improvement in the prediction of pulmonary function loss using fMLD as opposed to MLD.

<table>
<thead>
<tr>
<th>Lung function</th>
<th>Physical dose</th>
<th>Functional dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>(95% conf. interval)</td>
<td>D25 (Gy)</td>
<td>Y0</td>
</tr>
<tr>
<td>FVC</td>
<td>20.5 (17.7-26.6) 1.01 (0.59-1.60)</td>
<td>19.8 (15.5-27.2) 0.83 (0.46-1.32)</td>
</tr>
<tr>
<td>FEV1</td>
<td>19.1 (14.3-25.5) 0.55 (0.14-1.06)</td>
<td>17.6 (13.3-30.7) 0.51 (0.18-0.89)</td>
</tr>
</tbody>
</table>

Conclusion: Reduction in lung function, measured by spirometry, can be predicted by functional as well as physical lung dose, but no statistically significant difference in their predictive ability was observed in these patients. The actual biological impact of radiation on normal lung tissue might be underestimated in spirometry data (as well in patient/oncologist reported outcomes) since a significant fraction of the patients actually observe an improved lung function during treatment. This improvement is likely related to re-ventilation of obstructed airways due to tumour regression, which could mask underlying radiation damage. Another possibility is that regional ventilation may vary over a course of treatment. Analysis of 4D cone beam CT scans during treatment, and of post-treatment radiographic changes in follow-up CT scans may help untangle these “competing” effects.

Proffered Papers: Selected randomised trials

OC-0479

Neoadjuvant chemoradiation for fixed cT3 or cT4 rectal cancer: results of a phase III study

K. Bujko1, L. Wyrwicz1, A. Rutkowski1, M. Malinowska1, L. Pietrzak1, J. Kryński1, W. Michałski1, W. Polkowski1, R. Styliński1, R. Wierzbicki1, M. Jankiewicz1, B. Ciseli1, M. Bebenek1, A. Maciejczyk1, T. Lesniak1, J. Zygułska1, W. Zegerski1, M. Las1, Ł. Kołodziejski1, A. Radkowski1, B. Czeremuzynska1, L. Kępka1, Z. Točzko1, A. Danek1, W. Markiewicz2

1The Maria Skłodowska-Curie Memorial Cancer Center, Department of Radiotherapy I, Warsaw, Poland
2Medical University, Department of Surgical Oncology, Lublin, Poland
3Medical University, 1st Department of General Surgery-Transplantology and Nutritional Therapy, Lublin, Poland
4MSW Hospital, Department of Surgery, Lublin, Poland
5Medical University and St John's Cancer Centre, Department of Surgical Oncology, Lublin, Poland
6Silesian Oncological Centre, Department of Surgery, Wroclaw, Poland
7Silesian Oncological Centre, Department of Radiotherapy, Wroclaw, Poland
8Bekid Centre of Oncology, Department of Surgery, Bielsko Biala, Poland
9Oncology Centre, Department of Oncological Surgery, Bydgoszcz, Poland
10Oncology Centre, Department of Oncological Surgery, Bydgoszcz, Poland
11Regional Cancer Centre, Department of Surgery, Tarnow, Poland
12Regional Cancer Centre, Department of Radiotherapy, Tarnow, Poland
13Wałbrzysko-Mazurskie Centre of Oncology, Department of Medical Oncology, Olsztyn, Poland
14Wałbrzysko-Mazurskie Centre of Oncology, Department of Radiotherapy, Olsztyn, Poland
15Regional Hospital, Department of Surgery, Elblag, Poland
16The Maria Skłodowska-Curie Memorial Cancer Center, Department of Radiotherapy I, Warsaw, Poland
17Regional Cancer Centre, Department of Surgery, Bialystok, Poland
18Regional Cancer Centre, Department of Surgery, Tarnow, Poland
19Regional Cancer Centre, Department of Radiotherapy, Tarnow, Poland
20Regional Hospital, Department of Surgery, Elblag, Poland
21The Maria Skłodowska-Curie Memorial Cancer Center, Department of Radiotherapy I, Warsaw, Poland
22Regional Cancer Centre, Department of Surgery, Bialystok, Poland

Purpose or Objective: The study tested whether preoperative 5x5 Gy and consolidation chemotherapy is more locally efficacious than standard neoadjuvant chemoradiation in "unresectable" rectal cancer.

