JOURNAL OF COMBINATORIAL THEORY, Series A 31. 94-97 (1981)

Note

Subalgebras of Incidence Algebras Determined by Equivalence Relations

K. J. HARRISON

School of Mathematical and Physical Sciences, Murdoch University, Murdoch, Western Australia

AND

W.E. LONGSTAFF

Department of Mathematics, University of Western Australia, Nedlands, Western Australia

Communicated by Gian-Carlo Rota

Received May 8, 1980

The main result of this paper is a necessary and sufficient condition on an equivalence relation R defined on the set of intervals of a locally finite partially ordered set S for the set of R -functions to be a subalgebra of the incidence algebra of S over a field of characteristic zero.

1. INTRODUCTION

The idea of the incidence algebra of a locally finite partially ordered set was proposed by Rota [1] as the basis for a unified study of combinatorial theory. The study of incidence algebras was continued by Smith [2-4]. In Section 5 of [3] Smith considered subalgebras of incidence algebras arising as the set of functions whose values are constant on equivalence classes of intervals for a certain type of equivalence relation. We are concerned with more general equivalence relations. Our main result is a characterization of those equivalence relations which give rise to subalgebras of the incidence algebra in this way. Only incidence algebras over field of characteristic zero are considered.

2. PRELIMINARIES

Our notation and terminology are similar to those of [2, 31. For the reader's convenience we present the following relevant details. Throughout, (S, \leq) will denote a locally finite partially ordered set. Local finiteness means that every (closed) interval $[x, y] = \{u : x \leq u \leq y\}$ is finite. The incidence algebra $A(S)$ of S over the fixed but arbitrary field K is the set of all functions $f: S \times S \to K$ with the property that $f(x, y) = 0$ whenever $x \notin y$. $A(S)$ becomes an associative K-algebra with the pointwise operations of addition and scalar multiplication and with the Dirichlet product:

$$
(f * g)(x, y) = \sum_{x \leq u \leq y} f(x, u) g(u, y).
$$

The Kronecker delta function δ is the multiplicative identity of $A(S)$. The zeta function ζ of S is the element of $A(S)$ defined by $\zeta(x, y) = 1$ if $x \leq y$ and $\zeta(x, y) = 0$ otherwise. The multiplicative group of units of $A(S)$ is denoted by $G(S)$. It may be shown that $\zeta \in G(S)$ (Proposition 1, [2]). The multiplicative inverse μ of ζ is called the *Möbius function* of S.

If R is an equivalence relation on the set of (non-empty, closed) intervals [x, y] of S call an element f of $A(S)$ and R-function if $[x, y]$ $R[z, w]$ implies $f(x, y) = f(z, w)$, i.e., if f is constant on R-equivalence classes, and let $A_R(S)$ denote the set of R-functions.

Finally, for any set E, denote its cardinality by $|E|$.

3. MAIN THEOREM

In the following it is to be understood that the field K has characteristic zero.

THEOREM. $A_R(S)$ is a subalgebra of $A(S)$ if and only if whenever $[x, y] R[z, w]$ there exists a bijection $\phi: [x, y] \rightarrow [z, w]$ such that $[x, u]$ $R[z, \phi(u)]$ and $[u, y]$ $R[\phi(u), w]$ for every $u \in [x, y]$.

Proof. First suppose that the equivalence relation R has the stated $P(00)$. First suppose that the equivalence relation $R(18)$ in and the State property. $A_R(S)$ is clearly a vector subspace of $A(S)$. Let $f, g \in A_R(S)$ and $[x, y] R[z, w]$. Let $\phi: [x, y] \rightarrow [z, w]$ be a bijection as in the statement of the theorem. Then

$$
(f * g)(x, y) = \sum_{x \le u \le y} f(x, u) g(u, y)
$$

$$
= \sum_{x \le u \le y} f(z, \phi(u)) g(\phi(u), w)
$$

$$
= \sum_{z \leq t \leq w} f(z, t) g(t, w)
$$

$$
= (f * g)(z, w).
$$

Hence $f * g \in A_R(S)$, and $A_R(S)$ is a subalgebra of $A(S)$.

