JOURNAL OF ALGEBRA 127, 452-461 (1989)

Explicit Construction of \tilde{A}_n Type Fields*

Teresa Crespo

Departament de Matemàtiques I, Universitat Politècnica de Catalunya, Escola Universitària d'Arquitectura Tècnica, Avenida Dr. Gregorio Marañón s/n, 08028 Barcelona, Spain

Communicated by Walter Feit

Received December 1, 1987

Let K be any field of characteristic $\neq 2$. Let $L \mid K$ be a Galois extension with Galois group isomorphic to a subgroup G of the alternating group A_n , with $n \geqslant 4$. We give explicitly the solutions to a solvable embedding problem of the type $\widetilde{G} \to G \simeq \operatorname{Gal}(L \mid K)$, where \widetilde{G} is the preimage of G in the double cover \widetilde{A}_n of A_n . This generalizes a result of Witt [9, Section VI] and answers a question raised by Serre in [5].

Let $E \mid K$ be a separable extension of K of degree n. Let \overline{K} be a separable closure of K; let L be the Galois closure of E in \overline{K} . If $(u_1, u_2, ..., u_n)$ is a K-basis of E and $\Phi = \{s_1, s_2, ..., s_n\}$ denotes the set of K-embeddings of E into \overline{K} , the matrix

$$M = (u_j^{s_i}), \qquad 1 \leqslant i, j \leqslant n, \tag{1}$$

satisfies

$$M^{t}M = (\operatorname{Tr}_{E+K}(u_{i}u_{i})). \tag{2}$$

Let Q be the standard quadratic form of K^n , Q_E the quadratic form $x \to \operatorname{Tr}_{E+K}(x^2)$ attached to $E \mid K$, and let us denote by C(Q) and $C(Q_E)$ their Clifford algebras. For a Clifford algebra C, we denote by C^+ and C^- its even and odd part, respectively. The decomposition $C = C^+ \oplus C^-$ gives C a Z/2Z-graded algebra structure. We denote by β the only antiautomorphism of C whose restriction to the vector space is the identity; we define the spin norm of an element x in C by $N(x) = \beta(x)x$.

We choose in L^n the canonical basis $(e_1, e_2, ..., e_n)$, in $E \otimes_K L$ the basis $(u_1, u_2, ..., u_n)$, and consider the isomorphism

$$f: L^n \to E \otimes_K L$$

^{*} The work in this paper is a part of my Ph.D. thesis supervised by Dr. Pilar Bayer. I thank her for suggesting this subject to me and for her constant help and support.

attached to the matrix M^{-1} in these bases. Let $v_i = f(e_i)$, $1 \le i \le n$. Because of (2), it gilts $Q_E(f(x)) = Q(x)$ for each vector x in L^n and, therefore, f extends to an isomorphism from $C_L(Q) = C(Q) \otimes_K L$ into $C_L(Q_E) =$ $C(Q_E) \otimes_K L$ that will also be denoted by f.

For an element s in G and a morphism ϕ from L^n into $E \otimes_K L$, we define ϕ^s as usual by

$$\phi^{s}(x) = [\phi(x^{s^{-1}})]^{s}, \quad \text{for} \quad x \in L^{n}.$$

If A is the matrix attached to ϕ , A^s is then the matrix attached to ϕ^s .

A representative of the element in $H^1(G, O_n(K))$ associated to Q_E is the 1-cocycle $s \to f^{-1}f^s$, and we have

$$(f^{-1}f^s)(e_i) = e_{s(i)}, 1 \le i \le n.$$
 (3)

According to [5, 2.3], we can view \tilde{A}_n as a subgroup of

$$Spin_n(K) \simeq \{x \in C_K^+(Q)^*/x(K^n)x^{-1} \subset K^n \text{ and } N(x) = 1\}$$

and, furthermore, a set of representatives x_s of G in \tilde{G} satisfies

$$x_s e_i x_s^{-1} = e_{s(i)}, \quad 1 \le i \le n.$$
 (4)

We choose a fixed x_s with $x_1 = 1$ and take the corresponding factor set

$$a_{s,t} = x_s x_t x_{st}^{-1}. (5)$$

A solution to the embedding problem will be a field $L(\gamma^{1/2})$ for an element γ in L^* satisfying

$$\gamma^s = b_s^2 \gamma$$
, for $s \in G$,

where b_s lies in L^* and $b_s b_t^s b_{st}^{-1} = a_{s,t}$. The general solution is then $L((r\gamma)^{1/2})$, where r runs through K^*/K^{*2} .

