α ∈ S is the unique maximal element, i.e., S =

Uα. Then for any F ∈ coh�X/S� there is a natural isomorphism
H•�X/S� F� � H•�X�α�� Fα�


Proof. Let jα � �α	 ↪→ S be the embedding. Note that 	X/S = jα+	X�α�.
Hence for F ∈ coh�X/S�

Hom�	X/S� F� � Hom�	X�α�� Fα��
which proves the lemma for H0. To complete the proof of the lemma it
suffices to prove the following claim.

Claim. Every F ∈ coh�X/S� can be embedded in an injective object I ∈
qcoh�X/S� such that Iα is acyclic for the functor Hom�	X�α�� ·�.
Proof of the Claim. For β ∈ S let jβ � �β	 ↪→ S be the inclusion. For

each β choose a monomorphism Fβ → Iβ, where Iβ ∈ qcoh�X�β�� is an
injective object. By adjunction this defines a map

tβ � F → jβ∗Iβ�

where the object jβ∗Iβ ∈ qcoh�X/S� is injective (Lemma 2.8). Put

I �= ⊕β∈Sjβ∗Iβ
with the embedding

t = ⊕tβ � F ↪→ I


We claim that for each β the sheaf �jβ∗Iβ�α ∈ qcoh�X�α�� is acyclic
for Hom�	X�α�� ·� (and hence I is such). Indeed, it is equal to ψβα�Iβ� =
fβα∗�Iβ� for the closed embedding fβα � X�β� ↪→ X�α�, and H•�X
�β�� Iβ� = H•�X�α�� fβα∗Iβ�. This proves the claim and the lemma.

We immediately obtain the following corollary.

Corollary 3.22. Assume that α ∈ S is the unique maximal element, i.e.,
S = Uα. Let F ∈ coh�X/S� be such that Fα = 0. Then H•�X/S� F� = 0.
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4. HYPERPLANE CONFIGURATION SCHEMES

1. Definition and Cohomological Dimension of Hyperplane Configuration
Schemes. We want to consider in detail the simplest type of smooth con-
figuration schemes, namely, the ones defined by d hyperplanes in general
position in 
n+1.

Let L1� L2� 
 
 
 � Ld be hyperplanes in general position in 
n+1. Let S be
the poset of nonempty subsets of �1� 
 
 
 � d	 of cardinality ≤ n + 1. (For
α�β ∈ S we put β ≤ α iff β ⊆ α.) For α = �i1� 
 
 
 � ij+1	 ∈ S define

X�α� �= Li1 ∩ · · · ∩ Lij+1
� 
n−j 


Put d�α� = dimX�α� = n− j. We will also denote 
α = X�α� � 
d�α�. If
α ≥ β we have the natural closed embedding fβα � 
β → 
α. This defines
a functor X � Sopp → Sch/�, which is a smooth configuration scheme.

Definition 4.1. We call a smooth configuration scheme X/S as above
a hyperplane configuration scheme (of type �n� d�).

By the general Corollary 3.5 we know that the cohomological dimension
of the category coh�X/S� is finite. The next proposition is a more precise
result.

Proposition 4.2. Let X/S be a hyperplane configuration scheme of type
�n� d�. Then the cohomological dimension of coh�X/S� is 2n if d ≥ n and
n+ d if d < n; i.e., it is equal to min�2n� n+ d	.
Proof. First we prove the upper bound on the cohomological dimension.
For each k ≥ 0 denote by Zk ⊂ S the closed subset

Zk �= �α ∈ S�d�α� ≥ k	

Thus Zn ⊂ Zn−1 ⊂ 
 
 
 


Let F�G ∈ coh�X/S�. Assume that Supp�G� ⊂ Zk. It suffices to prove
that Exti�F�G� = 0 for i > 2n− k. We will prove it by descending induction
on k.

