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Histone residues can serve as platforms for specific regulatory function. Here we constructed a map
of regulatory associations between histone residues and a wide spectrum of chromatin regulation
factors based on gene expression changes by histone point mutations in Saccharomyces cerevisiae.
Detailed analyses of this map revealed novel associations. Regarding the modulation of H3K4 and
K36 methylation by Set1, Set2, or Jhd2, we proposed a role for H4K91 acetylation in early Pol II elon-
gation, and for H4K16 deacetylation in late elongation and crosstalk with H3K4 demethylation for
gene silencing. The association of H3K56 with nucleosome positioning suggested that this lysine
residue and its acetylation might contribute to nucleosome mobility for transcription activation.
Further insights into chromatin regulation are expected from this approach.
� 2015 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical
Societies. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/4.0/).
1. Introduction

As the structural units of chromatin, the core histones (H3, H4,
H2A, and H2B) play a critical role in the epigenetic regulation of
DNA. The biological significance and universality of their function
are reflected by the remarkably high evolutionary conservation of
the protein sequences from yeast to humans. The amino acid resi-
dues of histones can be partitioned into four major geographical
domains: buried, disk (protein surface that does not contact
DNA), lateral (protein surface that contacts DNA), and tail (protrud-
ing unstructured region).

To explore the functional role of each residue across the differ-
ent histone domains, systematic mutant libraries were generated
and screened for phenotypic changes in yeast [1,2]. The library of
synthetic histone H3 and H4 mutants [1] was created by substitut-
ing each non-alanine residue with alanine to avoid deletion effects,
while mutating alanine to serine. The mutant strains were tested
for phenotypic changes in viability, transcriptional silencing, tran-
scriptional elongation, response to DNA damage, response to
microtubule disruption, and response to temperature shock. A
database of the phenotypes of histone mutants collected from dif-
ferent studies, named HistoneHits, has been developed [3].

This library also included replacements of modifiable residues
with amino acids mimicking modified and unmodified states.
Post-translational modification (PTM) of histones includes acetyla-
tion, methylation, ubiquitination, phosphorylation, and sumoyla-
tion of lysine, arginine, serine, and threonine [4]. Although most
of the modifications are observed in the histone tail, the globular
domain also contains modifiable amino acids, including acetylated
H3K56 and methylated H3K79 [5–9]. The histone code hypothesis
[10] proposes that PTMs, alone or in combination, serve as selec-
tive binding platforms for regulatory proteins such as chromatin
modifiers (CMs) and transcription factors (TFs).

However, modifiable residues cannot account for all histone
functions. The modification of nucleosomes is preceded by the for-
mation of nucleosomes through the interactions of histones with
wrapping DNA. The nucleosome code hypothesis [11,12] predicts
that DNA dictates its own physical packaging into the chromatin
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structure by modulating its binding with histone proteins. The
importance of the DNA-histone interaction was illustrated by a via-
bility test of the histone mutants. In the twomutation studies [1,2],
most of the lethal substitution mutations were commonly mapped
to the nucleosome lateral surface near the dyad axis or at the DNA
entry/exit site, where histones make contact with DNA. The H2A
and H2B essential residues were also located on the surface of
nucleosomes [2].

Transcriptional regulation should be the primary mechanism by
which each residue of histones contributes to phenotypic conse-
quences. How nucleosome assembly and histone PTMs can influ-
ence gene transcription has been studied extensively, thanks to
genomic technologies such as DNA microarray and next-
generation sequencing. Various PTMs and nucleosome patterns
near gene promoters have been intensively examined at the
genome-wide level [13–20]. For example, the canonical promoter
contains a nucleosome-free region (NFR) upstream of the tran-
scription start site (TSS) and a +1 nucleosome downstream of the
TSS. Several PTMs, including H3 or H4 acetylation and H3K4
methylation, are associated with active gene transcription.

