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The acoustic scattering operator on the real line is mapped to a Schro� dinger
operator under the Liouville transformation. The potentials in the image are
characterized precisely in terms of their scattering data, and the inverse transfor-
mation is obtained as a simple, linear quadrature. An existence theorem for the
associated Harry Dym flows is proved, using the scattering method. The scattering
problem associated with the Camassa�Holm flows on the real line is solved
explicitly for a special case, which is used to reduce a general class of such problems
to scattering problems on finite intervals. � 1998 Academic Press
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1. INTRODUCTION

In this paper we consider the forward and inverse scattering problems on
the line for operators

Lk=D2+k2\2&q, D=d�dx. (1.1)
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For \=1, (1.1) is the Schro� dinger operator and k is the wave number, or
momentum. As is well-known, the scattering data of (1.1) evolves linearly
as q evolves according to the nonlinear Korteweg�de Vries flows.

For q=0 and \ � 1 as x � \� (1.1) is the acoustic scattering problem.
In this interpretation, k is the frequency. The associated hierarchy of flows,
of which the first is

(\2)t=
1
2

D3 \1
\+ , (1.2)

were introduced by Martin Kruskal [14] and attributed to an unpublished
paper of Harry Dym.

For q=1�4 and \ � 0 at infinity, (1.1) was introduced by Camassa and
Holm [5], [6], in connection with a nonlinear shallow water model. The
Camassa�Holm equation itself,1 in the normalization determined by (1.1)
with q=1, is

(1& 1
4D2) ut=

3
2 (u2)x& 1

8 (u2
x)x& 1

4 (uuxx)x , (1.3)

\2=2(1& 1
4 D2)u.

For this equation, considered on the line, it is natural to assume that the
potential \ � 0 as |x| � �; the scattering problem on the line is therefore
singular. The case of periodic potentials has been resolved by Constantin
and McKean [7]. Camassa and Holm [5], and Camassa, Holm, and
Hyman [6] have obtained blow-up results for certain initial data and have
constructed two-soliton solutions by direct methods��that is, methods not
based on the inverse scattering technique. Constantin and Escher [8] have
proven global existence theorems for (1.3) for a large class of initial data.

The scattering problem for (1.1) when \#1 is by now well studied and
completely understood; the inverse problem can be solved by the integral
equation method of Gel'fand and Levitan [10]. In the acoustic problem,
\ � 1 as |x| � � and q=0, it is well-known that the classical Liouville
transformation takes Lk to the Schro� dinger operator [4]. The inverse
transformation from the Schro� dinger to the acoustic problem requires the
inversion of a differential equation. We show in this paper that this step
can be reduced to a simple linear quadrature. This greatly simplifies the
inversion problem.
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1 The equation itself had been obtained previously by Fuchsteiner [9] by the method of
recursion operators; but that method does not give the isospectral operator.



It is the acoustic problem, rather than the Schro� dinger equation, that is
relevant to physical applications in elasticity and reflection seismology [1],
[2], [3], [4], [16].2

Although the scattering problem for (1.1) when \ � 0 at infinity and
q#1 is a priori singular, a particular change of variables reduces it to the
Dirichlet problem

\ d 2

d!2+k2\2
1(!)+ �(!, k)=0, &1�!�1; �(\1, k)=0.

This is a density problem on a finite interval [12], [13]. A second
Liouville transformation converts this to a Schro� dinger problem on a finite
interval. Thus the inversion problem reduces to solving an inverse Sturm�
Liouville problem on a finite interval [11], [15].

2. ACOUSTIC SCATTERING

The equation

(D2+k2\2) �=0, &�<x<�, (2.1)

arises in scattering problems for the wave equation

utt&c2(x) uxx=0,

where the sound speed c is 1�\. Therefore it is natural to assume \ to be
bounded away from 0 and to have a finite limit as |x| � �. We call (2.1)
the acoustic scattering problem. We assume throughout that \ is real and
positive, while \&1 belongs to S, the Schwartz class of rapidly decaying
functions.

