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Abstract

In this paper we provide theoretical tools for dealing with the spectral properties of general
sequences of matrices of increasing dimension. More specifically, we give a unified treatment
of notions such as distribution, equal distribution, localization, equal localization, clustering
and sub-clustering. As a case study we consider the matrix sequences arising from the finite
difference (FD) discretization of elliptic and semielliptic boundary value problems (BVPs).
The spectral analysis is then extended to Toeplitz-based preconditioned matrix sequences with
special attention to the case where the coefficients of the differential operator are not regular
(belong toL1) and to the case of multidimensional problems. The related clustering properties
allow the establishment of some ergodic formulas for the eigenvalues of the preconditioned
matrices. © 2001 Published by Elsevier Science Inc.

AMS classification: 15A12; 65N22; 65F10
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1. Introduction

In the numerical solution of infinite dimensional problems modeled by partial
differential equations, integral equations, infinite systems of linear equations, etc.
(fluidodynamics, elasticity, image processing, Markov chains and so on), we deal
with sequences of finite dimensional systems{Anun = fn}n where the size ofAn

is dn with dn < dn+1 and is related to the finesse parameter of the discretization.
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Frequently the sequence{An}n inherits a kind of structure from the infinite dimen-
sional model. This property and the large dimensions involved advise against direct
methods and encourage the use of iterative techniques both for memory require-
ments/CPU time and precision of the solution. The theoretical counterpart of the
research into fast iterative solvers is the in-depth study of the spectral properties and
asymptotics of sequences of matrices especially in connection with the design and
analysis of good preconditioners. Hence many concepts and tools such as distribu-
tion, equal distribution, localization, equal localization, clustering and sub-clustering
have been more or less explicitly introduced and studied. Here, we first give a system-
atic and unified treatment of these notions by emphasizing relationships, similarities
and differences. Then, as a case study, we consider a class of simple centered fi-
nite difference (FD) discretizations of a class of multidimensional boundary value
problems of the form{

(−)k dk

dxk

(
a(x) dk

dxk
u(x)

)
= f (x), x ∈ � = (0, 1), k � 1,

Dirichlet B.C. on��,
(1)

and of the form


∑d
i=1(−)k �k

�xki

(
a(x) �k

�xki
u(x)

)
= f (x),

x = (x1, . . . , xd) ∈ � = (0, 1)d , k � 1,

Dirichlet B.C. on��,

(2)

over hyperrectangular regions and with a nonnegative andsparsely vanishing[34]
coefficienta.

We suppose that the functiona is nonnegative and that the set of the essential
zeros ofa has zero Lebesgue measure (i.e.,a is sparsely vanishing: see [34] and
Definition 4.7), while generally [8,21], the functiona is assumed to be positive on
the whole domain. Moreover, again concerning the functiona, we do not suppose
any regularity except for the boundedness or the Lebesgue integrability.

In a preceding paper [25], we have analyzed the main structural and spectral prop-
erties of the FD matricesAn(a) coming from the discretization of (1) and (2) by
centered FD formulae of order 2 with uniform mesh sizeh = (n+ 1)−1 under the
regularity assumption thata is (piecewise) twice continuously differentiable and by
emphasizing the case wherek is equal to 1. The case wherek is greater than 1 and
where high precision formulae are used is considered in [27,30]. However, we still
assumed the (piecewise) continuity of the functional coefficienta.

In particular, we proposed two preconditioners in [16,25]. The first of these�(n)
2k is

obtained by the same discretization formula when applied to problem (1) witha ≡ 1.
The secondPn is constructed asθkD

1/2
n,a�(n)

2k D
1/2
n,a , whereDn,a is then× n diagonal

matrix obtained by the diagonal part ofAn(a) andθk is a suitable positive constant.
In [25], by supposing that the functional coefficienta has a continuous second

derivative, we obtained an expansion formula forAn(a) in terms of the two pre-
conditioners. In particular, by using this representation together with the assumption
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that a(x) is positive, we proved that the first preconditioner is optimal while the
second is even superlinear (according to the notion of optimality of Axelsson and
Neytcheva [2] reported in Definition 2.1). Using the same assumption of smoothness
but supposing thata(x) has a finite number of isolated zeros, we proved that the first
preconditioner is not good because of a linear quantity (that is proportional to the di-
mensionn of An(a)) of eigenvalues of the preconditioned matrix which accumulate
in anyε-neighborhood of zero. On the other hand, the second preconditioner is still
good at least in the sense that the related preconditioned matrix sequence has aweak
or general cluster[34] of the eigenvalues around the unity. This “analytical” property
does not theoretically guarantee a good behavior of the associated PCG method, but
thegeneral clusteringof the eigenvalues does have a practical counterpart as shown
in the numerical experiments discussed in [25] and in Section 7.

This paper can be divided into two parts: in the first part (Sections 3 and 4) we
introduce new tools in order to analyze the spectral behavior of matrix-sequences. In
the second part (Sections 5 and 6) we focus our attention on special matrix-sequences
as{Pn}n, {�(n)

2k;d}n, {P−1
n An(a)}n, etc. In particular, we relax the regularity hypoth-

eses on the functiona by taking into account different cases and especially the case
wherea ∈ L∞ (ora ∈ L1). In all these cases we prove that the preconditioned matrix
sequence{P−1

n An(a)}n has a general cluster at 1. We notice that the latter case where
a ∈ L∞ or a ∈ L1 poses some technical problems which are overcome by using
some standard tools in functional analysis. In fact, the related spectral analysis of the
clustering properties is carried out by using the Lusin Theorem [23] regarding the
approximation in the measure of measurable functions by continuous functions when
the definition space is locally compact. We notice that this approximation allows
one to use the previously stated results [25,27,30], which hold in the continuous
case, as an intermediate step. Moreover, in the case wherea is a sparsely vanish-
ing function[13,34], the presence of essential zeros is analyzed as well: the related
results indicate that the behavior does not differ substantially with respect to the
regular case considered and discussed in [25]. We recall that the analysis performed
and reported in [25,27,30] was mainly concerned with the unilevel case. Several
results regarding the asymptotical spectral distribution properties and the clustering
of the preconditioned matrices are established here for the discrete approximation of
multidimensional problems of the form displayed in (2).

The paper is organized as follows: in Section 2 we describe the preconditioning
problem as a kind of “constrained approximation” and then we define the precondi-
tionerPn. In Section 3 we introduce some linear algebra tools for distribution and
clustering that have been recently introduced by Tyrtyshnikov [35] in a Toeplitz pre-
conditioning context. Section 4 is devoted to a systematic and unified analysis of the
concepts of distribution, equal distribution, localization, equal localization, cluster-
ing and sub-clustering for sequences of vectors and matrices. In Section 5, we return
to the case study in (1) and (2) by recalling some results regarding second-order
BVPs in the presence of smooth coefficients. In Section 6, we present a thorough
generalization of the results regarding the distribution and clustering of the spectra
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in the case of Dirichlet problems of order 2k and “dimension”d � 1, by taking into
account, not only the presence of zeros, but also the possibility thata is not regular
(a ∈ L∞ or a ∈ L1): while the latter case appears to be only academic, it becomes
meaningful and useful when we consider the distributional “weak formulation” of
the proposed problems. We report some numerical experiments in Section 7 and we
summarize the results obtained in the paper in the concluding section (Section 8).

2. The preconditioning problem

2.1. A constrained approximation problem

When discretizing continuous problems as (1) and (2), we obtain a sequence
{Anxn = bn}n of linear systems of sizedn with dn < dn+1 (so that limn→∞ dn =
∞). The highern is, the more accurate the approximate solutionxn is: consequently,
if good precision is required, we have to compute the solutionxn of a linear system of
dimensiondn for a large value ofn. The use of iterative methods [38] is recommend-
ed due to memory and accuracy requirements. However, in many cases the problem
is the number of iterations that can grow asn or the cost per each iteration. Here we
give a definition of optimality [2] for iterative methods applied to sequences of linear
systems.

Definition 2.1. Given a sequence{Anxn = bn}n of linear systems of sizedn, an
iterative method is said to beoptimal if its cost for computingxn within a
preassigned accuracyε is O(M(n)), whereM(n) is the cost of the matrix–vector
multiplication with matrixAn and where the constant hidden in the O(·) term can
depend onε.

In a general iterative method the cost of a single iteration is basically reduced to
matrix–vector multiplications where the involved matrix generally has the same pat-
tern and the same structure of the original coefficient matrixAn. As a consequence,
Definition 2.1 implies that:
• the asymptotic number of iterations to reach the solution within the desired accu-

racy must be upperbounded by a constant and
• the cost of each single step is upperbounded by O(M(n)).

The second requirement is satisfied by the most popular iterative solvers so that
the first requirement is the critical point. If the sequence of the (spectral) condition
numbers of{An}n is unbounded, then it is generally difficult to solve thenth system
within a number of steps independent ofn.

With regard to this feature, one of the most successful iterative solvers is the
preconditioned conjugate gradient (PCG) method. When applied without precon-
ditioning, this method requires O(dn) iterations. On the other hand, the use of a
preconditionerMn can accelerate the convergence by reducing the number of steps.
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In order to understand the convergence speed of this class of methods, the main
objective is the localization and the distribution of the eigenvalues (singular values in
the non-Hermitian case) of the sequence{M−1

n An}n. Let us start with two definitions.

Definition 2.2 [35]. Consider a sequence ofdn × dn complex matrices{An}n and
a setM in the nonnegative real line. Denote byMε the ε-extension ofM, which is
the union of all balls of radiusε centered at points ofM. For anyn, let γn(ε) ≡
γn(An,M, ε) count those singular values ofAn that do not belong toMε .
• Assume that, for anyε > 0,

γn(ε) = o(dn), n→∞.

ThenM is called ageneral or weak cluster.
• If, for any ε > 0, there exists a constantc(ε) so that

γn(ε) � c(ε),

thenM is called aproper or strong cluster.
• If M = {p} is acluster, then we say that{An}n is clusteredatp.
• When the matricesAn are Hermitian, the setM is allowed to belong to the whole
real line and the given definitions apply to the eigenvalues in place of the singular
values.

Definition 2.3. Let {An}n, M, Mε andγn(ε) be as in the preceding definition.
• The setM is asub-clusterif

lim
ε→0

1

dn
lim inf
n→∞ γn(ε) = c < 1.

• If M = {p} is asub-cluster, then we say thatp is asub-cluster pointfor {An}n.

Remark 2.1. Let c be as in the first item of Definition 2.3 and letC be defined as

C = lim
ε→0

1

dn
lim sup
n→∞

γn(ε).

Correspondingly we can give a more restrictive notion ofsub-clusteridentified by
the relationC < 1. In essence, the latter definition is the one of Tyrtyshnikov and
Zamarashkin in [37] which we will refer to as the concept ofTZ sub-cluster. Table
1 helps to understand the relations among the notions ofweak cluster, sub-cluster
andTZ sub-cluster. We notice that theweak clusteringis a special instance of the
sub-clusteringwhile the latter notion is a special case of the notion ofTZ sub-clus-
ter. The philosophical difference betweensub-clusteringandTZ sub-clusteringcan
be summarized as follows: in the TZ definition we find a real sub-cluster for all
the subsequencesnk extracted fromn while in our definition, there exists at least
a subsequencenk such thatM is a real sub-cluster for{Ank }k. Indeed in the case
‘C’ or in the case ‘F’ there exist subsequencesnk for whichM is a real sub-cluster of
type ‘A’ or ‘D’ for {Ank }k, respectively, but there exist subsequencesn̂k andε > 0 for
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Table 1
Clustering and sub-clustering

Weak cluster TZ sub-cluster Sub-cluster

A c = 0, C = 0 Yes Yes Yes
B c = 0, C ∈ (0,1) No Yes Yes
C c = 0, C = 1 No No Yes
D c = C ∈ (0,1) No Yes Yes
E 0< c < C < 1 No Yes Yes
F c < 1, C = 1 No No Yes
G c = 1, C = 1 No No No

whichMε contains at most o(dn̂k ) singular values of{An̂k }k. ConsequentlyM is not a
sub-cluster for the extracted subsequence{An̂k }k and with regard to this subsequence
we are in the case ‘G’. Finally, we refer to the situation in ‘D’ as the canonical
case.