In this work, we employed genomics approaches to study the
function of individual residues of histone H3 and H4 by utilizing
a public histone mutant library [1]. Gene expression microarrays
were employed to measure the influence of each residue on tran-
scription by comparing gene expression patterns in the histone
mutants and wild type. We selected 123 mutants with the highest
phenotypic effects for gene expression profiling. To determine
whether certain mutants of high transcriptional importance alter
nucleosome positioning, the mutated nucleosomes were purified
and profiled by deep sequencing.
2. Materials and methods

2.1. Selection of histone mutants

Our mutant selection procedure was based on the HistoneHits
database [3]. In essence, we used the alanine substitution mutants
of H3 and H4, while discarding lethal mutants [1] and including the
strains where the mutation was targeted to a known modifiable
residue. The information of modifiability was obtained from the
HistoneHits database except for H3K37, whose methylation was
recently reported [44]. The degree of phenotypic change for each
mutant was obtained from the same database, which collected
phenotype scores observed in multiple experiments that belong
to one of nine different categories. The nine categories and their
readouts were: ribosomal silencing (growth on plates), telomeric
silencing (colony color as gain of telomeric silencing), mating effi-
ciency (enzyme assay and growth on plates), growth rate (growth
on plates), DNA damage (growth on plates), Spt-phenotype
(growth on plates), transcription elongation defect (growth on
plates), K56 hyperacetylation suppression (growth on plates), and
mating cassette silencing (growth on plates). The score for each
experiment was represented as an integer ranging from �2 to 2
with a high absolute value indicating a higher degree of phenotypic
change. The average for each category was calculated and then the
average of the nine scores was obtained as the final measure for
the degree of phenotype changes by each mutation. We first
selected the mutants with the final phenotype score greater than
1 and then tried to filter out adjacent mutants that had similar
response across the nine experimental conditions. To do so, we
first identified the two adjacent mutants that had the same direc-
tion of response (the same sign of the phenotype score) in more
than seven out of the nine conditions and then removed the one
having the lower final phenotype score. H3Q5A was later added
because H3Q5 was reported to crosstalk with H3K4me3 [2].
To investigate the effects of different acetylation states, we
included H3K56R, H3K56Q, H4K16R, and H4K16Q. Arginine (R)
substitution mimics unacetylated lysine and glutamine (Q) mimics
acetylated lysine. Overall, a total of 123 mutants were profiled and
compared against four replicates of the wild type by microarray
experiments, totaling 127 microarray datasets.

2.2. Yeast strains and cell culture

We obtained the yeast histone mutant library from Open
Biosystems (catalog number: YSC5106, none essential histone H3
& H4 mutant collection). The 2 ml glycerol stocks of selected
mutants and the wild types were cultured in SD-ura medium for
22 h at 25 �C. After streaking on YPD plate at 25 �C, single colony
was cultured in 2 ml SD-ura medium for 22 h at 25 �C, 500 ll out
of which was subcultured in 10 ml SD-ura medium for 22 h at
25 �C.

2.3. Microarray hybridization

RNA was prepared using the RNeasy Mini Kit according to the
manufacturer’s instructions (Qiagen). After DNase treatment
(TaKaRa Recombinant DNaseI), the first-strand complementary
DNA was synthesized from 1 lg total RNA at 42 �C for 2 h, which
was followed by second-strand cDNA synthesis at 16 �C for 2 h.
The resulting double-stranded cDNA was purified. Fluorescence-
labeled RNA was generated by carrying out an in vitro transcrip-
tion reaction (double-stranded cDNA in nuclease-free water
16 ll, T7 rNTP mix 16 ll, T7 10� Reaction Buffer 4 ll, and T7
Enzyme Mix) at 37 �C for 16 h. The labeled RNA was subsequently
purified and chemically fragmented at 70 �C for 15 min in
fragmentation buffer (Ambion fragmentation reagent). The
fragmented, labeled complementary RNA was hybridized to
NimbleGen 12 � 135 K oligonucleotide microarrays at 42 �C for
16–20 h according to the provided instructions. The spotted
microarrays of 60-mer oligonucleotide probes that represent
5777 yeast ORFs contained three to eight probes per gene with
three replicates for each probe. The microarrays were washed in
three consecutive steps by using the provided kit and the readouts
were scanned using NimbleScan 2.5.26.

