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Abstract

Recently Randjbar-Daemi and Shaposhnikov put forward a 4-dimensional effective QED coming from a Nielsen—Olesen vortex solution of
the Abelian Higgs model with fermions coupled to gravitylin= 6. However, exploring possible physical consequences of such an effective
QED was left open. In this Letter we study the corresponding effective Casimir effect. We find that the extra dimensions vyield fifth and third
inverse powers in the separation between plates for the modified Casimir force which are in conflict with known experiments, thus reducing the
phenomenological viability of the model.

0 2005 Elsevier B.VOpen access under CC BY license.

1. Introduction 4-dimensional space-time. There exist many models that can
achieve the localization of scalar and fermionic fields, however,

The idea that our observable 4-dimensional universe may bi&e localization of gauge fields is not an easy challenge to tackle
a brane extended in some higher-dimensional space—time hBs?,20} Recently, starting from a Higgs model with fermions
been attracting interest for many yegits-3]. Roughly speak- coupled to gravity inD = 6, Randjbar-Daemi and Shaposh-
ing, there exist two different approaches to implement this ideaikov [21] constructed an effective quantum electrodynamics in
One approach is to start with theories that incorporate grav4-dimensional space-time, with fermionic and gauge functions
ity in a reliable manner such as string theory/M-thefptyp]. spread on the transverse direction in a small region in the vicin-
Almost all the known examples of these kind of theories ardty of the core of a Nielsen—Olesen vortex. This construction
naturally and consistently formulated in higher dimensions. Fois Possible because the vortex solutf@@—24] admits gravity
instance, it is possible to include chiral fermions by considerlocalization[23] and contains the massles51) gauge field,
ing intersecting D-branef$—8]. The second approach follows Which is a mixture of a graviton fluctuation and the original
more phenomenological lines and is often based on simplifie® (1) gauge field fluctuation forming the Nielsen—Olesen vor-
field-theoretical models which have recently led to new insightdeX.
on whether they may help to solve long-standing problems of Since the 4-dimensional effective QED owns many nontriv-
partic|e theory such as the hierarchy pr0b|em, the Cosmo|ogicéﬁl prOpertieS, deSpite all the theoretical interest it is natural to
constant pr0b|em’ et{9_16] (See’ for instance, the Comprehen- ask ourselves how far we can go with this model and compute
sive reviewg17,18). its consequences in low/high energy physics. In doing this there

An important problem in the field theory approach is to find €Xists the additional possibility of saying something about the

natural mechanisms for localization of the different fields toPpotential detectability of extra dimensions by measuring effects
which for this particular model have not been discussed to the

best of our knowledge. The aim of this Letter is to analyze the
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ordinary 4-dimensional QED. For flat plates separated by a dissvherer,,, is theD = 4 flat metric,e is the 6-dimensional gauge
tancel, the force per unit area is given byF(I)/A = _5_420%_ coupling andz is the radius ofs covered by the coordinate.
This relationship is derived considering the electromagnetid© avoid confusion below notice the difference betweend e.
mode structure between the two parallel plates, as comparede boundary conditions thgt(r) and P (r) must satisfy are
to the mode structure when the plates are infinitely far apart, _ _

and by assigning a zero-point energyies/2 to each electro- f0 =0, f(e0) = fo
magnetic mode (photorf25]. The change in the total energy P(0) =n, P(c0) =0. (2.2)
density between the plates, as compared to the free space, agg the other hand, there are solutions with different bound-
function of the separatioh leads to the f_orce of attract|o_n. The ary conditions for the metrical functions(r) and B(r) [19].
only fundamental constants that enter into the expression of thﬁmong all of them, the one that localize fields of spin §21

force arei andc. The electron chargeis absent, implying that - 5,4 1 "near the core of the vortex satisfy the boundary condi-
the electromagnetic field is not coupled to matter. The role Ofions