If k = n, then
Exti�F�G� = ⊕jExti�F �Lj �G�Lj �


Thus Exti�F�G� = 0 for i > n. Assume the assertion is proved for k and
SuppG ⊂ Zk−1. Put U = Zk−1 − Zk. Consider the short exact sequence

0→ GU → G→ GZk → 0


It suffices to prove that Exti�F�GU� = 0 for i > 2n− k+ 1. We may assume
that S = Zk−1. Note that

GU = ⊕α∈UGα
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Fix one α ∈ U . This is a smallest element in S. Let jα � �α	 ↪→ S denote
the open embedding. We have the short exact sequence of sheaves on S

0→ Gα→ jα∗j
∗
αGα→ �jα∗j∗αGα�/Gα→ 0


Since jα∗ is exact and preserves injectives, the object jα∗j∗αGα has an injec-
tive resolution of length ≤ k− 1. On the other hand Supp��jα∗j∗αGα�/Gα� ⊂
Zk. Thus by induction

Exti�F� �jα∗j∗αGα�/Gα� = 0

for i > 2n − k. Hence Exti�F�Gα� = 0 for i > 2n − k + 1. This com-
pletes the induction step and proves the upper bound on the cohomological
dimension.

To show that the bound is actually achieved choose an element β ∈ S. Put
m �= dim
β. Choose a point p ∈ 
β. Since 
β ⊂ 
γ for β ≤ γ, the point p
also belongs to all 
γ for γ ≥ β. We denote the corresponding sky-scraper
sheaf �γp ∈ coh�
γ�. For γ ∈ S denote the embedding jγ � �γ	 ↪→ S. Let
α ≥ β be a maximal element. It suffices to prove that

Ext2n−m�jα∗�αp� jβ!�βp� �= 0


In case m = n (i.e., α = β) we have

Extn�jα∗�αp� jα!�αp� = Extncoh�
α���p��p� �= 0


Now we argue by descending induction on m. The sheaf jβ!�
β
p has a

resolution

0→ jβ!�
β
p → jβ∗�

β
p →

⊕
γ≥β

d�γ�=d�β�+1

jγ∗�
γ
p→ · · · → ⊕

δ≥β
d�δ�=n

jδ∗�
δ
p→ 0


So it suffices to prove that Ext•�jα∗�αp� jγ∗�γp� = 0 for all γ < α. But this fol-
lows because jγ∗ is exact and preserves injectives and Hom�jα∗�αp, jγ∗T � = 0
for all T ∈ qcoh�
γ�. This proves the proposition.

2. The Čech Complex. Let X/S be a hyperplane configuration scheme
of type �n� d�. Consider the open covering of S by the (irreducible) sets
Uα� d�α� = n. Given F ∈ Db�coh�X/S�� we have the corresponding Čech
resolution Č•�F� → F with

Č•�F� �= 0→ ⊕
d�γ�=0

FUγ → · · · ⊕
d�β�=n−1

FUβ →
⊕
d�α�=n

FUα → 0�

where FUδ �= jδ!j∗δF for the open embedding jδ � Uδ ↪→ S. The differentials
in this complex are the sums of the natural embeddings FUβ ↪→ FUα taken
with ± sign. Notice that for each α ∈ S there is exactly one summand FUα
in Č•�F�.
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In case F = 	X/S we will denote Č• = Č•�	X/S�. Note that for each
α ∈ S� j ≥ 0� i > 0,

Exti�	Uα�	X/S�j�� = Exti�	
α
�	
α

�j�� = 0


Hence the complex Hom•�Č•�	X/S�j�� represents �Hom•�	X/S�	X/S�j��.
Example 4.3. Let X/S be a Calabi–Yau hyperplane configuration

scheme, i.e., d = n+ 2. Then the poset S is isomorphic to the poset of sim-
plices in the standard triangulation of the boundary of an �n+ 1�-simplex.
Thus the complex Hom•�Č•�	X/S� is isomorphic to the (shifted by n to
the right) simplicial complex of the boundary of an �n+ 1�-simplex.

