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Abstract

Terfenol-D composites attract much attention recently due to their large magnetostriction, small eddy energy loss and
large operation frequency bandwidth. Binder layer in the composite usually mechanically weakens the composite and
reduces the effective properties. A typical kind of magnetostictive composite is composed of Rare Earth metallic compound
powder, matrix material and resin binder. The binder, which is usually flexible and forms mechanically weak interface in
the composite, inevitably influences the overall magnetostriction of composites. In this paper, a theoretical model was
developed to treat a simple deformation case of this kind of mechanically weak interface, in which the flexible layer has
low stiffness to withstand deformation but no de-bonding or cracking. An infinite magnetostrictive plane with a circular
inclusion was considered, where the matrix and inclusion are all general magnetostrictive materials which can be modeled
by the standard square constitutive relation of magnetostriction. The binder layer of a certain thickness was modeled as a
set of springs with no thickness but with an equivalent stiffness. The mathematical formulation was brought into the com-
plex variable framework. The magnetoelastic field was solved and the effective magnetostriction was explicitly obtained.
Comparisons with experimental results were also presented. In terms of this analysis, the interfacial stiffness has significant
influences on the overall magnetostriction of composite. Increasing the interfacial stiffness can lead to large magnetostric-
tion of composites. The measure for improving the interfacial stiffness includes increasing the binder modulus and reducing
its thickness.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Magnetostrictive materials are important functional materials in modern smart devices. The classical mag-
netostrictive materials are usually the soft ferromagnetic metals such as the pure iron, nickel and so on, which
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have a small magnetostriction and, currently, are seldom employed in the modern magnetostrictively func-
tional devices. The Rare Earth (RE) magnetostrictive alloy, the so-called Giant Magnetostrictive Materials,
have attracted much attention in the past decades due to their very large magnetostriction, high energy density
and quick response to external magnetic field (Clark, 1980). The RE metallic alloy, however, has very large
eddy-current energy loss and is generally limited to several kilohertz frequency (Kendall and Piercy, 1993).
Some adequately manipulated magnetostrictive composites can greatly reduce the eddy-current loss and
improve mechanical properties while keeping relatively large magnetostriction. The magnetostrictive compos-
ite with resin matrix can be operated till several hundred kilohertz, which greatly extends frequency limit of
magnetostrictive materials (Hudson et al., 1998).

There are usually several kinds of magnetostrictive composites, such as the 1–3 (Ren et al., 2005), 2–2
(Dong et al., 2005), and 0–3 type (Duenas and Carman, 2001). The 0–3 type composite can be obtained by
mixing RE metallic alloy powder with some kind of matrix powder. If a magnetic field is used for orientation,
magnetic particles inside the composite will be aligned like a fiber, forming the so-called pseudo-1–3 composite
(Ren et al., 2005). The RE magnetostrictive layer and the piezoelectric layer are sometimes stacked and
bonded to form the sandwiched laminate or multilayer actuators, which are of the 2–2 type (Dong et al., 2005).

Magnetostrictive composites with RE metallic particles have been investigated theoretically and experimen-
tally. Herbst et al. (1997) studied the effective magnetostriction of composites by choosing smFe2 as the mag-
netostrictive phase and adopting aluminum (Al) and iron (Fe) powder as matrix, respectively. A theoretical
model was also proposed for predicting the effective magnetostriction of the composite with non-magneto-
strictive matrix. Based on the Green’s function, Nan (1998) developed a model for the effective magnetostric-
tion, which actually treat the magnetostrictive behavior linearly. Chen et al. (1999) experimentally studied the
magnetostrictive behavior of composites with different kinds of matrices, and gave a simple model to account
for their experimental results based on the assumption of uniform stress and uniform strain. Guo et al. (2001)
have conducted the experiment of Terfenol-D composite with epoxy resin as matrix. It was found that some
previous models can not predict accurately the results. A model based on the strain energy consideration was
then developed. As the RE magnetostrictive materials usually exhibit obvious nonlinear behavior under exter-
nal magnetic field (Wan et al., 2003a; Zheng and Liu, 2005), Wan et al. (2004) included this nonlinear effect
and developed a model for the effective magnetostriction for general magnetostrictive composites, where both
matrix and inclusion are all magnetostrictive and modeled by the nonlinear constitutive relations.

To prepare magnetostrictive composites, the RE metallic alloy powder and the matrix are usually mixed
together with some resin. The resin, which serves as the binder, greatly enhances the resistivity and reduces
the eddy-current loss by isolating the metallic particles and avoiding the percolation path of metallic particles
through the composite. The coating resin covering the RE alloy particles, which is very thin compared to the
particle size, usually has a low modulus and actually forms a flexible interfacial layer between the matrix and
metallic particles. Upon stresses, the flexible thin layer, which is usually mechanically weak compared to the
matrix and inclusion, undergoes deformation and even sometimes comes to failure such as sliding, de-bonding,
cracking etc. The deformation and failure inevitably bring influences on the properties of magnetostrictive
composites (Kim et al., 1998). Therefore, similar to the ordinary composite, interfacial problems are also
key to the overall properties of magnetostrictive composites and should be rigorously examined.