Regarding the terminology of the preceding definitions, when the eigenvalues/sin-
gular values of{M−1

n An − I }n areproperly clusteredat zero or when the sequence
of the spectral condition numbersκ(M−1

n An) of {M−1
n An}n is upperbounded by a

constant independent ofn, we know [1] that a constant number of iterations are
required by the PCG method in order to solve a linear system with coefficient matrix
An within a fixed accuracy. In particular, if{M−1

n An − I }n is properly clusteredand
{A−1

n Mn}n is spectrally bounded, then the related PCG method is optimal and, after a
suitable constant number of iterations, the convergence is of a superlinear type (see,
[1,9] for more details).

Therefore, we need to find a suitable preconditionerMn such that:
1.a. κ(M−1

n An) is upperbounded by a constant independent ofn (that is{Mn}n is
“close” to {An}n in spectral norm) or

1.b. {M−1
n An − I }n is properly clustered at 0 (that is{Mn}n is “close” to {An}n in

the clustering sense);
2. a linear system involvingMn has a cost of O(M(n)).

Clearly, these two issues are often conflicting considering that when a matrix is too
close toAn it also requires the same computational effort to invert.

In general, when dealing with the PCG, given the classα of matrices arising from
problems like (1) or (2), we proceed as follows:
A. Choose a suitable classβ of matrices “close” enough toα whose elements are

easy to invert.
B. Devise a suitable projection operatorPn : α → β to obtain a certain approxi-

mationMn ∈ β for any givenAn ∈ α.
One of the possible ways to do this is to look for preconditioners within matrix
algebras such as the circulant class [12] and theτ class [5] (point A) and to use the
optimal approximation in Frobenius norm [8,10,29] (point B). However, as proved in
[13] we do not generally meet points 1.a and 1.b due to asymptotical ill conditioning
of the matrices discretizing problems of the form (1) or (2). Therefore we go on to use
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a different strategy which is based on the information contained in the “continuous
problem”.

2.2. The choice of the preconditioner

Let us consider the discretization of problem (1) on a uniform grid belonging to
�̄ = [0, 1] with stepsizeh = (n+ 1)−1, using centered finite differences of mini-
mal precision order 2. After a scaling byh2k, this discrete approximation leads to a
2k + 1 bandn× n linear system

An(a)y = b, (3)

that belongs to the Toeplitz class ifa(x) is a constant function.
The first component of our preconditionerPn ≡ Pn(a) is the Toeplitz matrix�(n)

2k
obtained from the discretization of Eq. (1), wherea(x) ≡ 1 and after the same scal-
ing byh2k:

�(n)
2k = Toepn[0, . . . , 0, τk, . . . , τ0, . . . , τk, 0, . . . ,0],

with

τj = (−1)j
(

2k
k − j

)
.

The second component is the diagonal matrixDn,a obtained by the main diagonal of
An(a) (see also [16]). Therefore we set

Pn =
(

2k
k

)−1

D
1/2
n,a�(n)

2k D
1/2
n,a , (4)

where

(An(a))j,j =
k∑

i=0

b
(k,0)
i a(xj+i−k/2),

(An(a))j,j+s =
min{k,k+s}∑
i=max{0,s}

(−1)sb(k,s)i a(xj+i−k/2),

b
(k,s)
i > 0, s ∈ {−k, . . . , k}.

Moreover, by imposinga ≡ 1 we infer that∑
i

b
(k,s)
i =

(
2k

k − |s|
)
=

(
�(n)

2k

)
j,j+s . (5)

With this choice, we note that the preconditioner is symmetric and is positive definite
if the diagonal elements ofAn(a) are positive. In fact the generic value(An(a))j,j is
a sum with positive coefficients ofk + 1 equispaced evaluations of the functiona(x).
Therefore, ifa(x) is continuous and has, at most, only isolated zeros, it is evident
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that(An(a))j,j is positive for a sufficiently fine mesh spacing. Of course, whena is
not continuous but onlyL1 it does not make any sense to take the evaluations of the
functiona in a discrete grid of points. In this case the symbola(xj ) denotes

(n+ 1)
∫
Ij

a(t)dt, Ij = [xj , xj+1], xj+1 − xj = h, xj = hj.

Hence, if the functiona is sparsely vanishing [34] or equivalently [13] if the Lebes-
gue measurem{x ∈ [0, 1] : a(x) = 0} of the set of zeros ofa is zero, thenAn(a) and
the preconditionerPn are symmetric and positive definite since each valuea(xj ) is
strictly positive.

In the case of problem (2), we discretize them on a uniform grid belonging to
�̄ = [0, 1]d using centered finite differences of minimal precision order 2 with re-
gard to each directionxj . The stepsize with regard to the directionxj , j = 1, . . . , d,
is hj = (nj + 1)−1. Since the discretization of each term

�k

�xkj

(
a(x)

�k

�xkj
u(x)

)

is represented by a matrix bounded in spectral norm divided byh2k
j , it follows that

the relation

h2k
j1
= o

(
h2k
j2

)
for somej1 /= j2 would imply that the “discrete” contribution of the operator

�k

�xkj2

(
a(x)

�k

�xkj2

u(x)

)

is negligible in spectral norm with respect to the one of

�k

�xkj1

(
a(x)

�k

�xkj1

u(x)

)
.

Therefore, except for some exceptional cases where it is required to discretize with
different precisions in different directions, it is natural to think thathj1 andhj2 have
the same asymptotical behavior. Consequently, we make the assumption that the
stepsizes are equal up to suitable multiplicative constants, i.e.,∃a1, . . . , ad ∈N+
such thatnj + 1= vaj , v ∈N+.

Setting the multiindexn = (n1, n2, . . . , nd) with N(n) = n1n2 · · · nd and after
a scaling byv−2k, the former discrete approximation leads to a multilevelN(n)×
N(n) linear system

An(a)y = b, (6)

having bandwidth 2k + 1 at each levelj. The matrixAn(a) belongs to the multilevel
Toeplitz class ifa(x) is a constant function.
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The first component of our preconditionerPn ≡ Pn(a) is the Toeplitz matrix
�(n)

2k;d obtained from the discretization of Eq. (2), wherea(x) ≡ 1 and following the

same scaling byv−2k. Then the preconditioner�(n)
2k;d is defined as

�(n)
2k;d =

d∑
j=1

X
(n)
j,k,

where

X
(n)
j,k = a2k

j · In1 ⊗ In2 ⊗ · · · Inj−1 ⊗ �
(nj )

2k ⊗ Inj+1 ⊗ · · · Ind
and⊗ is the tensor product [3,18] (A⊗ B = (ai,jB)).

The second component is the diagonal matrixDn,a extracted from the main diag-
onal ofAn(a) so that

Pn = θk
−1D

1/2
n,a�(n)

2k;dD
1/2
n,a ,

where

θk =
(
�(n)

2k;d
)
i,i
=


 d∑
j=1

a2k
j


(

2k
k

)

is the diagonal entry of the multilevel Toeplitz matrix�(n)
2k;d .

We note that the preconditionerPn is symmetric and is positive definite if the
diagonal elements ofAn(a) are positive. In actuality, puttingj = (j1, j2, . . . , jd),
the diagonal entry(An(a))j,j is a sum with positive coefficients of a constant number
of evaluations of the functiona(x). Therefore, ifa(x) is continuous with, at most,
only isolated zeros, then(An(a))j,j is positive when the mesh is fine enough. If
a∈L1 is not continuous, then it is senseless to take the evaluations of the function
a in a discrete grid of points. Therefore, settingxj = (xj1, xj2, . . . , xjd ) and e =
(1, 1, . . . , 1), the symbola(xj ) will denote

N(n+ e)

∫
Ij

a(t)dt, Ij =
d∏
i=1

[xji , xji+1], xji+1 − xji = hi, xji = hiji .

So, if the functiona is sparsely vanishing [34] or equivalently [13] if the multidi-
mensional Lebesgue measurem{x ∈ [0, 1]d : a(x) = 0} of the set of zeros ofa is
zero, thenAn(a) and the preconditionerPn are symmetric and positive definite since
eacha(xj ) is strictly positive.

3. Some linear algebra premises

We now introduce some results to be used as a tool in order to analyze the distri-
bution of the eigenvalues of the preconditioned and nonpreconditioned matrices.
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3.1. The Szegö–Tyrtyshnikov theory

Suppose thatf ∈ L1(I d,C) with I = (−π, π). We define the (d-level) Toeplitz
matrices{Tn(f )}n, generated [19] by a Lebesgue-integrable functionf as the matri-
cesTn(f )whose entries along the diagonals are constant and are given by the Fourier
coefficients{τk}k ordered in a suitable way. In particular, setting

n = (n1, n2, . . . , nd) ∈N+d , N(n) = n1n2 · · · nd,
k = (k1, k2, . . . , kd), s = (s1, s2, . . . , sd),

t = (t1, t2, . . . , td ), kj , sj , tj ∈ {−nj+1, . . . , nj−1}
and

x = (x1, x2, . . . , xd)

we have[
Tn(f )

]
s,t
= τs−t , τk = 1

[2�]d
∫
Id
f (x)e−i(k·x)dx, i2 = −1. (7)

To have an idea of thed-level structure, we must choose an ordering among the
indices{kj }. The matrixTn(f ) has external dimensionn1 × n1, with (d − 1)-level
Toeplitz blocks of dimension(n2 · · · nd)× (n2 · · · nd). The description is natural-
ly recursive so that when we arrive at expressing the first level, we then find the
elements{τk}k given in Eq. (7).

For instance, ford = 2, the expression[Tn(f )](s1,s2),(t1,t2) indicates the entry of
position(s2, t2) in the block(s1, t1) which is equal toτs1−t1,s2−t2.

The following theorem gives a strong characterization of the spectra of multilevel
Toeplitz matrices.

Theorem 3.1 [19,35,36].Let f ∈ L1(I d ,C) and let {σ (n)i } be the singular values
of Tn(f ). Then, for any continuous function F with bounded support the following
asymptotic formula(the Szegö relation) holds true:

lim
n→∞

1

N(n)

N(n)∑
i=1

F(σ
(n)
i ) = 1

[2π]d
∫
Id
F (|f (x)|)dx. (8)

Notice that whenf is real-valued and nonnegative the singular values ofTn(f ) are
its eigenvalues sinceTn(f ) is Hermitian and nonnegative definite.

Theorem 3.2. Let f ∈ L1(I d,C) and {Tn(f )}n be the related Toeplitz sequence.
Then p is a(singular value) sub-cluster pointfor {Tn(f )}n iff m{x ∈ I d : |f (x)| =
p} > 0. If f is real-valued, then p is a(eigenvalue) sub-cluster pointfor {Tn(f )}n iff
m{x ∈ I d : f (x) = p} > 0. Herem{·} is the Lebesgue measure onRd .

Proof. The proof can be handled by using limit relation (8) and straightforward
measure theory arguments.�
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Remark 3.1. Let f ∈ L1(I d,C) and {Tn(f )}n be the related Toeplitz sequence.
Then the set of thesub-cluster pointsis at most countable. Moreover, thesub-cluster
pointsof Toeplitz sequences are all of canonical type in the sense of Remark 2.1
since the quantitiesc andC coincide.

The following further result holds.

Theorem 3.3. LetTn(f ) be as in Theorem3.1 and f be a real-valued function. Let
λ(X) be the generic eigenvalue of the matrix X and letmf andMf be the essential
infimum and supremum of f, respectively, i.e., the inf f andsupf up to within zero
measure sets[23]. Then for anyn ∈N+d the following cases occur[19] :
• mf < λ(Tn(f )) < Mf if mf < Mf or
• λ(Tn(f )) = M if mf = Mf = M.

In addition, if {λ(n)i } is the complete set of the eigenvalues ofTn(f ) in nondecreasing
order, then∀{k(n)}n so thatk(n) = o(N(n)), it follows that[35]

lim
n→∞ λ

(n)
k(n) = mf and lim

n→∞ λ
(n)
N(n)−k(n) = Mf .

Finally, if f −mf ∼ ‖x− x0‖γ2 , then[26, 7]

λ
(n)
1 −mf ∼

d∑
j=1

n
−γ
j .