3. Localization Theorem. Let X0 be the reduced scheme, which is the
union X0 = L1 ∪ · · · ∪Ld ⊂ 
n+1. We have the obvious localization functor

� � coh�X0� → coh�X/S�


Namely, for α ∈ S denote the closed embedding tα � 
α→ X0. Then given
F ∈ coh�X0� we define ��F�α �= t∗αF ∈ coh�
α�. The functor � is right
exact, hence induces its left derived

�� � Db�coh�X0�� → D−�coh�X/S��


We will denote ���	X0
�i�� simply by 	X/S�i�. The endofunctor

	X/S�i�
⊗
	X/S

�·� � coh�X/S� → coh�X/S�

is an auto-equivalence.

Definition 4.4. A perfect complex in Db�coh�X0�� is a finite complex
consisting of locally free sheaves. Denote by Perf�X0� the full subcategory
of Db�coh�X0�� consisting of perfect complexes.

Note that for a perfect complex P• ∈ Perf�X0� we have ��P•� =
���P•� ∈ Db�coh�X/S��.
Theorem 4.5. The functor � � Perf�X0� → Db�coh�X/S�� is fully

faithful.

We need a few lemmas.

Lemma 4.6. For i ≥ 0 the spaces H•�X0�	X0
�i�� and H•�X/S�	X/S�i��

are isomorphic.
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Proof. The scheme X0 has a covering by closed subschemes

X0 =
⋃

d�α�=n

α


Consider the corresponding Čech resolution 	X0
�i� → J• in coh�X0�, where

J• = ⊕
d�α�=n

	
α
�i� → ⊕

d�β�=n−1

	
β
�i� → 
 
 
 


(The fact that 	X0
�i� → J• is a quasi-isomorphism can be easily checked

by a local computation, since the hyperplanes Li are in general position.)
Note that each sheaf 	
γ

�i� is acyclic for Hom�	X0
� ·� (since i ≥ 0), hence

the complex Hom•�	X0
� J•� represents � Hom•�	X0

�	X0
�i��.

On the other hand � Hom•�	X/S�	X/S�i�� is represented by the complex
Hom•�C̆•�	X/S�i��, which is naturally isomorphic to Hom•�	X0

� J•�. This
proves the lemma.

Corollary 4.7. We have Hj�X/S�	X/S�i�� = 0 for j > 0, i > 0.

Proof. This follows from the last lemma and the vanishing of the corre-
sponding cohomology groups on X0.

Lemma 4.8. For all j ≥ i the map
� � Hom�	X0

�i��	X0
�j�� → Hom�	X/S�i��	X/S�j��

is an isomorphism.

Proof. Since � commutes with tensoring by 	X0
�i� (resp. 	X/S�i�), it

suffices to show that for all j ≥ 0 the map

� � H0�X0�	X0
�j�� → H0�X/S�	X/S�j��

is an isomorphism. By Lemma 4.6 the two spaces have the same dimension.
Also it is clear that the map is injective. Hence it is an isomorphism.

Lemma 4.9. For any F ∈ coh�X0� and any i the map
�� � Ext•�F�	X0

�i�� → Ext•����F��	X/S�i��
is an isomorphism.

Proof. We can find a left resolution P• → F , where elements of P•

are direct sums of sheaves 	X0
�−jk� with jk > −i. Then Hom•�P•�	X0

�i��
represents � Hom•�F�	X0

�i�� and by Corollary 4.7, Hom•���P•��	X/S�i��
represents � Hom•����F��	X/S�i��. But the functor � establishes an iso-
morphism of complexes Hom•�P•�	X0

�i�� and Hom•���P•��	X/S�i�� by
Lemma 4.8.
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Proof (of Theorem). It follows from the last lemma that the functor ��
is fully faithful on the triangulated subcategory of Db�coh�X0��, generated
by line bundles 	X0

�i�. To prove the theorem it suffices to show that any
locally free sheaf F on X0 is a direct summand (in Db�coh�X0��) of a finite
complex P• which consists of direct sums of line bundles 	X0

�i�. For any
s ≥ 0 we can find an exact complex in coh�X0�

0→ T → P−s → · · · → P−1 → P0 → F → 0�

where each P−j is a direct sum of line bundles 	X0
�i�. It represents

an element in Exts+1�F� T �. Note that the functor Hom�F� �·�� is iso-
morphic to 2�X0� �·� ⊗	X0

F∗�. Thus Exts+1�F� T � = 0 for s � 0 and so
P• � F ⊕ T �s�.