The following result is taken from [7, Theorem 4.2].

PROPOSITION 1. If the embedding problem $\tilde{G} \to G \simeq \text{Gal}(L \mid K)$ is solvable, then there exists an invertible element c in $C_L^+(Q_E)$ such that

$$h: e_i \rightarrow c^{-1}v_ic$$

defines a $\mathbb{Z}/2\mathbb{Z}$ -graded algebras isomorphism from C(Q) into $C(Q_E)$.

Proof. We may find elements b_s in L^* such that

$$b_s b_t^s b_{st}^{-1} = a_{s,t}.$$

So $s o b_s^{-1} x_s$ is a 1-cocycle of G with values in $C_L^+(Q)^*$. Now, as $H^1(G, C_L^+(Q)^*) = 0$ [6, X, Section 1, Exercise 2], we get $b_s^{-1} x_s = \alpha \alpha^{-s}$ for a certain element α in $C_L^+(Q)^*$.

Now, because of (3) and (4), we have

$$\alpha^{-s}f^{-s}(x)\alpha^{s} = \alpha^{-1}f^{-1}(x)\alpha$$

for each x in $C_L(Q_E)$, and so the isomorphism Ψ from $C_L(Q_E)$ into $C_L(Q)$ defined by

$$\Psi(x) = \alpha^{-1} f^{-1}(x) \alpha, \qquad x \in C_L(Q_E),$$

takes G-invariant elements into G-invariant elements, i.e., restricts to an isomorphism

$$\widetilde{\Psi}$$
: $C(Q_E) \to C(Q)$.

The element α being even, $\widetilde{\Psi}$ maps $C^+(Q_E)$ into $C^+(Q)$ and $C^-(Q_E)$ into $C^-(Q)$. By putting $c = f(\alpha)^{-1}$, we get

$$\tilde{\Psi}^{-1}(e_i) = c^{-1}v_i c. \quad \blacksquare$$

PROPOSITION 2. If the embedding problem $\tilde{G} \to G \simeq \operatorname{Gal}(L \mid K)$ is solvable, there exists a Z/2Z-graded algebras isomorphism g from C(Q) into $C(Q_E)$ such that the element z of $C_L^+(Q_E)$,

$$z = \sum_{\varepsilon_i = 0, 1} v_1^{\varepsilon_1} v_2^{\varepsilon_2} \cdots v_n^{\varepsilon_n} w_n^{\varepsilon_n} \cdots w_2^{\varepsilon_2} w_1^{\varepsilon_1}, \tag{6}$$

where $w_i = g(e_i)$, $1 \le i \le n$, is invertible and satisfies

$$N(z)^s = b_s^2 N(z),$$

where b_s lies in L^* and $b_s b_t^s b_{st}^{-1} = a_{s,t}$, for the 2-cocycle $a_{s,t}$ chosen above.

Proof. Let g be a $\mathbb{Z}/2\mathbb{Z}$ -graded algebras isomorphism from C(Q) into $C(Q_E)$; let $w_i = g(e_i)$, $1 \le i \le n$. If the element z defined in the proposition is 0, let us change w_1 to $-w_1$ and form z again. If the new z is also zero, we will have

$$\sum_{\varepsilon_i=0,\ 1} v_2^{\varepsilon_2} \cdots v_n^{\varepsilon_n} w_n^{\varepsilon_n} \cdots w_2^{\varepsilon_2} = 0.$$

We change then w_2 to $-w_2$ and repeat the process. By iteration we would get $v_n w_n = 0$, which is not possible as v_n and w_n are both invertible. We reach then a nonzero z by changing as many w_i as necessary to $-w_i$.

From (6), we get

$$v_i z = z w_i, \qquad 1 \leqslant i \leqslant n. \tag{7}$$

Now let c and h be as in Proposition 1. If n is even, we can apply the Skolem-Nöther theorem to $C(Q_E)$ [3, V, 2.5] and get

$$h(e_i) = a^{-1}g(e_i)a, \qquad 1 \le i \le n,$$

for an invertible element a in $C(Q_E)$. Then zac^{-1} lies in the center of $C_L(Q_E)$ and so in L. As z is nonzero, it is invertible. When n is odd [3, V, 2.4], we deal with the restrictions of h and g to $C^+(Q)$.