As an example, let us consider the band Toeplitz matrices{�(n)
2k }n related to the

discretization of Eq. (1) witha(x) ≡ 1. It is evident that�(n)
2k is then× n one-lev-

el Toeplitz matrix (d = 1) generated by the polynomialf (x1) = (2− 2 cos(x1))
k.

Sincemf = 0 andf (x1) ∼ x2k
1 , according to Theorem 3.3 the matrix�(n)

2k is posi-
tive definite, its minimal eigenvalue is asymptotic ton−2k and its spectral condition
numberκ(�(n)

2k ) grows asn2k.

Let us consider the two-level Toeplitz matrices{�(n)
4;2}n, n = (n1, n2), related

to the discretization of the bi-Laplacian (see Eq. (2) withk = 2) with nj + 1=
vaj , j = 1, 2. Then�(n)

4;2 = Tn(f ), wheref (x1, x2) = a2
1(2− 2 cos(x1))

2 + a2
2(2−

2 cos(x2))
2.

In view of Theorem 3.3, we deduce that�(n)
4;2 is positive definite, its minimal

eigenvalue is asymptotic ton−4
1 + n−4

2 and its spectral condition number grows as
n4

1 + n4
2.

4. The Weyl–Tyrtyshnikov equal distribution

Let us start with the basic definition of distribution.



48 S. Serra Capizzano / Linear Algebra and its Applications 337 (2001) 37–78

Definition 4.1 [19, 35]. Two real sequences{a(n)i }i�dn , {b(n)i }i�dn (dn < dn+1) are
equally distributed(ED) if and only if, for any real-valued continuous functionF
with bounded support, the following relation holds:

lim
n→∞

1

dn

dn∑
i=1

F
(
a
(n)
i

)
− F

(
b
(n)
i

)
= 0. (9)

When the previous limit goes to zero as O(d−1
n ) andF is Lipschitz continuous, we

say that there isstrong equal distribution(SED). The same definition applies to the
case of sequences of matrices{An}n and{Bn}n of dimensiondn × dn: in this case
{a(n)i }i�dn and{b(n)i }i�dn are the sets of their singular values (or the eigenvalues if
the involved matrices are Hermitian).

We now introduce two notions ofequal localizationthat will be useful in the
following.

Definition 4.2. Two real sequences{a(n)i }i�dn , {b(n)i }i�dn (dn < dn+1) areequally
localized(EL) if and only if, for any nontrivial interval[α, β] (α < β), the following
relation holds:

lim
n→∞

1

dn

(
#
{
i : a(n)i ∈ [α, β]

}
− #

{
i : b(n)i ∈ [α, β]

})
= 0. (10)

When the previous limit goes to zero as O(d−1
n ), we say that there is strong equal

localization (SEL). The same definition applies to the case of sequences of matri-
ces{An}n and {Bn}n of dimensiondn × dn: in this case{a(n)i }i�dn and {b(n)i }i�dn
are the sets of their singular values (or the eigenvalues if the involved matrices are
Hermitian).

Definition 4.3. Two ordered real sequences{a(n)i }i�dn , {b(n)i }i�dn (dn < dn+1) areε
equally localized(ε-EL) if and only if, for anyε > 0, the following relation holds.

lim
n→∞

1

dn
#
{
i : ∣∣a(n)i − b

(n)
i

∣∣ > ε
}
= 0. (11)

When the previous limit goes to zero as O(d−1
n ), we say that there isε strong equal

localization(ε-SEL). The same definition applies to the case of sequences of matri-
ces{An}n and{Bn}n of dimensiondn × dn: in this case{a(n)i }i�dn and{b(n)i }i�dn are
the ordered sets of their singular values (or the eigenvalues if the involved matrices
are Hermitian).

Definition 4.4. We say that a sequence{c(n)i }i�dn is essentially bounded if there
exists an intervalM = [α, β] so thatM is a general cluster for it. IfM is a proper
cluster, then we say that{c(n)i }i�dn is properly bounded.
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Definition 4.5. Given a sequence{c(n)i }i�dn , we say thatp ∈ R is asub-cluster point

for {c(n)i }i�dn iff

lim
ε→0

1

dn
lim sup
n→∞

#
{
i : c(n)i ∈ (p − ε, p + ε)

}
= c > 0.

A sequence{c(n)i }i�dn withoutsub-cluster pointsis calledregular.

Remark 4.1. We notice that if{c(n)i }i�dn is, for anyn, the complete set of the sin-
gular values (eigenvalues) of a (Hermitian)dn × dn matrix, then definition ofsub-
cluster pointin Definition 4.5 reduces to the one in Definition 2.3 (see also [37]).

Remark 4.2. If {c(n)i }i�dn is, for anyn, the complete set of the singular values (ei-
genvalues) of a (Hermitian)dn × dn matrix An and if the singular values (eigen-
values) of{An}n enjoy a formula as (8) for some Lebesgue measurable functionf,
thenf is sparsely vanishingaccording to Definition 4.7 iff 0 is not asub-cluster point.

However all these concepts have deep relationships without being equivalent.
Therefore in the following theorem we analyze the connections and the differences
among them in detail.

Theorem 4.1. Let {a(n)i }i�dn and {b(n)i }i�dn (dn < dn+1) be two ordered real se-
quences. The following facts hold true:
1. SED implies ED, SEL implies EL andε-SEL impliesε-EL. These implications

cannot be reversed.
2. EL implies ED.
3. SEL does not imply SED.
4. SED does not imply EL.
5. ε-EL implies ED.
6. ε-SEL does not imply SED.
7. SED does not implyε-EL.
8. ε-SEL does not imply EL.
9. SEL does not implyε-EL.

Proof.
1. The implications SED⇒ ED andε-SEL ⇒ ε -EL are straightforward conse-

quences of Definitions 4.1 and 4.3. SEL⇒ EL is a consequence of Definition 4.2
and of density of the Lipschitz continuous functions with bounded support into the
class of continuous functions with bounded support. The sequences{a(n)i = 1+
1/
√
n}i�n and{b(n)i = 1}i�n are ED but not SED. The sequences{a(n)i = i/n}i�n

and{b(n)i = i/n− 1/
√
n}i�n are EL but not SEL. The sequences{a(n)i = 1}i�n

and{b(n)i }i�n, with b
(n)
i = 2 if i = 2k for some integerk andb(n)i = 1 otherwise,

areε-EL but notε-SEL.
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2. In [35] Tyrtyshnikov observed that EL is a rewriting of the ED property where the
continuous test functions are replaced by the staircase functions (i.e. linear com-
binations of the characteristic functions of intervals). The density of the second
class into the first proves the desired result.

3. Let{a(n)i = 1+ 1/
√
n}i�n and{b(n)i = 1+ 2/

√
n}i�n. Now for any nontrivial in-

terval[α, β] (α < β), there exist integers̄n(α, β) andñ(α, β) so that

#
{
i : a(n)i ∈ [α, β]

}
= s(n) for n � n̄(α, β)

and

#
{
i : b(n)i ∈ [α, β]

}
= s(n) for n � ñ(α, β),

wheres(n) = n if 1 ∈ [α, β) and s(n) = 0 otherwise. This shows that the two
sequences are SEL. Finally taking a continuous functionF with bounded support
which is identically equal to 1 over[0, 3]: we obtain

1

n

n∑
i=1

F
(
a
(n)
i

)
− F

(
b
(n)
i

)
= −1/

√
n /= O(n−1)

so that the two sequences are not SED.
4. For {a(n)i = 1+ 1/n4}i�n and {b(n)i = 1− 1/n4}i�n it is quickly verifiable that

they are SED but not EL since

#
{
i : a(n)i ∈ [0, 1]

}
= 0 and #

{
i : b(n)i ∈ [0, 1]

}
= n.

5. Given twoε-EL sequences{a(n)i }i�dn and{b(n)i }i�dn , for any positiveε, consider

γn(ε) = #{i : |a(n)i − b
(n)
i | > ε} = o(dn). Therefore, for any continuousF with

bounded support and modulus of continuityωF we have∣∣∣∣∣ 1

dn

dn∑
i=1

F
(
a
(n)
i

)
− F

(
b
(n)
i

)∣∣∣∣∣� 1

dn

dn∑
i=1

∣∣∣F (
a
(n)
i

)
− F

(
b
(n)
i

)∣∣∣
� 1

dn
(2‖F‖∞γn(ε)+ ωF (ε)dn).

Due to the arbitrariness ofε, the ED property follows.
6. It is enough to take the same sequences used for showing that SEL does not imply

SED (part 3) to prove thatε-SEL does not imply SED.
7. For {a(n)i = n+ i}i�n and {b(n)i = n+ i + 1/2}i�n it is quickly verifiable that

they are SED but notε-EL.
8. For{a(n)i = 1+ 1/n4}i�n and{b(n)i = 1− 1/n4}i�n, it is trivial to verify that they

areε-SEL but not EL (take[α, β] = [1, 2]).
9. For {a(n)i = n+ i}i�n and {b(n)i = n+ i + 1/2}i�n it is quickly verifiable that

they are SEL but notε-EL. �
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We describe some more sophisticated relationships in the subsequent result.

Theorem 4.2. Let {a(n)i }i�dn and {b(n)i }i�dn (dn < dn+1) be two ordered real se-
quences. The following facts hold true:
1. EL and essential boundedness implyε-EL.
2. SEL and proper boundedness implyε-SEL.
3. ED, essential boundedness and regularity implyε-EL.
4. ED, essential boundedness and regularity imply EL.
5. Assumed essential boundedness and regularity imply EL iffε-EL.

Proof.
1. For the claim that “EL and essential boundedness implyε-EL”, it is enough to con-

sider an equispaced partition of the bounded intervalM = [α, β] of R to which
{a(n)i }i�dn and {b(n)i }i�dn essentially belong. For anyε∗ > 0, we take the inter-
valsMj = [xj , xj+1], wherexj = α + j (β − α)ε∗, j = 0, . . . , �(ε∗)−1�. Next
we apply Eq. (10) to all of the intervalsMj . We find that, except for�(ε∗)−1�o(dn)
indices, it holds that|a(n)i − b

(n)
i | � ε∗(β − α) becauseε∗(β − α) is the diameter

of each setMj . Finally, the claim follows callingε = ε∗(β − α).
2. It is just an adaptation of the proof of part 1.
3. LetM = [α, β] ⊂ R be a general cluster for{a(n)i }i�dn and {b(n)i }i�dn . For any

ε∗ > 0, we take the intervalsMj = [xj , xj+1], wherexj = α + j (β − α)ε∗, j =
0, . . . , �(ε∗)−1�. We now takeF = Fj being globally continuous, 1 overMj , 0
over the complementary set ofMj−1 ∪Mj ∪Mj+1, and linear overMj−1 and
Mj+1. We apply Eq. (9) withF = Fj to obtain

lim
n→∞

1

dn

[
T1(j, ε, n)+ T2(j, ε, n)

+
(
#
{
i : a(n)i ∈ Mj

}
− #

{
i : b(n)i ∈ Mj

}) ]
= 0,

where

T1(j, ε, n) =
∑

i: a(n)i ∈Mj−1∪Mj+1

Fj

(
a
(n)
i

)
,

T2(j, ε, n) =
∑

i: b(n)i ∈Mj−1∪Mj+1

Fj

(
b
(n)
i

)
.

Since 0� Fj � 1, it follows that 0� T1(j, ε, n) � #{i : a(n)i ∈ Mj−1 ∪Mj+1}
and 0� T2(j, ε, n) � #{i : b(n)i ∈ Mj−1 ∪Mj+1}. Both the sequences{a(n)i }i�dn
and{b(n)i }i�dn areregular (nosub-cluster points) and consequently

lim
n→∞

1

dn
T1(j, ε, n) = lim

n→∞
1

dn
T2(j, ε, n) = 0

so that
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#
{
i : a(n)i ∈ Mj

}
= #

{
i : b(n)i ∈ Mj

}
+ o(dn).

Recalling that the diameter ofMj is (β − α)ε∗ and that the union of finitely many
Mj coversM which is a cluster for both the sequences, by settingε = (β − α)ε∗

we deduce that except for o(dn) indices, the valuesa(n)i andb(n)i belong to the
sameMj for somej and therefore their distance is bounded byε. The definition
of theε-EL property is easily recognized.

