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Abstract--An efficient extrapolation scheme whose basic integrator is the inverse Euler scheme (c£ 
Fatunla, 1982) is proposed for nonlinear singular initial value problems y '  =f(x,  y ), y(O) = Yo. The 
automatic (polynomial/rational) extrapolation code DIFEXI (Deuflhard 1983, 1985) is modified 
to accommodate the basic integrator. The new algorithm was implemented in variable step, variable 
order mode and compares favourably with the earlier works. 

1. I N T R O D U C T I O N  

The mathematical formulation of physical situations in simulation and control often leads 
to initial value problems (ivps) in ordinary differential equations (ODEs) 

y '=f(x ,y) ,  y(0) = y0 (1.1) 

(x e [0, b], y e R"), whose solutions contain singularities. For nonlinear differential sys- 
tems, t he  theory of ODEs offers no clue as regards the location and nature of the 
singularities. Besides the conventional numerical integrators (i.e. the Runge Kutta 
processes and the linear multistep formulas) whose derivation is based on polynomial 
interpolation perform very poorly in the neighbourhood of such singularities. This is 
clearly illustrated in Table 1 where the Gragg-Bulirsch-Stoer rational extrapolation 
scheme (Gragg, 1965; Bulirsch and Stoer, 1966), and the Gragg-Neville-Aitken poly- 
nomial extrapolation (Gragg, 1965; Neville, 1934; Aitken, 1932) are both inefficient in the 
neighbourhood of the singularity. On the other hand the rational interpolation schemes 
of Luke et al. (1975) can be observed in Table 2 to be effective in the neighbourhood of 
the singularity and even beyond. The new algorithm is not only more effective but more 
accurate and more efficient than the existing algorithms. 

2. E X I S T I N G  A L G O R I T H M S  F O R  S I N G U L A R  I N I T I A L  
V A L U E  P R O B L E M S  

Several noteworthy algorithms have been proposed for singular ivps (1.1). 
Lambert and Shaw (1965, 1966) were the first to develop quadrature formulas based on 

rational interpolating functions 

F ( x )  = P, , (x) / (b  + x )  (2.1) 

and 

F(x)=P,(x)+alA +xl  u, N¢{O, l , . . . , n }  (2.2a) 

or  

F(x)=P,(x)+alA+xlUlnlA + x [ ,  N e { 0 , 1  . . . . .  n} (2.2b) 

where P.(x) is a polynomial of degree n. 
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Table I. Performance of a non-stiff extrapolation code on the singular ivp. y ' =  I +y- ' .  y(O)= [ 
0 ~ x ~ I h 0 - 0.25, hm,, = 1.0. maximum extrapolation 6 

Modified midpoint ( + )  rational Modified midpoint ( + ) polynomial 
extrapolation extrapolation 

Gragg-Bul i rsch-Stoer-DIFEX I Gragg-Nevil le-Aitken-DI FEX I 
Deuflhard (1983) Deuflhard (1983) 

= 10 -q Termination No. of  No. of Termination No. of No. of Fn 
q point x steps Fn evaluation point x steps evaluation 

I 0.904585413 17 299 0.785492433 132 1710 
2 0.786585246 88 880 0.786472360 88 880 
3 0.785412676 97 1843 0.785399251 103 1975 
4 0.785399984 203 5057 0.785398887 208 5182 
5 0.785398693 166 3190 0.785399861 164 3140 
6 0.785398201 179 2843 0.785398171 153 5045 
7 0.785398166 289 4471 0.785398170 180 5936 

The resultant integration formulas are very unwieldy and besides require analytic 
generation of first and higher order derivatives o f f .  Shaw (1967) developed perturbed 
linear multistep methods based on (2.2) which required the solution of nonlinear 
transcendental equations for the singularity parameters A and N at every integration step. 

Luke et al. (1975) further developed the idea of Lambert and Shaw (1965) by replacing 
(2.1) with a general rational function 

F(x)  = P,.(x)/Q,(x) (2.3) 

where Pro(x) and Q.(x)  are respectively polynomials of degree m and n 

With the representation 

P, . (x)= ~ a,x i, Q~(x) = 1 + ~ bi xi. (2.4) 
i=O i= I 

Lm,.(x ) = Q.(x )y(x ) - Pm(x ), (2.5) 

and its derivative w.r.t.x 

L ~,.(x ) = Q'~(x )y(x ) + Q.(x )y'(x ) - P'~(x ), (2.6) 

Luke et aL (1975) derived two sets of predictor corrector formulas by substituting 
x = Xo + th after imposing the following constraints on (2.5) and (2.6). 

