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Abstract

Recently Randjbar-Daemi and Shaposhnikov put forward a 4-dimensional effective QED coming from a Nielsen–Olesen vortex s
the Abelian Higgs model with fermions coupled to gravity inD = 6. However, exploring possible physical consequences of such an effe
QED was left open. In this Letter we study the corresponding effective Casimir effect. We find that the extra dimensions yield fifth a
inverse powers in the separation between plates for the modified Casimir force which are in conflict with known experiments, thus red
phenomenological viability of the model.
 2005 Elsevier B.V.Open access under CC BY license.
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1. Introduction

The idea that our observable 4-dimensional universe ma
a brane extended in some higher-dimensional space–tim
been attracting interest for many years[1–3]. Roughly speak-
ing, there exist two different approaches to implement this id
One approach is to start with theories that incorporate g
ity in a reliable manner such as string theory/M-theory[4,5].
Almost all the known examples of these kind of theories
naturally and consistently formulated in higher dimensions.
instance, it is possible to include chiral fermions by consid
ing intersecting D-branes[6–8]. The second approach follow
more phenomenological lines and is often based on simpl
field-theoretical models which have recently led to new insig
on whether they may help to solve long-standing problem
particle theory such as the hierarchy problem, the cosmolo
constant problem, etc.[9–16](see, for instance, the comprehe
sive reviews[17,18]).

An important problem in the field theory approach is to fi
natural mechanisms for localization of the different fields
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4-dimensional space–time. There exist many models that
achieve the localization of scalar and fermionic fields, howe
the localization of gauge fields is not an easy challenge to ta
[19,20]. Recently, starting from a Higgs model with fermio
coupled to gravity inD = 6, Randjbar-Daemi and Shapos
nikov [21] constructed an effective quantum electrodynamic
4-dimensional space–time, with fermionic and gauge funct
spread on the transverse direction in a small region in the v
ity of the core of a Nielsen–Olesen vortex. This construc
is possible because the vortex solution[22–24], admits gravity
localization[23] and contains the masslessU(1) gauge field,
which is a mixture of a graviton fluctuation and the origin
U(1) gauge field fluctuation forming the Nielsen–Olesen v
tex.

Since the 4-dimensional effective QED owns many nont
ial properties, despite all the theoretical interest it is natura
ask ourselves how far we can go with this model and com
its consequences in low/high energy physics. In doing this t
exists the additional possibility of saying something about
potential detectability of extra dimensions by measuring eff
which for this particular model have not been discussed to
best of our knowledge. The aim of this Letter is to analyze
Casimir effect between parallel plates in the context of the
fective QED of[21].

The standard Casimir effect between parallel, unchar
perfectly conducting plates is understood on the basis of
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ordinary 4-dimensional QED. For flat plates separated by a

tancel, the force per unit areaA is given byF(l)/A = − π2

240
h̄c

l4
.

This relationship is derived considering the electromagn
mode structure between the two parallel plates, as comp
to the mode structure when the plates are infinitely far ap
and by assigning a zero-point energy ofh̄ω/2 to each electro
magnetic mode (photon)[25]. The change in the total energ
density between the plates, as compared to the free space
function of the separationl, leads to the force of attraction. Th
only fundamental constants that enter into the expression o
force areh̄ andc. The electron chargee is absent, implying tha
the electromagnetic field is not coupled to matter. The role
c is to convert the electromagnetic mode wavelength, as d
mined byl, to a frequency, whilēh converts the frequency t
an energy. The Casimir effect has also been obtained for o
fields and other geometries of the bounding surfaces which
be described by real material media, with electromagnetic p
erties[26].

The Casimir effect, on the other hand, has received great
of attention within theories and models with extra dimensio
For example, it has been discussed in the context of string
ory [27–30]. In the Randall–Sundrum model, the Casimir eff
has been considered to stabilize the radion[31–35] as well as
within the inflationary brane world universe models[36]. More
recently the effect was analyzed in the presence of compac
universal extra dimensions[37]. In all these cases the boun
aries in the extra dimensions are associated to the topolog
space.