c is to convert the electromagnetic mode wavelength, as deter- -
mined byl, to a frequency, whildi converts the frequency to A(0) =1, Bir—0=2In—,
an energy. The Casimir effect has also been obtained for oths:;{ a
fields and other geometries of the bounding surfaces which may
be described by real material media, with electromagnetic propyhere the parameters and ¢ are combinations of the 6-
erties[26]. dimensional gravitational constantthe cosmological constant
The Casimir effect, on the other hand, has received great deahd of the parameters of the Abelian Higgs mddél. In this
of attention within theories and models with extra dimensionscase ag — 0 the flat space geometry is recovered whereas for
For example, it has been discussed in the context of string the-— co the metric becomes AdS.
ory [27-30] In the Randall-Sundrum model, the Casimir effect The effective QED action in this background results from a
has been considered to stabilize the rad@i-35]as well as  specific mixture of the fluctuation of the 6-dimensional vector
within the inflationary brane world universe modg8§]. More  potential and thé .. component of the metrif24]. Its explicit
recently the effect was analyzed in the presence of compactifigidrm is
universal extra dimensiorf87]. In all these cases the bound-

(r—>00)=B@Fr — 00)=—2cr, c¢>0, (2.3)

o0
aries in the extra dimensions are associated to the topology %f(W) _ _lz [ dr F(r)
space. ae
In general the Casimir effect may be defined as the stress 0
o_n_the bounding surface when a quantum field is conflne_d toa % /d4x [, W,)2 +e A, W0, WH], (2.4)
finite volume of space. In any case, the boundaries restrict the

modes of the quantum field giving rise to a force which can beyhere

either attractive or repulsive, depending on the model, the field ] 22

and the space-time dimension. Firy=e2 (pZ(r) T %GBO)) (2.5)
In this Letter we start with the 4-dimensional effective QED Kk

of Randjbar-Daemi and Shaposhnikov (Sect®)rin order to  Notice that the quotient = « /e has dimension of length. The

determine the dispersion relations of the electromagnetic modeguations of motion for the gauge fields are

(Section3). This is done near the core of the vortex scenario

that is meant to represent our world. Next we proceed with thé 9,.0" W" + 8, (Fe *9,W") = 0. (2.6)

standard approach of analysis of the Casimir effect. Namely we

add up the electromagnetic mode contributions to the energ§- Dispersion relations

between two parallel conducting plates (SecddnFinally we
discuss our results in Sectién As discussed ifi24], a 4-dimensional effective low energy

theory can arise if two conditions are satisfied:
2. D =4 effective QED (i) The spectrum contains normalizable zero (or small mass)
modes of graviton, gauge, scalar and fermion fields, with wave
The starting point in our analysis is the 4-dimensional ef-functions of the type&:*"“ v (y™); y" here represent the extra
fective QED of Randjbar-Daemi and ShaposhnikdY]. This  dimensional coordinates.
theory emerges from considering a Nielsen—-Olesen vortex-type (ii) The effects of higher modes should be experimentally
solution of the Abelian Higgs model with fermions coupled to unobservable at low enough energies, i.e., there should be a
gravity in D = 6. The various field configurations of the solu- mass gap between the zero modes and excited states. Another
tion are[23] possibility is that extra, unwanted modes may be light but inter-
act very weakly with the zero modes.
ds? = eA(r)n,w de” dx” + dr? + e8P a? dh?,
- In this section we shall analyze the implications of the first
@ =f(re", aeAg = (P(r) —n)do, (2.1)  condition for the zero modes of the gauge fields, i.e., we shall
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consider a wave function of the forfi“ (x, r) = R*(r)e&P*", comes into two different ways. There is a continuum contri-

where p,, is the 4-dimensional wave vector. With this form butionk, that comes from the radial extra dimension and there
of the wave function and proposing the change of variablds one discrete contribution that goes like? coming from the

R = H(Fe 4)~1/2 the equation of motion for each component vortex number. This last contribution is of a different type to

of W, Eq.(2.6), is rewritten as a Schrodinger-like equation the one that emerges from a Kaluza—Klein compact extra di-

. . . 2
2 mension which goes like< [37].