(i) m + n - 2k 
Predictor: (error order p = 2k) 

L . . . ( x , )  = O. i = O(1)k + l 

L',..,(x,) = O, i = l ( l ) k  (2.7) 

Corrector: (error order p >I 2k) 

L~. . (x , )  = 0,  i = l ( l ) k  + l 

L',. . .(x,) = O, i = l ( 1 ) k  (2 .8)  

Table 2. Performance of Luke et al. (1975) on the singular ivp. y" = I + y2, 
y ( O ) = l , O ~ x ~ l , m = l , n = 2 ,  p = 4  

Theoretical Predicted Corrected Predicted Corrected 
X solution Uniform h = 0.05 Uniform h = 0.01 

0. I 1.22305 1.22304 1.22305 1.22305 1.22305 
0.2 1.50850 1.50848 1.50850 1.50850 1.50850 
0.3 1.89577 1.89574 1.89577 1.89577 1.89577 
0.4 2.46496 2.46493 2.46-198 2.46496 2.46496 
0.5 3.40822 3.40815 3.40826 3.40822 3.40822 
0.6 5.33186 5.33165 5.33186 5.33186 5.33186 
0.7 II.68137 11.68998 11.68153 11.68138 11.68139 
0.8 - 68.47967 - 68.59667 - 68.66273 - 68.48685 - 68.49443 
0.9 -8 .68763 -8 .73393 -8 ,68629 -8 .69860 -8 .69493 
1.0 -4 .58804  -4 .62137 -4 ,64804 -4 .56120 -4.56121 
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( i i )  m + n = 2 k  - l ( e r r o r  o r d e r  p = 2 k  - l )  

Predictor: (error order p = 2 k  - l )  

L, , . , (x , )  = 0, 

L ' , . . n ( x i )  = O, 

Corrector: (error order p t> 2k - 1) 

Lm..(xi)  = O, i = O(l)k 

1111 

i=O0)k 

i = O ( l ) k -  1 (2.9) 

L', , . ,(x,) = 0, l = l(l)k. (2.10) 

The simplest of  the resultant integration formulas is obtained from m = n = l, yielding the 
predictor 

2 2 y . y . .  I - 2y.+ I + hy .+  lY. 
2):. - 2y,,+ t + hy.+ a (2.1 la) Yn+2 = 

and the corresponding corrector 

Y~ ÷ I - h2y',+ lY',+,. 
y ,+2 = (2.l ib) 

2)',÷ i - Y , . 2  

Higher order formulas are quite unwieldy and can be found in Luke et al. (1975). 
In an attempt to derive more easily generalizable numerical integrators, Fatunla (1982) 

replaced the interpolating function (2.3) with 

A 
e ( x )  = Q~(x)" k >/1. (2.12) 

L , ( x )  = Q k ( x ) y ( x )  - A 

On setting 

(2.13) 

and imposing the constraints 

L,(x,) = 0, i = l(1)k 

L'k(X,) = O, i = 0 ( l ) k  - 1 (2.14) 

we obtained the explicit nonlinear integration formula 

Y,+k = Y" k > 1 n >t 0 (2.15) 

l + ~ k ' a ,  
r ~ l  

which is of error order p = k, whose coefficients can be obtained from the linear system 

R a  = b ( 2 . 1 6 )  

R~ = hPy'i + j i  j -  lyi 

bi = - hy  ; 

for 

i =  0(I)k - l, j = l(l)k. (2.17) 

Both the methods proposed by Luke et  al. (1975) and Fatunla (1982) require the solution 
of m sets of  linear systems at every integration step. In the next section, we attempt to 
eliminate the linear algebra involved by way of extrapolation process. 

3. EXTRAPOLATION PROCESS 

Hull et  al. (1973) concluded that the Gragg-Bulirsch-Stoer (GBS) rational extra- 
polation scheme is very competitive with the Adam's code for non-stiff ivps particularly 
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when function evaluation is inexpensive or high accuracy is desired, and output is 
demanded infrequently. Deuflhard (1985) argued that the Gragg modified midpoint rule 
combined with the polynomial extrapolation is more efficient that the GBS. Deuflhard 
(1983) proposed a new order and stepsize control for extrapolation methods which 
culminates in the automatic codes DIFEXI (of. Deuflhard, 1985) for non-stiff ivps and 
METAN1 (cf. Bader and Deuflhard, 1983) for stiff ivps. 

In this section, we shall adopt (2.15)-(2.17) for k = I as the basic integrator which 
possesses an asymptotic error expansion in h and of the form 

y(x, h) =y(x) + ~ e,(x)h r (3.2) 
r m l  

unlike the Gragg modified midpoint rule (Gragg, 1965) which has asymptotic expansion 
in h 2, i.e. 

y(x, h) = y ( x )  + ~ ~,(x)h"'. (3.3) 
r = l  

With H > 0 as the basic integration step and the integer sequence 

I = {nr} = {2,4, 6, 10, 12, 14, 16, 18,20} (3.4) 

we define a decreasing stepsize sequence 

= - - ,  r = 1 , 2  . . . . .  ( 3 . 5 )  h,:h, n, 

Adopting the one-step integration formula given by (2.15), we generate the first column 
of the extrapolation table (3.6) as follows 

T.  