Let $y_s = f(x_s)$, for $s \in G$. From (7) and taking into account that $w_i^s = w_i$, we now get

$$y_s^{-1} z^s w_i = (y_s^{-1} v_i^s y_s) y_s^{-1} z^s.$$
 (8)

Further, Relation (3) and the fact that e_i is G-invariant yield

$$v_i^s = v_{s(i)}, \qquad 1 \le i \le n. \tag{9}$$

Hence $y_s^{-1}z^sw_i = v_i\,y_s^{-1}z^s$. Together with (7), this implies that the element $b_s = y_s^{-1}z^sz^{-1}$ lies in the center of $C_L(Q_E)$ and so in L [4, 54:4]. The identity

$$(zz^{-s})(zz^{-t})^{s}(zz^{-st})^{-1} = 1$$

gives rise to

$$b_s b_t^s b_{st}^{-1} = y_s^{-1} y_t^{-s} y_{st}.$$

From (4) and (9) we get

$$y_s y_t y_s^{-1} = y_t^s$$

and so

$$b_s b_t^s b_{st}^{-1} = a_{s,t}.$$

Taking into account $N(y_s) = 1$, from $z^s z^{-1} = b_s y_s$ we get the equality

$$N(z)^s = b_s^2 N(z).$$

Since the basis $\{w_1^{\varepsilon_1}\cdots w_n^{\varepsilon_n}\}_{\varepsilon_i=0,1}$ of $C_L(Q_E)$ is G-invariant, we may now state:

THEOREM 3. Any nonzero coordinate γ of N(z) in the basis

 $\{w_1^{e_1}\cdots w_n^{e_n}\}_{e_i=0,1}$ of $C_L(Q_E)$ provides a solution to the solvable embedding problem $\widetilde{G}\to G\simeq \mathrm{Gal}(L\mid K)$.

Let us now assume that Q_E is K-equivalent to a quadratic form of the type

$$Q_q = -(X_1^2 + X_2^2 + \cdots + X_q^2) + X_{q+1}^2 + \cdots + X_n^2$$

The embedding problem is then solvable if and only if $q \equiv 0 \pmod{4}$.

We shall see now that, in this case, an element γ providing the general solution to the embedding problem can be calculated in terms of matrices.

Let us examine first the case $Q_E \sim Q$ over K.

THEOREM 4. If Q_E is K-equivalent to the standard quadratic form Q, then there exists a matrix P in GL(n, K) such that

$$P'(\operatorname{Tr}_{E+K}(u_iu_i))P = I$$
 and $\det(MP+I) \neq 0$.

Then $\gamma = \det(MP + I)$ provides a solution to the embedding problem.

Proof. Let P in GL(n, K) be such that

$$P^{t}(\operatorname{Tr}_{E+K}(u_{i}u_{i}))P=I$$

and let us denote by g the isomorphism from K^n into E attached to P and the extended $\mathbb{Z}/2\mathbb{Z}$ -graded algebras isomorphism from C(Q) into $C(Q_E)$. Let $w_i = g(e_i)$ and assume P is chosen so that z is nonzero.

Let us see first that N(z) lies in L^* . Because of the β -invariance of w_i and v_i , we get from (7)

$$w_i N(z) w_i = w_i \beta(z) z w_i = \beta(z w_i) z w_i$$

= $\beta(v_i z) v_i z = \beta(z) v_i^2 z = N(z)$,

so that N(z) lies in L^* [4, 54:4].

Let us now calculate N(z). Using (7) again, we get

$$N(z) = \beta(z)z = \sum_{n} w_1^{\varepsilon_1} \cdots w_n^{\varepsilon_n} v_n^{\varepsilon_n} \cdots v_1^{\varepsilon_1} z$$
$$= \sum_{n} w_1^{\varepsilon_1} \cdots w_n^{\varepsilon_n} z w_n^{\varepsilon_n} \cdots w_1^{\varepsilon_1}.$$

Each summand in this last term has the same L-component as z and so

$$N(z) = 2^n (L$$
-component of z).

Now, each summand of z has the shape

$$v_{i_1}v_{i_2}\cdots v_{i_k}w_{i_k}\cdots w_{i_2}w_{i_1}, \qquad 1 \leq i_1 < i_2 \cdots < i_k \leq n,$$

and its L-component is the minor of MP corresponding to the rows and columns indices $i_1, i_2, ..., i_k$. (Just take into account that the columns of MP are the coordinates of $w_1, w_2, ..., w_n$ in the basis $(v_1, v_2, ..., v_n)$). Thus

$$N(z) = 2^n \det(MP + I)$$
.