2.4. Microarray data processing

The raw microarray data was normalized by using VSN (Vari-
ance Stabilization and Normalization) algorithm [45]. This method
utilized variance stabilizing transformation based on the paramet-
ric form h(x) = arcsinh(a + bx), which is derived from a model of the
variance-versus-mean dependence for microarray intensity data.
For large intensities, h coincides with the log transformation, and
Dh with the log ratio. Following the preprocessing by VSN,
microarray batch effects were removed by means of the Combat
algorithm [46]. We applied the non-parametric empirical Bayes
frameworks to the VSN-normalized data. After removing batch
effects, we obtained the relative gene expression changes as the
log2 ratios between the mutants and wild type. The expression
levels for the wild type were calculated as the mean of the repli-
cates. A very high reproducibility (R = 0.98) was observed between
the wild-type replicates. The genes that were up-regulated or
down-regulated >1.5 fold were selected for each histone mutation.
We performed gene-set enrichment analysis for these changed
genes. To obtain a sufficient statistical power, we only considered
gene cohorts that included more than 50 genes, resulting in 91
up-regulated gene cohorts and 71 down-regulated gene cohorts.
Afterward, we conducted gene sent enrichment analysis for
Gene Ontology (GO) terms by using DAVID (https://david.ncifcrf.
gov/) and then performed hierarchical clustering for �log10
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(FDR-corrected P value). We only considered GO terms with an
FDR-corrected P value < 0.05. In the heatmap, each column indi-
cates up- or down-regulated gene cohort and each row indicates
GO biological function. Any GO terms detected less than 5 times
were excluded from downstream analyses.

2.5. Calculation of association scores

The genes that were up-regulated or down-regulated >1.5 fold
were selected for each histone mutation, resulting in three cohorts
of genes: activated, repressed, and non-responsive. As detailed in
Supplementary Table 2, the datasets for CMs, TFs, PTMs, and nucle-
osomes were collected from different sources. For ChIP-chip- or
ChIP-seq-based location profiles (except TF binding), binding levels
at the promoter (�500–100 bp of the transcription start site) and
those at the coding region were separately treated. Only promoter
binding levels were used for the TF dataset. For the deletion data-
sets (DCM and DTF), the absolute change of gene expression was
considered to reflect the binding affinity of the deleted regulator
to the given gene. For each histone residue, the difference in
CM/TF binding affinity or PTM/nucleosome density between the
activated and non-responsive cohort and that between the
repressed and non-responsive cohort were calculated based on
the Kolmogorov–Smirnov (KS) statistic (see Fig. 2B for a schematic
representation). The KS test tries to determine if two distributions
differ significantly (e.g., green curve vs. blue curve or red curve vs.
blue curve in Fig. 2B). The KS-test has the advantage of making no
assumption about the distribution of data. This non-parametric
statistic proved to be useful for extracting comparable summary
statistics across heterogeneous datasets from different sources
[47,48]. For the association score, �log10 (P value of the KS test)
was taken. If the association (KS) score for the activated cohort
(KSrep in Fig. 1B) is greater than that for the repressed cohort (KSact
in Fig. 1B), this means the mutation (or the original residue) tends
to activate (or repress) the genes via interaction with the given reg-
ulation factor, namely, CM, TF, PTM, or nucleosome. Therefore, we
assigned a negative association (KS) score for this association
(KSrep > KSact in Fig. 1B) to indicate that the original residue (prior
to the mutation) represses gene transcription in concert with the
given factor. For the constitutive acetylation mutation (glutamine
substitution), a negative score (gene activation) was interpreted
to mean that the acquired mutation (not the original residue) acti-
vates the given cohort of genes. Concerning the HR-CM association
map and the HR-TF association map used in the main text, we col-
lapsed the columns (representing the regulation factors) by taking
the greater absolute association (KS) score between the promoter
and coding-region profiles. For identified modules, we manually
checked if the CM profiles were from the promoter or coding
region.