Material and Methods: Patients with fixed cT3 or cT4 cancer without distant metastases were randomized either to 5x5 Gy and 3 cycles of FOLFOX4 after one week rest (experimental group) or to 50.4 Gy delivered in 28 fractions given simultaneously with two 5-day cycles of 5-Fu 325 mg/m2/day and leucovorin 20 mg/m2/day in bolus during the first and fifth week of irradiation; 5 one-day infusions of oxaliplatin 50 mg/m2 were given once a week at 1, 8, 15, 22, and 29 days of irradiation. 3 cycles of FOLFOX were chosen to keep overall neoadjuvant treatment time similar in the two groups. Postoperative chemotherapy in both groups was optional. For the second study part, because of the new publications, oxaliplatin was delivered to the two groups at the discretion of the participating centre. Both randomized groups underwent surgery about 12 weeks after starting irradiation and about 6-7 weeks after completing neoadjuvant treatment.

Results: 541 patients were randomised and 515 were eligible for analysis; 261 in the experimental group and 254 in the control group of whom pelvic MR at baseline was respectively performed in 66% and 65% of patients. Oxaliplatin was given preoperatively to 70% of patients in the experimental group and to 66% in the control group, p=0.40. The incidence and severity of the neoadjuvant treatment acute toxicity was lower in the experimental group than in the control group, p=0.005; the overall toxicity rate being respectively 75% vs. 83%, grade III-IV 23% vs. 21% and toxic deaths 1% vs. 3%. The postoperative complications rate was 29% of patients in the experimental group and 25% in the control group, p=0.18. R0 resection rates (primary endpoint) and pathological complete response rates were respectively in the experimental group and in the control group 77% vs. 71% (p=0.081) and 16% vs. 12% (p=0.17). Median follow-up was 35 months. At 3 years, rates of overall survival and disease-free survival were respectively in the experimental group and in the control group 73% vs. 64.5% p=0.055 and 54% vs. 52%, p=0.69. At 3 years, cumulative incidence of local failure and cumulative incidence of distant metastases were respectively 22% vs. 21%, p=0.82 and 30% vs. 27%, p=0.26. The incidence and
Five-year clinical outcome of the Phase III ACCORD 12 neoadjuvant trial in rectal cancer

1Centre Antoine Lacassagne, Radiotherapy, Nice, France
2ICM, Biostatistiques, Montpellier, France
3ICM, Radiotherapy, Montpellier, France
4Centre Léon Bérard, Radiotherapy Lyon, France
5CHU St Louis AP-HP, Radiotherapy, Paris, France
6CHU Bordeaux, Radiotherapy, Bordeaux, France
7ICL, Radiotherapy, St Etienne, France
8Centre Alexis Vautrin, Oncology, Nancy-Vandoeuvre, France

Purpose or Objective: The aim of the ACCORD 12 trial was to compare two different regimens of neoadjuvant chemoradiotherapy (nCRT). No significant difference has been found in main end point (pCR rate). At 3 years there was no significant difference for local control and survival. We report the 5 years outcome.

Material and Methods: Between 11/2005 - 07/2008, 598 pts randomized. Inclusion criteria: adenocarcinoma, distal-middle rectum, T4, anterior-distal T2 staged using MRI and/or endorectal US. Treatment : CAP 45 : radiotherapy (RT) 45 Gy/25 fr/5 weeks with concurrent capectabinat (800 mg/m² BiD) vs CAPOX 50 : RT 50 Gy/25 fr/5 weeks with Capectabinate (same) and weekly oxaliplatin (50 mg/m²). A TME surgery was performed after 6 weeks interval. Adjutant chemotherapy was left to each institution.

Results: Median follow-up time was 60 months with 299 pts in each group. In intent to treat analysis main results are shown in table. In 31 pts T4 confounded the local relapse rate was 11.3%(3.8-31.5). A clinical CR in 24 pts was associated with 81% DFS (p<0.0001) and Sphincter saving or organ preservation in 23. Adjutant chemotherapy was given in 253 pts.