T21 T¿2 

T3! T22 TI3 

and generate 

for 

Tml Tin-J2 . . . .  Tl,, 

t~=x,+sh,, s = l ( l ) n , ,  r =  ~<m 

Z0 ~ Yn, 

(3.6) 

s = 0 ( l ) n , -  1 and T,.j =y(xn+t,h,), r <<.m (3.8) 

where m is the maximum allowable extrapolation. 
The subsequent columns can be generated with the polynomial extrapolation scheme 

(Neville, 1934; Aitken, 1932) using the triangle rule as 

T,~_,  - T , _ , , _ ,  
Z . , =  Z.,-,-~ ' " (3.9) 

71r-s+ I /  

where 

1, for (3.7) 

7 = 2, for Gragg modified midpoint rule' 
(3.lO) 

hrz~Zs 
z ~ + l  = z ~ +  ~ ( 3 . 7 )  

z ,  - hz'~ 
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An alternative to (3.9) is the Bulirsch and Stoer (1966) rational extrapolation scheme 
which adopts the rhombus rule 

T,. _, =0,  

T,.,= T,+,. ,_ ,  4 T,+, .  , _ , -  T,. ,_ ,  (3.11) 

°, YF, ' l 
with 7 specified by (3.10). 

Deuflhard (1985) favoured the polynomial extrapolation (3.9) to rational extrapolation 
(3.11) for both theoretical and practical reasons: 

(i) rational extrapolation lacks translation invariance, 
(ii) in special cases, rational extrapolation may impose additional restrictions 

on the basic stepsize, and that 
(iii) the polynomial extrapolation is slightly more efficient in the variable step, 

variable order implementation. 

We however observed from Table 4 that for the singular ivps, the rational extrapolation 
scheme is more efficient and more accurate than the polynomial extrapolation scheme 
particularly when high degree of accuracy is desired. 

4. NUMERICAL EXPERIMENT 

The new algorithm was incorporated into the automatic code DIFEXI (cf. Deuflhard, 
1983) and called DIFEX2 implemented in double precision arithmetic on Prime 750 
computer located at the Computer Centre, University of Benin, Benin City, Nigeria. 

The essential amendments to the original code DIFEX1 are as follows: 

(a) the inclusion of the new integrator (3.7) using the indicator ITYPE i.e. 

ITYPE = ~0, Gragg modified midpoint rule (4.1) 

t 1, inverse Euler (3.7) 

(b) the extrapolation procedure is coded to accommodate the difference in the asymp- 
totic error expansion for the two basic integrators: 

(i) the Gragg modified midpoint rule (in h 2) 
(ii) the inverse Euler (in h) as indicated by (3.2), (3.3) and (3.10). 

Deuflhard (1985) approximated the local error with the subdiagonal error criterion 

e,+t. , =  II T~,- Tl.,+ t I1 ~< TOL (4.2) 

and adopted the local extrapolation by setting 

y ( x , + l ,  H )  = T~.,+1. (4.3) 

The stepsize for the next integration step is taken as 

J'TOL1 '", H 
H~,,, = a ~ c  ota,  ( 4 . 4 )  

( el., J 

where TOL is the allowable error tolerance, and the error order 

['s, for inverse Euler integrator 

P' = < (2s, for midpoint integrator " 
(4.5) 

We consider the scalar ivp of Luke et al. (1975) 

y ' = l + y Z ,  y (0 ) - - l ,  0~<x~<l, h0=0.25, hma~=l (4.6) 

for tolerances 

TOL = 10 -q, q = 1(1)7. (4.7) 
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(4.6) has a theoretical solution y ( x )  = tan(x + it/4) which has a singularity at x = n/4. 
The details o f  numerical  experiments  are given in Tables 1-4. 
F r o m  Table  l, it can be observed that  bo th  the Gagg-Bu l i r sch -S toe r  rational extrapo- 

lation scheme and the Gragg-Nev i l l e -Ai tken  polynomial  extrapolat ion scheme were 
halted in the ne ighbourhood  o f  the singularity x = ~/4 ~ 0.785398. This is simply because 
the basic integrator  (Gragg modified midpoin t  rule) is based on polynomial  interpolat ion 
and require more  than the al lowable max imum number  o f  stepsize reduct ion which is set 
to 5 in the code. 

Tables  2 -4  show that the proposed  scheme as well as those o f  Luke et al. (1975) and 
Fa tun la  (1982) can adequate ly  and efficiently cope with singular ivps. 

The new scheme has the advantage  o f  being implemented in variable order,  variable step 
mode  and besides does not  require the solution o f  linear systems at every integration step 
as Luke  et al. 0 9 7 5 )  and Fa tun la  (1982). 
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