The above-mentioned theoretical models, however, did not consider the effect of flexible interface. The
deformation and failure of flexible interface are generally very complicated in the composite. For a typical
kind of composite with Terfernol-D as magnetostrictive phase and resin as the binder, in this paper, a theo-
retical model was developed to treat a simple deformation case of this kind of mechanically weak interface, in
which the flexible layer has low stiffness to withstand deformation but no de-bonding or cracking occurs. This
model, as compared to the perfect interface model (Wan et al., 2004) where the surface traction and displace-
ments are continuous across the interface, takes force-dependent displacements on the interface and, to some
extent, physically characterizes the flexible but non-breaking resin binder. A finite stiffness can be used to rep-
resenting a certain kind of interfacial layer of resin. The perfect interface model can be mathematically recov-
ered if the interfacial stiffness tends to be infinite.

An infinite magnetostrictive plane with an embedded circular inclusion was considered, where both the
matrix and inclusion are magnetostrictive and modeled by the standard square constitutive relation of mag-
netostriction. The mathematical formulation was brought into the complex variable framework. The magnetic
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and elastic fields were solved and the effective magnetostriction was explicitly obtained. Comparisons with
experimental results were also made. The binder influences on the effective magnetostriction were analyzed,
including the interfacial stiffness, material modulus and the thickness of the binder layer. In Section 2, the the-
oretical model is established and the mathematical formulation is presented in terms of the complex variable
method. In Section 3, solution to this problem is obtained. The fourth section gives theoretical analysis and
experimental verification. The final section is the conclusion of this paper.

2. Formulation

To study the influence of the mechanically-weak binder layer on the effective magnetostriction of the par-
ticulate composite, a planar model of magnetostrictive matrix with a circular inclusion is considered. As
shown in Fig. 1, a circular magnetostrictive inclusion ðmI

k;G
I; lIÞ of radius, a, is embedded in an infinite mag-

netostrictive plane ðmM
k ;G

M; lMÞ with a thin interfacial layer (Eb,mb) of thickness, D. This layer physically rep-
resents the resin binder in the composite, whose thickness is generally very small compared to the particle size,
i.e. D� a. At infinity, the mechanical load, r1, and the magnetic induction, B1, are applied. The inclusion
has the magnetostrictive coefficient of mI

k along the direction of external magnetic field, the shear modulus GI,
and permeability of lI, while the corresponding quantities of the matrix are denoted by mM

k , GM and lM,
respectively. Eb and mb are the Young’s modulus and Poisson’s ratio of the binder layer.

2.1. The magnetic induction

Magnetic materials exhibit magnetostriction under magnetic field. The elastic field in the magnetic material
is influenced by the magnetic field through magnetostriction. The counter effect, however, is a high-order effect
and can generally be believed to be relatively weak (Pao and Yeh, 1973; Wan et al., 2003b). The magnetic
induction can be obtained without taking the magnetoelastic coupling into consideration. It can be reasonably
assumed that a nonmagnetic inhomogeneous layer also exerts negligibly small disturbance to the distribution
of magnetic field if the layer becomes very thin compared to the matrix and inclusion. Therefore, the magnetic
field can be obtained from the rigid body configuration, where the thin nonmagnetic inhomogeneous layer is
not considered. For a circular inclusion embedded in an infinite plane, the distribution of magnetic induction
was already obtained by means of the complex variable method as follows (Wan et al., 2004):
wMðzÞ ¼ �B1zþP
a2

z
; ð1aÞ

wIðzÞ ¼ �Cz; ð1bÞ
where z = x1 + ix2, i ¼
ffiffiffiffiffiffiffi
�1
p

, x1 and x2 are the rectangular coordinates, an over bar represents conjugate of
complex variables.
Fig. 1. A circular inclusion embedded in an infinite magnetostrictive plane with a thin layer (thickness of D).
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C ¼ 2lIB1

lI þ lM
; ð2aÞ

P ¼ ðl
I � lMÞB1
lI þ lM

; ð2bÞ
lI, lM are the permeability of inclusion and matrix, respectively. B1 is the magnetic induction at infinity. wI(z)
and wM(z) are the complex potentials of magnetic induction in the inclusion and matrix, respectively. The
magnetic induction can be obtained in terms of the complex potentials as follows:
B ¼ �w0ðzÞ; ð3aÞ

where a prime denotes derivative with respect to the complex variable, z.
B ¼ B1 þ iB2 ð3bÞ

in which B1 and B2 are components of the magnetic induction along the coordinate axes.

