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Abstract

In this paper we provide theoretical tools for dealing with the spectral properties of general
sequences of matrices of increasing dimension. More specifically, we give a unified treatment
of notions such as distribution, equal distribution, localization, equal localization, clustering
and sub-clustering. As a case study we consider the matrix sequences arising from the finite
difference (FD) discretization of elliptic and semielliptic boundary value problems (BVPs).
The spectral analysis is then extended to Toeplitz-based preconditioned matrix sequences with
special attention to the case where the coefficients of the differential operator are not regular
(belong toL1) and to the case of multidimensional problems. The related clustering properties
allow the establishment of some ergodic formulas for the eigenvalues of the preconditioned
matrices. © 2001 Published by Elsevier Science Inc.

AMS classification: 15A12; 65N22; 65F10
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1. Introduction

In the numerical solution of infinite dimensional problems modeled by partial
differential equations, integral equations, infinite systems of linear equations, etc.
(fluidodynamics, elasticity, image processing, Markov chains and so on), we deal
with sequences of finite dimensional systefdasu, = f,},, where the size of4,,
is d, with d, < d,+1 and is related to the finesse parameter of the discretization.
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Frequently the sequendd,, }, inherits a kind of structure from the infinite dimen-
sional model. This property and the large dimensions involved advise against direct
methods and encourage the use of iterative techniques both for memory require-
ments/CPU time and precision of the solution. The theoretical counterpart of the
research into fast iterative solvers is the in-depth study of the spectral properties and
asymptotics of sequences of matrices especially in connection with the design and
analysis of good preconditioners. Hence many concepts and tools such as distribu-
tion, equal distribution, localization, equal localization, clustering and sub-clustering
have been more or less explicitly introduced and studied. Here, we first give a system-
atic and unified treatment of these notions by emphasizing relationships, similarities
and differences. Then, as a case study, we consider a class of simple centered fi-
nite difference (FD) discretizations of a class of multidimensional boundary value
problems of the form

& (a0 Fuw) = f), re@=01, k>1
Dirichlet B.C. onoQ,
and of the form

COLE (a(x)%u(x)) = [ (),
X=(x1,....,x) €= (0,17, k>1, @)

Dirichlet B.C. onoQ,

over hyperrectangular regions and with a nonnegativespagsely vanishing34]
coefficienta.

We suppose that the functianis nonnegative and that the set of the essential
zeros ofa has zero Lebesgue measure (izis sparsely vanishingsee [34] and
Definition 4.7), while generally [8,21], the functicamis assumed to be positive on
the whole domain. Moreover, again concerning the funcéipwe do not suppose
any regularity except for the boundedness or the Lebesgue integrability.

In a preceding paper [25], we have analyzed the main structural and spectral prop-
erties of the FD matriced, (a) coming from the discretization of (1) and (2) by
centered FD formulae of order 2 with uniform mesh size (n + 1)~1 under the
regularity assumption thatis (piecewise) twice continuously differentiable and by
emphasizing the case whetés equal to 1. The case whekds greater than 1 and
where high precision formulae are used is considered in [27,30]. However, we still
assumed the (piecewise) continuity of the functional coefficent

In particular, we proposed two preconditioners in [16,25]. The first of thé‘}gés
obtained by the same discretization formula when applied to problem (1j:wth.

The secondP, is constructed a&D,f{,le;’,lc) D,},/az, whereD,, , is then x n diagonal
matrix obtained by the diagonal part 4f,(a) anddy is a suitable positive constant.

In [25], by supposing that the functional coefficiemhas a continuous second
derivative, we obtained an expansion formula fy(a) in terms of the two pre-
conditioners. In particular, by using this representation together with the assumption

1)
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that a(x) is positive, we proved that the first preconditioner is optimal while the
second is even superlinear (according to the notion of optimality of Axelsson and
Neytcheva [2] reported in Definition 2.1). Using the same assumption of smoothness
but supposing that(x) has a finite number of isolated zeros, we proved that the first
preconditioner is not good because of a linear quantity (that is proportional to the di-
mensionn of A, (a)) of eigenvalues of the preconditioned matrix which accumulate
in any e-neighborhood of zero. On the other hand, the second preconditioner is still
good at least in the sense that the related preconditioned matrix sequenceds a

or general clustef34] of the eigenvalues around the unity. This “analytical” property
does not theoretically guarantee a good behavior of the associated PCG method, but
thegeneral clusteringf the eigenvalues does have a practical counterpart as shown
in the numerical experiments discussed in [25] and in Section 7.

This paper can be divided into two parts: in the first part (Sections 3 and 4) we
introduce new tools in order to analyze the spectral behavior of matrix-sequences. In
the second part (Sections 5 and 6) we focus our attention on special matrix-sequences
as{P,}x, {A(z’i);d}n, {Pn‘lAn(a)}n, etc. In particular, we relax the regularity hypoth-
eses on the functioa by taking into account different cases and especially the case
wherea € L® (ora € L1). In all these cases we prove that the preconditioned matrix
sequencéP, 1A, (a)}, has a general cluster at 1. We notice that the latter case where
a € L™ or a € L' poses some technical problems which are overcome by using
some standard tools in functional analysis. In fact, the related spectral analysis of the
clustering properties is carried out by using the Lusin Theorem [23] regarding the
approximation in the measure of measurable functions by continuous functions when
the definition space is locally compact. We notice that this approximation allows
one to use the previously stated results [25,27,30], which hold in the continuous
case, as an intermediate step. Moreover, in the case vahisra sparsely vanish-
ing function[13,34], the presence of essential zeros is analyzed as well: the related
results indicate that the behavior does not differ substantially with respect to the
regular case considered and discussed in [25]. We recall that the analysis performed
and reported in [25,27,30] was mainly concerned with the unilevel case. Several
results regarding the asymptotical spectral distribution properties and the clustering
of the preconditioned matrices are established here for the discrete approximation of
multidimensional problems of the form displayed in (2).

The paper is organized as follows: in Section 2 we describe the preconditioning
problem as a kind of “constrained approximation” and then we define the precondi-
tioner P,. In Section 3 we introduce some linear algebra tools for distribution and
clustering that have been recently introduced by Tyrtyshnikov [35] in a Toeplitz pre-
conditioning context. Section 4 is devoted to a systematic and unified analysis of the
concepts of distribution, equal distribution, localization, equal localization, cluster-
ing and sub-clustering for sequences of vectors and matrices. In Section 5, we return
to the case study in (1) and (2) by recalling some results regarding second-order
BVPs in the presence of smooth coefficients. In Section 6, we present a thorough
generalization of the results regarding the distribution and clustering of the spectra
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in the case of Dirichlet problems of ordet and “dimension’d > 1, by taking into
account, not only the presence of zeros, but also the possibilitatisatot regular

(a € L™ ora € LY): while the latter case appears to be only academic, it becomes
meaningful and useful when we consider the distributional “weak formulation” of
the proposed problems. We report some numerical experiments in Section 7 and we
summarize the results obtained in the paper in the concluding section (Section 8).

2. Thepreconditioning problem
2.1. A constrained approximation problem

When discretizing continuous problems as (1) and (2), we obtain a sequence
{AnX, = b, }, of linear systems of sizé, with d, < d,+1 (so that lim,_oo d,;, =
00). The highemn is, the more accurate the approximate solukipiis: consequently,
if good precision is required, we have to compute the solutjoof a linear system of
dimensiond,, for a large value of. The use of iterative methods [38] is recommend-
ed due to memory and accuracy requirements. However, in many cases the problem
is the number of iterations that can growresr the cost per each iteration. Here we
give a definition of optimality [2] for iterative methods applied to sequences of linear
systems.

Definition 2.1. Given a sequenc@A,x, = b,}, of linear systems of sizd,, an
iterative method is said to beptimal if its cost for computingx, within a
preassigned accuraeyis O(M (n)), where M (n) is the cost of the matrix—vector
multiplication with matrixA, and where the constant hidden in thé)derm can
depend orz.

In a general iterative method the cost of a single iteration is basically reduced to
matrix—vector multiplications where the involved matrix generally has the same pat-
tern and the same structure of the original coefficient matfixAs a consequence,
Definition 2.1 implies that:

e the asymptotic number of iterations to reach the solution within the desired accu-
racy must be upperbounded by a constant and
e the cost of each single step is upperbounded W @)).

The second requirement is satisfied by the most popular iterative solvers so that
the first requirement is the critical point. If the sequence of the (spectral) condition
numbers of A, }, is unbounded, then it is generally difficult to solve tite system
within a number of steps independentof

With regard to this feature, one of the most successful iterative solvers is the
preconditioned conjugate gradient (PCG) method. When applied without precon-
ditioning, this method requires (@,) iterations. On the other hand, the use of a
preconditionenV,, can accelerate the convergence by reducing the number of steps.
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In order to understand the convergence speed of this class of methods, the main
objective is the localization and the distribution of the eigenvalues (singular values in
the non-Hermitian case) of the sequeﬂM{lAn}n. Let us start with two definitions.

Definition 2.2 [35]. Consider a sequence @f x d, complex matrice§A,}, and
a setM in the nonnegative real line. Denote By, the e-extension oM, which is
the union of all balls of radiug centered at points dfl. For anyn, let y,(¢) =
vu(An, M, €) count those singular values gf, that do not belong ta/..

e Assume that, for any > 0,

Yn(€) = 0(d,), n— oo.

ThenM is called ageneral or weak cluster
o If, for any e > 0, there exists a constac) so that

vn(€) < c(e),

thenM is called aproper or strong cluster

o If M = {p}is acluster, then we say thatA, }, is clusteredat p.

e When the matriced,, are Hermitian, the sé{l is allowed to belong to the whole
real line and the given definitions apply to the eigenvalues in place of the singular
values.

Definition 2.3. Let{A,},, M, M. andy, (¢) be as in the preceding definition.
e The setM is asub-clustelif
1
lim — liminf y,,(¢) = ¢ < L
d 00

e—>0d, n—

e If M = {p} is asub-clusterthen we say that is asub-cluster poinfor {A,,},,.

Remark 2.1. Letc be as in the first item of Definition 2.3 and IEtbe defined as

C = Ilim i lim supy; (¢).
e—0 dn n— 00

Correspondingly we can give a more restrictive notiorsab-clusteridentified by

the relationC < 1. In essence, the latter definition is the one of Tyrtyshnikov and
Zamarashkin in [37] which we will refer to as the concep@ sub-clusterTable

1 helps to understand the relations among the notiorvsealk clustersub-cluster
and TZ sub-clusterWe notice that theveak clusterings a special instance of the
sub-clusteringvhile the latter notion is a special case of the notiod @fsub-clus-

ter. The philosophical difference betwesunb-clusteringand TZ sub-clusteringan

be summarized as follows: in the TZ definition we find a real sub-cluster for all
the subsequences extracted frorm while in our definition, there exists at least
a subsequence; such thatM is a real sub-cluster fofA,, }x. Indeed in the case
‘C’ or in the case ‘F’ there exist subsequenaggor which M is a real sub-cluster of
type ‘A or ‘D’ for {A,, }x, respectively, but there exist subsequerigeasnde > 0 for
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Table 1
Clustering and sub-clustering
Weak cluster TZ sub-cluster Sub-cluster
A ¢c=0,C=0 Yes Yes Yes
B ¢=0, Ce (0,1 No Yes Yes
C ¢=0,C=1 No No Yes
D ¢c=Ce€e(0,1 No Yes Yes
E O<c<C<1 No Yes Yes
F c<1, C=1 No No Yes
G ¢c=1C=1 No No No

which M, contains at most@j, ) singular values ofAj;, }x. Consequentii is not a
sub-cluster for the extracted subsequeintg }x and with regard to this subsequence
we are in the case ‘G’. Finally, we refer to the situation in ‘D’ as the canonical
case.