4. Exceptional Collections and Representations of Quivers. For a hyper-
plane configuration scheme X/S we will prove that the derived category
Db�coh�X/S�� is equivalent to the derived category of finite dimensional
modules over a certain finite dimensional algebra A. Let us first recall
some basic definitions (see, for example, [Bo]).

Let � be a triangulated category.

Definition 4.10. An object E in � is called exceptional if Exti�E�E� = 0
for i �= 0, Hom�E�E� = �.

Definition 4.11. An ordered collection �E0� 
 
 
 � Em� of exceptional
objects is called an exceptional collection in � if Exti�Ej�Ek� = 0 for all i
when j > k.

Definition 4.12. An exceptional collection �E0� 
 
 
 � Em� in � satisfying
the condition Exti�Ej�Ek� = 0 for all j and k if i �= 0 is called a strong
exceptional collection.

Given a strong exceptional collection �E0� 
 
 
 � Em� in � put E = ⊕Ei and
A = Hom�E�E�. Then A is a finite-dimensional algebra. It is actually the
path algebra of a certain quiver with relations which contains n+ 1 vertices
(see [Bo] for the discussion of this topic). The following theorem is proved
in [Bo].

Theorem 4.13. Let Y be a smooth projective variety. Assume that the
derived category � = Db�coh�Y �� is generated (as a triangulated category)
by a strong exceptional collection �E0� 
 
 
 � Em�. Then � is equivalent to the
derived category Db�A−mod� of right finite-dimensional A-modules.
Remark 4.14. Strong exceptional collections as in the above theorem are

known for projective spaces, quadrics, Grassmannians, and flag varieties.
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Remark 4.15. Let pk � E→ Ek be the projection on the kth summand.
Consider the projective right A-module Pk �= pkA. We have the natural
isomorphism

HomA�Pk� Pl� = Hom�Ek�El�

Here we provide a counterpart of the above theorem for hyperplane con-

figuration schemes. Namely, let X/S be a hyperplane configuration scheme
of type (n� d). For α ∈ S put

Eα�i �= 	Uα�i� ∈ coh�X/S�

Consider the collection

� = �Eα�i�α ∈ S� 0 ≤ i ≤ dim
α	

It has a natural lexicographical partial order, i.e., Eα�i > Eβ�j iff α > β,

or α = β and i > j. Again we put

E = ⊕Eα�i∈�Eα�i� A = Hom�E�E�

Theorem 4.16. Let X/S be a hyperplane configuration scheme. Put � =

Db�coh�X/S��. Consider the collection � as above with any linear ordering
which is compatible with its natural partial order. Then

(i) � is a strong exceptional collection in �;
(ii) � generates the triangulated category �;
(iii) the category � is equivalent to the derived category Db�A−mod�

of finite dimensional right A-modules.

Proof. (i) Let Eα�i� Eβ�j ∈ �. It follows from Lemma 3.21 that

Ext•�Eα�i� Eβ�j� = H•�
α� �Eβ�j−i�α�

Thus Ext•�Eα�i� Eβ�j� = 0 unless β ≥ α. Assume that β ≥ α. Then by the
same formula

Ext•�Eα�i� Eβ�j� = H•�
α�	
α
�j − i��


If j < i, then again Ext• = 0 (because i − j ≤ dim�
α�). If j ≥ i then only
Ext0 is nonzero. Thus � is a strong exceptional collection.

(ii) We will use the following theorem of A. Beilinson: for a projective
space 
k the line bundles 	
k�	
k� �1�� 
 
 
 �	
k�k� generate the category
Db�coh�
k��.