2.2. The mechanical interfacial conditions

Though the magnetic induction is assumed to be insensitive to the presence of a nonmagnetic thin layer, the
elastic field, however, may be very sensitive to this interfacial layer due to mechanical weakness. Therefore, the
elastic field should be solved in terms of the boundary conditions including the mechanically weak thin layer.
The mechanical conditions can be established by examining the deformation of the binder layer. As shown in
Figs. 2 and 3, the small deformation of a unit cell with the area dA of the binder layer can be divided into two
parts, i.e. the normal elongation (Fig. 2) and the shear deformation (Fig. 3). In this paper, the binder layer was
theoretically treated by means of the equivalent models (Figs. 2b and 3b), in which the binder layer of thick-
ness D is replaced by a set of springs and additional matrix layer of thickness D. The set of springs, which is
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Fig. 2. The normal elongation: (a) the physical model and (b) the equivalent model.
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Fig. 3. The shear deformation: (a) the physical model and (b) the equivalent model.
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considered to take up no space, have the normal stiffness kn and the tangential stiffness ks. To determine the
stiffness of the interface, kn and ks, the traction and displacement responses of the equivalent model are equa-
ted to those of the physical model.

The relative displacement in the normal direction of the physical model, dun, as shown in Fig. 2a, is as
follows:
dun ¼
tndA
dA

D

Eb
; ð4aÞ
where Eb is the Young’s modulus of the binder, tn is the traction in the normal direction. The relative displace-
ment in the normal direction of the equivalent model, dun, as shown in Fig. 2b, is given by
dun ¼
tndA
dA

1

kn

þ tndA
dA

D

EM
; ð4bÞ
where EM is the Young’s modulus of the matrix. The normal stiffness can be solved by means of equating Eqs.
(4a) to (4b).
kn ¼
Eb

D
1

1� Eb=EM
: ð5Þ
Similarly, the relative displacement in the tangential direction dus, in Fig. 3a and b, are given as follows:
dus ¼
tsdA
dA

D

Gb
; ð6aÞ

dus ¼
tsdA
dA

1

ks
þ tsdA

dA
D

GM
; ð6bÞ
where Gb and GM are the shear modulus of the binder and the matrix, respectively. ts is the traction in the
tangential direction. The tangential stiffness can be obtained by considering the equivalence of the displace-
ments in Eqs. (6a) and (6b).
ks ¼
Gb

D
1

1� Gb=GM
: ð7Þ
The mechanical conditions of this problem are actually the deformation equations of the springs, which are
considered taking up no space between the inclusion and the matrix. These deformation equations include
the surface tractions which are relative-displacement dependent, both in the normal and tangential direction,
and the interface conditions of the surface tractions.
tI
n � knðuI

n � uM
n Þ ¼ 0; ð8aÞ

tI
s � ksðuI

s � uM
s Þ ¼ 0; ð8bÞ

tI þ tM ¼ 0; ð8cÞ
where the symbols I and M are used to denoting the quantities of inclusion and matrix, respectively. t is the
surface traction vector. The letter in bold type refers to the vector or tensor in this paper. The interface con-
ditions of the surface tractions in Eq. (8c) can also be presented with the stresses of the inclusion and the
matrix.
nI � rI þ nM � rM ¼ 0; ð9Þ

where rI and rM are the stress tensor in the inclusion and matrix, respectively. nI and nM the unit outward
normal to the interface for the inclusion and that for the matrix, respectively. Note that these two units out-
ward normal to the interface are exactly the same in magnitude but opposite in direction, i.e.
nM ¼ �nI: ð10Þ
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Substituting Eq. (10) into Eq. (9) and using n to representing for nI, the surface traction conditions in Eq. (8c)
can also be written into the following form:
n � ðrI � rMÞ ¼ 0; ð11Þ

where n represents the unit outward normal to the interface for the inclusion.

It can be seen from Eqs. (5) and (7) that the interface stiffness is usually finite for a general case where the
binder is of a certain thickness and compliant compared with the matrix. There are two limit cases where the
interface stiffness tends to be infinite. One is when the thickness reduces to zero and the binder vanishes,
another is when the binder material is identical to the matrix. In both cases the tractions and the displace-
ments are continuous across the interface, and this model recovers the perfect interface model (Wan et al.,
2004).