Regarding the terminology of the preceding definitions, when the eigenvalues/sin-
gular values of M, 1A, — I}, areproperly clusteredat zero or when the sequence
of the spectral condition numbe/zs{Mn—lAn) of {M,,‘lAn},, is upperbounded by a
constant independent of we know [1] that a constant nhumber of iterations are
required by the PCG method in order to solve a linear system with coefficient matrix
A, within a fixed accuracy. In particular, M 1A, — I}, is properly clusterecnd
{A;1M,}, is spectrally bounded, then the related PCG method is optimal and, after a
suitable constant number of iterations, the convergence is of a superlinear type (see,
[1,9] for more details).

Therefore, we need to find a suitable preconditiafgrsuch that:
l.a. K(Mn_lAn) is upperbounded by a constant independent ¢hat is{M,}, is

“close”to{A,}, in spectral norm) or
1.b. {M,len — I}, is properly clustered at O (that {34,}, is “close” to{A,}, in
the clustering sense);

2. alinear system involving/,, has a cost of QY (n)).
Clearly, these two issues are often conflicting considering that when a matrix is too
close toA, it also requires the same computational effort to invert.

In general, when dealing with the PCG, given the ctas§ matrices arising from
problems like (1) or (2), we proceed as follows:
A. Choose a suitable clagsof matrices “close” enough te whose elements are

easy to invert.
B. Devise a suitable projection operat#y, : « — B to obtain a certain approxi-
mationM,, € g for any givenA, € «.

One of the possible ways to do this is to look for preconditioners within matrix
algebras such as the circulant class [12] andrtletass [5] (point A) and to use the
optimal approximation in Frobenius norm [8,10,29] (point B). However, as proved in
[13] we do not generally meet points 1.a and 1.b due to asymptotical ill conditioning
of the matrices discretizing problems of the form (1) or (2). Therefore we go on to use
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a different strategy which is based on the information contained in the “continuous
problem”.

2.2. The choice of the preconditioner

Let us consider the discretization of problem (1) on a uniform grid belonging to
Q = [0, 1] with stepsizeh = (n + 1)1, using centered finite differences of mini-
mal precision order 2. After a scaling iy, this discrete approximation leads to a
2k + 1 bandn x n linear system

An (ll)y = b, (3)
that belongs to the Toeplitz clasiifx) is a constant function.
The first component of our preconditiongr = P, (a) is the Toeplitz matrix1y;

obtained from the discretization of Eq. (1), wherg) = 1 and after the same scal-
ing by h?:

A% = Toep,lo,...,0, %, ..., 70, ..., %, 0,..., 0]

a=cv((2)).

The second component is the diagonal maf¥jx, obtained by the main diagonal of
A, (a) (see also [16]). Therefore we set

20\ 150 1/2
P, = ( k) DyZAS DYE, (4)

with

where

k
k,0
(An(@)).j =Y b Palxjyiis2),
i=0
min{k,k+s}
k,
An@)jjrs = Y. b Yalxjii2),
i=max0,s}

b >0, 5 €{—k,... k).

Moreover, by imposing = 1 we infer that

ke) _( 2\ _( mw
zi:b" = (k - Isl) N <A27‘ >j,j+s‘ ®)

With this choice, we note that the preconditioner is symmetric and is positive definite
if the diagonal elements of,, (a) are positive. In fact the generic valug, (a)); ; is
a sum with positive coefficients af+ 1 equispaced evaluations of the functiaw).
Therefore, ifa(x) is continuous and has, at most, only isolated zeros, it is evident
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that(A,(a));,; is positive for a sufficiently fine mesh spacing. Of course, when
not continuous but only.! it does not make any sense to take the evaluations of the
functionain a discrete grid of points. In this case the symi@l;) denotes

(n—i—l)/ a)dt, Ij =[xj,xj41l, xj41—x; =h, xj =hj.
Ij

Hence, if the functiora is sparsely vanishing [34] or equivalently [13] if the Lebes-
gue measure{x € [0, 1] : a(x) = 0} of the set of zeros ddis zero, them, (a) and
the preconditioneP, are symmetric and positive definite since each val(g) is
strictly positive.

In the case of problem (2), we discretize them on a uniform grid belonging to
Q = [0, 1)¢ using centered finite differences of minimal precision order 2 with re-
gard to each direction;. The stepsize with regard to the direction j =1, ...,d,
ish; = (n; + 1)~. Since the discretization of each term

ok ok
af a (X) aj( u (X)

is represented by a matrix bounded in spectral norm dividehjfb,yit follows that
the relation

2%k _ 2%k
hjl - O(hjz)

for somej; # j» would imply that the “discrete” contribution of the operator

ok ok
ax—k» a(x) 6x—k u(X)
Jj2 j2

is negligible in spectral norm with respect to the one of

ok ok
J1 J1

Therefore, except for some exceptional cases where it is required to discretize with
different precisions in different directions, it is natural to think thgtandh ;, have
the same asymptotical behavior. Consequently, we make the assumption that the
stepsizes are equal up to suitable multiplicative constantsiag.,..,as € 4+
such that; +1=va;,ve 4.
Setting the multiindex: = (n1, no, ..., ng) with N(n) = ninz---ng and after
a scaling byv—% the former discrete approximation leads to a multileVeh) x
N (n) linear system

having bandwidth 2 + 1 at each level. The matrixA, (a) belongs to the multilevel
Toeplitz class ifz(x) is a constant function.
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The first component of our precondition®, = P,(a) is the Toeplitz matrix
Ag’,?;d obtained from the discretization of Eq. (2), whet&) = 1 and following the

same scaling by—%. Then the preconditionefgl?,d is defined as

d
(n) __ (n)
AZk;d - ZXL ’
j=1
where
(nj)

Xy:l]z za‘/z'k’1”1®ln2®"‘[nj,1®A2k ®Inj+l®”'1ﬂd

and® is the tensor product [3,18)(® B = (a; ; B)).
The second component is the diagonal maif¥jx, extracted from the main diag-
onal of A, (a) so that

—1p1/2 1/2
P, =0y 1Dn,/aA(zl]1<);an,/a’

where
4 2k
_ (n) _ 2k
O = (AZk;d)ii ol DL (k>
, =

is the diagonal entry of the multilevel Toeplitz matei;) .

We note that the preconditiond, is symmetric and is positive definite if the
diagonal elements of,,(a) are positive. In actuality, putting = (j1, jo2, - - -, jd),
the diagonal entryA, (a)) ;, ; is a sum with positive coefficients of a constant number
of evaluations of the function(x). Therefore, ifa(x) is continuous with, at most,
only isolated zeros, thet4,(a));,; is positive when the mesh is fine enough. If
ae Ll is not continuous, then it is senseless to take the evaluations of the function

a in a discrete grid of points. Therefore, settikg= (x;,, x,,...,x;,) ande=
(1,1,...,1), the symbok(x;) will denote
d

N(n +e)/ aydt, I; = H[Xj,-,xj'i+1], Xji41—Xj; = hi, xj; = h;j.

1 i=1
So, if the functiona is sparsely vanishing [34] or equivalently [13] if the multidi-
mensional Lebesgue measuéx < [0, 1]¢ : a(x) = 0} of the set of zeros o is
zero, them,, (a) and the preconditiong?, are symmetric and positive definite since
eacha(x;) is strictly positive.

3. Somelinear algebra premises

We now introduce some results to be used as a tool in order to analyze the distri-
bution of the eigenvalues of the preconditioned and nonpreconditioned matrices.
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3.1. The Szeg6—Tyrtyshnikov theory

Suppose thaf € L1(1¢, %) with I = (—, 7). We define thed-level) Toeplitz
matrices{T,,(f)}., generated [19] by a Lebesgue-integrable functias the matri-
cesT,, (f) whose entries along the diagonals are constant and are given by the Fourier
coefficients{t; }; ordered in a suitable way. In particular, setting

n=(n1,l’l2,...,l’ld)€</1/+d, N(I’l):nlnz...nd’
k= (ki, k2, ..., kq), s = (51,52, ...,84),
t= (11,12, ...,19), kj,sj,tj € {—nj+1,...,nj_1}
and
X =(x1,x2,...,%q)
we have
[T.(H],, =t5— w= 2 / F)e 1 ®0dy, 2 = —1. @)

To have an idea of thd-level structure, we must choose an ordering among the
indices{k;}. The matrixT,(f) has external dimensiom x ny, with (d — 1)-level
Toeplitz blocks of dimensiofiny - - - ng) x (n2---ng). The description is natural-
ly recursive so that when we arrive at expressing the first level, we then find the
elementq .} givenin Eq. (7).

For instance, fodl = 2, the expressiofl;, (f)](s;.s»).1.1) iNdicates the entry of
position(sz, #2) in the block(sz, 1) which is equal tars, —y s,—r,-

The following theorem gives a strong characterization of the spectra of multilevel
Toeplitz matrices.

Theorem 3.1 [19,35,36].Let f € L1(1¢, %) and Iet{oi(”)} be the singular values
of T,,(f). Then for any continuous function F with bounded support the following
asymptotic formuldthe Szego relatiorholds true

N(n)
lim

(n)
M@N(H)Z P = g [ Fasar ®)

Notice that wheri is real-valued and nonnegative the singular valueg, 6f) are
its eigenvalues sincg, ( /) is Hermitian and nonnegative definite.

Theorem 3.2. Let f € L1(1%, %) and {T,,(f)}. be the related Toeplitz sequence.
Then p is a(singular valu@ sub-cluster pointor {T},(f)}, iff m{x € I? : | f(X)| =

p} > 0. If fis real-valued then p is a(eigenvalug sub-cluster pointor {7, ()}, iff
m{x e I?: f(x) = p} > 0. Herem{-} is the Lebesgue measure BA.

Proof. The proof can be handled by using limit relation (8) and straightforward
measure theory arguments ]
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Remark 3.1. Let f e L1(I?, %) and{T,(f)}, be the related Toeplitz sequence.
Then the set of theub-cluster pointss at most countable. Moreover, thaeb-cluster
points of Toeplitz sequences are all of canonical type in the sense of Remark 2.1
since the quantities andC coincide.

The following further result holds.