We begin by constructing the wave functions of (2.1), normalized at
\�, by the WKB method. We write the wave functions in the form

.+(x, k)=l+(x, k) e&ikS(x), �+(x, k)=m+(x, k) e ikS(x),

where l+ and m+ are normalized to be 1 at &� and +� respectively.
Substituting this form of the wave functions into equation (2.1), we find
that m+ satisfies the differential equation

m"+2ikS$m$+[ikS"+k2(\2&S$2)] m=0.
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2 We thank Fadil Santosa, of the University of Minnesota, for his helpful information
regarding the applied literature in acoustic scattering problems.



The term involving k2 is eliminated by requiring S(x) to satisfy the eiconal
equation

(S$)2=\2.

We take

S$(x)=\(x), S(x)=x+|
x

&�
[\( y)&1] dy.

Then

S(x)={x+o(1)
x+#+o(1)

x � &�
x � �

where

#=|
�

&�
[\( y)&1] dy.

We now have

m"+2ik\m$+ik\$m=0, m � 1 as x � �. (2.2)

The solution to this differential equation is constructed by converting it to
the Volterra integral equation

m(x, k)=1+|
�

x

e2ik( y&x)&1
2ik

(2ik(1&\) m$&ik\$m) dy

=1+|
�

x
G(x, y, k) m( y, k) dy, (2.3)

where

G(x, y, k)=2ike2ik( y&x)(\( y)&1)+ 1
2 (e2ik( y&x)&1) \$( y).

This integral equation can be solved for any k in the upper half plane
Im k�0 by the method of successive approximations, since \&1 and \$
belong to L1(R). The solution is analytic with respect to k; we denote it
by m+(x, k). We denote the Schwarz reflection of m+ to the lower half
plane by m&(x, k)=m+(x, k� ), and extend �+ to the lower half plane
accordingly:

�&(x, k)=�� +(x, k� )=m&(x, k) e&ikS(x).
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Similarly the function l& defined by

l&(x, k)=1&|
x

&�
G(x, y, k) l&( y, k) dy, (2.4)

is analytic with respect to k in the lower half plane and has a Schwarz
reflection l+(x, k) analytic in the upper half plane. We denote the corre-
sponding wave functions by

.\(x, k)=l\(x, k) e�ikS(x).

The boundary values on the real line satisfy the asymptotic conditions

lim
x � &�

e\ikS(x).\= lim
x � �

e�ikS(x)�\=1. (2.5)

Note that

l+(x, k)=l&(x, &k), m&(x, k)=m+(x, &k), k # R. (2.6)

Moreover G(x, y, 0)=0 so

l\(x, 0)=m\(x, 0)#1. (2.7)

The scattering data for the acoustic equation is defined just as it is for the
Schro� dinger equation. For real non-zero k each pair of wave functions
�\ , .\ is (generically) independent and thus constitutes a fundamental set
of solutions. Therefore

.+(x, k)=a(k) �&(x, k)+b(k) �+(x, k) (2.8)

for some functions a and b. For real k we use (2.6), the definitions of the
wave functions, and the limits, to see that (2.8) becomes

l+(x, k)ta(k)+b(k) e2ikS(x)
ta(k)+b(k) e2ik(x+#) as x � �.

In view of (2.4), (2.6) and the form of G, we obtain for real k that

a(k)=1+ 1
2 |

�

&�
\$( y) l+( y, k) dy;

(2.9)

b(k)=|
�

&�
e&2ik( y+#)[2ik(\( y)&1)& 1

2\$( y)] l+( y, k) dy.

It follows from (2.9) and (2.7) that

a(0)=1, b(0)=0. (2.10)
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The formula for a(k) in (2.9) extends to the upper half plane. We take
the Wronskian of both sides of (2.8) with �\ and obtain

a(k)=
W(.+ , �+)
W(�+ , .&)

=
W(.+ , �+)

2ik
, 0{k # R. (2.11)

In fact, taking asymptotics as x � �,

W(�& , �+)=W(e&ikS, eikS)=2ikS$t2ik=2ik\t2ik.

The expression (2.11) for a(k) also extends to the upper half plane.

Theorem 2.1. The reduced wave functions m+ , l+ are analytic in the
upper half plane, and m& , l& are analytic in the lower half plane.

The function a(k) is analytic in the upper half plane. Moreover a(0)=1
and a has no zeros.