4. To prove the EL property, we take an intervalM = [α, β] and we takeF = Fα,β
being globally continuous, 1 overM, 0 over the complementary set ofMε = [α −
ε, β + ε] and linear over[α − ε, α] and[β, β + ε]. We apply Eq. (9) withF =
Fα,β and we obtain

lim
n→∞

1

dn

[
T1(j, ε, n)+ T2(j, ε, n)+

(
#
{
i : a(n)i ∈ M

}
− #

{
i : b(n)i ∈ M

})]
= 0,

where

T1(j, ε, n) =
∑

i: a(n)i ∈Mε\M
Fα,β

(
a
(n)
i

)
, T2(j, ε, n) =

∑
i: b(n)i ∈Mε\M

Fα,β

(
b
(n)
i

)
.

Just as in the proof of the preceding part, we find that

lim
n→∞

1

dn
T1(j, ε, n) = lim

n→∞
1

dn
T2(j, ε, n) = 0

so that

#
{
i : a(n)i ∈ M

}
= #

{
i : b(n)i ∈ M

}
+ o(dn)

and the proof is concluded.
5. Assuming the EL property, we deduce the ED property from part 2 of Theorem

4.1. Therefore ED, essential boundedness and regularity hold simultaneously so
that, by part 3, theε-EL property stands. The other case is symmetric.�

Remark 4.3. In the proof of the first three parts of Theorem 4.2 we have taken
advantage of the fact that a bounded interval can be divided into a finite number of
subintervals of radius as small as we desire. In essence, this is the notion of com-
pactness in a metric space. Therefore the same proof applies unchanged if the se-
quences{a(n)i }i�dn and {b(n)i }i�dn are valued in a metric spaceT and if they are
essentially compact, i.e., they are contained in a compact setK ⊂T except at most
o(dn) elements (compare this concept with Definition 4.4). A nontrivial case occurs
whenT = Rs for some positives. In this case we encounter the notion of grid-
sequences over domains ofRs that are useful in constructive approximation and in
the numerical treatment of differential equations.
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In the following subsections we furnish some tools to evaluate the strength of
the equal distributionandequal localizationthat are based upon estimates of the
singular values and involve the Shattenp-norms [3].

Definition 4.6. We denote byMs the linear spaceCs×s of all square matrices of
order s with complex entries. IfA ∈ Ms , then the symbolσj (A) denotes thejth
singular value ofA and if A is Hermitian, then the symbolλj (A) denotes thejth
eigenvalue ofA where both the sets are arranged in a nonincreasing order. The space
Ms is equipped with the Shattenp-norm defined as [3]

‖A‖S,p =

 s∑
j=1

σj (A)
p




1/p

, p ∈ [1,∞),

and

‖A‖S,∞ = σ1(A), p = ∞.

Forp = 2 we find the classical Frobenius norm and forp = ∞ we obtain the so-
called “spectral” norm. When choosingp = 1, we find the so-called “trace” norm
that for Hermitian nonnegative definite matrices equals the trace of the matrix. In the
approximation of sequence of matrices of increasing dimension in simpler spaces of
matrices, the preferred norm is generally the Frobenius norm. The first motivation
is “practical” in the sense that this is the only Shattenp-norm whose calculation is
computationally not expensive:

|A‖S,2 ≡

 s∑
i,j=1

|(A)i,j |2



1/2

.

The second motivation is theoretical: actually the Frobenius norm is the only Shatten
p-norm induced by an inner product which makes the spaceMs into a Hilbert space.
More specifically, setting〈A,B〉 = trace(AHB), we simply deduce that‖A‖F ≡
‖A‖S,2 = 〈A,A〉1/2.

Therefore, if we want to solve a linear systemAny = b with An of “large” di-
mensiondn, we look for a convex closed set of matrices in which the computation
(matrix inversion, matrix product, etc.) is inexpensive. Consequently, it is natural to
consider the “least square approximation” problem of the given matrixAn in order
to devise a suitable preconditioner. This approach leads to the Frobenius-optimal
approximation in algebras considered in [10,29] in the Toeplitz context and in [8]
in the context of finite difference matrices discretizing elliptic differential operators.
However, owing to the general analysis given in [13], it is easy to recognize that the
Frobenius-optimal approximation in algebra is not completely satisfactory when the
matrix sequenceAn is asymptotically ill conditioned with regard ton [13] or when
the algebraic system is multilevel and the numberd of levels is large [31,32]. It is
worth noticing that multidimensional differential problems as well as multiresolution
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or image processing naturally lead to multilevel structured matrices [9]. Therefore
in this paper we look for approximations constructed using a different philosophy:
in particular, as shown in the previous section, we invoke a “structural” approach
[24,25,27,28,30] where the preconditioner approximating the matrixAn is defined
by using the continuous information contained in the model problem.

4.1. Analysis of the equal distribution

The following perturbation result is of paramount interest for estimating theequal
distribution from a quantitative point of view. This result is a generalization of the
Wielandt–Hoffman inequality (see e.g. [3]) and represents a particular case of the
Lidskii–Mirsky–Wielandt Theorem whose proof can be found in [3, Theorem IV.3.4
and Example IV.3.5].

Lemma 4.1. Letp ∈ [1,∞). For any pair of matricesA,B ∈ Ms, we have
 s∑
j=1

|σj (A)− σj (B)|p



1/p

� ‖A− B‖S,p. (12)

If A and B are Hermitian, then we also have
 s∑
j=1

|λj (A)− λj (B)|p



1/p

� ‖A− B‖S,p. (13)

Given a functionF continuous and with bounded support and the sequence{An}n
and{Bn}n of dn × dn square matrices, we define

�(F,An, Bn) = 1

dn

dn∑
i=1

F(σi(An))− F(σi(Bn)) (dn < dn+1).

Theorem 4.3. Let{An}n and{Bn}n be two sequences ofdn × dn matrices and let us
suppose that‖An − Bn‖S,p � C(n). Assume that F is a Hölder continuous function
with Hölder parameterα ∈ (0, 1]. Then there exists a constant M so that

|�(F,An, Bn)| � M[C(n)[dn]−1/p]α.
In particular, if C(n) � c∗, then

|�(F,An, Bn)| � M(c∗)α[dn]−α/p.
Finally, if C(n) � c∗ andp = α = 1, then we have strong equal distribution(SED).

Proof. By the assumptions it follows thatF ∈ Lip(α,M) with α ∈ (0, 1] andM
positive constant. Therefore, we directly infer that
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|�(F,An, Bn)| � 1

dn
M

dn∑
i=1

|σi(An)− σi(Bn)|α. (14)

We call s(α) thedn-dimensional vector whosejth entry is|σj (An)− σj (Bn)|α and
we call 1 thedn-dimensional vector of all ones. In this way inequality (14) can be
rewritten as

|�(F,An, Bn)| � 1

dn
M(s(α), 1), (15)

where(x, y) =∑
x̄iyi is the usual inner product ofCdn . We now recall the Hölder

inequalities, that is

|(x, y)| � ‖x‖t‖y‖q(t) (16)

for anyt � 1 and withq(t) being the conjugated exponent so thatt−1 + [q(t)]−1 =
1. Here‖x‖s indicates(

∑ |xi |s)1/s if s ∈ [1,∞) and max|xi | if s = ∞.
The idea is to apply the Hölder inequality witht = p/α to Eq. (15) by obtaining

the following chain of inequalities:

|�(F,An, Bn)|� 1

dn
M‖s(α)‖p/α‖1‖q(p/α)

= 1

dn
M‖s(1)‖αp[dn]1−α/p.

At this point, by using the formal expression of the vectors(1) and Lemma 4.1 (in
particular Eq. (12)), we obtain the following relation:

|�(F,An, Bn)| � M[dn]−α/p‖An − Bn‖αS,p. (17)

By recalling that‖An − Bn‖S,p � C(n), the proof of the first part of the theorem
is concluded. The other cases follow directly since they are special instances of the
general formula displayed in (17). �

4.2. Analysis of the equal localization and of the clustering

Lemma 4.2. Let {An}n and{Bn}n be two sequences ofdn × dn matrices.
1. Assumerank(An − Bn) = o(dn). Then the sequences{An}n and{Bn}n are equally

localized(EL) and equally distributed(ED).
2. If rank(An − Bn) = O(1), then {An}n and {Bn}n are strongly equal localized

(SEL) and strongly equally distributed(SED).

Proof.
1. Let rn = rank(An − Bn). As a consequence of the Cauchy interlace theorem

[18] we haveσi−2rn(Bn) � σi(An) � σi+2rn(Bn) for i = 2rn + 1, . . . , dn − 2rn.
Therefore, for any interval[α, β] we have
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#
{
i : σi(An) ∈ [α, β]

} = #
{
i : σi(Bn) ∈ [α, β]

}+ en |en| � 4rn. (18)

Consequentlyrn = o(dn) and then the sequences{An}n and{Bn}n are equally lo-
calized (EL). The use of part 2 of Theorem 4.1 then leads to the equal distribution
(ED).

2. If rn = O(1), then there is SEL by (18). For the proof of the last part, recall that
F is Lipschitz continuous with bounded support contained inM = [α, β]. Owing
to its Lipschitzness,F is of bounded variation (F ∈ BV ) too. Therefore it can
be expressed as the sum of two monotone functions. By linearity it is enough
to focus our attention on the monotone functions restricted toM. Let S(An)

andS(Bn) be the sets of the singular values ordered nonincreasingly. Letq be
an integer number and letS(Bn, q) be such that(S(Bn, q))i = (S(Bn))i+q , i =
1, . . . , dn, where(S(Bn))j = min{α, (S(Bn))dn} if j � dn + 1 and(S(Bn))j =
max{β, (S(Bn))1} if j � 0. Now supposing thatrn = O(1) i.e., rn � k for some
positivek, we find thatS(Bn,−2k) � S(Bn), S(An) � S(Bn, 2k), where “�” is
intended componentwise. Finally, by monotonicity we deduce that

|�(F,An, Bn)|
� |�(F, S(Bn,−2k), S(Bn, 2k))|

=
∣∣∣∣∣∣

1

dn

∑
i=1−2k,...,2k,j=dn−2k+1,...,dn+2k

F (σi(Bn))− F(σj (Bn))

∣∣∣∣∣∣
= O(d−1

n )

and the proof is complete. �

Lemma 4.3. Let {An}n and{Bn}n be two sequences ofdn × dn matrices.
1. If ‖An − Bn‖pS,p = o(dn), p ∈ [1,∞) or ‖An − Bn‖S,∞ = o(1), then{An}n and
{Bn}n are ε equally localized(ε-EL) and equally distributed(ED).

2. When ‖An − Bn‖S,p = O(1), p ∈ [1,∞), or ‖An − Bn‖S,∞ = O(d−1
n ), then

{An}n and{Bn}n are ε strongly equally localized(ε-SEL).
3. If p = 1 and ‖An − Bn‖S,p = O(1), then {An}n and {Bn}n are strongly equal

distributed(SED).

Proof.
1. We follow an idea indicated by Tyrtyshnikov in [35] for the case wherep = 2.

Let ε be a positive arbitrary number andγn(ε) = #{i : |σi(An)− σi(Bn)| > ε}.
By Theorem 4.1 (inequality (12)) forp ∈ [1,∞) we have

dn∑
i=1

|σi(An)− σi(Bn)|p � ‖An − Bn‖pS,p = o(dn).

Now by definition ofγn(ε) we deduce that
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o(dn) = ‖An − Bn‖pS,p �
dn∑
i=1

|σi(An)− σi(Bn)|p � γn(ε)ε
p

that isγn(ε) = o(dn). The latter relationship is by definition equivalent toε-EL.
In the case ofp = ∞ the proof is trivial. Now by part 5 of Theorem 4.1 we deduce
the ED property.

2. When‖An − Bn‖S,p = O(1), p ∈ [1,∞), or ‖An − Bn‖S,∞ = O(d−1
n ), thenε-

SEL property is easily deduced by using the same argument as in the preceding
part.

3. Finally if p = 1 and‖An − Bn‖S,p = O(1), then{An}n and{Bn}n are strongly
equal distributed by the last part of Theorem 4.3.�

Theorem 4.4. Let {An}n and{Bn}n be two sequences ofdn × dn matrices.
1. If ‖An − Bn −Dn‖pS,p = o(dn) with p ∈ [1,∞) and rank(Dn) = o(dn), then
{An}n and{Bn}n are equally distributed(ED).