Theorem 3.3. LetT,(f) be as in Theorer.1 and f be a real-valued function. Let
A(X) be the generic eigenvalue of the matrix X ands#gtand M ; be the essential
infimum and supremum of fespectivelyi.e., theinf f andsupf up to within zero
measure set23]. Then for any: € .#",.¢ the following cases occyfl9]:

emy < MT,(f)) <My ifmf < Mgy or

o MT(fN)=Mitmy =My =M

In addition, if {AE”)} is the complete set of the eigenvaluegaff) in nondecreasing
order, thenV{k(n)}, so thatk(n) = o(N (n)), it follows that[35]

Jim )‘k(n) =my and  lim )‘N(n) —km) =My
Finally, if £ —m; ~ [x — Xoll}, then[26, 7]
d
)‘(1”) —myg~ an_y
j=1

As an example, let us consider the band Toeplitz matrﬁdég}n related to the
discretization of Eq. (1) witlu(x) = 1. It is evident thatA(z’}c) is then x n one-lev-
el Toeplitz matrix § = 1) generated by the polynomigl(x1) = (2 — 2 cogx1))¥.
Sincem y = 0 and f (x1) ~ xf", according to Theorem 3.3 the mat&ibg,? is posi-
tive definite, its minimal eigenvalue is asymptoticto% and its spectral condition
numbenc(A(”)) grows asi?.

Let us consider the two-level Toeplitz matrlcezs(")}n, n = (n1, np), related
to the discretization of the bi-Laplacian (see Eq. (2) witk= 2) with n; +1 =

vaj, j = 1,2. Thendy) = T,(f), wheref (x1, x2) = a(2 — 2cogx1))? + a3(2 —

2cogx2))2.
In view of Theorem 3.3, we deduce thad ”; is positive definite, its minimal

eigenvalue is asymptotic Imf‘ + n£4 and its spectral condition number grows as
n? + n3

1T 1o
4. The Weyl-Tyrtyshnikov equal distribution

Let us start with the basic definition of distribution.
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Definition 4.1 [19, 35]. Two real sequence{sszf”)}igdn, {bi(n)}igdn (d, < dy41) are
equally distributed ED) if and only if, for any real-valued continuous functién
with bounded support, the following relation holds:

i 23 (i) - r (o) =0 ©

=

When the previous limit goes to zero asd>?) andF is Lipschitz continuous, we
say that there istrong equal distributiofSED). The same definition applies to the
case of sequences of matrides,},, and{B,}, of dimensiond, x d,: in this case
{al-(n)}igdn and{bi(")}igdn are the sets of their singular values (or the eigenvalues if
the involved matrices are Hermitian).

We now introduce two notions afqual localizationthat will be useful in the
following.

Definition 4.2. Two real sequence{ml.(")},-gdn, {b;n)}igdn (d, < dyy1) areequally
localized(EL) if and only if, for any nontrivial intervale, B8] (¢ < B), the following
relation holds:
1
o (gl @ TS PR ) _

Jim - (#{l q! e[a,ﬁ]} #[1 b e[a,ﬁ]}) 0. (10)
When the previous limit goes to zero agd)?), we say that there is strong equal
localization (SEL). The same definition applies to the case of sequences of matri-
ces{A,}, and{B,}, of dimensiond, x d,: in this case{ai(”)}igdn and{bf")},-gdn
are the sets of their singular values (or the eigenvalues if the involved matrices are
Hermitian).

Definition 4.3. Two ordered real sequencﬁé”)}igdn, {bl(n)}igdn (d, < dy41) aree
equally localizede-EL) if and only if, for anye > 0, the following relation holds.

lim i#[i : |al.(") — bl(n)| > e} =0. (11)
n— 00 dn

When the previous limit goes to zero as&)?), we say that there is strong equal

localization(e-SEL). The same definition applies to the case of sequences of matri-

ces{A,}, and{B,}, of dimensiond, x d,: in this case{af”)}igdn and{bf”)},-gdn are

the ordered sets of their singular values (or the eigenvalues if the involved matrices

are Hermitian).

Definition 4.4. We say that a sequenc{el.(”)},-gdn is essentially bounded if there
exists an interval = [«, 8] so thatM is a general cluster for it. I is a proper

cluster, then we say th:{altl.(”)},-gdn is properly bounded.
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Definition 4.5. Given a sequenc{el.(”)},-gdn , we say thap € R is asub-cluster point
for {¢"} i<, iff

.1
lim —Ilmsup#{i:cf") € (p—E,p—I—E)} =c>0.

e—~>0d;, n—oco

A sequence{cl.(”)},-gd“ without sub-cluster pointss calledregular.

Remark 4.1. We notice that if{Cl(n)}jgdn is, for anyn, the complete set of the sin-
gular values (eigenvalues) of a (Hermitiafy) x d, matrix, then definition ofub-
cluster pointin Definition 4.5 reduces to the one in Definition 2.3 (see also [37]).

Remark 4.2. If {cﬁ”)}igdn is, for anyn, the complete set of the singular values (ei-
genvalues) of a (Hermitiang,, x d, matrix A,, and if the singular values (eigen-
values) of{A,}, enjoy a formula as (8) for some Lebesgue measurable funftion
thenf is sparsely vanishingccording to Definition 4.7 iff O is not sub-cluster point

However all these concepts have deep relationships without being equivalent.
Therefore in the following theorem we analyze the connections and the differences
among them in detail.

Theorem 4.1. Let {ai(n)}jga’n and {bf")},-gdn (d, < dy+1) be two ordered real se-

quences. The following facts hold ttue

1. SED implies ED SEL implies EL and-SEL impliese-EL. These implications
cannot be reversed.

. EL implies ED.

. SEL does not imply SED.

SED does not imply EL.

e-EL implies ED.

€-SEL does not imply SED.

SED does not imply-EL.

. €-SEL does not imply EL.

. SEL does not imply-EL.

©CONDUTAWN

Proof.

1. The implications SED= ED ande-SEL = ¢ -EL are straightforward conse-
guences of Definitions 4.1 and 4.3. SEL EL is a consequence of Definition 4.2
and of density of the Lipschitz continuous functions with bounded support into the

class of continuous functions with bounded support. The sequemﬁ‘é& 1+
1//n}icn and{bf”) = 1};<, are ED but not SED. The sequenc{eg” =i/n}in
and{bl.(”) =i/n —1/y/n}i<, are EL but not SEL. The sequenc{eé") =1}icn
and{p"};<,, with b = 2 if i = 2* for some integek andb"”’ = 1 otherwise,
aree-EL but note-SEL.
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In [35] Tyrtyshnikov observed that EL is a rewriting of the ED property where the
continuous test functions are replaced by the staircase functions (i.e. linear com-
binations of the characteristic functions of intervals). The density of the second
class into the first proves the desired result.

. Let{ai(”) =1+1/nlicn and{bf”) = 1+ 2/+/n}i<,. Now for any nontrivial in-

terval[a, B8] (¢ < B), there exist integers(«, B) andn(a, B) so that
#[i 0™ € [, 5]} —s(n) forn>ii(a, B)

and
#[i b € [a, ,3]} —sn) forn>ii(a, B),

wheres(n) =n if 1 € [, 8) ands(n) = 0 otherwise. This shows that the two
sequences are SEL. Finally taking a continuous fundfievith bounded support
which is identically equal to 1 ové0, 3]: we obtain

% in;F (a[.(")) _F (b}”)) — _1/Jn £ 00 Y

so that the two sequences are not SED.

. For {al.(”) =1+ 1/n*;<, and {bl.(”) =1-1/n%),<, it is quickly verifiable that

they are SED but not EL since

#liza” ecou}=0 and #i:p" o u}=n

. Given twoe-EL sequencesai(”)}igdn and{bﬁ")}igdn, for any positivee, consider

Yu(€) = #i : |a™ — bl.(”)| > €} = 0(d,). Therefore, for any continuouB with

1

bounded support and modulus of continuity we have
1y () | 1 < ) (n)
L) = ()< Sl () - (o)

1
< d_(ZHF”ooVn (6) + wr(€)dy).

Due to the arbitrariness @ef the ED property follows.

. Itis enough to take the same sequences used for showing that SEL does not imply

SED (part 3) to prove that-SEL does not imply SED.

. For{a =n+i}ic, and (b = n +i +1/2};i, it is quickly verifiable that

they are SED but nat-EL.

. For{ai(”) =1+ 1/n%ic, and{bi(") =1— 1/n*);<,, itis trivial to verify that they

aree-SEL but not EL (takdw, 8] = [1, 2)).

. For{a™ =n+i}ic, and (b = n+i + 1/2};<, it is quickly verifiable that

they are SEL but nat-EL. [
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We describe some more sophisticated relationships in the subsequent result.

Theorem 4.2. Let {(,li(n)}l‘gdn and {bf")},»gd” (d, < d,+1) be two ordered real se-
quences. The following facts hold ttue

1. EL and essential boundedness imglZL.

2. SEL and proper boundedness imphsEL.

3. ED, essential boundedness and regularity imgliL.

4. ED, essential boundedness and regularity imply EL.

5. Assumed essential boundedness and regularity imply ELSE.

Proof.

1. Forthe claim that “EL and essential boundedness iryity”, it is enough to con-
sider an equispaced partition of the bounded intemfak [«, 8] of R to which
{ai(n)}igdn and {bf”)},»gdn essentially belong. For ang* > 0, we take the inter-
vals M; = [x;, xj41], wherex; = o + j(B —a)e*, j =0,..., [(¢*)~1]. Next
we apply Eq. (10) to all of the interval ;. We find that, except fof(e*) ~110(d,,)
indices, it holds tha]nl.(”) - bi(")| < €*(B — a) because* (8 — «) is the diameter
of each sed;. Finally, the claim follows calling = €*(8 — ).

2. Itis just an adaptation of the proof of part 1.

3. Let M = [a, 8] C R be a general cluster anl.(")}igdn and {bl.(”)},-gd". For any
€* > 0, we take the intervaldf; = [x;, x 1], wherex; = a + j(B — )€, j =
0,..., (1. We now takeF = F; being globally continuous, 1 oved;, 0
over the complementary set 8f;_1 U M; U M; 1, and linear overM;_; and
M;1. We apply Eq. (9) withF = F; to obtain

. 1
lim — [Tl(j, e.n) + Ta(j. €. n)
n— 00 dn

+(#lira e my) —#lin e my}) | =0,
where

T1(j, €,n) = oF (a;m) ’

i a;”)eMj_lqu_,_l

BG.em= Y F(5").
i: b eM;_1UM; 41
Since 0< F; < 1, it follows that 0< T1(j, €, n) < #{i : a\" € Mj_1U M1}
and 0< T»(j, €, n) < #{i : bl.(”) € Mj_1U Mj1}. Both the sequencc{al.(")},-gdn
and{blf”)}igdn areregular (no sub-cluster poingsand consequently
. 1 ) . 1 .
Iim —Ti(j,e,n) = lim —Tu(j,e,n) =0
n—o00 d n—oo d,

n
so that
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#lica em;) =#linf e My} + o).

Recalling that the diameter & is (8 — a)e* and that the union of finitely many
M coversM which is a cluster for both the sequences, by setirg (8 — a)e*

we deduce that except fod)) indices, the valuesl.(”) and bf”) belong to the
sameM ; for somej and therefore their distance is boundedebyhe definition
of thee-EL property is easily recognized.