2.6. HR-CM heatmap and HR interaction network

HR-CM associations were represented as a heatmap of the
association scores obtained for the CM and DCM dataset. HR-CM
association modules were identified based on hierarchical cluster-
ing of the association scores. We ran Cluster and TreeView (http://
www.eisenlab.org/eisen/?page_id=42) with default options after
column-wise and row-wise centering and normalization. Red
indicates a positive KS score (KSact > KSrep) and green represents a
negative KS score (KSact > KSrep). We also constructed an HR inter-
action network based on correlation coefficients of the HR-CM
association scores between HRs. We defined an interaction
between HRs as having a correlation >0.7. As a result, a total of
151 interactions among 53 HRs were identified. We identified
several subnetwork modules by using MCODE (http://baderlab.
org/Software/MCODE).
2.7. Mononucleosome purification and sequencing

The MNase-mediated purification of mononucleosomes was
carried out as previously described [12,49–51]. Yeast cells were
grown in YPD to an A600 OD of 1.5 at 200 rpm. Cells were fixed
in 1% formaldehyde, and incubated for 30 minutes at room
temperature, shaking, at 200 rpm. 2.5 M glycine was added to a
final concentration of 125 mM to quench the formaldehyde. Cell
pellet was resuspended in 10 ml b-ME buffer (20 mM EDTA,
0.7 M b-mercaptoethanol). After 30 min of incubation at 30 �C, cell
pellets were precipitated by 5 min of centrifugation at 3000 rpm.
Spheroplast preparation was conducted at 30 �C for 30 minutes
in 10 ml lyticase lysis buffer (1 M sorbitol. 50 mM Tris, pH 7.8;
5 mM b-ME) using 10,000 units of Lyticase (Sigma). After digesting
cell walls, spheroplasts were spun down, washed twice with 1 M
sorbitol. DNA digestion was conducted at 37 �C for 20 min in
1.6 ml of digestion buffer (1 M sorbitol, 50 mM NaCl, 10 mM
Tris–HCl at pH 7.5, 5 mM MgCl2, 1 mM CaCl2, 1 mM b-
mercaptoethanol, 0.5 mM spermidine and 0.075% v/v NP40).
400 lL aliquots of spheroplasts were digested with 3.5 units of
MNase (Sigma). Reaction was stopped by the addition of MNase
stop buffer (5% SDS, 250 mM EDTA). Samples were treated with
5 lL of proteinase K (20 mg/mL) at 37 �C for 5 h, then phenol:chlo-
roform extracted, ethanol precipitated, RNase A treated, and then
ethanol precipitated. The digested DNA was purified and separated
on a 1.5% agarose gel, and the mononucleosomal DNA (�147 bp)
was cut out of the gel. The mononucleosomal DNA fragments were
sequenced by Illumina Genome Analyzer, subjected to 36 cycles of
single-read sequencing.

2.8. Sequencing data processing

Sequence reads were mapped to the yeast genome (NCBI June
2008) by means of the Illumina sequencing pipeline. The sequenc-
ing tags were extended to the average size of fragments in the
library (150 bp) and the number of overlapping sequence reads
was obtained at 200-bp intervals across the genome. The ratio of
(target read count/200 bp)/(total read count/genome size) was
obtained and log2 transformed [52]. This normalized read count
was used as an estimate of nucleosome level at the given genomic
locus.

2.9. Computation of nucleosome fuzziness

Nucleosome fuzziness is a measurement of how delocalized or
spread out a nucleosome position is. We used Genetrack software
[53], which first identifies nucleosome positions and then calcu-
lates the standard deviation of all read coordinates that contributes
to identify mononucleosome locations [54]. The standard deviation
served as the fuzziness measure for each positioned nucleosome.