2. If ‖An − Bn −Dn‖S,1 = O(1) with rank(Dn) = O(1), then{An}n and{Bn}n are
strongly equal distributed(SED).

Proof.
1. LetXn = Bn +Dn. Then{An}n and {Xn}n fulfill the assumptions of part 1 of

Lemma 4.3. Therefore{An}n and{Xn}n are ED. Moreover,{Bn}n and{Xn}n fulfill
the assumptions of part 1 of Lemma 4.2 and consequently are ED. Since the ED
relation is an equivalence relation, the transitivity yields the claimed result.

2. Let Xn = Bn +Dn. Therefore{An}n and {Xn}n are SED by part 3 of Lemma
4.3. Moreover{Bn}n and {Xn}n fulfill the assumptions of part 2 of Lemma 4.2
and consequently are SED. Since the SED relation is an equivalence relation, the
proof is concluded by applying the transitivity.�

We prove the following corollaries with similar tools. In particular, the essentials
of the proof of Corollary 4.1 can be found in [37].

Corollary 4.1. Let {An}n and{Bn}n be two sequences ofdn × dn matrices.
1. Suppose that‖An − Bn‖pS,p = o(dn) and p ∈ [1,∞). Then M is a cluster for
{An}n iff it is a cluster for{Bn}n.

2. When‖An − Bn‖S,p = O(1) with p ∈ [1,∞), then M is a proper cluster for
{An}n iff it is a proper cluster for{Bn}n.

Proof.
1. LetM be a cluster for{An}n. Then for anyε > 0 we have

γn(An,M, ε) = o(dn), γn(An,M, 2ε) = o(dn),

where the functionγn is the one considered in Definition 2.2. More precisely
γn(An,M, ε) measures the cardinality ofIn(An,M, ε) being the set of indicesj
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so thatσj (An) /∈ Mε . Now for any positiveε∗, letJn(An, Bn, ε
∗) be the set of in-

dicesj such that|σj (An)− σj (Bn)| > ε∗. By Lemma 4.3, it holds that{An}n and
{Bn}n areε-EL and consequently #Jn(An, Bn, ε

∗) = o(dn) for an arbitraryε∗ >
0. For everyi ∈ Un(ε, ε

∗) ≡ J cn (An, Bn, ε
∗) ∩ I cn(An,M, ε) it simultaneously

holds that

σi(An) ∈ Mε and |σi(An)− σi(Bn)| � ε∗.

If ε∗ < ε andi ∈ Un(ε, ε
∗), by triangle inequality it follows thatσi(Bn) ∈ M2ε .

Finally, recalling that #J cn (An, Bn, ε
∗)=dn−o(dn), #I cn(An,M, ε)=dn−o(dn),

it is transparent that

#Un(ε, ε
∗) = n− o(dn).

SinceUn(ε, ε
∗) ⊂ {j : σj (Bn) ∈ M2ε} and sinceε is arbitrary it follows thatM is

a cluster for{Bn} and the proof of the first part is concluded.
2. When‖An − Bn‖S,p = O(1) with p ∈ [1,∞), by following the same argument

and by replacing each o(dn) by O(1) we obtain the desired result.�

Corollary 4.2. Let {An}n and {Bn}n be two sequences ofdn × dn matrices and let
M be a set of the real line so that for any positiveε, the setMε is made up of a finite
number of intervals.
1. Suppose‖An − Bn −Dn‖pS,p = o(dn), p ∈ [1,∞) andrank(Dn) = o(dn). Then

M is a cluster for{An}n iff it is a cluster for{Bn}n.
2. If ‖An − Bn −Dn‖S,p = O(1) with rank(Dn) = O(1), p ∈ [1,∞), then M is a

proper cluster for{An}n iff it is a proper cluster for{Bn}n.

Proof.
1. LetXn = Bn +Dn. Then{An}n and{Xn}n have the same clusters by Corollary

4.1. But{Xn}n and{Bn}n fulfill the hypotheses of Lemma 4.2 so that{An}n and
{Bn}n are EL. Therefore, by definition of EL matrix sequences, it follows that for
any nontrivial interval[α, β] (α < β), we have

#
{
i : σi(An) ∈ [α, β]

} = #
{
i : σi(Bn) ∈ [α, β]

}+ o(dn).

SinceMε is (for anyε) a finite union of nontrivial intervals, the proof is concluded.
2. When‖An − Bn −Dn‖S,p = O(1) with p ∈ [1,∞) and rank(Dn) = O(1), by

following the same argument and by replacing eacho(dn) by O(1) we obtain the
desired result. �

Remark 4.4. In a certain sense, the limitations onM are academical. Indeed ifM
does not fulfill the requests of Corollary 4.2, thenM must be unbounded and made
up of an infinite number of unconnected parts. Notice that the fact thatMε was
finitely unconnected is essential in the proof of the preceding corollary. Indeed, if
there exists a positiveε such that the setMε is made up of an infinite number of
nonintersecting intervals, then it is possible to construct sequences{An}n and{Bn}n
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with rank(An − Bn) = 1 for which M is a cluster for the first sequence but not for
the second.

Some further consequences of Theorem 4.4 are listed below. Forp ∈ [1,∞) it
holds:

[Cl1] ‖An − Bn −Dn‖S,p = O(1), with rank(Dn) = O(1) implies that∀ε > 0, all
the singular values ofAn − Bn belong to[0, ε) exceptNo ≡ No(n, ε) = O(1)
outliers.

[Cl2] ‖An − Bn −Dn‖pS,p = o(dn), with rank(Dn) = o(dn) implies that∀ε > 0, all
the singular values ofAn − Bn belong to[0, ε) exceptNo ≡ No(n, ε) = o(dn)
outliers. The same is true when∀ε > 0, whereby there is a sequence of matri-
ces{Dn(ε)}n so that rank(Dn(ε)) � εdn and‖An − Bn −Dn(ε)‖pS,p � εdn
(see [36, Theorem 2]).

[Cl3] ‖An − Bn −Dn‖S,p = O(1), with rank(Dn) = O(1) and such that the mini-
mal singular value ofBn is greater than a fixed constantδ > 0, imply that∀ε >
0, {B−1

n (An − Bn)}n is properly clustered. (Strong or proper clustering.)
[Cl4] ‖An − Bn −Dn‖pS,p = o(dn), with rank(Dn) = o(dn) and such that the mini-

mal singular value ofBn is greater than a fixed constantδ > 0, imply that∀ε >
0, {B−1

n (An − Bn)}n is generally clustered. (Weak or general clustering.)

Of course, if{An}n and{Bn}n are Hermitian andBn is positive definite, then the
properties and definitions [Cli], i = 1, 2, 3, 4 are in the sense of the eigenvalues. By
referring to the case [Cl3], when the quantityNo ≡ No(n, ε) goes to infinity asn
goes to infinity andε goes to zero (see [25]), then we have the “weakest” case of
strong clustering. As we will see in the sequel this is one of the “peculiar” cases that
we encounter and we will call itWeakest Strong Clustering.

Finally, with regard to [Cl3] and [Cl4], we remark that the assumption that “the
minimal singular value ofBn greater than a fixedδ > 0” is necessary and cannot
be removed (takeBn = n−10I andAn = n−2I for a counterexample both for [Cl3]
and [Cl4]). But, ifBn has, at most, o(dn) singular values going to zero asn goes
to infinity, then we obtain again a weak clustering. The question is connected with
the concept ofsparsely vanishingfunctions discussed in [13,34] and is analyzed in
Section 6.

Definition 4.7. A real-valued nonnegative measurable functiona(x) defined inK ⊂
%d , K compact, is sparsely vanishing if

lim
ε→0

m
{
x ∈ K : a(x) � ε

} = 0

with m{·} being the Lebesgue measure onRd .
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The following technical lemmata are useful in order to overcome the restriction
about the minimal singular value ofBn emphasized in [Cl4].

Lemma 4.4. Suppose that{An}n and {Bn}n are two sequences of matrices of di-
mensiondn × dn, and thatBn is nonsingular and let us callσi the singular values
ofBn. If there exists a nonnegative functionx(ε) independent of n so that, for anyε
and n large enough,

#{i : σi � ε}
dn

� x(ε), lim
ε→0

x(ε) = 0 (19)

and if there exist matrices{Dn(ε)}n, Dn = Dn(ε) such that

lim
n→∞‖An − Bn −Dn‖S,∞ = 0 (20)

with rank(Dn) � εdn, then the weak clustering property holds.

Proof. By the assumptions, for anyε > 0, we find matrices{Dn(ε)}n, Dn = Dn(ε)

such that forn large enough

‖An − Bn −Dn‖S,∞ � ε2,

with rank(Dn) � εdn. Let us considerB−1
n An and let us analyze its singular values

distribution. We setXn = An − Bn −Dn; therefore

B−1
n An = I + B−1

n Dn + B−1
n Xn

with rank(B−1
n Dn) =rank(Dn) � εdn. So we have to evaluate the structure ofB−1

n

Xn. Let Bn(δ) be the matrixBn written in its singular value decomposition where
each singular value less thanδ has been replaced byδ. ClearlyYn = Bn − Bn(δ) has
rank at most equal tob(δ) = #{i : σi � δ} and so

B−1
n Xn = (Bn(δ)+ Yn)

−1Xn

= (I + Bn(δ)
−1Yn)

−1Bn(δ)
−1Xn

= (I +Wn)Bn(δ)
−1Xn,

whereWn is obtained by applying the Shermann–Morrison–Woodbury formula for
inverting (I + Bn(δ)

−1Yn). ThereforeWn has, at most, the same rank asYn. Con-
sequently, the matrixB−1

n Xn has been written as the sum ofWnBn(δ)
−1Xn and

Bn(δ)
−1Xn, the first having rank bounded byb(δ) = x(δ)dn, with limδ→0 x(δ) = 0,

the second having spectral norm bounded by

‖Xn‖S,∞
δ

� ε2

δ
.

Now, by choosingδ = ε and by applying the minmax theorem (modified for dealing
with the singular values), the result is plainly proved.�
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Remark 4.5. Observe that the assumption of nonsingularity of the matricesBn can
be easily removed if we consider the pseudo-inverse of Moore–PenroseB+n instead
of the usual inverseB−1

n .

Remark 4.6. It is worth pointing out that relation (20) can be replaced by the fol-
lowing:

lim
n→∞

‖An − Bn −Dn‖pS,p
dn

= 0

with any choice ofp ∈ [1,∞).

Remark 4.7. Assume that{An}n and{Bn}n are as in Lemma 4.4. If in addition the
matrices{An}n and {Bn}n are Hermitian and{Bn}n are positive definite, then the
weak clusteringproperty holds both for the singular values and for the eigenvalues.
To see how to translate from singular values to eigenvalues use relations (19). Finally
notice that the matrices of{B−1

n An}n are not necessarily Hermitian.

In order to meet the hypotheses of the latter lemma in the context of our differen-
tial problems, this result will be useful.

Lemma 4.5. If a : K → R, K = �̄ = [0, 1]d is nonnegative and sparsely vanish-
ing, then

lim
ε→0

lim sup
n→∞

#{i : a(xi ) � ε}
N(n)

= 0.

Here, if a is continuous, thena(xi ) has the usual meaning. Otherwise the symbol
a(xi ) indicates the quantityN(n)

∫
Ii
a(t)dt, Ii =∏d

j=1[xij , xij+1].

Proof. The proof is given in the unidimensional cased = 1. The multidimensional
case can be treated in the same way.

We essentially use the definition of sparsely vanishing function and the relation
xi+1 − xi = (n+ 1)−1. More precisely, let us callJε the set of indices{i : a(xi) �
ε}. The cardinality ofJε is a monotone nondecreasing function withε. Therefore,
there exists a nonnegativec � 1 such that

lim
ε→0

lim sup
n→∞

#{i : a(xi) � ε}
n

= c.