For α ∈ S denote by iα � �α	 ↪→ Uα and jα � Uα ↪→ S the closed and
open embeddings, respectively. Recall that the functor

jα!iα∗ � Db�coh�
α�� → Db�coh�X/S��
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is fully faithful (Corollary 3.7). The images of these functors generate the
triangulated category Db�coh�X/S��. So it suffices to prove that the collec-
tion � generates each subcategory jα!jα∗Db�coh�
α��. We will prove this
assertion by induction on α (using the partial order of S).

If α is a smallest element the assertion follows from the above mentioned
theorem of Beilinson about Db�coh�
k��. Suppose we proved the assertion
for each β ∈ S such that β < α. Put V = Uα − �α	. For Eα�i ∈ � consider
the exact sequence

0→ �Eα�i�V → Eα�i → jα!iα∗	
α
�i� → 0


By our assumption �Eα�i�V is contained in the subcategory of Db�coh�X/S��
generated by �. So the same is true for jα!iα∗	
α

�i�. Now the assertion for
α follows from the same fact about 
k mentioned in the beginning.

(iii) The proof is essentially the same as that of the corresponding
Theorem 6.2 in [Bo]. We present it for completeness.

Let A − mod denote the abelian category of right A-modules, and let
�A − mod�f ⊂ A − mod denote the full subcategory of finitely gener-
ated A-modules. Let Db�A−mod��Db��A−mod�f � be the corresponding
bounded derived categories. Denote by Dbf �A−mod� ⊂ Db�A−mod� the
full subcategory consisting of complexes with cohomologies in �A−mod�f .
The natural functor Db��A −mod�f � → Dbf �A −mod� is an equivalence.
We are going to construct an equivalence

θ � Db�coh�X/S�� ∼→Dbf �A−mod�


For each F ∈ Db�coh�X/S�� choose an injective resolution F → I•�F�.
Put θ�F� �= Hom•�E� I•�F��. The algebra A acts on this complex from
the right preserving each component and commuting with the differential.
Thus θ�F� is a complex of right A−modules. The cohomologies Hi�θ�F��
are finite dimensional vector spaces and are zero for �i� � 0. Thus θ�F� is
an object in Dbf �A−mod� and we obtain a functor

θ � Db�coh�X/S�� → Dbf �A−mod�


Let us prove that θ is an equivalence.
Denote by pα�i � E → Eα�i the projection. Let pα�i �= pα�iA be the cor-

responding projective right A-module.
Note that Hj�θ�Eα�i�� = 0 for j �= 0 and H0�θ�Eα�i�� = Pα�i. The col-

lections � = �Eα�i	 and Pα�i generate the categories Db�coh�X/S�� and
Dbf �A−mod�, respectively. Thus it suffices to prove that the map

θ � Ext•�Eα�i� Eβ�j� → Ext•�Pα�i� Pβ�j�
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is an isomorphism. But the higher Ext’s on both sides vanish and

θ � Hom�Eα�i� Eβ�j� → HomA�Pα�i� Pβ�j�
is an isomorphism by Remark 4.15 above.

5. Spherical Objects and Twist Functors. We recall some facts about
spherical objects and the corresponding twist functors following [ST]. In
the next subsection we will apply these results to Calabi-Yau hyperplane
configuration schemes.

Let � be an abelian category and �′ ⊂ � be a full abelian subcategory
with the following properties

(C1) �′ is a Serre subcategory of �;
(C2) � contains infinite direct sums and products;
(C3) � has enough injectives, and any direct sum of injectives is again

an injective;
(C4) for any epimorphism f � A�A′. with A ∈ � andA′ ∈ �′, there

is a B′ ∈ �′ and g � B′ → A such that fg is an epimorphism.

Lemma 4.17. Let X be a Noetherian scheme over a field k and
C= qcoh(X)��′ = coh�X�. Then properties (C1)–(C4) are satisfied.

Proof. See [ST].

Definition 4.18. Let K+��� be the homotopy category of bounded
below complexes of objects in �. Denote by � ⊂ K+��� the full sub-
category whose objects are complexes C• of injectives in � which satisfy
Hi�C•� ∈ �′ for all i and Hi�C•� = 0 for all i� 0.

The following lemma is well known (also proved in [ST]).