For n = 4, 5, the condition $Q_E \sim Q$ over K is equivalent to the solvability of the embedding problem [5, 3.2].

EXAMPLE. Let E be a biquadratic extension of a field K of characteristic $\neq 2$. We write $E = K(u_1, u_2, u_3)$ with $u_i^2 = a_i \in K^*$, i = 1, 2, 3, and $u_1u_2u_3 = 1$. The Galois group $Z/2Z \times Z/2Z$ of $E \mid K$ is isomorphic to a subgroup G of A_4 and we have $\widetilde{G} \simeq H_8$, the quaternion group [5, 3.2]. The embedding problem associated to $H_8 \to G \simeq \operatorname{Gal}(E \mid K)$ is solvable if and only if Q_E is K-equivalent to the standard quadratic form Q. By taking the K-basis $(u_0 = 1, u_1, u_2, u_3)$ of E, this last condition is in turn equivalent to the existence of a matrix $\overline{P} = (p_{ij})_{1 \le i, j \le 3}$ such that

$$\bar{P}^{t} \begin{bmatrix} a_{1} & 0 & 0 \\ 0 & a_{2} & 0 \\ 0 & 0 & a_{3} \end{bmatrix} \bar{P} = I.$$

We write down the matrix M associated to $(1, u_1, u_2, u_3)$ (cf. (1)). On the other hand, the matrix W given by

$$W = 2 \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & u_1 & 0 & 0 \\ 0 & 0 & u_2 & 0 \\ 0 & 0 & 0 & u_3 \end{bmatrix}$$

satisfies $W'W = (\text{Tr}(u_i u_j))_{0 \le i,j \le 4}$ and MW^{-1} is a matrix with entries in K. Hence, the matrix P defined by the relation

$$2PMW^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & & & \\ 0 & & \overline{P} & \\ 0 & & & \end{bmatrix}$$

lies in GL(4, K) and satisfies $P'(Tr(u_iu_i))P = I$.

A solution to the embedding problem is then provided by the element

$$\det(MP + I) = 2 \det \begin{bmatrix} \bar{P} \begin{bmatrix} u_1 & 0 & 0 \\ 0 & u_2 & 0 \\ 0 & 0 & u_3 \end{bmatrix} + I \end{bmatrix}$$
$$= 4(1 + p_{11}u_1 + p_{22}u_2 + p_{33}u_3),$$

or, equivalently, by $\gamma = 1 + p_{11}u_1 + p_{22}u_2 + p_{33}u_3$.

We recover then the solution given by Witt to this embedding problem [9, Section VI].

We consider now the case when Q_E is K-equivalent to Q_q for any $q \equiv 0 \pmod{4}$.

THEOREM 5. If $Q_E \sim Q_q$ over K, there exists a matrix P in GL(n, K) such that

$$P'(\operatorname{Tr}_{E \mid K}(u_i u_j)) P = \begin{bmatrix} -I_q & 0 \\ 0 & I_{n-q} \end{bmatrix}$$

and the element γ of L defined above is nonzero.

We build up y as

$$\gamma = \sum_{C} (-1)^{\delta(C)} \det C,$$

where C runs through a set of submatrices $k \times k$ -of MP + J, with $n - q \le k \le n$ and

$$J = \begin{bmatrix} 0 & 0 \\ 0 & I_{n-q} \end{bmatrix}.$$

This set includes all matrices C which contain the n-q last rows and columns of MP+J and a number of the remaining rows and columns according to the following rules:

- (1) The rows of MP + J with indices 1 to q appearing in C satisfy the following condition: if all 4 rows with indices 4i + 1 to 4i + 4 of MP + J appear in C for a certain number of i's with $0 \le i \le q/4 1$, then there is exactly the same number of i's in this range such that none of the 4 rows 4i + 1 to 4i + 4 appear in C.
- (2) For every i, where $0 \le i \le q/4 1$, the columns of MP + J with indices between 4i + 1 and 4i + 4 appearing in C are determined by the row indices in the same range in the following way:

- (a) If only one value appears among the row indices, the same one value appears among the column indices.
- (b) If two values appear among the row indices, the two others are the column indices.
- (c) If three values appear among the row indices, the same three values are the column indices.
- (d) If none of the four values appears among the row indices (resp. all four appear), then all four appear among the column indices (resp. none appears).