Let us callXε =⋃
j∈Jε Ij . Therefore, from the preceding limit relation, we deduce

that m(Xε) =∑
j∈Jε m(Ij ) = c + o(1), where the o(1) is with respect toε and

n separately. Now, let us takeδ positive value and let us defineXε,δ = {x ∈ Xε :
a(x) � δ}. The following facts hold true:
• ∫

Xε
a(t) dt =∑

j∈Jε
∫
Ij
a(t)dt � (c + o(1))ε.

• h(δ) = m(Xε,δ) � m(x : a(x) � δ) and so, sincea is sparsely vanishing, we have
limδ→0 h(δ) = 0.
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• ∫
Xε

a(t) dt �
∫
Xε/Xε,δ

a(t) dt which is greater thanδm(Xε/Xε,δ) � δ(c + o(1)−
h(δ)).

We now join the preceding results by obtaining

(c + o(1))ε � δ(c + o(1)− h(δ)).

Chooseδ = √
ε and divide byδ.

(c + o(1))
√
ε � (c + o(1)− h(

√
ε)).

Finally, if we calculate the limit asε goes to zero, we deduce 0� c that isc = 0.
�

5. Some results on the smooth case

We now come back to the structured sequences of matrices that arise in the FD
discretization of problems (1) and (2). We analyze them in some detail by showing
several connections with the results of Section 4.

Preliminarily we recall a chain of results on the relationships among�(n)
2k;d ,An(a)

andPn proved in [25,27,30] under the assumption thata is smooth (at least continu-
ous).

From hereon we make the assumption that∃a1, . . . , ad with aj ∈N+ such that
the multiindexn = (n1, . . . , nd) is such thatnj + 1= vaj , v ∈N+.

Lemma 5.1 [25,27].If a is nonnegative with at most isolated zeros, then the precon-
ditioned matrixP−1

n An(a) is similar to [�(n)
2k;d ]−1A∗n(a) where, for n large enough,

A∗n(a) is the SPD matrix given by

tkD
−1/2
n,a An(a)D

−1/2
n,a for tk =


 d∑
j=1

a2k
j


(

2k
k

)
.

Theorem 5.1 [25,30]. The eigenvalues of[�(n)
2k;d ]−1An(a) belong to[a,A], where

a = inf a(x) andA = supa(x). Moreover, if a ∈ C2([0, 1]d) is strictly positive and
k = 1, then there exist two positive constants c, C such that the spectrum ofP−1

n An

(a) is contained in[c, C].

Lemma 5.2 [25,30]. Assume that a is strictly positive. Ifa ∈ C2([0, 1]d), then the
matrixA∗n(a) can be expanded in the following way:

A∗n(a)= �(n)
2k +O(‖h‖2∞)E,

h= (h1, h2, . . . , hd), (21)

hj = (nj + 1)−1,
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where E has the same pattern asAn(a) and is bounded in spectral norm. Ifa ∈
C([0, 1]d), thenA∗n(a) = �(n)

2k +�h, where�h has the same pattern asAn(a) and
the magnitude of its entries isO(ωa(‖h‖∞)).

Theorem 5.2 [25,30].If a ∈ C2([0, 1]d) is strictly positive andk = 1, then, for any
sequenceεn decreasing to zero(as slowly as we want), ∀ε > 0, ∃n̄ such that, if
n � n̄, thenN(n)− 2�ε−1

n � eigenvalues of the preconditioned matrixP−1
n An(a) are

in (1− ε, 1+ ε) (weakest strong clustering property). On the other hand, if k > 1,
then the cluster is weak.

The matrices�(n)
2k;d deserve some attention because their eigenvalues behave like

the sampling of sparsely vanishing functions. This fact is observed in the subsequent
theorem and remarks.

Theorem 5.3. Let �(n)
2k be then× n Toeplitz matrix obtained by the FD discreti-

zation of problem(1) with precision order2 anda ≡ 1. The matrix�(n)
2k is positive

definite and the limit relation

lim
ε→0

lim sup
n→∞

#{i : λ(n)i � ε}
n

= 0 (22)

holds true,where{λ(n)i } are the eigenvalues of�(n)
2k arranged in nondecreasing order.

Moreover, if �(n)
2k;d is theN(n)×N(n) multilevel Toeplitz matrix generated by

the FD discretization of problem(2) with precision order2 anda ≡ 1, then�(n)
2k;d is

positive definite and the limit relation

lim
ε→0

lim sup
n→∞

#{i : λ(n)i � ε}
N(n)

= 0 (23)

hold true. Here{λ(n)i } denotes the complete set of the eigenvalues of�(n)
2k;d arranged

in nondecreasing order.

Proof. From the analysis of the coefficients, it follows that the generating function
of the Toeplitz matrix�(n)

2k is (2− 2 cos(x))k = 22k sin2k(x/2) which has a unique
zero inI = (−π, π) at x = 0 and is strictly positive elsewhere: as a consequence it
is sparsely vanishing. From this and according to Theorem 3.3 and Remark 4.2, we
deduce that
• �(n)

2k is positive definite and its singular values coincide with the eigenvalues.
• 0 is not asub-cluster pointfor the eigenvalues.
The latter two statements are just a rewriting of (22).

In the multilevel setting we observe that the generating function of�(n)
2k;d is the

multivariate function
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d∑
j=1

a2k
j (2− 2 cos(xj ))

k

which is zero at zero and is positive elsewhere. From now on the proof is identical
to the unidimensional case.�

It is possible to consider a more “constructive” way for proving Theorem 5.3 that
uses a standard procedure in structured linear algebra. Indeed we “correct” the matrix
�(n)

2k in theτ algebra [5]. More specifically, letHn(k) be then× n symmetric Hankel
matrix [5] whose first row is given by[τ2, . . . , τk, 0] and whose last row is given by
the reversed vector[0, τk, . . . , τ2], the coefficients{τj } being those of the Toeplitz

matrix�(n)
2k (see Sections 2.2 and 3.1). Then the matrix

τ(�(n)
2k ) = �(n)

2k −Hn(k)

belongs to theτ algebra [5]. Moreover, it is easy to verify that theith eigenvalue of
τ(�(n)

2k ) coincides withλ̂(n)i = 22k sin2k(x
(n)
i /2), wherex(n)i = i�/(n+ 1) (see [14])

and the function 22k sin2k (x/2) is sparsely vanishing since it is continuous and has
a unique zero atx = 0. Therefore, in the light of Lemma 4.5, it follows that

lim
ε→0

lim sup
n→∞

#{i : λ̂(n)i � ε}
n

= 0.

We now observe thatHn(k) has rankrk = 2(k − 1) which is constant with respect
to the dimensionn. Consequently, by part 2 of Lemma 4.2, we plainly infer that
{τ(�(n)

2k;d)}n and{�(n)
2k;d}n are SEL so that

lim
ε→0

lim sup
n→∞

#{i : λ(n)i � ε}
n

= 0,

where{λ(n)i } denotes the eigenvalues of�(n)
2k and so the proof in the unidimensional

case is concluded.
Analogously, in the multidimensional case we correct the Toeplitz matrix�(n)

2k;d
in thed-level τ algebra [5] so that

τ(�(n)
2k;d) = �(n)

2k;d −Hn(k; d),
where the matrixHn(k; d) is ad-level Hankel matrix whose rankrk,n is such that

rk,n = O


N(n)

d∑
j=1

n−1
j


 .

Sincerk,n = o(N(n)), the application of part 1 of Lemma 4.2 yields the desired
result.

Remark 5.1. What the preceding linear algebra proof revealed is that the matrix
sequences{τ(�(n)

2k;d)}n and{�(n)
2k;d}n are EL and properly bounded (in the sense of
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Definition 4.4). Therefore by part 2 of Theorem 4.1 and part 1 of Theorem 4.2 they
are ED andε-EL. Moreover, ford = 1 they are SEL and consequently by part 2 of
Theorem 4.2 they are alsoε-SEL. Finally ford = 1 we observe that‖τ(�(n)

2k;d)−
�(n)

2k;d‖S,1 = O(1) and consequently by Theorem 4.3 we deduce that{τ(�(n)
2k;d)}n and

{�(n)
2k;d}n are SED.

Remark 5.2. Since{�(n)
2k;d}n is distributed as the polynomialf (x) =∑d

i=1 a
2k
j (2−

2 cos(xi))k by Theorem 3.1, andf is a polynomial not identically zero, it follows that
m{x ∈ I d : |f ((x)| = p} = 0 for anyp ∈ R. Therefore in the light of Theorem 3.2
we infer that{�(n)

2k;d}n has no sub-cluster points. Now{τ(�(n)
2k;d)}n and{�(n)

2k;d}n are

ED by Remark 5.1 and therefore the sequence{τ(�(n)
2k;d)}n has no sub-cluster points.

The following results now take into account the presence of isolated zeros.

Theorem 5.4 [25,30].If a has a unique zero atx = 0 of orderα, then preconditioned
matrix[

�(n)
2k;d

]−1
An(a)

has eigenvalues in(0, A], A being the maximum of the function a. In addition, the
lower bound is tight in the sense that the smallest eigenvalue

λ1

([
�(n)

2k;d
]−1

An(a)

)

of the first preconditioned matrix tends to zero as n tends to infinity. In particular we
have

λ1 = O(‖h‖α∞), h = (h1, h2, . . . , hd), hj = (nj + 1)−1.

The same is true if the unique zero is located elsewhere.

Therefore, ifa has zeros, then{�(n)
2k;d}n cannot be a good preconditioner for

{An(a)}n according to points 1.a and 1.b in Section 2.1.

6. General results on distribution and clustering

The aim of this section is to give general results on distribution and clustering for
the matrix sequences{A∗n(a)}, {�(n)

2k;d}, and{P−1
n An(a)}. First we consider the case

wherea is (at least) continuous and then the case wherea is not.
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Lemma 6.1. LetA∗n(a) be the symmetrical scaling of the matrix related to the prob-

lem (1) or (2) as in Lemma5.1. Let �(n)
2k;d be the multilevel Toeplitz matrix defined

asAn(1). If a is continuous, strictly positive andωa is its modulus of continuity and
j = (j1, j2, . . . , jd), i = (i1, i2, . . . , id), then we find that

(A∗n(a))i,i±j = (�(n)
2k;d)i,i±j +O(ωa(‖h‖∞))

for j � k · eT (and where the meaning of� is in the sense of the partial ordering
of Rd andeT = (1, . . . ,1)). If a is nonnegative with m isolated zeros, then for any
positiveε there exist matricesD(1)

n , . . . , D
(m)
n , D

(j)
n = D

(j)
n (ε) having rank bounded

by εN(n) such thatA∗∗n (a) = A∗n(a)− (D
(1)
n + · · · +D

(m)
n ) and

(A∗∗n (a))i,i±j = (�(n)
2k;d)i,i±j +O(ωa(‖h‖∞))

for j � keT.

Proof. For j = 0 we find(A∗n(a))i,i = (�(n)
2k;d)i,i . Forj /= 0, each element(A)i,i±j

is a finite sum (at mostdk terms) of evaluations ofa in close points (their distance
is bounded by‖k‖∞‖h‖∞) multiplied by valuesb(k,j)t whose sum over the indices
t is exactly(�(n)

2k;d)i,i±j (see Eq. (5)). Now the result follows from the definition of
A∗n(a). Whena is nonnegative having exactlym zeros, the proof can be performed
as in Theorem 4.2 of [25]. �

With the help of the preceding lemma, we can prove the following theorem.

Theorem 6.1. LetA∗n(a) be the matrix related to problem(1) or (2) symmetrically

scaled as in Lemma5.1 and�(n)
2k;d be the multilevel Toeplitz matrix defined asAn(1).

If a is continuous and strictly positive andωa is its modulus of continuity, then we
have: ∥∥A∗n(a)− �(n)

2k;d
∥∥p

S,p = N(n)O(ωpa (‖h‖∞))
with p ∈ [1,∞) and∥∥A∗n(a)− �(n)

2k:d
∥∥

S,∞ = O(ωa(‖h‖∞)).
If a is nonnegative with m isolated zeros, then for any positiveε there exists a matrix
Dn = D

(1)
n + · · · +D

(m)
n having rank bounded byεN(n), (D

(j)
n = D

(j)
n (ε) as in the

previous lemma) such thatA∗∗n (a) = A∗n(a)− (D
(1)
n + · · · +D

(m)
n ) and∥∥A∗∗n (a)− �(n)

2k;d
∥∥p

S,p = N(n)O(ωpa (‖h‖∞))
with p ∈ [1,∞) and∥∥A∗∗n (a)− �(n)

2k

∥∥
S,∞ = O(ωa(‖h‖∞)).