1 p*e’
<—§ﬁ+V(r)>H(r)=—TH(r), (3.1)

where the potential is given by

4, The Casimir effect

1@ 1/4d 2 Once_ we have computed the dispersion relaftions we evaluate
Vin=5-— In(Fe*A) + = <_ In(FeA)) ) (3.2) the Casimir force between two parallel plates in the- 4 ef-

4dr g\dr fective QED. Because of the presence of the plates, we impose
Because the localization of the gauge fields is given near thée standard Dirichlet boundary condition on the wave vector
core of the vortex, we are interested in solutions where 0. in the direction restricted by the platésy = 7N/, wherel

In this limit the potential is is the distance between the plates. The Casimir energy between
1 1 the plates is obtained by summing up the zero-point energy per
V(ir— 0~ ~57 + 7 (3.3) unit area, where the frequency of the vacuum fluctuations is,
r n according tq3.8),
and Eq.(3.1)becomes
272
1 2 ez e N 2 1
<m + 2 + kr2>H(r) =0, WhEYEkrz = _<p2€+ m) @k kr,Non = C\/kl + ek" + 12 + en2p2’ (4.1)
(3.4)

; — [p2 g2
Hence, in order to find the explicit functional form of the gaugewIth ki =/ki + k3. ki andk; are the wave vector components

fields near the core of the vortex it is necessary to solve th&! the direction of the unbounded space coordinates along the

1-dimensional radial Schrodinger equation with an attractivé/@tes- Each of these modes contributes an erferg®. There-
potential proportional to 4r2. The solutions to Eq3.4)have  [Ore the energy between plates reads

been already discuss¢88] and it has been shown that their 9 2 i

properties depend strongly on the value-the coefficient of g lates= hL%ap / d°k . dk, Z Ok ko Nn (4.2)

the term ¥r2. Whenx < 1/4 and the boundary condition is P 2 ()3 s

integrability—not finiteness—all negative energies are allowed

[39]. For A > 1/4, the requirement that the state functions forwhere L? is the area of the plates and the parametemea-
bound states be a mutually orthogonal set imposes a quantizedring the size of the vortex'es core, appears associated to the
tion of energy which does not uniquely fix the levels but theintegration ink,. The factorp indicates the possible polariza-

n=1,N=1

levels relative to each othg38]. tion of the photon. In our case= 4.

It is remarkable that the value afin (3.4) takes the critical There are several ways to extract a finite value from the
value 1/4. The solution to the differential equation in this caseabove divergent sum. We shall use the one that invokes dimen-
is given by sional regularization. To do so we let the transverse dimension

D .. @ . bed, which we will subsequently treat as a continuous complex
H= Cl”h_% (irky) + Czrh_% (irk,), (3.5)  variable following[26]. Let us start with the expression
whereh! and 2 are the spherical Hankel functions. These i % -
functions behave in the limit — 0 as I1(d) L[k Z K4 l + 2 1 (4.3)
e = — —_— —_— -5, .
1T 2) @i at T e

. . =1,N=1
W (T2 @ T2 =
h—%(r) “Vor Inr, h—%(r) - 2r Inr. (3.6) which becomes in the limid — 3 the one in(4.2), namely

Thus if the boundary condition is integrabilit$9]

h(d=3)
/dr R? ~/r(|nrk,)2 < 00, 3.7) 1 &%, dk, & ) 72N2 2 1
== | —= kS 4+ k2 + + - —.
. . . . (2m)3 2 en2(2
all negative energies are allowed and therefore the dispersion n=1,N=1 (4.4)
relation is ’
Using the Euler representation for the gamma function
w? -, 2, 21
2=t e (38) i
- 4 —gt ,z—1
wherek is the 3-dimensional wave vector. Notice that the de- (2) =8 /e #dr, (4.5)

pendence of the extra dimensions in the dispersion relations 0
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the integral(4.3) can be rewritten employing the Schwinger form

proper-time representation for the square root as

71/2
Z / (2r )d

ZF(_z) =1N=1

« e —l(k2+—2—+eTz) (46)
Performing the Gaussian integral first and udig) again we
have
L) = 1 1 1 r d+1
nY=2 r(-1) (4m)/2 2