2.3. Complex variable framework

The 2-dimensional standard square constitutive relation of magnetostriction is (Wan et al., 2004)
eab ¼
1þ m

E
ðrab � mrccdabÞ þ ðmk � m?ÞBaBb þ ð1þ mÞm?BcBcdab; ð12Þ
where a, b and c run from 1 to 2, rab is the stress tensor, eab the strain tensor, Ba the magnetic induction,dab the
Kronecker delta. mk and m? are, respectively, the magnetostrictive coefficients along the direction of applied
magnetic field and its perpendicular direction. E and m are the Young’s modulus and the Poisson’s ratio,
respectively. The equilibrium equation and the geometric compatibility equation are as follows:
rab;b ¼ 0; ð13aÞ

eab ¼
1

2
ðua;b þ ub;aÞ; ð13bÞ
in which ua (a = 1,2) are the displacements. A prime denotes the derivative with respect to the coordinates xa.
The conventional summation rule is adopted. The constitutive equation in (12), together with the field equa-
tion in (13a) and (13b), constitutes the problem of magnetostrictive elasticity. This problem can be solved
within the framework of complex potentials (see Appendix A).

The surface tractions and displacements in the normal and tangential direction can be obtained respectively
through the stress and displacement components by means of the following equations:
tI
n ¼ n2

1r
I
11 þ n2

2r
I
22 þ 2n1n2r

I
12; ð14aÞ

tI
s ¼ n1n2ðrI

11 � rI
22Þ þ ðn2

2 � n2
1ÞrI

12; ð14bÞ

uI
n ¼ uI

1n1 þ uI
2n2; ð14cÞ

uI
s ¼ uI

1n2 � uI
2n1; ð14dÞ

uM
n ¼ uM

1 n1 þ uM
2 n2; ð14eÞ

uM
s ¼ uM

1 n2 � uM
2 n1; ð14fÞ
where r11, r22 and r12 are the stress components, u1and u2 are the displacement components. The superscripts
I and M denote the quantities for the inclusion and matrix, respectively. n1 and n2 are the directional cosines of
the unit outward normal to the interface for the inclusion, which can be expressed in terms of the complex
variables,
n1 ¼
1

ds
1

2i
ðdz� d�zÞ

� �
; ð15aÞ

n2 ¼ �
1

ds
1

2
ðdzþ d�zÞ

� �
; ð15bÞ
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where �z ¼ x1 � ix2 is the conjugate of z. ds the differential of arc length. With reference to Eqs. (14) and (15)
and the resultant forces of the surface tractions along the interface, the mechanical interfacial conditions in
Eqs. (8a), (8b) and (11) can be re-written with complex variables as follows:
dz
d�z

� �
ðr22 � r11Þ þ 2r12i½ �I þ

dz
d�z

� �
ðr22 � r11Þ þ 2r12i½ �I þ 2ðr22 þ r11ÞI

þ 2kni
d�z
dz

� �1
2

ðu1 þ iu2ÞI � ðu1 þ iu2ÞM
� �

� d�z
dz

� �1
2

ðu1 þ iu2ÞI � ðu1 þ iu2ÞM
� �8<

:
9=
; ¼ 0; ð16aÞ

i
dz
d�z

� �
ðr22 � r11Þ þ 2r12i½ �I �

dz
d�z

� �
ðr22 � r11Þ þ 2r12i½ �I

( )

þ 2ks
d�z
dz

� �1
2

ðu1 þ iu2ÞI � ðu1 þ iu2ÞM
� �

þ d�z
dz

� �1
2

ðu1 þ iu2ÞI � ðu1 þ iu2ÞM
� �8<

:
9=
; ¼ 0; ð16bÞ

XIðzÞ þ zX0IðzÞ þWIðzÞ �
SI

2
wIðzÞw0IðzÞ ¼ XMðzÞ þ zX0MðzÞ þWMðzÞ �

SM

2
wMðzÞw0MðzÞ; ð16cÞ
where XI(z), WI(z), XM(z) and WM(z) are the complex potentials in the circular inclusion and outside matrix,
respectively. The displacements and stresses expressed with complex potentials are listed in Appendix A. It
should be noted that both sides of Eq. (16c) are complex, which actually represents two identities. For the sake
of convenience, the interfacial conditions are transformed into the f plane with the mapping function, z = af,
where the complex potentials assume the following forms:
XIðzÞ ¼ X0
I ðfÞ; ð17aÞ

WIðzÞ ¼ W0
I ðfÞ; ð17bÞ

XMðzÞ ¼ p1zþ X0
MðfÞ; ð18aÞ

WMðzÞ ¼ p2zþW0
MðfÞ; ð18bÞ
where p1, p2 are determined by the remote magnetic and mechanical loads.
p1 ¼
SM