3. Results

We profiled global gene expression changes in the strains of the
comprehensive H3 and H4 mutant library [1], where all available
HRs were substituted by alanine (A) to avoid unwanted deletion
effects. We selected all known modifiable HRs and the HRs with
significant phenotypic changes [3] (see Methods), resulting in a
gene expression compendium of 123 histone mutations
(Supplementary Table S1). To first characterize cis-level features
of HR regulation, we investigated overall patterns of gene expres-
sion changes and enriched biological functions of the genes
affected by each HR mutation. First, we observed varying numbers
of up-regulated and down-regulated genes across different histone
mutations (Fig. 1A). The strongest mutation was H4L97A. In terms
of structural classification, mutations on modifiable histone
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Fig. 1. Characterization of genes affected by histone mutations. (A) The number of activated and repressed genes in response to each histone mutation. (B) Functional map of
genes affected by histone mutations. The statistical significance of functional enrichment and the direction of gene expression changes were color-coded as depicted below
the map. Enriched Gene Ontology terms are described on the right side of the map. For example, genes down-regulated by H3E73A and H4K16Q are enriched for response to
pheromone and conjugation.
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residues tended to have stronger effects than other histone
residues (Supplementary Fig. S1, left). The mutations on the
DNA-contacting surface regions also exhibit stronger mutation
effect than mutations on other geographical domains (Supplemen-
tary Fig. S1, right).

We performed gene-set enrichment analysis for the genes
affected by each HR (Methods) to identify several modules
associating mutated HRs and biological functions of the affected
genes (Fig. 1B). For example, down-regulated genes responding to
histone H4 7/16/18/36 and H3E73 mutations are strongly enriched
by mating-related biological processes. Interestingly, H4H18A,
H4K16Q, and H3E73A mutations were reported to phenotypically
affect mating efficiency [3]. Although it is intriguing that particular
HRs can be involved in the regulation of genes with particular
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Fig. 2. Histones as the platform for gene regulation (A) and our data analysis scheme (B). (A) Interactions of histone residues (HRs) with DNA (HR-DNA), with chromatin
modifiers (HR-CM), and with transcription factors (HR-TF), and crosstalk between histone residues (HR-HR) play a critical role in transcription regulation. (B) For each HR, the
difference in CM/TF binding affinity or PTM/nucleosome density between the changed genes and unchanged genes by an HR mutation is measured by the KS statistic. In this
example, the KS score for the activated cohort (KSrep) is greater than that for the repressed cohort (KSact), meaning that the original HR tends to interact with the regulatory
factor (CM, TF, PTM, or nucleosome) for gene repression. Therefore, we take the negative of KSrep for this association to indicate repression. When KSact is greater than KSrep,
the raw KSact score (positive) is used.
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function, this type of specific association is unlikely achieved by
HRs themselves because histones are globally distributed across
the whole genome. This highlights a role for trans-regulatory fac-
tors that bind HRs or their modification in the cis-regulatory
regions of particular genes. Therefore, we proceeded to investigate
the regulatory relationships among HRs and trans-regulators
(Fig. 2A).

In our data analysis scheme (Fig. 2B), a positive association
score was assigned when the genes associated with a regulation
factor (e.g., bound by a CM) are repressed by an HR loss-of-
function mutation, an indication that this HR normally activates
the genes in correspondence with the regulation factor. Exception-
ally, a negative score for gain-of-function mutations such as
H4K16Q and H3K56Q (constitutive acetylation) should be inter-
preted as an indication that the mutation, not the original residue,
activates gene expression. When interrogated against the CM, TF,
PTM, and NUC profiles (Fig. 3A and Supplementary Table S2), the
HR compendium exhibited higher associations with CMs than with
TFs, which was predictable, and with nucleosome occupancy than
with PTM density (Fig. 3B). It is likely that the interactions of the
modified residues with CMs are more important than the direct
influence of the PTMs themselves. On the other hand, histone-
DNA interaction emerged as one of the key aspects to consider.
These findings encouraged us to focus on the interactions of the
modifiable HRs with CMs and those of the surface HRs with DNA.