Here the constants hidden in the“big O” terms can depend onε.
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Proof. It is a simple consequence of the preceding Lemma 6.1 of the bandedness of
all the involved matrices. �

Remark 6.1. The latter result, in view of Theorem 4.4, tells us that{A∗n(a)}n and

{�(n)
2k;d}n are ED in the sense of the eigenvalues (A∗n(a) and�(n)

2k;d are symmetric). But

�(n)
2k;d is the Toeplitz matrix generated by

∑d
i=1 a

2k
j (2− 2 cos(xi))k and therefore, by

taking into account the ergodic theorem, Theorem 3.1, we have

lim
n→∞

1

N(n)

N(n)∑
i=1

F
(
λ
(n)
i

)

= 1

[2π]d
∫
(−π,π)d

F

(
d∑
i=1

a2k
j (2− 2 cos(xi))

k

)
dx (24)

with λ
(n)
i , i = 1, 2, . . . , N(n), being the eigenvalues ofA∗n(a).

Remark 6.2. For d = 1, Widom has proven a second-order result [39] for the ei-
gen/singular values of Toeplitz matrices generated by symbols in the Krein algebra
K of all the essential bounded functions overI = (−π, π) whose Fourier coeffi-
cients{τk} are such that

∑
k |k||τk|2 <∞. More specifically the quoted result is the

following:

1

n

n∑
i=1

F(λ
(n)
i )− 1

2π

∫
(−π,π)

F (f (x))dx = O(n−1)

with λ
(n)
i , i = 1, 2, . . . , n, being the eigenvalues ofTn(f ), f ∈K and F regular

enough. We now remark that all the trigonometric polynomials are in the Krein al-
gebra and that (by Theorem 6.1)∥∥A∗n(a)− �(n)

2k

∥∥
S,1 � nO(ωa(‖h‖∞))

whena is positive and continuous. Therefore, ifa is also Lipschitz continuous, we
deduce that‖A∗n(a)− �(n)

2k ‖S,1 = O(1) so that the application of Theorem 4.3 tells

us that{A∗n(a)}n and{�(n)
2k }n are SED. Finally, the combination of the Widom result

with the SED property yields the following relation:

1

n

n∑
i=1

F(λ
(n)
i )− 1

2π

∫
(−π,π)

F ((2− 2 cos(x))k)dx = O(n−1)

with λ
(n)
i , i = 1, 2, . . . , n, being the eigenvalues ofA∗n(a).

Remark 6.3. Through Remarks 5.1 and 5.2, we know that{�(n)
2k;d}n is distributed

as the polynomialf (x) =∑d
i=1 a

2k
j (2− 2 cos(xi))k, has no sub-cluster points (reg-

ularity), and is properly bounded. Now{A∗n(a)}n and {�(n)
2k;d}n are ED by Remark
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6.1 and therefore the sequence{τ(�(n)
2k;d)}n has no sub-cluster points (regularity) and

is essentially bounded (properly bounded ifa is strictly positive). Therefore parts 3
and 4 of Theorem 4.2 imply that{A∗n(a)}n and{�(n)

2k;d}n are EL andε-EL.

Theorem 6.2. If a ∈ C([0, 1]d) and has a unique isolated zero, then all the ei-
genvalues of the preconditioned matrixP−1

n An(a) lie in (1− ε, 1+ ε) exceptNo
outliers withNo ≡ No(n, ε) = o(N(n)) (weak clustering property).

Proof. In the light of Lemma 5.1, we can analyze the spectrum of the matrix
[�(n)

2k;d ]−1A∗n(a). Moreover, by the preceding theorem, we find that for anyε and
n large enough, we deduce that

rank(A∗∗n (a)− A∗n(a)) � εN(n)

and‖A∗∗n (a)− �(n)
2k;d‖S,∞ = o(1). Finally, in the light of Theorem 5.3, the eigen-

values of�(n)
2k;d behave as the sampling of a sparsely vanishing function. Therefore,

by settingAn = A∗n(a) andBn = �(n)
2k;d , the hypotheses of Lemma 4.4 and Remark

4.7 are fulfilled and, consequently, we have that{
P−1
n An(a) ∼

[
�(n)

2k;d
]−1

A∗n(a)
}
n

has a weak clustered spectrum both with regard to the singular values and to the
eigenvalues. �

Moreover, it is worth pointing out that Eqs. (1) and (2) impose thata ∈ Cq , q =
‖k‖∞ and so it seems that a refined analysis is just an academic exercise. How-
ever, when we consider the “weak formulation” [11], problem (1) is transformed
into an integral problem. Therefore, in this sense, the given analysis becomes again
meaningful.

We are able to prove something more concerning this fact. From the Lusin The-
orem, we know that it is possible to approximatea ∈ L∞(K) (with compact K),
by a family cε ∈ C(K) with respect to the topology induced by the convergence
in measure. This result is used to prove that the preconditioned matrix sequence
{P−1

n An(a)}n is clustered at one witha being justL∞.

Theorem 6.3. LetA∗n(a) be the matrix related to problem(1) symmetrically scaled

as in Lemma5.1 and�(n)
2k be the Toeplitz matrix defined asAn(1) with d = 1. Here

the coefficientsa(xi) should be replaced by the mean value on the intervalIi =
[xi, xi+1] in the sense thata(xi) means(n+ 1)

∫
Ii
a(t).

• If a ∈ L∞ is nonnegative and sparsely vanishing, then we find that there exist
matricesDn havingo(n) rank such that∥∥A∗n(a)− �(n)

2k −Dn

∥∥p
S,p

= o(n)
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and∥∥A∗n(a)− �(n)
2k −Dn

∥∥
S,∞ = o(1).

In addition, the number of outliers of{P−1
n An(a)}n is genericallyo(n).

• If a is not sparsely vanishing, thenAn(a) and Pn may fail to be invertible or
{P−1

n An(a)}n may not have clustered eigenvalues.

Proof. In view of the Lusin Theorem [23], for any positiveε, we find a continuous
functionc = cε such thata differs fromc only in anε measure set and is bounded
in infinity norm by‖a‖∞. In addition, sincea is sparsely vanishing, it follows that
{cε}ε is such that

m
{
x ∈ [0, 1] : |cε | � ε

}→ 0 for ε → 0.

On the other hand, we may replacec with max{c, ε} to avoid the possibility thatc
takes nonpositive values. NowAn(a) = An(c)+ (An(a)− An(c)) and so

A∗n(a) = A∗n(c)+X1 +X2 +X3,

where

X1= D
−1/2
n,a An(a − c)D

−1/2
n,a ,

X2=
(
D
−1/2
n,a −D

−1/2
n,c

)
An(c)D

−1/2
n,a ,

X3= D
−1/2
n,c An(c)

(
D
−1/2
n,a −D

−1/2
n,c

)
.

Clearly, in view of the preceding results, we haveA∗n(c) = �(n)
2k +O(ωc(n−1))+

DDn, whereDDn has o(n) rank and is due to the presence of zeros. On the other
hand, sincea − c /= 0 only in a set of measureε andc is bounded, it follows thatc is
anL1 approximation ofa in the sense that‖a − c‖L1 � ε2‖a‖∞. From this, we can
deduce thatAn(a − c) is a matrix which can be written as the sum of two matrices,
the first of rank o(n) and the second of small norm (this is evident and trivial when
the set{x : a(x) /= c(x)} is made up of a finite number of intervals). Actually, the
key point is the remark that

n∑
i=1

|ai − ci | =
n∑
i=1

(n+ 1)

∣∣∣∣
∫
Ii

a(t)− c(t) dt + o(1)

∣∣∣∣
� (n+ 1)

(∫
|a(t)− c(t)|dt + o(1)

)
� 4ε‖a‖∞(n+ 1).

Sinceε can be chosen arbitrarily small, it is evident that|ai − ci | � ε with the ex-
ception of, at most,α(ε)n indices withα(ε) infinitesimal asε. Therefore there exist
nonnegative functionsαi(ε), i = 1, 2, 3, 4, such thatαi(ε) goes to zero asε goes to
zero and such that
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f1. |(Dn,a −Dn,c)i,i | � ε except, at most,α1(ε)n positions where the distance is
bounded.

f2. |(D−1/2
n,a −D

−1/2
n,c )i,i | � ε except, at most,α2(ε)n positions.

f3. |(An(a − c))i,j | � ε except, at most,α3(ε)n positions where the considered
quantity is bounded.

f4. (D−1/2
n,a )i,i and(D−1/2

n,c )i,i bounded by a fixed constant, except for, asymptotical-
ly, α4(ε)n positions (due to the fact thata is sparsely vanishing andc is chosen
so thatm{x ∈ [0, 1] : a /= c} < ε).

In other words, by taking into account the crucial information that all the involved
matrices are banded, we deduce that

A∗n(a) = A∗n(c)+ LN(n)+ LR(n), (25)

where‖LN(n)‖S,∞ � ε and rank(LR(n)) � h(ε)n with limε→0 h(ε) = 0.
From this, settingDn = DDn + LR(n) and owing to the bandedness of all the in-

volved matrices, we find that‖A∗n(a)− �(n)
2k −Dn‖pS,p = o(n) and‖A∗n(a)− �(n)

2k −
Dn‖S,∞ = o(1). To conclude, recall thatP−1

n An(a) is similar to [�(n)
2k ]−1A∗n(a).

Moreover, in the light of Theorem 5.3 the matrix�(n)
2k has positive eigenvalues that

can be seen, roughly speaking, as a sampling of the continuous sparsely vanishing
function 22k sin2k(x/2) (compare (22)) over an equispaced mesh. The weak cluster
of the singular values ofZn(a) = P−1

n An(a) now follows from Lemma 4.4. Since
Zn(a) is symmetrizable and all its eigenvalues are positive, we infer the weak cluster
of the eigenvalues at 1 of the eigenvalues ofZn(a) (see Remark 4.7).

Finally, if a is not sparsely vanishing, thenAn(a) andPn(a) may fail to be invert-
ible (for instance ifa is identically zero in an interval[s, t], s < t) and the algebraic
problem and the differential one may fail to have solution.�

The interesting fact in the proof of the preceding result is that it can be generalized
in a very natural and simple way even in the multidimensional case.

Theorem 6.4. LetA∗n(a) be the symmetrical scaling of the matrix related to prob-

lem (2) as in Lemma5.1 and with Dirichlet boundary conditions. Let�(n)
2k;d be the

Toeplitz matrix defined asAn(1). Here each coefficienta(xi ) should be replaced by
the mean valueN(n+ e)

∫
Ii
a(t)dt.

• If a ∈ L∞ is nonnegative and sparsely vanishing, then we find that there exist
matricesDn havingo(N(n)) rank such that∥∥A∗n(a)− �(n)

2k;d −Dn

∥∥p
S,p

= o(N(n))

and∥∥A∗n(a)− �(n)
2k;d −Dn

∥∥
S,∞ = o(1).

In addition, the number of outliers of{P−1
n An(a)}n is genericallyo(N(n)).
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• If a is not sparsely vanishing, thenAn(a) andPn(a) may fail to be invertible or
{P−1

n An(a)}n may not have clustered eigenvalues.

Remark 6.4. If a isL1, then the Lusin approximationcε of a is replaced by a non-
negative polynomial being anL1 approximation ofa (this is possible since[0, 1]d
has finite measure). Now the proof of Theorem 6.3 is substantially unchanged ex-
cept for the item [f1] which is replaced by “[f1*]|(Dn,a −Dn,c)i,i | � ε except, at
most,α1(ε)N(n) positions (where the distance is not necessarily bounded)” and
for the item [f3] which is replaced by “[f3*]|(An(a − c))i,j | � ε except, at most,
α3(ε)N(n) positions (where the considered quantity is not necessarily bounded)”.
We notice that this slight change does not spoil the proof because in the expression
of A∗n(a) in Eq. (25) we have to add two other terms of “small” rank.