4
PP; ð19aÞ

p2 ¼
r122 � r111 þ 2ir112

4
: ð19bÞ
The interface between the matrix and inclusion in the physical plane, i.e. z�z ¼ a2, is mapped to be the unit cir-
cle, r = eih, in the f plane, where there is �r ¼ 1=r. The interfacial conditions in Eqs. (16a)–(16c) become as
follows:
2

a
rX000

I ðrÞ þ
1

r
X000

I ðrÞ
� �

þ 2

a
r2W00

I ðrÞ þ
1

r2
W00

I ðrÞ
� �

� 4

a
X00

I ðrÞ þ X00

I ðrÞ
h i

� kn

3� 4mI

GI

1

r
X0

I ðrÞ þ rX0
I ðrÞ

� �
� 3� 4mM

GM

1

r
X0

MðrÞ þ rX0
MðrÞ

� �	

� 1

GI
X00

I ðrÞ þ X00

I ðrÞ
h i

þ 1

GM
X00

MðrÞ þ X00

MðrÞ
h i

� 1

GI
rW0

I ðrÞ þ
1

r
W0

I ðrÞ
� �

þ 1

GM
rW0

MðrÞ þ
1

r
W0

MðrÞ
� �


þ L12r
2 þ L12

1

r2
þ L10 ¼ 0; ð20aÞ
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2

a
1

r
X000

I ðrÞ � rX000

I ðrÞ
� �

þ 2

a
1

r2
W00

I ðrÞ � r2W00

I ðrÞ
� �

� ks
3� 4mI

GI

1

r
X0

I ðrÞ � rX0
I ðrÞ

� �
� 3� 4mM

GM

1

r
X0

MðrÞ � rX0
MðrÞ

� �	

� 1

GI
X00

I ðrÞ � X00

I ðrÞ
h i

þ 1

GM
X00

MðrÞ � X00

MðrÞ
h i

� 1

GI

1

r
W0

I ðrÞ � rW0
I ðrÞ

� �
þ 1

GM

1

r
W0

MðrÞ � rW0
MðrÞ

� �

þ L22

1

r2
� L22r

2 ¼ 0; ð20bÞ

X0
I ðrÞ � X0

MðrÞ
� �

þ r X00

I ðrÞ � X00

MðrÞ
h i

þ W0
I ðrÞ �W0

MðrÞ
h i

� R1r� R2

1

r
þ R3r

3 ¼ 0; ð20cÞ
where there are
L10 ¼ �kna
SI

GI
CC� 2ð1� vMÞ SM

GM
B1B1 þ SM

GM
PPþ 2ðmM

k � mM
? ÞB1P

� �
þ 2SICC; ð21aÞ

L12 ¼ �kna
mM
k � mM

?

� �
2

1

3
ðPÞ2 � ðB1Þ2

� �
þ

mI
k � mI

?

� �
2

ðCÞ2 þ p2

GM

8<
:

9=
;; ð21bÞ

L22 ¼ �ksa
SM

GM
B1P�

mM
k � mM

?

� �
2

1

3
ðPÞ2 þ ðB1Þ2

� �
þ

mI
k � mI

?

� �
2

ðCÞ2 þ p2

GM

8<
:

9=
;; ð21cÞ

R1 ¼ a
SI

2
CCþ SM

2
PP

� �
; ð21dÞ

R2 ¼ a
SM

2
B1Pþ p2

� �
; ð21eÞ

R3 ¼ a
SM

2
B1P; ð21fÞ
The dimension of L10, L12 and L22 are the same as that of stresses, while Rk (k = 1,2,3) have the dimension of
the stress multiplied by length. In the above equations, the symbol S is defined as:
S ¼ 1� ð1þ 2mÞq
4

E
1� m2

mk; ð22Þ
where q = �m?/mk named the magnetic Poisson’s ratio, The superscripts or subscripts M and I refer to the
quantities of matrix and the inclusion, respectively. r111, r112 and r122 are the mechanical loads applied at infinity.

3. Solutions and the effective magnetostriction

To solve the simultaneous Eqs. in (20a)–(20c), the unknown functions, X0
MðfÞ, W0

MðfÞ, X0
I ðfÞ and W0

I ðfÞ, are
expanded into series, of which X0

MðfÞ and W0
MðfÞ are defined outside the unit circle and can be expanded into

the negative power series of f, while X0
I ðfÞ and W0

I ðfÞ are defined inside the unit circle and can be expanded into
the positive power series of f.
X0
MðfÞ ¼ a0 þ

X1
j¼1

aj

fj ; ð23aÞ

W0
MðfÞ ¼ b0 þ

X1
j¼1

bj

fj ; ð23bÞ
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X0
I ðfÞ ¼ c0 þ

X1
j¼1

cjf
j; ð23cÞ

W0
I ðfÞ ¼ d0 þ

X1
j¼1

djf
j: ð23dÞ
Insert the power series into Eqs. (20a)–(20c), the simultaneous equations of the coefficients can be obtained as
follows, from which the coefficients can be solved.
� kn