OC-0481

Late toxicity and cosmesis after APBI with brachytherapy vs WBI: 5-year results of phase II trial

C. Polgar1, V. Stumf1, O. Ott2, G. Hildebrandt3, D. Kauer-Dorner, H. Knauerhase4, T. Major5, J. Lyczek6, J. Guinot7, J. Gall8, J. Major1, J. Dunst4, C. Gutierrez Miguel2, P. Stampa3, M. Allgäuer2, K. Lössl12, B. Polat11, G. Kovács2, A. Fischdeich1, T. Wendt16, M. Hindemith1, A. Resch1, P. Niehoff7, F. Guede17, P. Rötter6, C. Gali1, W. Utter12
1National Institute of Oncology, Center of Radiotherapy, Budapest, Hungary
2University Hospital Erlangen, Department of Radiation Oncology, Erlangen, Germany
3University Hospital Leipzig, Department of Radiation Oncology, Leipzig, Germany
4University Hospital AKH, Department of Radiation Oncology, Wien, Austria
5University Hospital Rostock, Department of Radiation Oncology, Rostock, Germany
6Instytut Im Marii Sklodowskiej-Centrum Onkologii, Brachytherapy Department, Warsaw, Poland
7Valencian Institute of Oncology, Department of Radiation Oncology, Valencia, Spain
8University Hospital Kiel, Department of Radiation Oncology, Kiel, Germany
9Catalan Institute of Oncology, Department of Radiation Oncology, Barcelona, Spain
10Masaryk Memorial Cancer Institute, Department of Radiation Oncology, Brno, Czech Republic
11Hospital Barmherzige Brüder Regensburg, Department of Radiation Oncology, Regensburg, Germany
12University Hospital Bern, Department of Radiation Oncology, Inselspital, Switzerland
13University Hospital Würzburg, Department of Radiation Oncology, Würzburg, Germany
14University of Lübeck - UKHS Campus Lübeck, Interdisciplinary Brachytherapy Unit, Lübeck, Germany
15Clemens Hospital Münster, Department of Radiation Oncology, Münster, Germany
16University Hospital Jena, Department of Radiation Oncology, Jena, Germany
17University Erlangen-Nuremberg, Department of Medical Informatics, Erlangen, Germany

Purpose or Objective: The 5-year local control and survival results of the GEC-ESTRO multicentric accelerated partial breast irradiation (APBI) trial have been reported recently. In this analysis we report the 5-year late toxicity and cosmetic results of patients treated with APBI using interstitial brachytherapy (iBT) compared to those who underwent standard whole breast irradiation (WBI) with a tumour bed boost.

Material and Methods: Between April 2004 and July 2009, 1184 patients aged>40 years with stage 0, I and II breast cancer who underwent breast conserving surgery (BCS) were randomly assigned to receive either 50 Gy WBI with tumour bed boost of 10 Gy or APBI using HDR/PDR iBT. Among these, 5-year follow-up records on late toxicities and cosmetic results were available at 969 patients (82%). Five-year prevalences of toxicities graded by the RTOG/EORTC late radiation morbidity scoring scheme were compared using the Fisher’s exact test. The cosmetic results were scored by the patients and treating radiation oncologists using the four-scale (excellent-good-fair-poor) Harvard criteria. The trial is registered with ClinicalTrials.gov, NCT00402519.

Results: There were no grade 4 toxicities. The cumulative incidence of grade (G) 2-3 late skin toxicity at 5 years was 5.7% in the WBI group versus 3.2% in the APBI group (p<0.08), difference: -2.4% (95% CI: -5 - 0.2%). Concerning G2-3 late subcutaneous tissue side effects at 5 years the cumulative risk was 6.3% in the WBI group versus 7.6% in the APBI group (p<0.53), difference: 1.3% (95% CI: -4.9 - 5.5%). The cumulative incidence of severe (G3) fibrosis at 5 years was 0.2% in the WBI group and 0% in the APBI group (p<0.46), difference: -0.2% (95% CI: -0.6 - 0.2%). The cumulative incidence of G2-3 breast pain was low in both arms (3.2%