Proof. We have proved everything but the last statement. As in the case
the Schro� dinger equation, the acoustic scattering data for real k satisfy

a(k)=a(&k), b(k)=b(&k); |a(k)| 2&|b(k)|2=1. (2.12)

Therefore a has no real zeros. According to (2.11) a zero at k in the upper
half place would correspond precisely to a bound state: an L2 wave func-
tion. This would be an eigenfunction for the operator L=\&2D2 with
eigenvalue &k2. However L is selfadjoint and negative in L2(R, \2 dx), so
it cannot have such an eigenvalue. K

We define the reflection coefficient r by

r(k)=
b(k)
a(k)

, Im k=0.

In the absence of bound states, r constitutes the complete scattering data
for the problem. In fact from (2.12) we have

|a|2=
1

1&|r|2 .

Since a is analytic in Im k{0, tends to 1 as k � �, and has no zeros, arg
a can be recovered from log |a| on the real axis by the Hilbert transform:

arg a(k)=
1
?

P.V. |
�

&�

log |a(t)|
k&t

dt.

Then log a is obtained for Im k{0 by the Cauchy integral representation.
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3. THE LIOUVILLE TRANSFORMATION

The acoustic equation may be transformed to the Schro� dinger equation
by the well-known Liouville transformation. By our assumptions, S(x) is a
monotone increasing function on the line, hence we may define a change of
variables by !=S(x). The variable ! corresponds physically to the time of
travel. By the chain rule,

d
dx

=
d!
dx

d
d!

=\
d

d!
,

d 2

dx2=\
d

d!
\

d
d!

.

To keep track of the relevant variables we define \s(!) by

\s(!)=\(x), at !=S(x).

The mapping f � f b S&1 is a unitary map from L2(R, \2 dx) to L2(R, \s d!).
It carries the negative selfadjoint operator \&2D2 to the operator

D2
!+

D! \s

\s
D! , D!=

d
d!

.

To complete the Liouville transformation we use the unitary map
f � f - \s from L2(R, \s d!) to L2(R, d!). The corresponding gauge trans-
formation (conjugation by \&1�2

s ) takes the preceding operator to the
Schro� dinger operator

D2
!&q(!), (3.1)

where

q=
1
2

D2
!\s

\s
&

1
4 \

D!\s

\s +
2

. (3.2)

Since D!=\&1 Dx=\&1D, we can also express the potential as

q(S(x))=
1
2

D\
\3 &

3
4 \

D\
\2 +

2

=
1

2\2 [!, x] (3.3)

where [!, x] denotes the Schwarzian derivative

[!, x]=
D3!
D!

&
3
2 \

D2!
D! +

2

.

We have seen that the transformation from the Schro� dinger potential q
to the associated acoustic potential \ is given by the equation (3.2),
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together with a change of variables. We show below that this transforma-
tion may be computed by a linear operation on scattering data and a
simple quadrature.

Theorem 3.1. The normalized wave functions .s, \ , �s, \ for the operator
(3.1), (3.2) are related to the wave functions for the acoustic operator by

.s, \(!)=- \(!) .\(S&1!); �s, \=- \(!) �\(S &1!). (3.4)

The scattering data (a, b) of the Schro� dinger problem is precisely that
obtained for the acoustic problem (2.1).

Proof. The relation in (3.4) simply implements the two unitary trans-
formations, change of variables and change of gauge. Therefore functions
.s, \ , �s, \ are wave functions for the operator (3.1). Moreover they have
the correct asymptotics and analyticity properties. K

Theorem 3.2. The image of the acoustic problem under the Liouville
transformation consists of all Schro� dinger operators with Schwartz class
potentials and no bound states, such that a(0)=1.

The inversion of the Liouville transformation is given by

\s(!)=�s(!, 0)2, x=!+|
!

&� \ 1
\s(!$)

&1+ d!$. (3.5)

Proof. Theorems 2.1 and 3.1 imply that operators in the range of the
Liouville transformation have no bound states and have a(0)=1. The
transformation equation (3.2) shows that the potential is of Schwartz class.
The acoustic potential \ may be recovered from the Schro� dinger potential
q as follows. By (3.4) the wave functions at k=0 are related by

�s(!, 0)=- \s(!) �(!, 0).