Lemma 4.19. The obvious functors

Db��′� → Db�′ ��� ← �

are equivalences. Thus in particular Db��′� � �.

Let us define some operations in the category �.

Definition 4.20. Let E ∈ � be an object satisfying the following finite-
ness conditions

(K1) E is a bounded complex,
(K2) for any F ∈ �

⊕
i

dim Exti�E�F� <∞� ⊕
i

dim Exti�F�E� <∞
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Then one defines the twist functor TE � � → � by

TE�F� �= Cone�Hom•�E�F� ⊗ E ev→F��
where ev is the obvious evaluation map.

Remarks. (1) TE is an exact functor; i.e., it takes exact triangles to
exact triangles.

(2) If E�E1 ∈ � satisfying (K1), (K2) are isomorphic, then the cor-
responding functors TE� TE1

are isomorphic.

Definition 4.21. An object E ∈ � is called n-spherical for some n > 0
if it satisfies (K1), (K2) above and in addition

(K3) Exti�E�E� is equal to � for i = 0� n and zero otherwise;

(K4) the composition

Extj�E�F� × Extn−j�F�E� → Extn�E�E� � �

is a nondegenerate pairing for all F ∈ �� j ∈ 
.

Proposition 4.22. If E is n-spherical for some n > 0, then the functor
TE � � → � is an equivalence.

Proof. See [ST].

Using the equivalence Db��′� � � we obtain the following corollary.

Corollary 4.23. In the setup of the last proposition the n-spherical object
E induces an exact auto-equivalence of Db��′� which we also denote TE .
Example 4.24. The standard example of an n-spherical object in

Db�coh�X�� is 	X for a smooth n-dimensional Calabi–Yau variety X.
Indeed, by definition Exti�	X�	X� is � for i = 0, n and zero otherwise.
Also by definition 	X � ωX and hence by Serre duality the natural pairing

Exti�	X� F� × Extn−i�F�	X� → Extn�	X�	X� � �

is perfect for all F ∈ Db�coh�X�� and all i. Thus 	X is indeed n-spherical.
Examples of other spherical objects in Db�coh�X�� are discussed in [ST].

6. Calabi–Yau Hyperplane Configuration Schemes. Let X/S be a Calabi–
Yau hyperplane configuration scheme; i.e., it is of type (n� n+ 2) for some
n > 0. Let X0, as usual, be the corresponding singular subscheme of 
n+1

which is the union of the n+ 2 hyperplanes. The object 	X0
∈ Db�coh�X0��

is the dualizing complex on X0. That is, the pairing

Exti�	X0
� F� × Extn−i�F�	X0

� → Extn�	X0
�	X0

� � �



402 valery a. lunts

is perfect for all F ∈ Db�coh�X0�� and all i. Thus for all F ∈ coh�X0� we
have Extn+1�F�	X0

� = 0. Therefore the same is true for all F ∈ qcoh�X0�.
It follows that 	X0

has finite injective dimension in qcoh�X0�. So there
exists a finite injective resolution 	X0

→ E in qcoh�X0� such that E ∈ �
satisfies the properties (K1)–(K4) above. Hence the corresponding twist
functor T	X0

= TE � Db�coh�X0�� → Db�coh�X0�� is an equivalence. It
follows that 	X0

�j� is also n-spherical for all j ∈ 
. Hence for each j we
obtain the corresponding auto-equivalence of Db�coh�X0��. We are going
to show that these auto-equivalences survive when we pass from X0 to the
configuration scheme X/S.

First we need a lemma.

Lemma 4.25. The categories � = qcoh�X/S� and �′ = coh�X/S� satisfy
the assumptions (C1)–(C4) of the last subsection.

Proof. Assumption (C1) is obvious and (C4) was proved in Lemma 3.4
above. Let us prove (C2).

Let Fi ∈ qcoh�X/S� for i ∈ I. Let us define the object F = ⊕Fi ∈
qcoh�X/S�. Namely, for α ∈ S put Fα = ⊕Fiα. Then for fβα � X�β� → X�α�
we have

f ∗βα
(⊕

Fiα
) =⊕

f ∗βαF
i
α


Hence we define the morphism σαβ�F� � f ∗βαFα → Fβ to be the direct sum
of morphisms σαβ�Fi�.