In general the Casimir effect may be defined as the st
on the bounding surface when a quantum field is confined
finite volume of space. In any case, the boundaries restric
modes of the quantum field giving rise to a force which can
either attractive or repulsive, depending on the model, the
and the space–time dimension.

In this Letter we start with the 4-dimensional effective QE
of Randjbar-Daemi and Shaposhnikov (Section2) in order to
determine the dispersion relations of the electromagnetic m
(Section3). This is done near the core of the vortex scena
that is meant to represent our world. Next we proceed with
standard approach of analysis of the Casimir effect. Namely
add up the electromagnetic mode contributions to the en
between two parallel conducting plates (Section4). Finally we
discuss our results in Section5.

2. D = 4 effective QED

The starting point in our analysis is the 4-dimensional
fective QED of Randjbar-Daemi and Shaposhnikov[21]. This
theory emerges from considering a Nielsen–Olesen vortex-
solution of the Abelian Higgs model with fermions coupled
gravity in D = 6. The various field configurations of the sol
tion are[23]

ds2 = eA(r)ηµν dxµ dxν + dr2 + eB(r)a2 dθ2,

(2.1)Φ = f (r)einθ , aeAθ = (
P(r) − n

)
dθ,
-
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whereηµν is theD = 4 flat metric,e is the 6-dimensional gaug
coupling anda is the radius ofS1 covered by theθ coordinate.
To avoid confusion below notice the difference betweene and e.
The boundary conditions thatf (r) andP(r) must satisfy are

f (0) = 0, f (∞) = f0,

(2.2)P(0) = n, P (∞) = 0.

On the other hand, there are solutions with different bou
ary conditions for the metrical functionsA(r) andB(r) [19].
Among all of them, the one that localize fields of spin 0, 1/2
and 1, near the core of the vortex satisfy the boundary co
tions

A(0) = 1, B(r → 0) = 2 ln
r

a
,

(2.3)A(r → ∞) = B(r → ∞) = −2cr, c > 0,

where the parametersa and c are combinations of the 6
dimensional gravitational constantκ , the cosmological constan
and of the parameters of the Abelian Higgs model[19]. In this
case asr → 0 the flat space geometry is recovered whereas
r → ∞ the metric becomes AdS.

The effective QED action in this background results from
specific mixture of the fluctuation of the 6-dimensional vec
potential and theθµ component of the metric[24]. Its explicit
form is

S(W) = − π

ae2

∞∫
0

dr F (r)

(2.4)×
∫

d4x
[
(∂µWν)

2 + e−A∂rWµ∂rW
µ
]
,

where

(2.5)F(r) = e
B(r)

2

(
P 2(r) + a2e2

κ2
eB(r)

)
.

Notice that the quotient	 ≡ κ/e has dimension of length. Th
equations of motion for the gauge fields are

(2.6)F∂µ∂µWν + ∂r

(
Fe−A∂rW

ν
) = 0.

3. Dispersion relations

As discussed in[24], a 4-dimensional effective low energ
theory can arise if two conditions are satisfied:

(i) The spectrum contains normalizable zero (or small m
modes of graviton, gauge, scalar and fermion fields, with w
functions of the type eipµxµ

ψ(ym); ym here represent the ext
dimensional coordinates.

(ii) The effects of higher modes should be experiment
unobservable at low enough energies, i.e., there should
mass gap between the zero modes and excited states. An
possibility is that extra, unwanted modes may be light but in
act very weakly with the zero modes.