4. To prove the EL property, we take an interiéil= [«, ] and we takeF' = Fy g
being globally continuous, 1 ovét, 0 over the complementary setiéf, = [o —
€, B+ €] and linear ovefa — €, @] and[B, B + €]. We apply Eq. (9) withF =
F, g and we obtain

im - (12 e+ T eom -+ (i -0 € ) =i 67 € ] =

n—oo d, i

where

nGem= Y. Faup(a”), TGiem= Y Fup (o).

i a™eMAM i ™ eMAM

Just as in the proof of the preceding part, we find that

) 1 ) 1
Iim —Ti(j,e,n) = lim —Tu(j,e,n) =0
d n—oo d,

n—00 n
so that
#{i 0™ e M} - #{i ™ e M} + 0(dy)

and the proof is concluded.

5. Assuming the EL property, we deduce the ED property from part 2 of Theorem
4.1. Therefore ED, essential boundedness and regularity hold simultaneously so
that, by part 3, the-EL property stands. The other case is symmetri€l

Remark 4.3. In the proof of the first three parts of Theorem 4.2 we have taken
advantage of the fact that a bounded interval can be divided into a finite number of
subintervals of radius as small as we desire. In essence, this is the notion of com-
pactness in a metric space. Therefore the same proof applies unchanged if the se-
quences{al.(")},-gdn and{bl.(”)}igd” are valued in a metric spacg and if they are
essentially compact.e., they are contained in a compact Ketz .7 except at most

o(d,) elements (compare this concept with Definition 4.4). A nontrivial case occurs
when 7 = R*® for some positives. In this case we encounter the notion of grid-
sequences over domains Bf that are useful in constructive approximation and in

the numerical treatment of differential equations.
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In the following subsections we furnish some tools to evaluate the strength of
the equal distributionand equal localizationthat are based upon estimates of the
singular values and involve the Shatggnorms [3].

Definition 4.6. We denote byM, the linear spac&”*** of all square matrices of
order s with complex entries. IfA € M;, then the symbob;(A) denotes thgth
singular value ofA and if A is Hermitian, then the symbal;(A) denotes thgth
eigenvalue ofA where both the sets are arranged in a nonincreasing order. The space
M is equipped with the Shattgmnorm defined as [3]

1/p

N
lAllsp = | Y oj(A)? | . pelloo),
j=1

and

[Alls o0 = 01(A), p = o00.

For p = 2 we find the classical Frobenius norm and foe oo we obtain the so-
called “spectral” norm. When choosing= 1, we find the so-called “trace” norm
that for Hermitian nonnegative definite matrices equals the trace of the matrix. In the
approximation of sequence of matrices of increasing dimension in simpler spaces of
matrices, the preferred norm is generally the Frobenius norm. The first motivation
is “practical” in the sense that this is the only Shatpenorm whose calculation is
computationally not expensive:

1/2

S
Als2= | D 1(A) 12
i,j=1
The second motivation is theoretical: actually the Frobenius norm is the only Shatten
p-norm induced by an inner product which makes the spéceto a Hilbert space.
More specifically, settingA, B) = trac& A" B), we simply deduce thaA|r =
IAlls,2 = (A, A)Y/2.

Therefore, if we want to solve a linear systetpy = b with A,, of “large” di-
mensiond,,, we look for a convex closed set of matrices in which the computation
(matrix inversion, matrix product, etc.) is inexpensive. Consequently, it is natural to
consider the “least square approximation” problem of the given matyiin order
to devise a suitable preconditioner. This approach leads to the Frobenius-optimal
approximation in algebras considered in [10,29] in the Toeplitz context and in [8]
in the context of finite difference matrices discretizing elliptic differential operators.
However, owing to the general analysis given in [13], it is easy to recognize that the
Frobenius-optimal approximation in algebra is not completely satisfactory when the
matrix sequencd,, is asymptotically ill conditioned with regard t[13] or when
the algebraic system is multilevel and the numderf levels is large [31,32]. It is
worth noticing that multidimensional differential problems as well as multiresolution
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or image processing naturally lead to multilevel structured matrices [9]. Therefore
in this paper we look for approximations constructed using a different philosophy:
in particular, as shown in the previous section, we invoke a “structural” approach
[24,25,27,28,30] where the preconditioner approximating the maifiis defined

by using the continuous information contained in the model problem.

4.1. Analysis of the equal distribution

The following perturbation result is of paramount interest for estimatingdjal
distribution from a quantitative point of view. This result is a generalization of the
Wielandt—Hoffman inequality (see e.g. [3]) and represents a particular case of the
Lidskii—-Mirsky—Wielandt Theorem whose proof can be found in [3, Theorem IV.3.4
and Example IV.3.5].

Lemmad4.l. Letp € [1, co). For any pair of matricesA, B € M, we have
r q1/p

s
> loj(A) —o;(B)P | < A= Blls,). (12)
/=1 _
If A and B are Hermitianthen we also have
m q1/p
D Ihi @A) = 2B | <A - Blis,. (13)
j=1

Given a functior- continuous and with bounded support and the sequigtice
and{B,}, of d, x d, square matrices, we define

1 &
Z(F, A, Ba) = — 3 F(0i(An) = F(0i(Ba)  (dn < dy12).

n
i=1

Theorem 4.3. Let{A,}, and{B,}, be two sequences @f x d, matrices and let us
suppose thatA, — B,|ls,, < C(n). Assume that F is a Holder continuous function
with Holder parametet: € (0, 1]. Then there exists a constant M so that

IZ(F, A, B))| < MIC(m)[d,]~Y/P1°.
In particular, if C(n) < c¢*, then
IZ(F, Ay, Byl < M(c*)*[dy] 7.
Finally, if C(n) < ¢* andp = o = 1, then we have strong equal distributiéBED).

Proof. By the assumptions it follows thdt € Lip(«, M) with « € (0, 1] andM
positive constant. Therefore, we directly infer that
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d,
1 n
IZ(F, A, Ba)l < =M Y 10i(An) = 01 (B[ (14)
=1

We call s(w) the d,-dimensional vector whosgh entry is|o;(A,) — o;(B,)|* and
we call 1 the d,-dimensional vector of all ones. In this way inequality (14) can be
rewritten as

|2(F, Ap, Bp)| < diM(S(Ot), 1, (15)

where(x, y) = ) X;y; is the usual inner product of% . We now recall the Holder
inequalities, that is

X< XY llg oy (16)

for anyr > 1 and withg(¢) being the conjugated exponent so that + [¢(1)] ™1 =
1. Here|x||s indicates(3" |x;|*)Y/* if s € [1, 00) and maxyx;| if s = oo.

The idea is to apply the Holder inequality with= p/« to Eq. (15) by obtaining
the following chain of inequalities:

1
|X(F, A, By)| < d_M”S(O‘)”p/a”]-”q(p/a)
n

1 1—
= 7 MIsI7ldn] /v
At this point, by using the formal expression of the veddr) and Lemma 4.1 (in
particular Eq. (12)), we obtain the following relation:

|Z(F, A, Bo)| < M[d,]™/P||Ay = BulI$ - (17)

By recalling that|A, — B,lls , < C(n), the proof of the first part of the theorem
is concluded. The other cases follow directly since they are special instances of the
general formula displayed in (17).0

4.2. Analysis of the equal localization and of the clustering

Lemma4.2. Let{A,}, and{B,}, be two sequences gf x d, matrices.

1. Assumeank(A, — B,) = 0(d,). Then the sequencés, }, and{B,}, are equally
localized(EL) and equally distributedED).

2. If rank(A, — B,) = O(1), then{A,}, and {B,}, are strongly equal localized
(SED and strongly equally distribute@SED .

Pr oof.

1. Letr, = rank(A, — B,). As a consequence of the Cauchy interlace theorem
[18] we haveo; 2., (By) = 0i(A,) = 0iyor, (By) fori =2r, +1,...,d, — 2ry.
Therefore, for any intervdk, 8] we have
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#{i :0i(Ay) € [a, ﬁ]} = #{i :0i(By) € la, /3]} +en en| <4y (18)

Consequently,, = o(d,) and then the sequencgs, }, and{B,}, are equally lo-
calized (EL). The use of part 2 of Theorem 4.1 then leads to the equal distribution
(ED).

2. If r, = O(1), then there is SEL by (18). For the proof of the last part, recall that
F is Lipschitz continuous with bounded support containesifia= [«, 8]. Owing
to its LipschitznessF is of bounded variationK € BV) too. Therefore it can
be expressed as the sum of two monotone functions. By linearity it is enough
to focus our attention on the monotone functions restrictetitd_et S(A,)
and S(B,,) be the sets of the singular values ordered nonincreasinglyq bet
an integer number and I8k B,,, ) be such thatS(B,, ¢)); = (S(Bu))i4q, i =
1,...,d,, where(S(B,)); = minfa, (S(Bx))a,} if j > d, +1 and(S(B,)); =
maxg, (S(B,))1} if j < 0. Now supposing that, = O(1) i.e.,r, < k for some
positivek, we find thatS(B,,, —2k) > S(B,), S(A,) > S(By, 2k), where =" is
intended componentwise. Finally, by monotonicity we deduce that

|2(F, An, By)|
< |Z(F7 S(B}’l’ _Zk)s S(Bl’h 2k))|

1

= |7 > F(0i(By)) — F(0(By))
M i=1-2k, ..., 2k, j=d,—2k+1,....dy+2k

= O(d, ™)

and the proof is complete. O

Lemma4.3. Let{A,}, and{B,}, be two sequences @f x d, matrices.

1LIf A, — Bnllg,p = 0(dn), p € [1,00) Or [|A;, — Bylls. = 0(1), then{A,}, and
{B,}, are e equally localizede¢-EL) and equally distributedED).

2. When | A, — Bullsp = O(1), p € [1,00), o [[Ay — Byllsco = O(d; 1), then
{A,}, and{B,}, aree strongly equally localizede-SED.

3.1f p=1and|A, — Bylls, = O1), then{A,}, and {B,}, are strongly equal
distributed(SED).

Proof.

1. We follow an idea indicated by Tyrtyshnikov in [35] for the case where 2.
Let € be a positive arbitrary number ang(e) = #{i : |0;(A,) — 0i(B,)| > €}.
By Theorem 4.1 (inequality (12)) fgr € [1, co) we have

dy
D l0i(An) = 0i(B)IP < ||y — Bullg , = 0(dy).
i=1

Now by definition ofy,, (¢) we deduce that
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dy
O(dy) = | An = Ballg , = D l0i(An) = 0i(Bu)IP = yu(e)e”
i=1
that isy, (¢) = o(d,). The latter relationship is by definition equivalentedcL.
In the case op = oo the proofis trivial. Now by part 5 of Theorem 4.1 we deduce
the ED property.

2. When||A, — B,lis,, = O(1), p € [1,00), OF [ Ay — Bylls.c = O(d; 1), thene-
SEL property is easily deduced by using the same argument as in the preceding
part.

3. Finally if p =1 and||A,, — B,lls,, = O(1), then{A,}, and{B,}, are strongly
equal distributed by the last part of Theorem 4.3

Theorem 4.4. Let{A,}, and{B,}, be two sequences gf x d, matrices.