The definition of G = :Fi ∈ qcoh�X/S� is similar. Namely, for α ∈ S put
Gα = :Fiα. Then for fβα � X�β� → X�α� we have a canonical morphism

mαβ � f ∗βα
(∏

Fiα

)
→∏

f ∗βαF
i
α


Hence we define the morphism σαβ�G� � f ∗βαGα → Gβ as the composition
of mβα with the product of morphisms σαβ�Fi�.

One checks directly that F and G satisfy the universal properties of the
direct sum and the direct product, respectively.

Let us prove (C3). Also by Lemma 3.1 the category qcoh�X/S� has
enough injectives. It remains to prove that a direct sum of injectives in
qcoh�X/S� is again an injective. Note that the category qcoh�X/S� is locally
noetherian; i.e., it has a family of noetherian generators (any object in
coh�X/S� is noetherian). Hence a direct sum of injectives in qcoh�X/S� is
an injective by Corollary 6.50 in [BD].

Remark 4.26. The assertion of the lemma is true for arbitrary configu-
ration schemes (the proof is the same).

Theorem 4.27. Let X/S be a Calabi–Yau hyperplane configuration
scheme of type �n� n + 2�. Then for any t the line bundle 	X/S�t� is an
n-spherical object in Db�coh�X/S��.
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Proof. We may assume that t = 0.
The finiteness conditions (K1), (K2) are satisfied for any E ∈ Db�coh

�X/S�� by Corollary 3.2 and Lemma 3.12. Also by Theorem 4.5,
Exti�	X/S�	X/S� = Exti�	X0

�	X0
�. So we only need to prove that for

all F ∈ Db�coh�X/S�� the natural pairing

Exti�	X/S� F� × Extn−i�F�	X/S� → Extn�	X/S�	X/S� � �

is perfect.
Step 1. We can find a left resolution P• → F , where P• consists of finite

direct sums of sheaves 	Uα�j� for various α ∈ S� j < 0. Thus we may assume
that F = 	Uα�j� for some α ∈ S and j < 0.
Step 2. Note that

Extk�	Uα�j��	X/S� = Extk�	Uα�j��	Uα� = Extk�	
α
�j��	
α

� = 0�

unless k = 0.

Lemma 4.28. Exti�	X/S�	Uα�j�� = 0 if i �= n.
Proof of Lemma. Consider the Čech resolution Č• → 	X/S as defined

above.
By Lemma 3.21 we have

Extp�	Uγ �	Uα�j�� =
{
0� ifγ �≤ α�
Extp�	
γ

�	
γ
�j��� otherwise


Since j < 0, Extp�	
γ
�	
γ

�j�� = 0, unless p = d�γ�. So the spectral
sequence argument applied to the naturally filtered complex �Hom•�Č•,
	Uα�j�� yields Exti�	X/S�	Uα�j�� = 0 for i �= n. This proves the lemma.

Therefore, it suffices to show that the pairing

Extn�	X/S�	Uα�j�� ×Hom�	Uα�j��	X/S� → Extn�	X/S�	X/S�(1)

is perfect.
Step 3. Let Č•α ⊂ Č• be the subcomplex consisting of direct sums of

objects 	Uβ with β ≤ α.

Lemma 4.29. The inclusion Č•α ↪→ Č• induces isomorphisms

Extn�Č•�	Uα�j��
∼→Extn�Č•α�	Uα�j���

and

Extn�Č•�	X/S�
∼→Extn�Č•α�	X/S�
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Proof of Lemma. The first one follows from Lemma 3.21. Let us prove
the second one. The complex Hom•�Č•�	X/S� is isomorphic to the (shifted
by n to the right) chain complex of the boundary of an �n+ 1�-simplex with
the standard triangulation. Its quotient Hom•�Č•α�	X/S� corresponds to the
(shifted) chain complex of a subsimplex. Hence the projection Hom•�Č•,
	X/S� → Hom•�Č•α, 	X/S� induces an isomorphism on the top cohomology.
This proves the lemma.