On the other hand we have observed that the normalized acoustic wave
functions at k=0 are identically 1. It follows that

�s(!, 0)=- \s(!).

Therefore to reconstruct the function x=x(!) from the Schro� dinger poten-
tial, we can compute �s( } , 0) and use

dx
d!

=
1

\s(!)
=

1
�s(!, 0)2 .

197EXTENDED KORTEWEG�DE VRIES HIERARCHY



Suppose, conversely, that q is a Schwartz class Schro� dinger potential
with no bound states, such that a(0)=1. Then �s( } , 0)=.s( } , 0) is real
and asymptotically 1 in each direction. We prove that �s(!, 0=ms(!, 0)
has no zeros when there are no bound states. First, note that ms

+( } , i|) is
real and converges uniformly to ms

+( } , 0) as | decreases to 0. If the latter
function had any zeros they would necessarily be simple, since ms is a solu-
tion of a second order differential equation, and therefore m s

+( } , i|) would
have zeros for small |>0. This function converges uniformly to 1 as
= � +� and the zeros remain simple, so there would be a value |>0 for
which ms

+ has limit 0 as x � �. But the corresponding � s
+ would be a

bound state. Therefore �s( } , 0) is positive.3 Because of this we can use (3.5)
to construct a change of variables and a potential \. The assumption that
q belongs to S implies that �s( } )&1 belongs to S. Therefore \&1
belongs to S. Clearly D2&q is the Liouville transform of the acoustic
operator associated to \. K

We have shown that the density \ in the time of travel coordinate ! is
obtained immediately from the Schro� dinger wave function at k=0. The
latter can be obtained directly from the Gel'fand Levitan kernel K(x, y),
since the wave functions are given by

�(!, k)=eik!+|
�

!
K(!, y) eiky dy.

4. THE HARRY DYM FLOWS

The Harry Dym flows are related to the operator L=\&2D2 exactly as
the KdV flows are to D2

!&q. They are derived from commutator condi-
tions [L, A]=0 where A is the Liouville transformation of an operator
that determines one of the KdV flows. The computation of A is rather
complicated, and seems to shed no light on the issue. It is therefore more
convenient to work with Lk=\2(L+k2) instead. Then the commutator
condition must be modified to

[Lk , A]=BLk (4.1)
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equal to the number of bound states. If there are n bound states, then by oscillation theory
ms(!, i|n) has n zeros. The number of zeros of ms is constant as | decreases from |n to zero;
so ms(!, 0) also has n zeros.



where Lk , A, B act on functions �=�(x, t, k), and Lk and A are given by:

Lk=D2+k2\2, A=&
�
�t

+ :
n

j=0

f jD j.

The coefficients fj are taken to be polynomials in k2. The significance of
(4.1) is that [L, A] vanishes on the wave functions, i.e. solutions of Lk�=0.
The conditions relating the coefficients of Lk and A may be obtained from
cross-differentiation of the pair of equations Lk�=0, A�=0.

Any operator product of the form CL may be added to A without
affecting (4.1). Therefore even powers of D may be eliminated in favor of
even powers of k, and it is enough to take n=1: A=&�t+ fD+ g. Then

[L, A]=2fxD2+( fxx+2gx) D+[k2(\2)t&k2f (\2)x]+ gxx

=( fxx+2g0) D+[k2(\2)t&k2(\2)x+ gxx&2k2\2fx]+2f1DL.

The coefficient of D must vanish, so we take

g=&1
2 fx .

Then the conditions for (4.1) become

k2(\2)t=
1
2 fxxx+k2[(\2)x f +2\2fx]

= 1
2 fxxx+2\(\f )x .

Setting

f = :
n

j=1

F jk2j,

substituting this expession into the previous identity, and comparing coef-
ficients of powers of k, we find that Fn is a constant multiple of 1�\, F0=0,
and the remaining coefficients can be determined from the recursion
relation

4\D(\Fj&1)=&D3Fj .

The flow of \ is

(\2)t=
1
2 D3F1 .

For n=1, we take F1=1�\ and obtain (1.2).
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Theorem 4.1. Under the Harry Dym flow, the scattering data a(k, t)
and b(k, t) evolve according to

a* =0, b4 =2ik3b. (4.2)

Proof. The commutator relation (4.1) implies that the kernel of L is
invariant under A; that is,

L.(x, t, k)=0 O LA.(x, t, k)=0.