1.If |A, — B, — Dn||§’p = 0o(d,) with p € [1, c0) and rank(D,) = o(d,), then
{A,}, and{B,}, are equally distributedED).

2. If |A, — By, — Dylls.1 = O(1) withrank(D,)) = O(1), then{A, }, and{B,}, are
strongly equal distributedSED .

Proof.

1. LetX, = B, + D,. Then{A,}, and{X,}, fulfill the assumptions of part 1 of
Lemma4.3. Thereforgd,, },, and{ X, }, are ED. Moreovet,B, },, and{X,,}, fulfill
the assumptions of part 1 of Lemma 4.2 and consequently are ED. Since the ED
relation is an equivalence relation, the transitivity yields the claimed result.

2. Let X, = B, + D,. Therefore{A,}, and {X,}, are SED by part 3 of Lemma
4.3. Moreover{B,}, and{X,}, fulfill the assumptions of part 2 of Lemma 4.2
and consequently are SED. Since the SED relation is an equivalence relation, the
proof is concluded by applying the transitivity[]

We prove the following corollaries with similar tools. In particular, the essentials
of the proof of Corollary 4.1 can be found in [37].

Corollary 4.1. Let{A,}, and{B,}, be two sequences df x d,, matrices.

1. Suppose thaf4, — Bn||§”,, =0(d,) and p € [1,00). Then M is a cluster for
{A,}, iffitis a cluster for{B,},.

2. When||A, — B,|ls, = O(1) with p € [1, co0), then M is a proper cluster for
{A,}, iffitis a proper cluster fo{ B, },.

Proof.
1. LetM be a cluster fofA,},,. Then for anyk > 0 we have
Yn(Ap, M, €) =0(dy), vu(An, M, 2¢) = 0(dy),

where the functiony, is the one considered in Definition 2.2. More precisely
vu(A,, M, €) measures the cardinality @f(A,,, M, €) being the set of indicejs
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sothais;(A,) ¢ M.. Now for any positivec*, let J,(A,, By, €*) be the set of in-
dicesj such thalo;(A,) — 0;(By)| > €*. By Lemma 4.3, it holds thdt4, },, and
{B,}, aree-EL and consequently®(A,, B,, €*) = o(d,) for an arbitrarye* >
0. For everyi € Uy,(e, €*) = JS(Ap, By, €*) NIS(A,, M, €) it simultaneously
holds that

0i(Ap) € Mc and |oi(A,) — 0i(By)| < €.

If €* <€ andi € U, (e, €*), by triangle inequality it follows that; (B,,) € M.
Finally, recalling that #5(A,, B,, €*)=d,—0(d,), #IS(An, M, €) =d, —0(d,),
it is transparent that

#U, (e, €*) =n —o(d,).

SinceU, (e, €*) C {j : 0j(B,) € M2} and since is arbitrary it follows thaM is
a cluster for{ B,,} and the proof of the first part is concluded.

2. When||A,, — B,lls,, = O(1) with p € [1, c0), by following the same argument
and by replacing each(@,) by O(1) we obtain the desired result.(J

Corollary 4.2. Let{A,}, and{B,}, be two sequences df x d, matrices and let

M be a set of the real line so that for any positiaighe setM, is made up of a finite

number of intervals.

1. SupposéA, — B, — D,,||§p =0(dy,), p € [1, co) andrank(D,) = o(d,). Then
M is a cluster for{A,}, iff itis a cluster for{B,},.

2. If |A, — B, — Dylls,, = O(1) with rank(D,,) = O(1), p € [1, o0), then M is a
proper cluster for{A, }, iff it is a proper cluster for{B,,},,.

Pr oof.

1. LetX, = B, + D,. Then{A,}, and{X,}, have the same clusters by Corollary
4.1. But{X,}, and{B,}, fulfill the hypotheses of Lemma 4.2 so tha,}, and
{B,}, are EL. Therefore, by definition of EL matrix sequences, it follows that for
any nontrivial interval«, 8] (¢ < B), we have

#i 1 0i(An) € [, Bl} = #{i : 0:(By) € o, B1} + 0(dp).

SinceM. is (for anye) a finite union of nontrivial intervals, the proof is concluded.

2. When||A, — B, — Dylls,p = O(1) with p € [1, 00) and rankD,) = O(1), by
following the same argument and by replacing eagh ) by O(1) we obtain the
desired result. O

Remark 4.4. In a certain sense, the limitations dhare academical. Indeed il

does not fulfill the requests of Corollary 4.2, thehmust be unbounded and made
up of an infinite number of unconnected parts. Notice that the factihawas
finitely unconnected is essential in the proof of the preceding corollary. Indeed, if
there exists a positive such that the set, is made up of an infinite number of
nonintersecting intervals, then it is possible to construct sequé¢dgés and{B,},
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with rank(A,, — B,) = 1 for whichM is a cluster for the first sequence but not for
the second.

Some further consequences of Theorem 4.4 are listed below Edrl, co) it
holds:

[CI1] |Ay — By — Dylls,p = O(1), with rank(D,,) = O(1) implies thatve > 0, all
the singular values of,, — B,, belong to[0, €) exceptNy, = No(n, €) = O(1)
outliers.

[CI2] |A,; — B, — D,,||§p = o(d,), with rank D,,) = o(d,) implies thatve > 0, all
the singular values of,, — B, belong tg0, €) exceptN, = No(n, €) = 0o(d,,)
outliers. The same is true wh&l > 0, whereby there is a sequence of matri-
ces{Dy(€)}, so that rankD, (¢)) < edy and||A, — By — Du(e)llg , < €dy
(see [36, Theorem 2]).

[CI3] 1A, — By — Dylls,p = O(1), with rank'D,,) = O(1) and such that the mini-
mal singular value 0B, is greater than a fixed constant 0, imply thatve >
0, {B;1(A, — By}, is properly clustered Strong or proper clustering

[Cl4] |A, — B, — Dn||§p = 0o(d,,), with rank D,,) = o(d,,) and such that the mini-
mal singular value oB,, is greater than a fixed constant- 0, imply thatve >
0, {Bn—l(A,, — Bp)}n is generally clusteredWeak or general clustering

Of course, if{A,}, and{B,}, are Hermitian and, is positive definite, then the
properties and definitions [}] i = 1, 2, 3, 4 are in the sense of the eigenvalues. By
referring to the case [CI3], when the quantityy = Ny(n, €) goes to infinity amn
goes to infinity anc goes to zero (see [25]), then we have the “weakest” case of
strong clustering. As we will see in the sequel this is one of the “peculiar” cases that
we encounter and we will call iWeakest Strong Clustering

Finally, with regard to [CI3] and [Cl4], we remark that the assumption that “the
minimal singular value ofB, greater than a fixed > 0” is necessary and cannot
be removed (tak®, = n~197 andA,, = n 21 for a counterexample both for [CI3]
and [Cl4]). But, if B, has, at most, @,) singular values going to zero asgoes
to infinity, then we obtain again a weak clustering. The question is connected with
the concept obparsely vanishingunctions discussed in [13,34] and is analyzed in
Section 6.

Definition 4.7. A real-valued nonnegative measurable functigx) defined ink
M9, K compact, is sparsely vanishing if

Iimom{x €K:a(x)<e}=0

€—>

with m{-} being the Lebesgue measure®h
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The following technical lemmata are useful in order to overcome the restriction
about the minimal singular value &, emphasized in [Cl4].

Lemma4.4. Suppose thatA,}, and {B,}, are two sequences of matrices of di-
mensiord, x d,, and thatB, is nonsingular and let us call; the singular values
of B,. If there exists a nonnegative functiore) independent of n so thafor anye
and n large enough
#i:0; <€}
dy
and if there exist matricesD,, (¢)},, D, = D, (¢) such that

< x(e), Iimox(e) =0 (29)

lim ”An — By — Dn”S,oo =0 (20)
n— o0
withrank(D,) < ed,, then the weak clustering property holds.

Proof. By the assumptions, for ary> 0, we find matrice$D,,(¢)},,, D, = Dy (¢)
such that fon large enough

2
A, — B, — Dn”S,oo <€,

with rank(D,,) < ed,. Let us consideB;lAn and let us analyze its singular values
distribution. We seX,, = A,, — B, — D,,; therefore

B 1A, =1+B'D, + B X,

with rank(B,; 1D,) =rankD,) < ed,. So we have to evaluate the structurel&m‘1
X,. Let B,(8) be the matrixB,, written in its singular value decomposition where
each singular value less thamas been replaced By ClearlyY,, = B, — B,,(§) has
rank at most equal th(8) = #{i : 0; < 8} and so

B 1X, = (B,(8) + Y) X,
= (I + B,(® YY) 1B, (871X,
= (I + Wy)B,(8)71X,,

whereW,, is obtained by applying the Shermann—Morrison—Woodbury formula for
inverting (I + B,(8)~1Y,). ThereforeW, has, at most, the same rank Bs Con-
sequently, the matri>B;1Xn has been written as the sum ®f,B,(5)"1X, and

B, (8)~1X,, the first having rank bounded By8) = x(8)d,,, with lims_.o x(8) = 0,

the second having spectral norm bounded by

”Xn”S,oo < i
1) )

Now, by choosing = € and by applying the minmax theorem (modified for dealing

with the singular values), the result is plainly proved.]
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Remark 4.5. Observe that the assumption of nonsingularity of the matiiesan
be easily removed if we consider the pseudo-inverse of Moore—PeBfogestead
of the usual invers@ L.

Remark 4.6. It is worth pointing out that relation (20) can be replaced by the fol-
lowing:

A= By = Dall},
lim .
n— 00 dn

with any choice ofp € [1, c0).

=0

Remark 4.7. Assume thafA,}, and{B,}, are as in Lemma 4.4. If in addition the
matrices{A,}, and{B,}, are Hermitian andB,}, are positive definite, then the
weak clusteringproperty holds both for the singular values and for the eigenvalues.
To see how to translate from singular values to eigenvalues use relations (19). Finally
notice that the matrices ¢B, 1A,}, are not necessarily Hermitian.

In order to meet the hypotheses of the latter lemma in the context of our differen-
tial problems, this result will be useful.

Lemma45. Ifa: K — R, K = Q= [0, 1]¢ is nonnegative and sparsely vanish-
ing, then
#i : i) <
lim lim supw =0
=0 1 oo N(n)
Here if a is continuousthena(x;) has the usual meaning. Otherwise the symbol
a(x;) indicates the quantity (n) [, a®)dt, I; = [TI_3[X;;. X;;1].

Proof. The proof is given in the unidimensional cate- 1. The multidimensional
case can be treated in the same way.