GM
ðb1 þ b1Þ �

kn

GI
ð2� 4mIÞ þ 4

a

� �
ðc1 þ c1Þ þ L10 ¼ 0; ð24aÞ

ks

GM
ðb1 � b1Þ �

kn

GI
ð4� 4mIÞðc1 � c1Þ þ L20 ¼ 0; ð24bÞ

� b1 þ c1 þ c1 � R1 ¼ 0; ð24cÞ
kn

GM
ð4� 4mMÞa1 �

kn

GM
b3 þ

kn

GI
4mIc3 þ

2

a
þ kn

GI

� �
d1 þ L12 ¼ 0; ð25aÞ

ks

GM
ð2� 4mMÞa1 þ

ks

GM
b3 þ

ks

GI
ð6� 4mMÞ þ 12

a

� �
c3 þ

ks

GI
þ 2

a

� �
d1 þ L22 ¼ 0; ð25bÞ

a1 � b3 þ c3 þ R3 ¼ 0; ð25cÞ
� a1 þ 3c3 þ d1 � R2 ¼ 0: ð25dÞ
The coefficients b1 and c1can be solved from Eqs. (24a)–(24c) as follows:
b1 ¼
2 kn

GM R1 þ L10

kn

GI ð2� 4vIÞ þ 4
aþ 2 kn

GM

� R1; ð26aÞ

c1 ¼
2 kn

GM R1 þ L10

kn

GI ð4� 8vIÞ þ 8
aþ 4 kn

GM

: ð26bÞ
It can be verified that both b1 and c1 are real numbers. Similarly, the coefficients a1, b3, c3 and d1 can be ob-
tained from Eqs. (25a)–(25d).
a1 ¼
ks

GM
þ 6

a
þ ks

GI
ð3� 4mIÞ

� �
� kn

GM
R3 �

kn

GI
þ 2

a

� �
R2 � L12

� �	

� ks

GM
R3 þ

ks

GI
þ 2

a

� �
R2 þ L22

� �
� kn

GM
þ kn

GI
ð3� 4mIÞ þ 6

a

� �


� ks

GM
þ 6

a
þ ks

GI
ð3� 4mIÞ

� �
� kn

GM
ð3� 4mMÞ þ 2

a
þ kn

GI

� �	

þ ks

GM
ð3� 4mMÞ þ ks

GI
þ 2

a

� �
� kn

GM
þ kn

GI
ð3� 4mIÞ þ 6

a

� �
�1

; ð27aÞ

b3 ¼
ks

GM
ð2� 4mMÞ � 4

a
� ks

GI
ð2� 4mIÞ

� �
� � kn

GM
R3 þ

kn

GI
þ 2

a

� �
R2 þ L12

� �	

� ks

GM
R3 þ

ks

GI
þ 2

a

� �
R2 þ L22

� �
� kn

GM
ð4� 4mMÞ þ kn

GI
ð4� 4mIÞ þ 8

a

� �


� ks
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þ 6

a
þ ks

GI
ð3� 4mIÞ

� �
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GM
ð3� 4mMÞ þ 2

a
þ kn

GI

� �	

þ ks

GM
ð3� 4mMÞ þ ks

GI
þ 2

a

� �
� kn

GM
þ kn

GI
ð3� 4mIÞ þ 6

a

� �
�1

þ R3; ð27bÞ
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c3 ¼ �
kn

GM
ð3� 4mMÞ þ 2

a
þ kn

GI

� �
� ks

GM
R3 þ

ks

GI
þ 2

a

� �
R2 þ L22

� �	

þ ks

GM
ð3� 4mMÞ þ 2

a
þ ks

GI

� �
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GM
R3 �
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þ 2

a

� �
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� �
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þ 6

a
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GI
ð3� 4mIÞ

� �
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ð3� 4mMÞ þ 2

a
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GI

� �	

þ ks
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GI
þ 2

a

� �
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ð3� 4mIÞ þ 6

a

� �
�1

; ð27cÞ

d1 ¼
ks

GM
ð10� 12mMÞ þ 12

a
þ ks

GI
ð6� 4mIÞ

� �
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GM
R3 �

kn

GI
þ 2

a

� �
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� �	

þ ks

GM
R3 þ
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GI
þ 2

a

� �
R2 þ L22

� �
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GM
ð8� 12mMÞ þ kn

GI
4mI

� �


� ks

GM
þ 6

a
þ ks

GI
ð3� 4mIÞ

� �
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GM
ð3� 4mMÞ þ 2

a
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GI

� �	

þ ks
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ð3� 4mMÞ þ ks

GI
þ 2

a

� �
� kn

GM
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GI
ð3� 4mIÞ þ 6

a

� �
�1

þ R2: ð27dÞ
All other coefficients are zero. The detailed derivation is given in Appendix B. Therefore, there are only six
non-zero coefficients remained, i.e. a1, b1, c1, d1, b3 and c3. The complex potentials can be obtained in the phys-
ical plane (z plane) by means of the inverse transform, and listed as follows:
XMðzÞ ¼ p1zþ a1