From the HR-CM association map (Fig. 3C), we identified three
modules that seemed related to the function of H3K4me3 and
H3K36me3. A summary of our analyses of this map is provided
in Supplementary Table S3. Module I integrated separate findings
on the interplay of Set1 with Gcn5 and Esa1 on the 50 portion of
coding regions [21–23]. Notably, the CMs in this module were
identified based on their open reading frame (ORF)-binding pro-
files. The four identified HRs turned out to have the highest associ-
ations with the PTM levels (Fig. 3B). The two modifiable residues
among them, H4K91 and H4R92, lie in the interface between his-
tone H3/H4 tetramers and H2A/H2B dimers [24]. Notably, H4K91
acetylation was found to destabilize the histone octamer by weak-
ening H3/H4 – H2A/H2B binding [25], which is exactly in line with
the function of the FACT complex, that is, nucleosome destabiliza-
tion by H2A/H2B dimer removal during RNA polymerase II (Pol II)
passage [26]. The SWR1 complex performs ATP-driven exchange of
H2AZ variant for H2A [27,28]. Surprisingly, H4K91 and H4R92
were the top two HRs most strongly associated with ORF H2AZ
occupancy (Fig. 4A). The function of H4R92 methylation is cur-
rently unknown. Our data propose a possible crosstalk between
these two adjacent modification sites. The association of Rad6 sug-
gests a role for H2B ubiquitylation in H2B dissociation during Pol II
elongation (described later).

We examined which PTMs are involved in Module I function.
Although various histone acetylations as well as H3K4me3 were
found at Module I genes (Fig. 4B), our HR mutation experiments
showed that the loss of the H3K27 residue only had transcriptional
effects (Fig. 3C). The other PTMs may play a secondary role. Espe-
cially, even with the involvement of Set1 and H3K4me3 in this
module, the mutation of this residue (H3K4A) did not change the
expression of the relevant genes. This reinforces the hypothesis
that H3K4me3 serves only as a molecular memory of recent Pol
II elongation initiation, which is based on the observation that
H3K4me3 persists for a considerable time even after Set1 dissoci-
ation and transcriptional inactivation [23,29].

Apparently, H4K16Ac is not involved in the Set1 module
(Fig. 4B) but in Module II and III. Module II is represented by JmjC
domain-containing enzymes, namely the H3K4 demethylase Jhd2
and two other histone demethylases, Jhd1 and Ecm5 [30]. The
crosstalk between H3K4 demethylation by Lsd1 and H4K16
deacetylation by Sir2 was recently discovered in Drosophila [31].
It seems that this crosstalk is present in yeast and mediated by
Jhd2 and Sir2-related histone deacetylases (HDACs), namely Hst1
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SAGA, Mediator, and Paf1C are detailed in Supplementary Fig. S3.
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(Sir2 homolog) and Esc8 (Sir2-interacting protein). In contrast to
the case for the Set1 module, the H3K4 deletion caused transcrip-
tional changes here (Fig. 3). H4K16A did not cause transcriptional
changes, however, indicating that the recognition of the H4K16
residue is not required in this process. H4K16Q (acetylated lysine)
as well as H3K4A prevented deactivation by Jhd1 and the HDACs
(Fig. 4C). Taken together, H3K4me3 recognition and demethylation
by Jhd2 may precede H4K16 deacetylation, which results in actual
gene repression. Interestingly, Sas4, which acetylates H4K16, was
also associated in this module (Fig. 3) showing the same patterns
except with H4K16R (unacetylated lysine) (Fig. 4C). The involve-
ment of Sas4 in yeast chromatin silencing was previously sug-
gested [32]. These findings can be explained by a recent model
proposed in human cells, where inactive genes primed by H3K4
methylation are repressed by HDACs that remove acetyl groups
added by transient binding of histone acetyltransferases (HATs)
[33]. Constitutive acetylation modelled by H4K16Q prevents
repression by HDACs and thereby this mutation activates gene
expression as indicated by the green color in the heatmap (Fig. 3C).
Our data suggests the key role of Jhd2 and Sas4 in this mechanism.
The repressor Jhd2 and the activator Sas4 tend to affect the same
genes in the opposite direction with similar histone-interaction
mechanisms (left panel of Fig. 4D), especially mediating the cross-
talk between H3K4 methylation and H4K16 acetylation (right
panel of Fig. 4D).