Conversely, suppose that $A_R(S)$ is a subalgebra of $A(S)$ and that [x, y] R[z, w]. Let R' denote the equivalence relation on [x, y] defined by uR'v if $[x, u] R[x, v]$ and $[u, y] R[v, y]$. Denote the corresponding partition of $[x, y]$ by P'. Similarly define an equivalence relation R'' on $[z, w]$ and denote the corresponding partition of [z, w] by P''. For $\xi \in P'$ define the subset $\psi(\xi)$ of [z, w] by

$$
\psi(\xi) = \{t \in [z, w] \colon [x, s] \mid R[z, t] \text{ and } [s, y] \mid R[t, w] \text{ for some } s \in \xi\}.
$$

We show that $|\psi(\xi)| = |\xi|$ for every such ξ . Let f be the R-function defined by $f(a, b) = 1$ if $[a, b]$ $R[x, s]$ for some $s \in \xi$ and $f(a, b) = 0$ otherwise. Let g be the R-function defined by $g(c, d) = 1$ if $[c, d] R [s, y]$ for some $s \in \xi$ and $g(c, d) = 0$ otherwise. Then since $f * g \in A_p(S)$, $(f * g)(x, y) = (f * g)(z, w)$. Now

$$
(f * g)(x, y) = \sum_{x \leq s \leq y} f(x, s) g(s, y),
$$

where each term in the sum is either 0 or 1. The contribution to the sum is 1 if and only if $f(x, s) = g(s, y) = 1$ and this, in turn, is equivalent to s being an element of ξ . Thus $(f * g)(x, y) = |\xi|$. Similar reasoning gives $(f * g)(z, w) = |\psi(\xi)|$. 1. Thus $|\psi(\xi)| = |\xi|$.

It is easily shown that $\psi(\xi) \in P''$ so we have a mapping $\psi: P' \to P''$. It is also easily shown that ψ is a bijection of P' onto P'' satisfying the condition $s \in \xi$, $t \in \psi(\xi)$ implies $[x, s] R[z, t]$ and $[s, y] R[t, w]$. Now let $\phi: [x, y] \to [z, w]$ be any bijection satisfying $\{\phi(s): s \in \xi\} = \psi(\xi)$ for every $\xi \in P'$. It is readily verified that ϕ has the desired property. This completes the proof.

COROLLARY. If $A_R(S)$ is a subalgebra of $A(S)$, then it contains δ , ζ and μ and its group of units is $A_R(S) \cap G(S)$.

Proof. Let $A_R(S)$ be a subalgebra of $A(S)$. It is clear that δ and ζ are Rfunctions. It is not difficult to show that $[x, y] R[z, w]$ implies that the partially ordered sets $[x, y]$ and $[z, w]$ are of equal length. The proof is completed, as in Theorem 8 of [3], by showing that the inverse of an invertible R-function is an R-function. The details are omitted.

In particular, if the equivalence relation R has the property that, whenever $[x, y]$ R[z, w] there exists a bijection $\phi: [x, y] \rightarrow [z, w]$ such that $[u, v]$ $R[\phi(u), \phi(v)]$ for all u, v such that $x \leq u \leq v \leq y$, then $A_R(S)$ is a

FIGURE 1

subalgebra of $A(S)$ containing δ , ζ and μ and its group of units is $A_R(S)$ \cap $G(S)$. This was proved in [3] where such equivalence relations were called *compatible.* As was pointed out in [3], $[x, y] R[z, w]$ implies that $[x, y]$ and $[z, w]$ are order isomorphic if R is compatible. We show that compatibility of R is not a necessary condition for $A_R(S)$ to be a subalgebra of $A(S)$.

EXAMPLE. Let $S = \{1, 2, 3, \dots, 16\}$ and let K be an arbitrary field of characteristic zero. Let the partial order on S be as indicated (in the usual way) by Fig. 1. In particular no element of $\{1, 2, \ldots, 8\}$ is comparable with any element of $\{9, 10, \ldots, 16\}$.

The equivalence relation R is defined as follows: say $[x, y] R [z, w]$ if $[x, y]$ and $[z, w]$ are order-isomorphic, and in addition, say $[1, 8]$ R[9, 16].

To show that $A_R(S)$ is a subalgebra of $A(S)$ we need to demonstrate, for each pair of R-equivalent intervals, the existence of a bijection from one interval to the other having the property specified in the theorem. If $[x, y]$ and [z, w] are order-isomorphic then any order isomorphism from [x, y] to $[z, w]$ has the desired property, and for the R-equivalent intervals $[1, 8]$ and [9, 16] the mapping $\phi(u) = u + 8$ will suffice.

Thus $A_R(S)$ is a subalgebra, but because [1, 8] and [9, 16] are not orderisomorphic R is not compatible.

REFERENCES

- 1. G.-C. ROTA, On the foundations of combinatorial theory, I, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 340-368.
- 2. D. A. SMITH, Incidence functions as generalized arithmetic functions, I, Duke Math. J. 34 (1967), 617-633.
- 3. D. A. SMITH, Incidence functions as generalized arithmetic functions, II, Duke Math. J. 36 (1969), 15-30.
- 4. D. A. SMITH, Incidence functions as generalized arithmetic functions, III, Duke Math. J. 36 (1969), 353-367.