For $\delta(C)$, we have $\delta(C) = \sum_{i=0}^{q/4-1} \delta_C(i)$, where $\delta_C(i) = 0$ in cases (a) and (d) and in case (b) if the row indices are $4i + j_1$ and $4i + j_2$ with $(j_1, j_2) = (1, 2), (2, 3), \text{ or } (3, 4) \text{ and } \delta_C(i) = +1 \text{ in all other cases.}$

This nonzero γ then provides a solution to the embedding problem.

Proof. Let P be a matrix in GL(n, K) such that

$$P^{t}(\operatorname{Tr}_{E \mid K}(u_{i}u_{j}))P = \begin{bmatrix} -I_{q} & 0 \\ 0 & I_{n-q} \end{bmatrix}.$$

The isomorphism from K^n into E attached to P extends to an isomorphism from $C(Q_q)$ into $C(Q_E)$. Let t_k be the image of e_k under this isomorphism for $1 \le k \le n$. Define elements w_k in $C(Q_E)$, for $1 \le k \le n$, by

$$w_{4i+1} = t_{4i+2}t_{4i+3}t_{4i+4}$$

$$w_{4i+2} = t_{4i+1}t_{4i+3}t_{4i+4}$$

$$w_{4i+3} = t_{4i+1}t_{4i+2}t_{4i+4}$$

$$w_{4i+4} = t_{4i+1}t_{4i+2}t_{4i+3}, \qquad 0 \le i \le \frac{q}{4} - 1$$

$$w_k = t_k, \qquad q+1 \le k \le n.$$

Then $e_i \rightarrow w_i$ defines a $\mathbb{Z}/2\mathbb{Z}$ -graded algebras isomorphism from C(Q) into $C(Q_E)$. We can make z nonzero and so invertible by multiplying by (-1) as many columns of P as necessary. Now, from (7), we get

$$N(z) = \beta(w_i) N(z) w_i$$

and so

$$(N(z)w_a \cdots w_1)w_i = w_i(N(z)w_a \cdots w_1), \qquad 1 \le i \le n.$$
 (10)

Thus $N(z)w_a \cdots w_1$ lies in L^* [4, 54:4]. Applying (7) and (10), we get

$$\beta(z) z w_q \cdots w_1 = \sum_{\varepsilon_i = 0, 1} w_1^{\varepsilon_1} \cdots w_n^{\varepsilon_n} (z w_q \cdots w_1) w_n^{\varepsilon_n} \cdots w_1^{\varepsilon_1}$$

and hence

$$N(z)w_a\cdots w_1=2^n\gamma, \tag{11}$$

where $\gamma = L$ -component of $zw_q \cdots w_1$. Writing down this element in terms of v_i 's and t_i 's, we obtain a sum of terms such as

$$\pm v_{i_1} \cdots v_{i_k} \left(\sum_{q+1 \leq j_1 < \cdots < j_l \leq n} v_{j_1} \cdots v_{j_l} t_{j_l} \cdots t_{j_1} \right) t_{i'_k} \cdots t_{i'_1},$$

where $1 \le i_1 < \cdots < i_k \le q$ and $1 \le i'_1 < \cdots < i'_{k'} \le q$. If k = k', the L-component of such a term is the determinant of the submatrix of MP + J including the rows $i_1, ..., i_k, q + 1, ..., n$ and the columns $i'_1, ..., i'_k, q + 1, ..., n$; if $k \ne k'$, it is then zero. By taking into account which are the terms with k = k', we obtain the formation rules for the matrices C. The corresponding sign gives the value of $\delta(C)$.

Finally, from (11), we get $N(z) = 2^n \gamma w_1 \cdots w_q$ and Theorem 3 yields the result stated above.

Remark. The number of matrices C appearing in the formula from Theorem 5 is

$$\sum_{i=0}^{\lfloor k/2 \rfloor} 14^{k-2i} \binom{k}{i} \binom{k-i}{i}, \quad \text{where} \quad k = \frac{q}{4}.$$

When $K = \mathbb{Q}$, the embedding problem being considered is solvable if and only if $Q_E \sim Q_{r_2}$ over \mathbb{Q} and $r_2 \equiv 0 \pmod{4}$, where $2r_2$ is the number of nonreal embeddings of E in \mathbb{C} . Theorem 5 applies then to any solvable embedding problem of type $\tilde{G} \rightarrow G \simeq \operatorname{Gal}(L \mid \mathbb{Q})$. Examples of such solvable problems are known with $G = A_n$, where $n \equiv 0, 1, 2$ or $3 \pmod{8}$, $G = A_5$, $G = A_7$, $G = M_{12}$, G = PSL(2, 7) (cf. [1, 2, 8, 10]).