In this section we shall analyze the implications of the fi
condition for the zero modes of the gauge fields, i.e., we s
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consider a wave function of the formWµ(x, r) = Rµ(r)eipνxν
,

where pµ is the 4-dimensional wave vector. With this for
of the wave function and proposing the change of varia
R = H(Fe−A)−1/2, the equation of motion for each compone
of W , Eq.(2.6), is rewritten as a Schrödinger-like equation

(3.1)

(
−1

2

d2

dr2
+ V (r)

)
H(r) = −p2eA

2
H(r),

where the potential is given by

(3.2)V (r) = 1

4

d2

dr2
ln

(
Fe−A

) + 1

8

(
d

dr
ln

(
Fe−A

))2

.

Because the localization of the gauge fields is given nea
core of the vortex, we are interested in solutions wherer → 0.
In this limit the potential is

(3.3)V (r → 0) ≈ − 1

8r2
+ 1

n2	2

and Eq.(3.1)becomes

(3.4)

(
d2

dr2
+ 1

4r2
+ k2

r

)
H(r) = 0, wherek2

r = −
(

p2e+ 2

n2	2

)
.

Hence, in order to find the explicit functional form of the gau
fields near the core of the vortex it is necessary to solve
1-dimensional radial Schrödinger equation with an attrac
potential proportional to 1/r2. The solutions to Eq.(3.4) have
been already discussed[38] and it has been shown that the
properties depend strongly on the valueλ—the coefficient of
the term 1/r2. Whenλ < 1/4 and the boundary condition
integrability—not finiteness—all negative energies are allow
[39]. For λ > 1/4, the requirement that the state functions
bound states be a mutually orthogonal set imposes a quan
tion of energy which does not uniquely fix the levels but
levels relative to each other[38].

It is remarkable that the value ofλ in (3.4) takes the critica
value 1/4. The solution to the differential equation in this ca
is given by

(3.5)H = c1rh
(1)

− 1
2
(irkr ) + c2rh

(2)

− 1
2
(irkr ),

whereh1 and h(2) are the spherical Hankel functions. The
functions behave in the limitr → 0 as

(3.6)h
(1)

− 1
2
(r) ≈

√
π

2r

2i

π
ln r, h

(2)

− 1
2
(r) ≈ −

√
π

2r

2i

π
ln r.

Thus if the boundary condition is integrability[39]

(3.7)
∫

dr R2 ∼
∫

r(ln rkr )
2 < ∞,

all negative energies are allowed and therefore the dispe
relation is

(3.8)
ω2

c2
= �k2 + 2

e
k2
r + 2

e

1

n2	2
,

where�k is the 3-dimensional wave vector. Notice that the
pendence of the extra dimensions in the dispersion rela
e

e

e

d

a-

n

-
s

comes into two different ways. There is a continuum con
butionkr that comes from the radial extra dimension and th
is one discrete contribution that goes liken−2 coming from the
vortex number. This last contribution is of a different type
the one that emerges from a Kaluza–Klein compact extra
mension which goes liken2 [37].

4. The Casimir effect

Once we have computed the dispersion relations we eva
the Casimir force between two parallel plates in theD = 4 ef-
fective QED. Because of the presence of the plates, we im
the standard Dirichlet boundary condition on the wave ve
in the direction restricted by the plates:kN = πN/l, wherel

is the distance between the plates. The Casimir energy bet
the plates is obtained by summing up the zero-point energy
unit area, where the frequency of the vacuum fluctuation
according to(3.8),

(4.1)ωk⊥,kr ,N,n = c

√
k2⊥ + 2

e
k2
r + π2N2

l2
+ 2

e

1

n2	2
,

with k⊥ =
√

k2
1 + k2

2. k1 andk2 are the wave vector componen
in the direction of the unbounded space coordinates along
plates. Each of these modes contributes an energyh̄ω/2. There-
fore the energy between plates reads

(4.2)Eplates= h̄L2ap

2

∫
d2k⊥ dkr

(2π)3

∞∑
n=1,N=1

ωk⊥,kr ,N,n,

whereL2 is the area of the plates and the parametera, mea-
suring the size of the vortex’es core, appears associated t
integration inkr . The factorp indicates the possible polariz
tion of the photon. In our casep = 4.