Module III delineates the relatively well-characterized interac-
tion of Set2with Rpd3 and Eaf3 as a mechanism to antagonize inap-
propriate histone acetylation during late Pol II elongation and
suppress spurious intragenic transcription [34–36]. A possible link
between Set2 and Sin3 was suggested in human [37]. The counter-
acting crosstalk betweenH3K36me3 andH4K16Ac observed inDro-
sophila [38]may be also present in yeast. H4K16R andH4K16Awere
highly correlated with the H3K36 mutation in terms of association
with Set2 and the HDACs (Fig. 3C). Therefore, it seems that H4K16
deacetylation plays a dual role depending on its crosstalk: with
H3K4me3 in gene silencing and with H3K36me3 in Pol II elonga-
tion. The interaction of the Tup1-Ssn6 complex with hypoacety-
lated histones during Pol II elongation is suggested (Fig. 3C).
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These three HR clusters were consistently found in the HR-TF
association map (Supplementary Fig. S2), providing the capability
to predict CM-HR-TF interactions. Interestingly, the HRs in Module
III were positively associated with the Set2-associated HDACs but
negatively with a host of TFs, a pattern that nicely explains the
different mechanisms by which histone deacetylation affects
transcription initiation and elongation. In other words, histone
deacetylation inhibits transcription initiation but promotes
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transcription elongation at the 30 end of the coding region. Another
HR-CM module (green box; Fig. 3C), which was not found in the
HR-TF map, turned out to be enriched for multiprotein complexes
that associate with Pol II and the general transcription factors
(Supplementary Fig. S3). A series of adjacent non-modifiable HRs
on the H3 globular domain were involved. Presumably, they are
required to modulate chromatin structure for the action of the
Pol II initiation complex.
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Regarding the regulatory associations with nucleosome occu-
pancy, themodifiableHRson theDNA-contacting surfaceof histones
stood out (Supplementary Fig. S4)with themaximumpositive score
found for H3K56A and one of the NUC datasets (Fig. 5A). Other NUC
measures also produced a positive score, the interpretation being
that H3K56 contributes to transcription activation probably by pro-
moting nucleosome eviction or relocation. Residing at the DNA
entry-exit points, H3K56 is in a position to make contact with both
ends of the wrapping DNA. To understand the detailed mechanism,
we sequenced the genome-wide positions of mononucleosomes in
the wild type and three H3K56 mutants (see Methods).

Indeed, there was a striking change in nucleosome positioning,
including the increased occupancy of the �1 and +1 nucleosomes
and the 30-end nucleosome, and a sharpened nucleosome phasing
withhigher peaks anddeeper troughs (red curve; Fig. 5B), all reflect-
ing more stable nucleosome positioning. In fact, H3K56A increased
the number of positioned nucleosomes by >2000 and reduced the
fuzziness [39] of the nucleosomes (Fig. 5C). H3K56Q acted in the
opposite direction, resulting in the disrupted nucleosome phasing
and reduced occupancy of the�1, +1, and 30-end nucleosomes (blue
curve; Fig. 5B). H3K56Ac was shown in vitro to increases the tran-
sient unwrapping (breathing) of the ends of the DNA [40].

DNA breathing will cause further invasions of MNase into the
histone-protected region. We calculated the distance between
the tags on the same and opposite strand. The distance to the clos-
est peak on the opposite strand (OS lines; Fig. 5D) corresponds to
the length of the MNase-inaccessible region. The change of this dis-
tance was accurately reflecting the expected change of DNA
breathing in the H3K56A and H3K56Q nucleosome. The distance
to the closest peak on the same strand (SS lines; Fig. 5D), which
reflects nucleosome spacing, did not change.