21

(d+1)/2
e€2n2>

© 00 252
XZZ( : @.7)
n=1 N=1

The double sum i4.7)is better handled by factorizing ) **
and using the Epstein functi¢d0,41]

o0

Ef @)=Y (N2 + M),
N=1
2 /2 d+1
2
s —ar- 4.8
e w202n? ¢ 2 (4.8)

This expression is not well defined fti(z) > 1/2, however, it

can be analytically continued into a meromorphic function in

the whole complex plane, namely

1
(z,1) e
+n%¥|}‘(z—}>
2MZ-1T(3) 2
o
+4 T K;_Z(Zn'Mm):|, (4.9)
o (TMm)27% 2

where K, (z) is the modified Bessel function of second type.

Thus using the Epstein function {4.7)leads to

e
Eplates= thzap\/; I(d — 3, (4.11)
with the prime meaning we have dropped the first term in brack-
ets in I1, Eqg. (4.10) Next we compute the vacuum energy
without the plates. Appealing again (4.3) we have that such
vacuum energy

e d*k 2 1
Eo—thzalf o= )4 \/kz RIS
(4.12)
becomes
X 1 1 2\ (d+1)/2
Eq= |:th al\/j —7<—)
2720 (C1yam s \e?
d+1
X r<—i>g(d+1)] . (4.13)
d—4

Finally, the exact Casimir energy per unit area in the vortex
scenario reads

Eplates— Eo

Evortex = pat% = ECasimirf(l, a,t),

hen?
5Casimir= —Tag,

3

45p( 2) a\ [1\%?
P LT

720(~3) ¢

>/2 22l 'm
X Z (mn> 3(\/;2 n) (4.14)
Here we recognlzéZCasimir as the standard four-dimensional
Casimir energy between parallel plates. Moreover, the cor-
rection within the vortex scenario is encoded in the function
fd,a,t) in the form of a factor rather than an additive term.
We should also stress that to arrive to E&14)there occurs a
cancellation between the second ternfdri0)with the vacuum
contribution with no plates, E¢4.13) To compare more neatly
Evortex With the standard result it is easier to get an approximate

1 1 1 1/ d41\/21\D? _ ! €
Ii(d) = 2T F —— Nez form of it for I/¢ <« 1 in the argument of the modified Bessel
(_ ) (4m) : function K5/2 [39]. This produces, to leading orderiiy¥,
x ¢(d+1)
I d+2\ /2 1\@+2/2 Evortex X — + /3 )
() (E) e o
2\m et _ 3 | 2
i (\/?1)“”2)/2 1 ~ 2(4m)7/? E e’
Jr\Vet 1% _het@ (3 (5)(2 %2 415
0 /g N\ (@+2)2 22 m =525 ) 35)\s) - (4.15)
X Z il Kagz (/5 . (4.10) . -
noma N eln As for the Casimir force we obtain then
Notice the first term in square bracket#10)is independent g, .. — — 9€vortex ~—da L +2B—— (4.16)
of / and hence it can be interpreted as a constant energy shift al I® 5213

upon substitution ir{4.2) [41] Obviously it will neither yield  Experimentally the Casimir force is difficult to measure be-
any contribution to the Casimir force. Hence from now on itcause parallelism cannot be obtained easily so it is preferable
will be discarded. The energy between plates takes the explicib replace one of the plates by a metal sphere of rakliwhere
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R > 1. For such geometry the Casimir force is modified to to thank the Young Collaborator Programme of Abdus Salam

2 ICTP Trieste, Italy, for supporting a visit where part of this work
Fsphere= 2 RL Ecasimir- (4.17) was developed.
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