It follows that the pairing (1) is isomorphic to

Extn�Č•α�	Uα�j�� ×Hom�	Uα�j��	X/S� → Extn�Č•α�	X/S�

Now again by Lemma 3.21 we can replace 	X/S by 	Uα to get the isomorphic
pairing

Extn�Č•α�	Uα�j�� ×Hom�	Uα�j��	Uα� → Extn�Č•α�	Uα�

Let jα � �α	 ↪→ Uα be the closed embedding. Note that 	Uα = jα+	
α

�
and 	Uα�j� = jα+	
α

�j�. Thus the last pairing is

Extn�Č•α� jα+	
α
�j�� ×Hom�jα+	
α

�j�� jα+	
α
�(2)

→ Extn�Č•α� jα+	
α
�


Step 4.

Lemma 4.30. Let F ∈ Db�coh�
α�� be a finite complex of locally free
sheaves. Then for i� 0 we have a natural quasi-isomorphism of complexes

Hom•�	
α
�−i�� F�−d�α� − 1�� ∼→Hom•�Č•α�−i�� jα+F��n− d�α���

where the first Hom is computed in the category coh�
α� and the second in
coh�X/S� (or in coh�X/Uα�).
Proof of Lemma. Let β1� 
 
 
 � βd�α�+1 ∈ S be all elements with the prop-

erty βi < α� d�βi� = d�α� − 1
 Then for each i�
βi is a hyperplane in 
α
(more precisely, fβiα�
βi� is such). Put Y = ∪
βi ⊂ 
α. We have the exact
sequence of complexes on 
α

0→ F�−d�α� − 1� → F → FY → 0


Let 0 → FY → J•�FY � → 0 be the Čech resolution (as in the proof of
Lemma 4.6) of FY corresponding to the closed covering of Y by 
βi ’s, i.e.,

J•�FY � = 0→⊕
i

F
βi
→⊕

i<j

F
βi∩
βj → 
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Denote by J•F the complex 0 → F → J•�FY � → 0. Then J•F is quasi-
isomorphic to the complex F�−d�α� − 1�. Thus for i � 0 the natural map
of complexes

Hom•�	
α
�−i�� F�−d�α� − 1�� → Hom•�	
α

�−i�� J•F�

is a quasi-isomorphism. It remains to notice the natural isomorphism of
complexes

Hom•
coh�
α��	
α

�−i�� J•F� = Hom•
coh�X/S��Č•α�−i�� jα+F��n− d�α��


This proves the lemma.

Step 5. Let F ∈ Db�coh�
α�� be as in the above lemma. We may take
a left resolution P• → 	
α

consisting of finite sums ⊕	
α
�−i� for i � 0.

This induces a quasi-isomorphism of Čech resolutions Č•α�P•�
∼→Č•α. We

have

Hom•�P•� F�−d�α� − 1�� = �Hom•�	
α
� F�−d�α� − 1���

Hom•�Č•α�P•�� jα+�F�� = �Hom•�Č•α� jα+�F��


Thus the above lemma implies a natural quasi-isomorphism of complexes

�Hom•�	
α
� F�−d�α� − 1�� ∼→�Hom•�Č•α� jα+F��n− d�α��


This shows that the pairing (2) above is isomorphic to the pairing

Extd�α��	
α
�	
α

�j−d�α�−1��×Hom�	
α
�j−d�α�−1��	
α

�−d�α�−1��
→Extd�α��	
α

�	
α
�−d�α�−1���

where everything is computed in coh�
α�. The last pairing is perfect by the
Serre duality on 
α. This proves the theorem.

Corollary 4.31. Let X/S be a Calabi–Yau hyperplane configuration
scheme of type �n� n+ 2�. Then for any t ∈ 
 the twist functor T	X/S�t� is an
autoequivalence of Db�coh�X/S��.

Proof. This follows immediately from the last theorem, Lemma 4.25,
and Corollary 4.23.
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