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The main result of this paper is a necessary and sufficient condition on an 
equivalence relation R defined on the set of intervals of a locally finite partially 

ordered set S for the set of R-functions to be a subalgebra of the incidence algebra 
of S over a field of characteristic zero. 

1. INTRODUCTION 

The idea of the incidence algebra of a locally finite partially ordered set 
was proposed by Rota [l] as the basis for a unified study of combinatorial 
theory. The study of incidence algebras was continued by Smith [2-4]. In 
Section 5 of [3] Smith considered subalgebras of incidence algebras arising 
as the set of functions whose values are constant on equivalence classes of 
intervals for a certain type of equivalence relation. We are concerned with 
more general equivalence relations. Our main result is a characterization of 
those equivalence relations which give rise to subalgebras of the incidence 
algebra in this way. Only incidence algebras over field of characteristic zero 
are considered. 

94 
0097-3 16518 1/040094~4$02.00/0 
Copyright :C 1981 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82692379?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


INCIDENCE ALGEBRA 95 

2. PRELIMINARIES 

Our notation and terminology are similar to those of [2, 31. For the 
reader’s convenience we present the following relevant details. Throughout, 
(S, 9) will denote a locally finite partially ordered set. Local finiteness 
means that every (closed) interval [x, y] = {u: x 4 tl< y } is finite. The 
incidence aigebra A(S) of S over the fixed but arbitrary field K is the set of 
all functionsf: S x S + K with the property thatf(x, y) = 0 whenever x 4 y. 
A(S) becomes an associative K-algebra with the pointwise operations of 
addition and scalar multiplication and with the Dirichlet product: 

(f * g)(x, Y) = c f(x9 u) go4 Y). 
X<U<Y 

The Kronecker delta function 6 is the multiplicative identity of A(S). The 
zeta function C of S is the element of A(S) defined by C(x, y) = 1 if x < y and 
4(x, y) = 0 otherwise. The multiplicative group of units of A(S) is denoted by 
G(S). It may be shown that {E G(S) (Proposition 1, [2]). The multiplicative 
inverse ,u of [ is called the M6bius function of S. 

If R is an equivalence relation on the set of (non-empty, closed) intervals 
[x, y] of S call an element f of A(S) and R-function if [x,y] R [z, W] implies 

f@*Y)=f( > >7 z w  i.e., if f is constant on R-equivalence classes, and let A,(S) 
denote the set of R-functions. 

Finally, for any set E, denote its cardinality by ] E j . 

3. MAIN THEOREM 

In the following it is to be understood that the field K has characteristic 
zero. 

THEOREM. AR(S) is a subalgebra of A(S) if and only if whenever 
[x, y] R[z, w] there exists a bijection (: [x, y] + [z, w] such that 
[x, u] R[z, 4(u)] and [WY] R[((u), w] for every u E [x,YI. 

Proof. First suppose that the equivalence relation R has the stated 
property. AR(S) is clearly a vector subspace of A(S). Let f, g EAR(S) and 
,';i.x,";[~i;J, Let $: [x, y] -+ [z, w] be a bijection as in the statement of the 

(f* g>(xtY)= x<;<yft4 U)&?(%Y) 
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Hencef * g E AR(S), and AR(S) is a subalgebra of A(S). 
Converseiy, suppose that AR(S) is a subalgebra of A(S) and that 

[x, y] R[z, w]. Let R’ denote th e equivalence relation on [x, y] defined by 
uR’v if [x, U] R [x, v] and [u, y] R[v, y]. Denote the corresponding partition 
of [x, y] by P’. Similarly define an equivalence relation R” on [z, w] and 
denote the corresponding partition of [z, w] by P”. For r E P’ define the 
subset w(r) of [z, w] by 

~(4) = {t E [z, w]: [x, s] R [z, t] and [s, y] R [t, w] for some s E c}. 

We show that ] w(r)] = 1 <I f or every such r. Let f be the R-function defined 
by f(a, b) = 1 if [a, b] R [x, s] for some s E < andf(a, b) = 0 otherwise. Let g 
be the R-function defined by g(c, d) = 1 if [c, d] R [s, y] for some s E < and 
g(c, d) = 0 otherwise. Then since f * g E AR(S), (f * g)(x, y) = (f * g>(z, w). 
Now 

(f * g>G% Y> = c f(x9 s) gts, Yh 
X<S<Y 

where each term in the sum is either 0 or 1. The contribution to the sum is 1 
if and only ifS(x, s) = g(s, y) = 1 and this, in turn, is equivalent to s being 
an element of <. Thus (f * g)(x, y) = ] (1.1. Similar reasoning gives 
(f* g)(z, w> = Iv(tI~ 1. Thus I u/(OI = ItI. 

It is easily shown that w(r) E P” so we have a mapping IJE P’ -+ P”. It is 
also easily shown that w  is a bijection of P’ onto P” satisfying the condition 
s E <, t E ~(0 implies [x, s] R[z, t] and [s, y] R[t, w]. Now let 
4: [x, y] + [z, w] be any bijection satisfying {4(s): s E c} = ~(4) for every 
<E P’. It is readily verified that 4 has the desired property. This completes 
the proof. 

COROLLARY. If AR(S) is a subalgebra of A(S), then it contains 6, [ and p 
and its group of units is AR(S) n G(S). 

Proof: Let AR(S) be a subalgebra of A(S). It is clear that 6 and 1; are R- 
functions. It is not difficult to show that [x, y] R[z, w] implies that the 
partially ordered sets [x, y] and [z, w] are of equal length. The proof is 
completed, as in Theorem 8 of [3], by showing that the inverse of an inver- 
tible R-function is an R-function. The details are omitted. 

In particular, if the equivalence relation R has the property that, whenever 
[x, y] R[z, w] there exists a bijection (: [x, y] -+ [z, w] such that 
[u, VI R[#@), d(v)1 f or all U, v such that x < u < v < y, then AR(S) is a 
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FIGURE 1 

subalgebra of A(S) containing 6, [ and ~1 and its group of units is AR(S) n 
G(S). This was proved in [3] where such equivalence relations were called 
compatible. As was pointed out in [ 31, [x, y] R [z, w] implies that [x, .JJ ] and 
[z, w] are order isomorphic if R is compatible. We show that compatibility 
of R is not a necessary condition for AR(S) to be a subalgebra of A(S). 

EXAMPLE. Let S=(1,2,3 ,..., 16) and let K be an arbitrary field of 
characteristic zero. Let the partial order on S be as indicated (in the usual 
way) by Fig. 1. In particular no element of ( 1,2,..., 8) is comparable with 
any element of (9, 10 ,..., 16). 

The equivalence relation R is defined as follows: say [x, y] R [z, w] if 
[x, y] and [z, w] are order-isomorphic, and in addition, say [ 1,8] R[9, 161. 

To show that AR(S) is a subalgebra of A(S) we need to demonstrate, for 
each pair of R-equivalent intervals, the existence of a bijection from one 
interval to the other having the property specified in the theorem. If [x, y] 
and [z, w] are order-isomorphic then any order isomorphism from [x, y] to 
[z, w] has the desired property, and for the R-equivalent intervals [ 1,8] and 
[9, 161 the mapping 4(u) = u + 8 will suffice. 

Thus AR(S) is a subalgebra, but because [ 1,8] and [9, 161 are not order- 
isomorphic R is not compatible. 
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