EXAMPLE. We will now write down the 14 minors appearing in the formula giving the element γ in the case $G = A_8$.

Let x be a root of a polynomial $f \in \mathbb{Q}[X]$ with Galois group A_8 . Let $E = \mathbb{Q}(x)$ and denote by L, as before, the Galois closure of E in $\overline{\mathbb{Q}}$. Assume that the embedding problem $\widetilde{A}_8 \to A_8 \simeq \operatorname{Gal}(L \mid \mathbb{Q})$ is solvable; we have then $r_2 = 4$ (cf. [8]).

The matrix of the trace form Q_E in the \mathbb{Q} -basis $(1, x, ..., x^7)$ of E can be calculated by means of the Newton formulas. Let P be a matrix in $GL(8, \mathbb{Q})$ such that

$$P^{t}(\operatorname{Tr}_{E \mid Q}(x^{i+j})_{0 \leqslant i,j \leqslant 7})P = \begin{bmatrix} -I_{4} & 0 \\ 0 & I_{4} \end{bmatrix}.$$

¹ Examples of such solvable embedding problems with $G = A_n$, for all values of n, have been provided recently by J. F. Mestre ("Extensions régulières de $\mathbb{Q}(T)$ de groupe de Galois \tilde{A}_n ", to appear).

If $x_1 = x$, x_2 , ..., x_8 are the 8 roots of the polynomial f in $\overline{\mathbb{Q}}$, let $M = (x_i^j)$, $1 \le i \le 8$, $0 \le j \le 7$. Let us denote by A the matrix MP + J, where $J = \begin{bmatrix} 0 & I_4 \\ 0 & I_4 \end{bmatrix}$. We have then

$$\gamma = A \begin{bmatrix} 1 \\ 1 \end{bmatrix} + A \begin{bmatrix} 2 \\ 2 \end{bmatrix} + A \begin{bmatrix} 3 \\ 3 \end{bmatrix} + A \begin{bmatrix} 4 \\ 4 \end{bmatrix}$$

$$+ A \begin{bmatrix} 12 \\ 34 \end{bmatrix} - A \begin{bmatrix} 13 \\ 24 \end{bmatrix} - A \begin{bmatrix} 14 \\ 23 \end{bmatrix} + A \begin{bmatrix} 23 \\ 14 \end{bmatrix} - A \begin{bmatrix} 24 \\ 13 \end{bmatrix} + A \begin{bmatrix} 34 \\ 12 \end{bmatrix}$$

$$- A \begin{bmatrix} 123 \\ 123 \end{bmatrix} - A \begin{bmatrix} 124 \\ 124 \end{bmatrix} - A \begin{bmatrix} 134 \\ 134 \end{bmatrix} - A \begin{bmatrix} 234 \\ 234 \end{bmatrix},$$

where A[] denotes the minor of the matrix A whose row indices are the ones appearing in the upper row in brackets and, in addition, 5, 6, 7, and 8; and whose column indices are the ones appearing in the lower row in brackets and, in addition, 5, 6, 7, and 8.

REFERENCES

- P. BAYER, P. LLORENTE, AND N. VILA, M
 ₁₂ comme groupe de Galois sur Q, C. R. Acad. Sci. Paris Ser. I Math. 303 (1986), 277-280.
- 2. W. Feit, \tilde{A}_5 and \tilde{A}_7 are Galois groups over number fields, J. Algebra 104 (1986), 231–260.
- 3. T. Y. LAM, "The Algebraic Theory of Quadratic Forms," Benjamin, New York, 1973.
- O. T. O'Meara, "Introduction to Quadratic Forms," Springer-Verlag, Berlin/New York, 1973.
- J.-P. Serre, L'invariant de Witt de la forme Tr(x²), Comment. Math. Helv. 59 (1984), 651-676.
- 6. J.-P. SERRE, "Local Fields," Springer-Verlag, Berlin/New York, 1979.
- T. A. SPRINGER, On the equivalence of quadratic forms, Proc. K. Neder. Akad. Wet. Ser. A 62 (1959), 241–253.
- 8. N. VILA, On central extensions of A_n as Galois groups over \mathbb{Q} , Arch. Math. 44 (1985),
- E. Witt, Konstruktion von galoischen Körpern der Charakteristik p zu vorgegebener Gruppe der Ordnung pf, J. Crelle 174 (1936), 237-245.
- 10. A. ZEH-MARSCHKE, SL(2, 7) als Galois Gruppe über Q, Notiz, Universität Karlsruhe.