The wave function

.+(x, t, k)=l+(x, t, k) e&ikS(x)
te&ikx, x � &�.

On the other hand, for the Dym equation itself,

A=&�t+
k2

\
D&

1
2

D \1
\+t&�t+k2D, x � \�.

Therefore,

A.+(x, t, k)t(&�t+k2D) e&ikx=&ik3e&ikx, x � &�.

Since the wave functions are uniquely determined by their asymptotic
behavior as x � &�, we conclude that

A.+=&ik3.+ .

Similarly, we find that

A�\=\ik3�\ , A.&=ik3.& .

Therefore, applying A to (2.8), we obtain

A.+=&ik3.+=&ik3(a�&+b�+)

=a* �&&b4 �++aA�&+bA�+

=a* �&&b4 �+&ik3a�&+ik3b�+ ;

and equations (4.2) follow immediately from the independence of �+ and
�& . K
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5. THE CAMASSA�HOLM SPECTRAL PROBLEM

We consider the operators

L=D2+k2\2&1, (5.1)

where D=d�dx, introduced by Camassa and Holm [5]. We are interested
in a singular case of (5.1): \ is positive but \ � 0 rapidly at infinity. As a
consequence, the natural normalization for the wave functions is indepen-
dent of k:

lim
x � &�

e&x.(x)=1= lim
x � +�

ex�(x). (5.2)

The Camassa�Holm equation (1.3) implies that the evolution of \2 is
given by

(\2)t=u(\2)x+2ux\2.

Under our assumption that \ is strictly positive, we have the equivalent
form,

\t=(u\)x , (4&D2) u=2\2. (5.3)

Let us assume that

|
�

&�
e2 | y|\( y)2 dy<�. (5.4)

Then, from the second equation in (5.3),

u(x)= 1
2 |

�

&�
e&2 |x& y|\( y)2 dy.

It follows that

lim
x � \�

e2 |x|u(x)=|
�

&�
e\2y\( y)2 dy. (5.5)

Therefore the evolution (5.3) is consistent with the assumption (5.4), and
with the stronger assumption \(x)=O(e&2 |x|) as |x| � �.

For reasons that will become clear, a natural class of functions \ to
consider are positive C� functions that have asymptotic expansions

\(x)t :
�

&=1

a\
& e&2&x as x � \�, a&

1 =a+
1 >0. (5.6)
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It follows that u has similar expansions. The leading terms b\
1 in these

expansions are given by (5.5) and the remaining terms can be computed
from (5.6) and the second equation in (5.3). These expansions are consis-
tent with the evolution (5.3) and the time dependence of the coefficients can
be computed from these equations.

We observe next that for a particular choice of potential \ the Liouville
transformation trivializes the operator \&2(D2&1). According to the
calculations in Section 3, the latter transforms to a Schro� dinger operator
with potential

q(S(x))=
1
\2 _1

2
D2\

\
&

3
4 \

D\
\ +

2

+1&
=

1
\2 _&- \ D2 \ 1

- \++1& .

Therefore if we choose

\0(x)=
1

cosh2 x
=sech2 x (5.7)

the potential q0 vanishes. Note that \0(x) has an expansion (5.6). Since
sech2 x=D tanh x, we can take as transformed variable `=S0(x)=tanh x.
Then the range of the transformation is the interval &1<`<1.

The positive smooth potentials \ that have asymptotic expansions (5.6)
are precisely the potentials that can be written in the form

\(x)= g(tanh x) \0(x)= g(tanh x) sech2 x, (5.8)

g # C�([&1, 1]), g>0, g(&1)= g(1). (5.9)

The Liouville transformation generated by \0(x) brings \&2
0 (D2+k2\2&1)

to the form

\ d
d`+

2

+k2g(`)2. (5.10)

This is the density problem for a string on the finite interval. [12], [13].
The Liouville transformation from (5.1) with d`�dx=\ and the Liouville

transformation from (5.10) with d!�d`= g(`) arrive at the same point: a
Schro� dinger operator on a finite interval. The length of the interval is 2M
where

M= 1
2 |

�

&�
\(x) dx= 1

2 |
1

1
g(`) d`, (5.11)
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and we normalize the interval to be (&M, M). The expression for the
potential q(!) in terms of g is given by (3.3):

q(!(`))=
1

2g2 [!, `]. (5.12)

6. CAMASSA�HOLM SCATTERING DATA

In this section we describe the scattering data for (5.1) and find its evolu-
tion under the Camassa�Holm flows.