We essentially use the definition of sparsely vanishing function and the relation
Xiy1—xi =+ 1)~1. More precisely, let us call the set of indicesi : a(x;) <
€}. The cardinality ofJ. is a monotone nondecreasing function withiTherefore,
there exists a nonnegative< 1 such that

lim lim supw =c.
e—>0 pn—o00 n

Let us callXe = |, 1;. Therefore, from the preceding limit relation, we deduce

that m(X¢) = Zjeje m(I;) = c+0(1), where the @l) is with respect toe and

n separately. Now, let us takkpositive value and let us defing. s = {x € X, :

a(x) < 8}. The following facts hold true:

. fXg at)ydr =3 flj a(®)dr < (¢ +0o(D))e.

e 1(8) =m(Xes) < m(x:a(x) <5)andso, sincais sparsely vanishing, we have
lims_qh(8) = 0.
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. fxe a() dr > [XG/XM a(t) dt which is greater thadm (X, / X s) > 8(c + 0(1) —
h(3)).

We now join the preceding results by obtaining
(c +0(1)e = 8(c +0(1) — h(é)).

Choose’ = /€ and divide bys.
(c +0(1)ve = (c + 0(1) — h(e)).

Finally, if we calculate the limit ag goes to zero, we deducefc¢ that isc = 0.
O

5. Someresults on the smooth case

We now come back to the structured sequences of matrices that arise in the FD
discretization of problems (1) and (2). We analyze them in some detail by showing
several connections with the results of Section 4.

Preliminarily we recall a chain of results on the relationships annfﬁgl, Ay(a)
and P, proved in [25,27,30] under the assumption th&é smooth (at least continu-
ous).

From hereon we make the assumption that, . .., as with a; € /" such that
the multiindexn = (n1, ..., ng) issuchthat; +1=va;,v e 4.

Lemma5.1[25,27].If a is nonnegative with at most isolated zertigen the precon-
ditioned matrixP, 1A, (a) is similar to [Ag,?;d]—lAZ(a) where for n large enough
A’ (a) is the SPD matrix given by

d
~1/2 —1/2 3 ok
tan*a/ An(a)Dn’a/ for tk — ajz_k (k) .
=1

Theorem 5.1 [25,30]. The eigenvalues c[tl(z’,?;d]‘lAn(a) belong to[a, A], where
a =infa(x) and A = supa(x). Moreover if a € C2([0, 1]¢) is strictly positive and
k = 1, then there exist two positive constant€csuch that the spectrum & 1A,
(a) is contained ifc, C].

Lemma 5.2 [25,30]. Assume that a is strictly positive.dfe C2([0, 1]¢), then the
matrix A% (a) can be expanded in the following way

Al(a) = 43 +O(|h]12)E,
h=(h1, ho, ..., hq), (21)
hj=m;+1)71
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where E has the same pattern dg(a) and is bounded in spectral norm. df e
C([0, 119), thenA (a) = Ag,’() + @, where®,, has the same pattern &%, (a) and
the magnitude of its entries @(w, (||1]|0))-

Theorem 5.2 [25,30].1f a € C2([0, 1) is strictly positive and = 1, then for any
sequence, decreasing to zergas slowly as we waht Ve > 0, 3i such that if
n > n,thenN(n) — 2(6;11 eigenvalues of the preconditioned matﬂ,xlAn (a) are
in (1 — €, 1+ €) (weakest strong clustering propeytyOn the other handif £ > 1,
then the cluster is weak.

The matrlcesdg,?d deserve some attention because their eigenvalues behave like
the sampling of sparsely vanishing functions. This fact is observed in the subsequent
theorem and remarks.

Theorem 5.3. Let Ag,? be then x n Toeplitz matrix obtained by the FD discreti-

zation of problem(1) with precision order2 anda = 1. The matrixAg,’() is positive
definite and the limit relation
{i: 2" <e)
lim lim sup

e=>0 psoo n

=0 (22)

holds true where{xf")} are the eigenvalues Q]g,? arranged in nondecreasing order.
Moreover if A(Z’,?d is the N(n) x N(n) multilevel Toeplitz matrix generated by

the FD discretization of problerfR) with precision ordeR2 anda = 1, thenAg,?;d is
positive definite and the limit relation

#i: " <
lim lim supu =0 (23)

e—0 n— 00 N(n)

hold true. Here{Af”)} denotes the complete set of the eigenvalueé";}[i arranged
in nondecreasing order.

Proof. From the analysis of the coefficients, it follows that the generating function
of the Toeplitz matrixAg,’{) is (2 — 2 cogx))k = 2% sinz"(x/Z) which has a unique
zeroinl = (—m, ) atx = 0 and is strictly positive elsewhere: as a consequence it
is sparsely vanishing=rom this and according to Theorem 3.3 and Remark 4.2, we
deduce that
. A(z’}() is positive definite and its singular values coincide with the eigenvalues.
e 0 is not asub-cluster poinfor the eigenvalues.
The latter two statements are just a rewriting of (22).

In the multilevel setting we observe that the generating function(z'ﬁfd is the
multivariate function ’
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d
Z a? (2 - 2cogx;))
j=1
which is zero at zero and is positive elsewhere. From now on the proof is identical
to the unidimensional case.

It is possible to consider a more “constructive” way for proving Theorem 5.3 that
uses a standard procedure in structured linear algebra. Indeed we “correct” the matrix
A(z',? in thet algebra [5]. More specifically, lei, (k) be then x n symmetric Hankel
matrix [5] whose first row is given bjro, . . ., 7, 0] and whose last row is given by
the reversed vectdD, 7, . . ., 2], the coefficientgz;} being those of the Toeplitz

matrixAg,? (see Sections 2.2 and 3.1). Then the matrix

T(49)) = A3) — Hy(k)
belongs to the algebra [5]. Moreover, it is easy to verify that thk eigenvalue of
(45) coincides withh" = 2% sir? (x")/2), wherex") = in/(n + 1) (see [14])
and the function % sir?® (x/2) is sparsely vanishing since it is continuous and has
a unique zero at = 0. Therefore, in the light of Lemma 4.5, it follows that

-2 (n)
#i: L <

lim lim supu =0

e=>0 psoo

We now observe thakl, (k) has rankr, = 2(k — 1) which is constant with respect
to the dimensiom. Consequently, by part 2 of Lemma 4.2, we plainly infer that

{T(45) )} and{43) ), are SEL so that
o #Hi 2" <e)
lim imsup——— =0,

e=>0 psoo n

Where{kl(”)} denotes the eigenvalueszbg) and so the proof in the unidimensional
case is concluded.
Analogously, in the multidimensional case we correct the Toeplitz malfﬁ&d
in thed-level r algebra [5] so that
T ) = A5 — Hu(k: d),
where the matrixd, (k; d) is ad-level Hankel matrix whose ranl ,, is such that

d
ren =0 | N(n) Zn}l
j=1
Sincery,, = 0o(N(n)), the application of part 1 of Lemma 4.2 yields the desired
result.

Remark 5.1. What the preceding linear algebra proof revealed is that the matrix
sequence$t(A(2’}<);d)}n and{A;’Qd}n are EL and properly bounded (in the sense of
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Definition 4.4). Therefore by part 2 of Theorem 4.1 and part 1 of Theorem 4.2 they
are ED and-EL. Moreover, ford = 1 they are SEL and consequently by part 2 of

Theorem 4.2 they are alseSEL. Finally ford = 1 we observe tha{tr(Ag}{);d) -
A;',i);d||g,1 = O(1) and consequently by Theorem 4.3 we deduce{ti’(ai(z’}c);d)}n and
{A<27<);d}n are SED.

Remark 5.2. Since{Ag,‘{);d}n is distributed as the polynomigl(x) = Zle ajz.k(z -
2 cogx;))* by Theorem 3.1, anfiis a polynomial not identically zero, it follows that
m{x e I?: | f((X)| = p} = 0 foranyp e R. Therefore in the light of Theorem 3.2

we infer that{A(z’}();d}n has no sub-cluster points. N(J{W(A(z’i);d)},, and{Ag}();d},, are
ED by Remark 5.1 and therefore the seque{ma(z’,?;d)}” has no sub-cluster points.

The following results now take into account the presence of isolated zeros.

Theorem 5.4[25,30].1f a has a unique zero at = 0 of ordera, then preconditioned
matrix

-1
[4804] Ant@

has eigenvalues if0, A], A being the maximum of the function a. In additidime
lower bound is tight in the sense that the smallest eigenvalue

A ([A;’Qd]_l A,,(a))

of the first preconditioned matrix tends to zero as n tends to infinity. In particular we
have

a=O0(h|%). h=(h1ha ... he). hj=@n;+D7"
The same is true if the unique zero is located elsewhere.

Therefore, ifa has zeros, ther{nA;’Qd}n cannot be a good preconditioner for
{A,(a)}, according to points 1.a and 1.b in Section 2.1.

6. General resultson distribution and clustering

The aim of this section is to give general results on distribution and clustering for

the matrix sequencest’ (a)}, {Ag/?-d}' and{Pn—lA,,(a)}. First we consider the case

wherea is (at least) continuous and then the case whésenot.
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Lemma6.1l. LetAY(a) be the symmetrical scaling of the matrix related to the prob-

lem (1) or (2) as in Lemmab.1. LetA(z',?_d be the multilevel Toeplitz matrix defined
asA,(1). If ais continuousstrictly positive ando, is its modulus of continuity and
J= (1, j2, -y ja), i = (i1, 12, ..., iq), then we find that

(A(@))iizj = (A5 Diitj + O@a(ll]l00))

for j < k-e' (and where the meaning &f is in the sense of the partial ordering

of RY ande™ = (1, ..., 1)). If a is nonnegative with m isolated zerdken for any

positivee there exist matriceﬁ,(ll), .. D(’”) D,(/) D(j)(e) having rank bounded

by N (n) such thatA** (a) = A*(a) — (D,S” 4.+ D) and
(AT (@)iixj = (A5 Diitj + O@a (o))
for j < ke'.

Proof. Forj =0 we find(A}(a));; = (AZk 2ii- Forj # 0, each elemertd); ;+;
is a finite sum (at mosik terms) of evaluations a in close points (their distance

is bounded bk || l%]lco) Multiplied by valuesb,(k’j) whose sum over the indices

tis exactly(Ag,?;d)i,iij (see Eg. (5)). Now the result follows from the definition of
A} (a). Whena is nonnegative having exactty zeros, the proof can be performed
as in Theorem 4.2 of [25]. O

With the help of the preceding lemma, we can prove the following theorem.

Theorem 6.1. Let A% (a) be the matrix related to probleigl) or (2) symmetrically

scaled asin Lemmal andA(z’,?d be the multilevel Toeplitz matrix defined 4s(1).
If a is continuous and strictly positive ang, is its modulus of continuitythen we
have

|45@ — 45,1, = Nm)O@{ (I1hll))
with p € [1, c0) and

[45(@ = 4504 | 00 = O@allihle)).