One thing to note is that H3K56R (unacetylated lysine) did not
induce considerable changes. This proposes that the lysine residue
itself is structurally important for nucleosome mobility; H3K56
itself makes a water-mediated contact with the DNA phosphate
backbone at the DNA entry-exit gates [41]. It is possible that
H3K56Ac is not constitutively abundant in vivo so its loss does
not trigger global changes. Intriguingly, H3K56Q had the maxi-
mum negative association with H2AZ (KS < �20), but no significant
association with H3/H4. H3K56Ac may cause transcriptional
changes only in concert with H2AZ through the actions of CMs,
in contrast to the constitutive function of the residue itself.

4. Discussion

In this work, we developed a systematic approach to investigat-
ing the regulatory function of individual histone residues. Although
the role of histone modification has been the focus of interest, our
results emphasize the associations of HRs with CMs and NUC. For
example, associations between NUC and HRs in the lateral surface
highlight the importance of HR-NUC interactions in transcription
control. Specifically, H3K56 was found to play a key role in modu-
lating nucleosome relocation. The ability of a single residue to
globally affect nucleosome stability and occupancy is surprising.
Given the high impact of this residue on gene expression, we pro-
pose that nucleosome fuzziness and nucleosome positioning are
key factors to be considered in the study of gene transcription
[18]. Research into how K56 and its acetylation function in the
dynamic control of nucleosome positioning by modulating histone
structure and DNA interaction will also be interesting.

More prominent associations were observed with CMs.
Primarily, three modules in HR-CM associations suggested
unknown HR function (Supplementary Table S3). Here we focused
on H3 and H4, which was fruitful in identifying novel function
and associations. A more comprehensive map that includes the
other histones [2] will provide further insights into chromatin
regulation. For example, the association scores between Rad6/
Bre1 and Set1/Dot1 (Supplementary Fig. S5) support the crosstalk
between H2B ubiquitylation and H3K4 and K36 methylation [42].
The association of Rad6 inModule I (Fig. 3C) andwith FACT (Supple-
mentary Fig. S5) reflect the cooperation of H2B ubiquitylation and
FACT for Pol II elongation [43]. Are there other residues or CMs
involved in this crosstalk between H2B and H3/H4? What is the
counterpart of H4K91Ac in H2B that prevents salt bridge formation
betweenH4 andH2B [25]?What is the role of H2B ubiquitylation in
salt bridge prevention? How does H3K56Ac interact with H2AZ for
chromatin remodeling resulting in transcriptional changes? These
are only a few of the questions that it will help us to answer.

As shown in the HR-CM association map (Fig. 3C), some HRs
have similar association profiles in terms of their interaction with
CMs. If multiple HRs interact with a similar set of CMs, they can be
also regarded as communicating with one another. As another type
of visualization, we employed an HR network that represents sim-
ilarity of HRs in their association with CMs (Supplementary
Fig. S6). Interestingly, we were not able to detect any interacting
partners for modifiable tail residues, maybe reflecting that these
HRs have a direct and unique regulatory relationship with CMs.
In contrast, HRs located at the lateral DNA-contacting surface
tended to interact with multiple HRs. In this pilot analysis, we used
a high correlation threshold of 0.7 for easy visualization. By lower-
ing the threshold, a more complex network with a larger number
of nodes and edges will be obtained. It would be interesting to
investigate whether HRs in the network have a redundant or syn-
ergistic regulatory function with associated CMs.

In conclusion, our novel method that leveraged genome-wide
measurements of gene expression changes by the mutations of sin-
gle histone residues revealed potential interplay between histone
residues and a range of regulatory factors. Genome-wide profiles
for >120 histone mutations and >400 trans-regulators were associ-
ated by means of statistical tests. Based on the data, especially
associations with chromatin modifiers, we were able to reinforce
previous hypotheses or suggest novel hypotheses on the role of
histone residues or their modifications. However, our analysis is
primarily based on association and limited to static relationships.
Association may not necessarily imply causality. Novel but puta-
tive relationships derived from our approach need to be tested
by further experiments for causal, mechanistic, or dynamic interac-
tions of histone residues.
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