We have seen that the Liouville transformation is a unitary equivalence
between the negative operator \&2(D2&1) and the Schro� dinger problem
on a finite interval. Under this transformation the normalized wave func-
tions (5.2) are multiplied by \, which vanishes at �. On the finite interval,
the asymptotic conditions become Dirichlet conditions: vanishing at an
endpoint. Thus it is natural to take as scattering data for (5.1) the Dirichlet
spectrum and the associated coupling coefficients. Note that the wave func-
tions for (5.10) at k=0 have the form a!0+b; the corresponding wave
functions for the Schro� dinger operator do not satisfy Dirichlet conditions.
Thus the Dirichlet eigenvalues are strictly negative.

At the eigenvalues &k2
n the wave functions . and � are linearly depen-

dent: there is a coupling coefficient cn such that

.(x, kn)=cn �(x, kn).

Thus we take as scattering data for \ the countable set:

[kn , cn]. (6.1)

The Camassa�Holm equation is obtained from the commutator rela-
tionship (4.1), with L given by (5.1) and

A=&
�
�t

+aD&
1
2

ax , a=u(x, t, k)+
1
k2 .

Note that the interval (&M, M) remains constant, in view of (5.11), and
(5.3).

To determine the evolution of the coupling coefficients, we proceed as in
the Harry Dym flow, with suitable modifications. The compatibility rela-
tion (4.1) implies that the kernel of L is invariant under A; hence
A.(x, t, k) is a linear combination of .(x, t, k) and �(x, t, k). The exact
linear combination is determined by evaluating the asymptotic behavior of
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A. as x � \�. Under our assumptions, u and ux , tend to zero exponen-
tially as x tends to &�. Again, the leading asymptotics of . are indepen-
dent of t, so we find that the leading asymptotics of A. as x � &� are

A.=\&�t+aD&
1
2

ax+ .t
Dex

k2 =
ex

k2 ,

hence

A.(x, t, k)=
1
k2 .(x, t, k).

Similarly,

A�(x, t, k)=&
1
k2 �(x, t, k).

At a bound state,

.(x, t, kn)=cn(t) �(x, t, kn),

hence

cn

k2
n

�n=
1

k2
n

.n=A.n=A(cn�n)

=(&c* n �n+cnA�n)=\&c* n&
cn

k2
n + �n .

Since �n is not identically zero, we have

c* n(t)=&
2cn

k2
n

, cn(t)=e&2t�kn
2
cn(0). (6.2)

We next turn to the characterization of the image of \&2(D2&1) under
the Liouville transformation to a Schro� dinger operator.

Theorem 6.1. The necessary and sufficient conditions that the
Schro� dinger operator D2

!&q on the interval (&M, M) be in the range of the
Liouville transformation associated to (5.1), where \= g(tanh x) sech2 x and
g is a positive smooth function on [&1, 1] with g(&1)= g(1), are that q be
smooth on [&M, M] and that the Dirichlet spectrum of D2

!&q be strictly
negative.
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Proof. It is clear from the formula that describes q in terms of g0 that
q must be smooth, and we have noted above that the Dirichlet spectrum
must be strictly negative.

Conversely, suppose that the Schro� dinger potential q is smooth and the
Dirichlet spectrum is strictly negative. By standard oscillation theory the
non-zero solutions to

(D2
!&q) .0=0, .0(&M)=0, (D2

!&q) �0=0, �0(M)=0

do not change sign on the interval. Therefore the (unique) solution to the
Dirichlet problem

(D2
!&q) �=0, �(&M)=�(M)=1

is a linear combination of .0 and �0 that is strictly positive on the closed
interval. The inverse Liouville transformation must be associated to the change
of variables d`�d!=*��(!)2, where * is determined by the normalization
condition

* |
M

&M

d!
�(!)2=2. K
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