Ifais nonnegative with m isolated zerdken for any positive there exists a matrix
D, = D + - + D™ having rank bounded bg/N(n) (DY = DY () asinthe
previous Iemm)asuch thatd’*(a) = A} (a) — (D,ﬁl) +. 4 D,(,m)) and

| 457 @) — 45),1% , = NmOW@E (Ihll))
with p € [1, o0) and

| A5 (@) — 45 || oo = O@a(llitllo0)).
Here the constants hidden in thbig O” terms can depend an
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Proof. Itis a simple consequence of the preceding Lemma 6.1 of the bandedness of
all the involved matrices. [

Remark 6.1. The latter result, in view of Theorem 4.4, tells us thaf (a)}, and
{Ag}();d},, are ED in the sense of the eigenvalug$() andAg,?;d are symmetric). But

Ag,i;d is the Toeplitz matrix generated @le ajz." (2 — 2 cogx;))* and therefore, by

taking into account the ergodic theorem, Theorem 3.1, we have

N(n)

i 1 (n)
1 d
- 2k k
- [Zﬂ]d /(—71,77)(1 F (; aj (2 - 2CO$X[)) ) dx (24)

with xf"), i =1,2, ..., N(n), being the eigenvalues df’(a).

Remark 6.2. Ford = 1, Widom has proven a second-order result [39] for the ei-
gen/singular values of Toeplitz matrices generated by symbols in the Krein algebra
o of all the essential bounded functions ovet (—x, 7) whose Fourier coeffi-
cients{r;} are such tha} ", |k||Tx|% < oo. More specifically the quoted result is the
following:

1¢ ) _i/ o
n;mm o ), F(f(x)dx = O(m™

—7,7T)

with Aﬁ”), i=12...,n, being the eigenvalues &, (f), f € # andF regular
enough. We now remark that all the trigonometric polynomials are in the Krein al-
gebra and that (by Theorem 6.1)

|A5(@) — 45 | 1 < nO@a (1))
whena is positive and continuous. Thereforeaifs also Lipschitz continuous, we
deduce thaflA%(a) — Ag}() lls.1 = O(1) so that the application of Theorem 4.3 tells

us that{A} (a)}, and{A(z',?}n are SED. Finally, the combination of the Widom result
with the SED property yields the following relation:

—7,7T)

1< 1
Sy Fe - oo [ Fu@-2e080)ds =0
n ) 27'[ (

with xf"), i=12,...,n, being the eigenvalues df’ (a).

Remark 6.3. Through Remarks 5.1 and 5.2, we know tl{mg);d},, is distributed
as the polynomiaf (x) = Zf’zl afk(z — 2 cogx;))¥, has no sub-cluster points (reg-
ularity), and is properly bounded. Nof? (a)}, and{A(z’Zd}n are ED by Remark
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6.1 and therefore the sequer{a:eA(z’,‘c);d)}n has no sub-cluster points (regularity) and
is essentially bounded (properly boundea if strictly positive). Therefore parts 3
and 4 of Theorem 4.2 imply th&#\* (a)}, and{A;’,?;d}n are EL ance-EL.

Theorem 6.2. If a € C([0, 1]%) and has a unique isolated zerthen all the ei-
genvalues of the preconditioned matlﬁ}{lA,,(a) lie in (1 —¢,14 €) exceptNg
outliers withNg = Ny(n, €) = o(N (n)) (weak clustering properjy

Proof. In the light of Lemma 5.1, we can analyze the spectrum of the matrix
[Ag}{);d]*lA;i(a). Moreover, by the preceding theorem, we find that for argnd
n large enough, we deduce that

rank(A**(a) — A*(a)) < eN(n)

and [|A}*(a) — Ag;();dlls,oo = 0(1). Finally, in the light of Theorem 5.3, the eigen-
values ofA(Z’,?;d behave as the sampling of a sparsely vanishing function. Therefore,

by settingA,, = A} (a) andB,, = A(Z};c)-d' the hypotheses of Lemma 4.4 and Remark

4.7 are fulfilled and, consequently, we have that

-1 (n) -1 *
P LA, (a) ~ [AZk;d] A¥(a)
n
has a weak clustered spectrum both with regard to the singular values and to the
eigenvalues. O

Moreover, it is worth pointing out that Egs. (1) and (2) impose thatC9, ¢ =
llklloo @and so it seems that a refined analysis is just an academic exercise. How-
ever, when we consider the “weak formulation” [11], problem (1) is transformed
into an integral problem. Therefore, in this sense, the given analysis becomes again
meaningful.

We are able to prove something more concerning this fact. From the Lusin The-
orem, we know that it is possible to approximate L°°(K) (with compact K),
by a family c¢. € C(K) with respect to the topology induced by the convergence
in measure. This result is used to prove that the preconditioned matrix sequence
{P,;lAn(a)}n is clustered at one with being justL®°.

Theorem 6.3. LetA} (a) be the matrix related to probleiil) symmetrically scaled

as in Lemmdb.1 and A(z’}() be the Toeplitz matrix defined &s, (1) with d = 1. Here

the coefficients:(x;) should be replaced by the mean value on the intefvat

[x;, x;+1] in the sense that(x;) meang(n + 1) '/Ii a(t).

e If a € L* is nonnegative and sparsely vanishirthen we find that there exist
matricesD,, havingo(n) rank such that

|45@) — 45 = Da§, = 0m)
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and

|A% @) — 45 — D, = 0o().

”S,oo
In addition the number of outliers c{an—lAn (a)}, is genericallyo(n).

e If a is not sparsely vanishinghen A, (a) and P, may fail to be invertible or
{Pn—lAn (a)}, may not have clustered eigenvalues.

Proof. In view of the Lusin Theorem [23], for any positi¥g we find a continuous
functionc = ¢, such thata differs fromc only in ane measure set and is bounded
in infinity norm by ||a||«. In addition, sincea is sparsely vanishing, it follows that
{ce)e is such that

m{x €[0,1]: |cc| <€} - 0 fore — 0.
On the other hand, we may replacevith maxc, ¢} to avoid the possibility that
takes nonpositive values. Naty, (@) = A, (¢) + (A, (a) — A, (c)) and so

Aj(a) = Ar(c)+ X1+ X2+ X3,

where
X1=Dyd*Ana — D, 5%,
Xz = (D;,i/z— *1/2) An©) Dy g%,
Xa= D, %400 (Ddl® - Di).

Clearly, in view of the preceding results, we hadg(c) = Aéﬁ) + O(w.(n™ 1) +
DD,, whereDD,, has d@n) rank and is due to the presence of zeros. On the other
hand, since — ¢ # 0 only in a set of measukeandc is bounded, it follows that is
anL! approximation ofain the sense thaaz — cll;1 < €2||alloo. From this, we can
deduce thati,, (a — ¢) is a matrix which can be written as the sum of two matrices,
the first of rank @n) and the second of small norm (this is evident and trivial when
the set{x : a(x) # c¢(x)} is made up of a finite number of intervals). Actually, the
key point is the remark that

D olai —cil=) (n+1) V a(t) = c(r) dr +o(1>’
i=1 i=1 I

<m+n</mm—amw+mb>
<dellalloo(n +1).

Sincee can be chosen arbitrarily small, it is evident that— ¢;| < € with the ex-
ception of, at mosiy (¢)n indices witha (¢) infinitesimal as. Therefore there exist
nonnegative functions; (¢), i = 1, 2, 3, 4, such thaty; (¢) goes to zero as goes to
zero and such that
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fl. |(Dn.a — Dn.o)iil < € except, at mosty1(e)n positions where the distance is
bounded.

f2. |(D,Zi/2 — D, /2), /| < € except, at mosty2(¢)n positions.

3. (A, (a — c))l,]| < € except, at mostes(e)n positions where the considered
guantity is bounded.

f4. (D,, i/ 2)” and(D,,, i/ 2),-71- bounded by a fixed constant, except for, asymptotical-
ly, as(e)n positions (due to the fact thatis sparsely vanishing antlis chosen
sothatm{x € [0,1] : a # ¢} < €).

-1

In other words, by taking into account the crucial information that all the involved
matrices are banded, we deduce that

A¥(a) = A} (c) + LN (n) + LR(n), (25)

where||LN (n)|s.c0 < € and rankKL R(n)) < h(e)n with lim._,oh(e) = 0.

From this, settind>, = DD, + L R(n) and owing to the bandedness of all the in-
volved matrices, we find thajtd (a) — A(z’i) - D, ||§’,p = o(n) and|| A} (a) — Ag}() -
Dylls.0o = 0(1). To conclude, recall thaP, 1A, (a) is similar to [A(z’,?]—lA:(a).
Moreover, in the light of Theorem 5.3 the matmg,'() has positive eigenvalues that
can be seen, roughly speaking, as a sampling of the continuous sparsely vanishing
function Z* sin’(x/2) (compare (22)) over an equispaced mesh. The weak cluster
of the singular values of, (a) = Pn_lA,,(a) now follows from Lemma 4.4. Since
Z,(a) is symmetrizable and all its eigenvalues are positive, we infer the weak cluster
of the eigenvalues at 1 of the eigenvalue¥gfa) (see Remark 4.7).

Finally, if ais not sparsely vanishing, thet), (a) and P, (a) may fail to be invert-
ible (for instance ifais identically zero in an intervdk, t], s < t) and the algebraic
problem and the differential one may fail to have solutiori]

The interesting fact in the proof of the preceding result is that it can be generalized
in a very natural and simple way even in the multidimensional case.

Theorem 6.4. Let A} (a) be the symmetrical scaling of the matrix related to prob-

lem (2) as in Lemmab.1 and with Dirichlet boundary conditions. Lelg,l( be the

Toeplitz matrix defined a4, (1). Here each coefficient(x;) should be replaced by

the mean valu&v (n + e) f,i a(t)dt.

e If a € L™ is nonnegative and sparsely vanishjrthben we find that there exist
matricesD,, havingo(N (n)) rank such that

|A5(@) = 4504 = Dall§ , = 0N ()
and
|A%(@) — 45, —

n HS,oo = 0o(1).

In addition, the number of outliers C{an_lAn(a)},, is genericallyo(N (n)).
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e If a is not sparsely vanishinghen A, (a) and P,(a) may fail to be invertible or
{P”‘lAn (a)}, may not have clustered eigenvalues.

Remark 6.4. If ais L1, then the Lusin approximatian of ais replaced by a non-
negative polynomial being ah® approximation ofa (this is possible sincg0, 1]

has finite measure). Now the proof of Theorem 6.3 is substantially unchanged ex-
cept for the item [f1] which is replaced by “[f1¥{[(D, . — Dn.c)i.il < € except, at

most, a1(¢) N (n) positions (where the distance is not necessarily bounded)” and
for the item [f3] which is replaced by “[f3*](A,(a — ¢));,j| < € except, at most,
az(e)N(n) positions (where the considered quantity is not necessarily bounded)”.
We notice that this slight change does not spoil the proof because in the expression
of A¥(a) in Eq. (25) we have to add two other terms of “small” rank.

Finally, if a € Llloc(Q) that is the restriction ofito any compact sek C Q (Q s
open) belongs td., then the proof and the statements of Theorems 6.3 and 6.4 still
work with a bit different definition of the coefficient matrix,, (a). More precisely

the symbok (x;) will denote

d
N(n+e) | aM)dt, I;= l_[[xjiaxj,-+l]v Xji41—Xj; =hi, xj; =hiji,
Ij i=1

if 1; N0Q =@ and is 1 otherwise. In fact, we point out that the 5eis a compact
set and is contained i? if 7; N 0Q = # so that the integral appearing above makes
sense.