There are several ways to extract a finite value from
above divergent sum. We shall use the one that invokes dim
sional regularization. To do so we let the transverse dimen
bed , which we will subsequently treat as a continuous comp
variable following[26]. Let us start with the expression

(4.3)I1(d) = 1

2

∫
ddk

(2π)d

∞∑
n=1,N=1

√
k2
d + π2N2

l2
+ 2

e

1

n2	2
,

which becomes in the limitd → 3 the one in(4.2), namely

I1(d = 3)

(4.4)

≡ 1

2

∫
d2k⊥ dkr

(2π)3

∞∑
n=1,N=1

√
k2⊥ + k2

r + π2N2

l2
+ 2

e

1

n2	2
.

Using the Euler representation for the gamma function

(4.5)�(z) = gz

∞∫
0

e−gt tz−1 dt,
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the integral(4.3) can be rewritten employing the Schwing
proper-time representation for the square root as

I1(d) = 1

2

1

�(−1
2)

∑
n=1,N=1

∫
ddk

(2π)d

∞∫
0

dt

t
t−1/2

(4.6)× e
−t (k2

d+ π2N2

l2
+ 2

e
1

	2n2 )
.

Performing the Gaussian integral first and using(4.5)again we
have

I1(d) = 1

2

1

�(−1
2)

1

(4π)d/2
�

(
−d + 1

2

)

(4.7)×
∞∑

n=1

∞∑
N=1

(
π2N2

l2
+ 2

e

1

	2n2

)(d+1)/2

.

The double sum in(4.7)is better handled by factorizing(π
l
)d+1

and using the Epstein function[40,41]

EM2

1 (z,1) =
∞∑

N=1

(
N2 + M2)−z

,

(4.8)M2 = 2

e

l2

π2	2n2
, z = d + 1

2
.

This expression is not well defined for	(z) > 1/2, however, it
can be analytically continued into a meromorphic function
the whole complex plane, namely

EM2

1 (z,1) = 1

2M2z

+ π
1
2

1

2M2z−1�(z)

[
�

(
z − 1

2

)

(4.9)+ 4
∞∑

m=1

1

(πMm)
1
2−z

K 1
2−z

(2πMm)

]
,

whereKν(z) is the modified Bessel function of second typ
Thus using the Epstein function in(4.7) leads to

I1(d) = 1

2

1

�(−1
2)

1

(4π)
d
2

[
1

2
�

(
−d + 1

2

)(
2

e

1

	2

)(d+1)/2

× ζ(d + 1)

+ l

2
√

π
�

(
−d + 2

2

)(
2

e

1

	2

)(d+2)/2

ζ(d + 2)

+ 2√
π

(√
2

e

1

	

)(d+2)/2 1

l
d
2

(4.10)×
∞∑

n,m=1

(
1

mn

)(d+2)/2

Kd+2
2

(√
2

e

2l

	

m

n

)]
.

Notice the first term in square brackets in(4.10)is independen
of l and hence it can be interpreted as a constant energy
upon substitution in(4.2) [41]. Obviously it will neither yield
any contribution to the Casimir force. Hence from now on
will be discarded. The energy between plates takes the ex
ift

it

form

(4.11)Eplates= h̄cL2ap

√
e

2
I ′
1(d → 3),

with the prime meaning we have dropped the first term in bra
ets in I1, Eq. (4.10). Next we compute the vacuum ener
without the plates. Appealing again to(4.3) we have that such
vacuum energy

(4.12)

E0 = h̄cL2al

√
e

2
p

1

2

∫
d4k

(2π)4

∞∑
n=1

√
k2⊥ + k2

r + k2
z + 2

e

1

n2	2

becomes

E0 =
[
h̄cL2al

√
e

2
p

1

2

1

�(−1
2)(4π)

d
2

(
2

e	2

)(d+1)/2

(4.13)× �

(
−d + 1

2

)
ζ(d + 1)

]
d→4

.