a
z
; ð28aÞ

WMðzÞ ¼ p2zþ b1

a
z
þ b3

a3

z3
; ð28bÞ

XIðzÞ ¼ c1

z
a
þ c3

z3

a3
; ð28cÞ

WIðzÞ ¼ d1

z
a
: ð28dÞ
The elastic field of this problem can be obtained by inserting the complex potentials (28a)–(28d) into the equa-
tions in Appendix A. To obtain the magnetostriction of composite, without loss of any generality, a special
case is discussed where the external magnetic field is directed along the x2 axis, i.e. B1 ¼ iB12 , and no mechan-
ical loads are exerted at infinity. The displacement field is obtained as follows:
uM
1 ¼ uI

1 ¼ 0; ð29aÞ

uM
2 ¼

2� 4mM

GM
p1 þ

SM

2GM
B1B1 �

mM
k � mM

?

2
ðB1Þ2

" #
x2 �

4� 4mM

GM
aa1 þ

1

GM
ab1 þ ðmM

k � mM
? ÞB1Pa2

� �
1

x2

þ 1

GM
a3b3 �

SM

2GM
PPa4 þ

mM
k � mM

?

� �
6

P2a4

2
4

3
5 1

x3
2

; ð29bÞ

uI
2 ¼

3� 4mI

GI

c1

a
� 1

GI

c1

a
þ 1

GI

d1

a
þ SI

2GI
CC�

mI
k � mI

?

2
ðCÞ2

" #
x2 �

3� 4mI

GI

c3

a3
� 3

1

GI

c3

a3

� �
x3

2: ð29cÞ
It can also be verified that this solution reduces to that of the perfect interfacial conditions (Wan et al., 2004),
if the interfacial stiffness kn and ks tend to be infinite. To find the effective magnetostriction of the composite,
which is usually a material constant and independent of external loadings, a strong enough magnetic field is
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supposed to be exerted at infinity so that the matrix and inclusion deform with the saturation magnetostric-
tion, i.e.
kMS
k ¼ mM

k B1B1; ð30aÞ
kMS
? ¼ mM

? B1B1; ð30bÞ

kIS
k ¼ mI

kB
1B1; ð31aÞ

kIS
? ¼ mI

?B1B1; ð31bÞ
where kMS
k and kMS

? are the saturation magnetostriction along the direction of magnetic field and its perpen-
dicular direction for the matrix material, while kIS

k and kIS
? are the corresponding saturation magnetostriction

for the inclusion. Similar to the previous definition (Herbst et al., 1997; Wan et al., 2004), the effective mag-
netostriction of the composite can be defined as
k� ¼ kc

k0

; ð32aÞ
where
kc ¼
1

kIS
k

uM
2




x1¼0

x2

; ð32bÞ

k0 ¼
1

kIS
k

uI
2




x1¼0
x2¼a

a
; ð32cÞ
and
uM
2




x1¼0

x2

¼ 2�4mM

GM
p1þ
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2GM
B1B1�
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k �mM

?

2
ðB1Þ2

" #
� 4�4mM

GM

1

a
a1þ

1

GM

1

a
b1þðmM

k �mM
? ÞB1P

� �
f

þ 1

GM

1

a
b3�

SM

2GM
PPþ

mM
k �mM

?

� �
6

P2

2
4

3
5f 2; ð33Þ
where f ¼ a
x2

� �2

, which can be regarded as the volume fraction of inclusion, for the plane case.

4. Results and discussion

In the following discussions, without loss of generality, the Poisson’s ratio m of the materials, including the
inclusion, binder and the matrix, and the magnetic Poisson’s ratio q of both the inclusion and matrix are all
assumed to be 0.3, i.e. mI = mM = mb = 0.3, qI = qM = 0.3. The effective magnetostriction, k*, is plotted against
the volume fraction, f, for different interfacial stiffness (see Fig. 4). For the sake of comparison, the perfect
interface case (Wan et al., 2004) is also plotted. It can be found that as the interfacial stiffness increases,
the perfect interface case is more closely approached. The perfect interface is the limit case that can be recov-
ered by choosing the stiffness to be infinite. Fig. 5 is the plot of the effective magnetostriction against the inter-
facial stiffness. This graph shows that, for a certain volume fraction, a stiffer interfacial layer will always lead
to a larger effective magnetostriction, despite that there is a gradual saturation trend of the effective magne-
tostriction when the stiffness of the interfacial layer becomes very large. Therefore, the interfacial stiffness has
obvious influences on the effective magnetostriction of composite, especially when the stiffness is not very high
compared with the modulus of matrix. In the case illustrated in Fig. 5, it seems that the influence becomes very
obvious when the relative stiffness, kna/EM, lies below 3, while this range may vary with different kinds of
materials and binder layers.