Remark 6.5. By Theorems 6.3 and 6.4 and by using the same arguments as in
Remarks 6.1 and 6.3, we deduce th&f (a)}, and{Ag}{);d}n are ED, EL anda-EL.

6.1. Some computational remarks

In a sequential model of computation, system (3) can be solved directly and with
an optimal cost by using very classic band solvers [18]. Here the optimality is with
respect to the dimensionbecause these methods requira Carithmetic operations
and the matriced, (a) are defined by Q:) parameters. However, if we consider the
dependence on the bandwidth in the asymptotic cost, that is, the dependdnce on
then we remark that the Golub band solvers [18] based on the Gaussian elimination
have a quadratic cost with respectkoSo, by taking into account the parameter
k, there exist methods which are much more convenient. More specifically, we ap-
proximated{A,(a)}, by the matrix sequencgP,}, defined in (4). Therefore, up
to the operations involving the diagonal matrideg, the computation is reduced
to a band Toeplitz computation. The following very fast methods can be applied to
banded Toeplitz structures:
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e multigrid methods requiring @k) ops and @Qogn) parallel steps with Q:k)
processors in the parallel PRAM model [22] of computation [14,15] (linear de-
pendence oR);

e a recursive displacement-rank [20]-based technique requirindo@k —+ k log?

(k) log(n)) ops (logarithmic dependence &in the Q(n) term) and Qlogn) par-
allel steps with @Qnk) processors [6].

Clearly, in order to obtain the total computational cost, the quoted costs have to be

multiplied by the number of iterations which is constant with respect &b least

whena is positive (see Theorem 5.1), and added to the cost of few matrix—vector
multiplications (recall the PCG algorithm [1]). The overall cost is ¢gh@®gk) ops

and Qlogn) steps with @nk) processors in the PRAM model of computation.
Moreover, with special attention to the parallel model of computation, in [17,25]

two matrix-algebra parallel strategies have been proposed. The first two strategies are

based on the possibility of expressing these Toeplitz matrices as low-rank corrections
of matrices belonging to some matrix algebras, such as the circulantgl§k2] and

the 7, class [5]. These decompositions suggest the use of the Sherman—Morrison—

Woodbury [18] (SMW) formula to obtain an efficient computation of the solution of

the considered system (I8gn + log® k) parallel steps with @1 + k3) processors).

In conclusion, in [25] and wheais regular enough, we have reduced the asymp-
totic cost of these band systems to the cost of the band-Toeplitz systems for which the
recent literature provides very sophisticated algorithms [6,14,15]. Here we extended
this result to the case wheads not smooth.

When we consider 2D differential operators such as

» 0 or p O o’ 26
(=) ax—P (a(x, y)ax—p> + (=) ay_p <a(x, y)ay—l’> ) (26)
we construct the preconditioner the same way as in the scalar case (see Section 2.2).

In general, the matrixI(Z”)_2 discretizing operator (26) is a double-banded matrix
with external bandwidth é +1 (pis the order of the operator with respectyip
and internal bandwidth 2+ 1 (p is the order of the operator with regardXpand
its generating function is nonnegative and has only one zefo,in) = (0, 0) [24].
Therefore, as in the scalar case we can “correct” Wj ., in two different block
matrix algebras: namely the block circulant class, and the block algebraz, ,

[5].

Consequently, by using the SMW formula and recalling that the computational
cost of a bidimensional discrete Fourier or sine transform(is’@gn) arithmetic
operations and @ogn) parallel steps, we have to perfornil@yn)+O(log? n) par-
allel steps where the term(f@g? n) is due to the inversion of the “smaller” matrix
in the SMW formula.

As observed in [17], the best idea in the block case is the use of an algebraic
multigrid method; in [15] it is shown that, in practice, the cost of the solution of
Ag;,); X=Dhis O(n?) arithmetic operations and(@gn) parallel steps (a formal proof
of convergence within a constant number of iterations can be found in [33]).
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7. Numerical experiments

We restrict our attention to the irregular case for the presentation of the numer-
ical experiments since the case where the coeffi@datcontinuous (or piecewise
continuous) has been tested extensively in [25,27,30].

We consider problems id dimensions withd < 2. Ford = 1 the choice of the
coefficienta varies among the following:
lax)=a1(x) = [x_l/2—| for x € (0, 1] and 1 forx = 0;

2. a(x) = ax(x) = [x71] /(1 + [x17%) for x € (0, 1] and 1 forx = 0;
3. a(x) = az(x) = xaz(x).

All these functions have an infinite but countable number of discontinuity points.
The first belongs taLl\LOO, while ap andas belong toL.*°. The functions:; andaz
are essentially positive whiles essentially vanishes at= 0 and is sparsely vanish-
ing. In Table 2, we report the number of PCG iterations, wheee{500+ ;100:

Jj =0,...,5}. The test functions are listed in the first column and the precondi-
tioners are given in the heading. We show the number of PCG iterations in each row
when the data vector is made up by all ones.

In Table 3, we give the number of outliers with respect to a cluster at 1 with
radius 01, namely, we count the numbéf, of eigenvalues oiP,;lAn (a) forn =
150, 300, 600 not belonging tq0.9, 1.1). The numberN, is written asNy(+) +
No(—), where No(—) counts those outliers less tharBGnd No(+) counts those
outliers bigger than 1.

Some remarks are needed:

e Concerning Table 2, we observe that the number of PCG iterations is constant
when the preconditioner m;’,?d or P, and the functional coefficiers is strict-

ly positive and bounded. This independence with regard folly agrees with

the spectral clustering theorems proved in this paper and with the spectral anal-

ysis of {(A(”)d)‘lAn(a)},l given in [27]. Notice that the simple preconditioner

D, , is never good sincé(Dy )~ 1A, (a)}, distributes as{Aék 4)n" 10 see this

notice (D,,.4) A, (a) is similar A*(a) and then refer to Remark 6.1. Now for
any neighborhood. = (0, €) with ¢ > 0 we observe tha(tAg,?;d}n shows @./en)
eigenvalues belonging th (see Theorem 5.3 and the subsequent linear algebra
proof). In the light of the convergence analysis reported in [1], we know that the
number of iterations is substantially equal to the dimension of the matrix and this
is evident from Table 2.

e When zero belongs to the essential ranga of a is unbounded, it is immediate
to observe that the only working preconditioneiPjs Also this result agrees with
the theoretical expectations of this paper. In this case, as shown in Table 3, the
number of outlying eigenvalues grows very slowly (only logarithmicallpeasnd
this behavior is much better when compared with the theoretical results. Regarding

the preconditioneﬂé’,?. 4 itis worthwhile observing that the case wherleas zeros
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Table 2
PCG iterations: case € [500,1000,d = 1
a(x) D A P
ay(x), n =500 500 17 11
n = 600 600 18 12
n =700 700 19 13
n = 800 800 20 14
n =900 900 20 14
n = 1000 1000 21 14
az(x), n =500 500 9 9
n = 600 600 9 9
n =700 700 9 9
n = 800 800 9 10
n =900 900 9 10
n = 1000 1000 10 10
az(x), n =500 500 115 10
n = 600 600 126 11
n =700 700 136 11
n = 800 800 146 11
n = 900 900 155 12
n = 1000 1000 164 12
Table 3
Quitliers: case = 150, 300,600,d = 1, P,
a(x) n =150 n =300 n =600
ai(x) 442 5+3 6+4
az(x) 2+1 2+2 3+2
az(x) 143 2+4 2+5

is much worse when compared to the casa ahbounded: this is in accordance
with the analysis of Axelsson and Lindskog [1] that showed that “small” outliers
slow down the convergence much more than “big” outliers.

o If ais essentially positive, then the presence of a countable (infinite) number of
jumps ofa does not spoil the performances of the associated PCG methods when
A(Z’,?;d or P, are used as preconditioners according to the results of Theorems 5.1
and 6.3. Finally, notice the similarity of these results with respect to the case where
ais smooth [25].

Ford = 2 the choice o# is the following:

1 oa(x,y) = ai(x, y) = a1(x) + a1(y);
2. a(x,y) = az(x, y) = a2(x) + az(y);
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Table 4
PCG iterations: case= 10?2, 202, 302, d = 2
a(x,y) D A p
ar(x,y), n=10 27 9 6
n = 20% 53 12 7
n = 302 79 13 8
as(x,y), n= 107 27 5
n = 20% 53 6
n = 302 80 5
az(x,y), n=10? 29 18 5
n =202 57 26 6
n =302 88 32 6
as(x,y), n=107 30 12 6
n = 20° 59 15 8
n = 30° 95 17 9
Table 5
Outliers: case = 102, 202, 30%,d = 2, P,
a(x,y) n =107 n =207 n = 302
ay(x,y) 1 8+2 14+1
az(x,y) 0 3 0
az(x,y) 0 1 0
ag(x,y) 4 10+ 4 15+ 3

3.a(x,y) =a3x,y) = (x + y)az(x, y);
4. a(x,y) = aa(x, y) = explaz(x))ar(y) + y.

All these functions have an infinite but countable number of discontinuity points.
The first and the fourth belong to!\ L>°, while a» andaz belong toL>°. The func-
tionsas, ap anday are essentially positive whiles essentially vanishes &t, y) =
(0, 0) and is sparsely vanishing. In Table 4, we report the number of PCG iterations,
wheren € {(j10)? : j = 1, 2, 3}. The test functions are listed in the first column
and the preconditioners are given in the heading. In each row, we show the number
of PCG iterations when the data vector is made up by all ones.

In Table 5, we give the number of outliers with respect to a cluster at 1 with radius
0.1, namely, we count the number of eigenvalueB,pfAn (a) forn = 100, 400, 900
not belonging t0(0.9, 1.1). The numberN, is written asNy(+) + No(—), where
No(—) andNy(+) have the same meaning as before.
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We remark that the behavior of the PCG method in the two-dimensional case is
not substantially different from the unidimensional case.

e Concerning Table 4, we observe that the number of PCG iterations is constant
when the preconditioner is(z’}c);d or P, and the functional coefficierst is strictly
positive and bounded that is for= az(x, y).

e When zero belongs to the essential ranga of a is unbounded, the only working
preconditioner isP,. In this case, as shown in Table 5, the number of outlying
eigenvalues grows very slowly (only logarithmically asand this behavior is
much better when compared with the theoretical results.

e If ais essentially positive, then the presence of a countable (infinite) number of
jumps ofa does not spoil the performances of the associated PCG methods when

A(Z’,?d or P, are used as preconditioners according to the results of Theorems 5.1
and 6.4. Finally, notice the similarity of these results with respect to the case where
ais smooth [25].

8. Conclusiveremarks

To conclude, in this paper, we have introduced new tools in order to study the
spectral behavior of matrix-sequences. As a case study we have discussed the as-
ymptotical distributional properties of the spectra of Toeplitz-based preconditioned
matrix-sequences under the assumptions that the functional coeffidenbt reg-
ular and the differential problems are of the form (1) or (2). We have proved that the
general clustering of the spectra still holds in the irregular and multilevel case. More-
over, the results indicate that a possible deterioration of the convergence properties
of the associated PCG methods occurs when the funatismot strictly positive.
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