Finally, the exact Casimir energy per unit area in the vo
scenario reads

Evortex= Eplates− E0

L2
= ECasimirf (l, a, 	),

ECasimir= − h̄cπ2

720l3
,

(4.14)

f (l, a, 	) =
45p

(√2
e

)3

π
7
2 �(−1

2)

(
a

	

)(
l

	

)3/2

×
∞∑

n,m=1

(
1

mn

)5/2

K 5
2

(√
2

e

2l

	

m

n

)
.

Here we recognizeECasimir as the standard four-dimension
Casimir energy between parallel plates. Moreover, the
rection within the vortex scenario is encoded in the funct
f (l, a, 	) in the form of a factor rather than an additive ter
We should also stress that to arrive to Eq.(4.14)there occurs a
cancellation between the second term in(4.10)with the vacuum
contribution with no plates, Eq.(4.13). To compare more neatl
Evortex with the standard result it is easier to get an approxim
form of it for l/	 � 1 in the argument of the modified Bess
functionK5/2 [39]. This produces, to leading order inl/	,

Evortex≈ −α
a

l4
+ β

a

	2l2
,

α = 3h̄cζ(5)

2(4π)7/2
�

(
5

2

)√
2

e
,

(4.15)β = h̄cζ(2)

32π7/2
ζ

(
3

2

)
�

(
5

2

)(
2

e

)3/2

.

As for the Casimir force we obtain then

(4.16)Fvortex= −∂Evortex

∂l
≈ −4α

a

l5
+ 2β

a

	2l3
.

Experimentally the Casimir force is difficult to measure b
cause parallelism cannot be obtained easily so it is prefer
to replace one of the plates by a metal sphere of radiusR where
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 l. For such geometry the Casimir force is modified to

(4.17)Fsphere= 2πRL2ECasimir.

The force between a metallic sphere of diameter 196 µm
a flat plate is measured using an atomic force microscope
separationsl ranging from 0.1 to 0.9 µm[42]. In this case the
experimental uncertainty for the Casimir force is 1.6 pN. D
to the factor correction in Eq.(4.14) giving rise to an inverse
power in the separation between plates ofl−5 in the effective
Casimir force, Eq.(4.16), it is not possible to reconcile it with
the experimental results even within the error bar[42–44](see
[45] for a review of the current experimental situation).

5. Discussion

In this Letter we have obtained the Casimir effect cor
sponding to the effective QED of Randjbar-Daemi and S
poshnikov [21]. The latter emerges from a 6-dimension
Abelian Higgs model coupled to gravity in a Nielsen–Oles
vortex background with fermions. The effective 4-dimensio
gauge field is a mixture of the original 6-dimensional me
and the vector potential.

We determined the contribution of the extra dimension
the dispersion relations of the electromagnetic modes nea
core of the vortex, our world, and we found two types of con
butions, Eq.(3.8): a continuum one, associated with the rad
extra dimension and a discrete one corresponding to a vo
number. This behaves asn−2 just as in the Casimir force fo
compact noncommutative extra dimensions[46]. As a result
we get an effective Casimir energy, Eq.(4.14), which differs
with respect to the standard one by a multiplicative factor ra
than an additive term. This correction depends on both para
ters of the vortex scenario, namely the size of the corea and
the coupling constants length	. In the approximationl/	 � 1
the effective force, Eq.(4.16), contains both an attractive and
repulsive contributions with inverse powers of the separa
between platesl−5 and l−3, respectively. Demanding agre
ment of this force with the experiment to set bounds for
parameters of the effective QED does not work due to the
that the correction is multiplicative yielding a different pow
in l with respect to the standard case. This limits the phen
enological implications of the effective QED here considere

The appearance of the extra dimensional correction
multiplicative factor that depends on the separation betw
plates seems to be a generic feature of noncompact extr
mensions. Further studies in this direction for different mod
is in progress and will be reported elsewhere.
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