Finally, if a ∈ L1
loc(�) that is the restriction ofa to any compact setK ⊂ � (� is

open) belongs toL1, then the proof and the statements of Theorems 6.3 and 6.4 still
work with a bit different definition of the coefficient matrixAn(a). More precisely
the symbola(xj ) will denote

N(n+ e)

∫
Ij

a(t)dt, Ij =
d∏
i=1

[xji , xji+1], xji+1 − xji = hi, xji = hiji,

if Ij ∩ �� = ∅ and is 1 otherwise. In fact, we point out that the setIj is a compact
set and is contained in� if Ij ∩ �� = ∅ so that the integral appearing above makes
sense.

Remark 6.5. By Theorems 6.3 and 6.4 and by using the same arguments as in
Remarks 6.1 and 6.3, we deduce that{A∗n(a)}n and{�(n)

2k;d}n are ED, EL andε-EL.

6.1. Some computational remarks

In a sequential model of computation, system (3) can be solved directly and with
an optimal cost by using very classic band solvers [18]. Here the optimality is with
respect to the dimensionn because these methods require O(n) arithmetic operations
and the matricesAn(a) are defined by O(n) parameters. However, if we consider the
dependence on the bandwidth in the asymptotic cost, that is, the dependence onk,
then we remark that the Golub band solvers [18] based on the Gaussian elimination
have a quadratic cost with respect tok. So, by taking into account the parameter
k, there exist methods which are much more convenient. More specifically, we ap-
proximated{An(a)}n by the matrix sequence{Pn}n defined in (4). Therefore, up
to the operations involving the diagonal matricesDa,n the computation is reduced
to a band Toeplitz computation. The following very fast methods can be applied to
banded Toeplitz structures:
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• multigrid methods requiring O(nk) ops and O(logn) parallel steps with O(nk)
processors in the parallel PRAM model [22] of computation [14,15] (linear de-
pendence onk);

• a recursive displacement-rank [20]-based technique requiring O(n logk + k log2

(k) log(n)) ops (logarithmic dependence onk in the O(n) term) and O(logn) par-
allel steps with O(nk) processors [6].

Clearly, in order to obtain the total computational cost, the quoted costs have to be
multiplied by the number of iterations which is constant with respect ton at least
whena is positive (see Theorem 5.1), and added to the cost of few matrix–vector
multiplications (recall the PCG algorithm [1]). The overall cost is of O(n logk) ops
and O(logn) steps with O(nk) processors in the PRAM model of computation.

Moreover, with special attention to the parallel model of computation, in [17,25]
two matrix-algebra parallel strategies have been proposed. The first two strategies are
based on the possibility of expressing these Toeplitz matrices as low-rank corrections
of matrices belonging to some matrix algebras, such as the circulant classCn [12] and
the τn class [5]. These decompositions suggest the use of the Sherman–Morrison–
Woodbury [18] (SMW) formula to obtain an efficient computation of the solution of
the considered system (O(logn+ log2 k) parallel steps with O(n+ k3) processors).

In conclusion, in [25] and whena is regular enough, we have reduced the asymp-
totic cost of these band systems to the cost of the band-Toeplitz systems for which the
recent literature provides very sophisticated algorithms [6,14,15]. Here we extended
this result to the case wherea is not smooth.

When we consider 2D differential operators such as

(−)p �p

�xp

(
a(x, y)

�p

�xp

)
+ (−)p �p

�yp

(
a(x, y)

�p

�yp

)
, (26)

we construct the preconditioner the same way as in the scalar case (see Section 2.2).
In general, the matrix�(n)

2p;2 discretizing operator (26) is a double-banded matrix
with external bandwidth 2p + 1 (p is the order of the operator with respect toy)
and internal bandwidth 2p + 1 (p is the order of the operator with regard tox) and
its generating function is nonnegative and has only one zero in(x, y) = (0, 0) [24].
Therefore, as in the scalar case we can “correct” [17]�(n)

2p;2 in two different block
matrix algebras: namely the block circulant classCn,n and the blockτ algebraτn,n
[5].

Consequently, by using the SMW formula and recalling that the computational
cost of a bidimensional discrete Fourier or sine transform is O(n2 logn) arithmetic
operations and O(logn) parallel steps, we have to perform O(logn)+O(log2 n) par-
allel steps where the term O(log2 n) is due to the inversion of the “smaller” matrix
in the SMW formula.

As observed in [17], the best idea in the block case is the use of an algebraic
multigrid method; in [15] it is shown that, in practice, the cost of the solution of
�(n)

2p;2x = b is O(n2) arithmetic operations and O(logn) parallel steps (a formal proof
of convergence within a constant number of iterations can be found in [33]).
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7. Numerical experiments

We restrict our attention to the irregular case for the presentation of the numer-
ical experiments since the case where the coefficienta is continuous (or piecewise
continuous) has been tested extensively in [25,27,30].

We consider problems ind dimensions withd � 2. Ford = 1 the choice of the
coefficienta varies among the following:

1. a(x) ≡ a1(x) =
⌈
x−1/2

⌉
for x ∈ (0, 1] and 1 forx = 0;

2. a(x) ≡ a2(x) =
⌈
x−1

⌉
/
(
1+ �x�−1) for x ∈ (0, 1] and 1 forx = 0;

3. a(x) ≡ a3(x) = xa2(x).

All these functions have an infinite but countable number of discontinuity points.
The first belongs toL1\L∞, while a2 anda3 belong toL∞. The functionsa1 anda2
are essentially positive whilea3 essentially vanishes atx = 0 and is sparsely vanish-
ing. In Table 2, we report the number of PCG iterations, wheren ∈ {500+ j100 :
j = 0, . . . ,5}. The test functionsa are listed in the first column and the precondi-
tioners are given in the heading. We show the number of PCG iterations in each row
when the data vector is made up by all ones.

In Table 3, we give the number of outliers with respect to a cluster at 1 with
radius 0.1, namely, we count the numberNo of eigenvalues ofP−1

n An(a) for n =
150, 300, 600 not belonging to(0.9, 1.1). The numberNo is written asNo(+)+
No(−), whereNo(−) counts those outliers less than 0.9 andNo(+) counts those
outliers bigger than 1.1.

Some remarks are needed:
• Concerning Table 2, we observe that the number of PCG iterations is constant

when the preconditioner is�(n)
2k;d or Pn and the functional coefficienta is strict-

ly positive and bounded. This independence with regard ton fully agrees with
the spectral clustering theorems proved in this paper and with the spectral anal-
ysis of {(�(n)

2k;d)
−1An(a)}n given in [27]. Notice that the simple preconditioner

Dn,a is never good since{(Dn,a)
−1An(a)}n distributes as{�(n)

2k;d}n: to see this

notice (Dn,a)
−1An(a) is similar A∗n(a) and then refer to Remark 6.1. Now for

any neighborhoodIε = (0, ε) with ε > 0 we observe that{�(n)
2k;d}n shows O(

√
εn)

eigenvalues belonging toIε (see Theorem 5.3 and the subsequent linear algebra
proof). In the light of the convergence analysis reported in [1], we know that the
number of iterations is substantially equal to the dimension of the matrix and this
is evident from Table 2.

• When zero belongs to the essential range ofa or a is unbounded, it is immediate
to observe that the only working preconditioner isPn. Also this result agrees with
the theoretical expectations of this paper. In this case, as shown in Table 3, the
number of outlying eigenvalues grows very slowly (only logarithmically asn) and
this behavior is much better when compared with the theoretical results. Regarding
the preconditioner�(n)

2k;d , it is worthwhile observing that the case wherea has zeros
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Table 2
PCG iterations: casen ∈ [500, 1000], d = 1

a(x) D � P

a1(x), n = 500 500 17 11
n = 600 600 18 12
n = 700 700 19 13
n = 800 800 20 14
n = 900 900 20 14
n = 1000 1000 21 14

a2(x), n = 500 500 9 9
n = 600 600 9 9
n = 700 700 9 9
n = 800 800 9 10
n = 900 900 9 10
n = 1000 1000 10 10

a3(x), n = 500 500 115 10
n = 600 600 126 11
n = 700 700 136 11
n = 800 800 146 11
n = 900 900 155 12
n = 1000 1000 164 12

Table 3
Outliers: casen = 150, 300, 600,d = 1,Pn

a(x) n = 150 n = 300 n = 600

a1(x) 4+ 2 5+ 3 6+ 4

a2(x) 2+ 1 2+ 2 3+ 2

a3(x) 1+ 3 2+ 4 2+ 5

is much worse when compared to the case ofa unbounded: this is in accordance
with the analysis of Axelsson and Lindskog [1] that showed that “small” outliers
slow down the convergence much more than “big” outliers.

• If a is essentially positive, then the presence of a countable (infinite) number of
jumps ofa does not spoil the performances of the associated PCG methods when
�(n)

2k;d or Pn are used as preconditioners according to the results of Theorems 5.1
and 6.3. Finally, notice the similarity of these results with respect to the case where
a is smooth [25].
Ford = 2 the choice ofa is the following:

1. a(x, y) ≡ a1(x, y) = a1(x)+ a1(y);
2. a(x, y) ≡ a2(x, y) = a2(x)+ a2(y);
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Table 4
PCG iterations: casen = 102,202,302, d = 2

a(x, y) D � P

a1(x, y), n = 102 27 9 6

n = 202 53 12 7

n = 302 79 13 8

a2(x, y), n = 102 27 7 5

n = 202 53 8 6

n = 302 80 8 5

a3(x, y), n = 102 29 18 5

n = 202 57 26 6

n = 302 88 32 6

a4(x, y), n = 102 30 12 6

n = 202 59 15 8

n = 302 95 17 9

Table 5
Outliers: casen = 102,202,302, d = 2,Pn

a(x, y) n = 102 n = 202 n = 302

a1(x, y) 1 8+ 2 14+ 1

a2(x, y) 0 3 0

a3(x, y) 0 1 0

a4(x, y) 4 10+ 4 15+ 3

3. a(x, y) ≡ a3(x, y) = (x + y)a2(x, y);
4. a(x, y) ≡ a4(x, y) = exp(a2(x))a1(y)+ y.

All these functions have an infinite but countable number of discontinuity points.
The first and the fourth belong toL1\L∞, while a2 anda3 belong toL∞. The func-
tionsa1, a2 anda4 are essentially positive whilea3 essentially vanishes at(x, y) =
(0, 0) and is sparsely vanishing. In Table 4, we report the number of PCG iterations,
wheren ∈ {(j10)2 : j = 1, 2, 3}. The test functionsa are listed in the first column
and the preconditioners are given in the heading. In each row, we show the number
of PCG iterations when the data vector is made up by all ones.

In Table 5, we give the number of outliers with respect to a cluster at 1 with radius
0.1, namely, we count the number of eigenvalues ofP−1

n An(a) for n = 100, 400, 900
not belonging to(0.9, 1.1). The numberNo is written asNo(+)+No(−), where
No(−) andNo(+) have the same meaning as before.
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We remark that the behavior of the PCG method in the two-dimensional case is
not substantially different from the unidimensional case.
• Concerning Table 4, we observe that the number of PCG iterations is constant

when the preconditioner is�(n)
2k;d or Pn and the functional coefficienta is strictly

positive and bounded that is fora = a3(x, y).
• When zero belongs to the essential range ofa or a is unbounded, the only working

preconditioner isPn. In this case, as shown in Table 5, the number of outlying
eigenvalues grows very slowly (only logarithmically asn) and this behavior is
much better when compared with the theoretical results.

• If a is essentially positive, then the presence of a countable (infinite) number of
jumps ofa does not spoil the performances of the associated PCG methods when
�(n)

2k;d or Pn are used as preconditioners according to the results of Theorems 5.1
and 6.4. Finally, notice the similarity of these results with respect to the case where
a is smooth [25].

8. Conclusive remarks

To conclude, in this paper, we have introduced new tools in order to study the
spectral behavior of matrix-sequences. As a case study we have discussed the as-
ymptotical distributional properties of the spectra of Toeplitz-based preconditioned
matrix-sequences under the assumptions that the functional coefficienta is not reg-
ular and the differential problems are of the form (1) or (2). We have proved that the
general clustering of the spectra still holds in the irregular and multilevel case. More-
over, the results indicate that a possible deterioration of the convergence properties
of the associated PCG methods occurs when the functiona is not strictly positive.
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