To design the binder layer, it is important to consider two factors, i.e. the modulus and the thickness of the
binder layer, both of which, in terms of Eqs. (5) and (7), obviously influence the equivalent interface stiffness.
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In order to quantitatively understand the influence of the binder layer on the effective magnetostriction of
composite, a typical kind of composite is chosen with Terfenol-D as the magnetostrictive phase, glass as
the matrix. The moduli of materials are: EI = 30 GPa, EM = 50 GPa. To improve the interfacial stiffness
and therefore enhance the effective magnetostriction, one way is to increase the modulus of the binder mate-
rial. As is shown in Fig. 6, where the effective magnetostriction k* is plotted against the binder modulus nor-
malized by the matrix modulus, Eb/EM, for three different volume fractions f = 0.3, f = 0.5 and f = 0.7, while
the binder thickness is fixed to be D/a = 0.1, it can be seen that the effective magnetostriction depends monot-
onously on the binder modulus. A binder with a larger modulus will produce a bigger effective magnetostric-
tion. The effective magnetostriction is obviously influenced by the binder modulus when the modulus is
relatively small compared to the matrix. For an example, in the case shown in Fig. 6, the effective magneto-
striction obviously decreases as the modulus of binder reduces when the modulus is less than 0.3 times that of
the matrix. As is known, in order to obtain a well-fitting property, a flexible binder is usually adopted in the
design of magnetostrictive composite. This analysis indicates that the binder layer should be adequately
designed so that not too much of the effective magnetostriction is lost while keeping a well-fitting property.

For a certain kind of binder material, another way to improve the interfacial stiffness is to reduce the layer
thickness. Choosing epoxy resin as the binder, Eb = 2 GPa, and the same materials for the inclusion and
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matrix in Fig. 6, Fig. 7 shows the effective magnetostriction (k*) plotted against the binder thickness (D). It can
be seen that the effective magnetostriction generally decreases as the binder layer becomes thicker. For a cer-
tain volume fraction, the perfect interface case, which is characterized by zero thickness of the binder, has the
maximum effective magnetostriction. The gap is quite large between the effective magnetostriction when the
binder layer thickness is 10% of the radius of inclusion and that of the perfect interface case.

To predict the macroscale magnetostriction of Terfenol-D composites, comparison is made between the
theoretical predictions and the experimental results in Chen et al. (1999) (see for Fig. 8), where the saturation
magnetostriction of Terfenol-D is kIS

k ¼ 930� 10�6 and the matrix has no magnetostriction, kMS
k ¼ 0. The

Young’s modulus of the magnetostrictive phase and the matrix are EI = 30 GPa and EM = 50 GPa, respec-
tively. For the sake of comparison, the perfect interface model in Wan et al. (2004) is also presented. Two dif-
ferent kinds of interfacial layer were presented since the interfacial conditions are not clearly known for the
experiment. It can be seen that the experimental results are close to the theoretical predictions if the weak
interface of a certain stiffness is considered in the model for this kind of magnetostrictive composite, which
means that to some extent the model can qualitatively predict the experimental results.
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5. Conclusions

Magnetostrictive composites with RE metallic alloy particles as magnetostrictive phase have received much
attention in recent years. The resin binders are usually used in the preparation of RE magnetostrictive com-
posite. The binders, which are mechanically weak, generally have significant influences on the overall effective
magnetostriction of composite. In this paper, this mechanically weak layer of a certain thickness is theoreti-
cally modeled by a set of springs with an equivalent stiffness, and the influences of the binder layer on the effec-
tive magnetostriction have been discussed. Results show that the interfacial stiffness has significant influences
on the effective magnetostriction of the composite. Increasing the interfacial stiffness will obtain a higher effec-
tive magnetostriction. Two factors are responsible for the interfacial stiffness, the modulus and the thickness of
the binder. A higher modulus or a smaller thickness will lead to a larger interfacial stiffness, and hence, a
higher effective magnetostriction.

Acknowledgements

The authors gratefully acknowledge the anonymous reviewers, whose suggestions led to significant
improvements of this paper. This work was supported by National Natural Science Foundation of China
(Project nos. 10402028, 10432030) and Specialized Research Fund for the Doctoral Program of Higher Edu-
cation (Project no. 20050247003).

Appendix A

The mathematical formulation of magnetoelasticity with the standard square constitutive relation of mag-
netostriction can be brought into complex variable framework (Wan et al., 2003b, 2004). The stresses, dis-
placements and resultant force can be expressed with the complex potentials as follows:
r11 þ r22 ¼ 4 X0ðzÞ þ X0ðzÞ � S
2

w0ðzÞw0ðzÞ
� �

; ðA:1Þ

r22 � r11 þ 2r12i ¼ 4 �zX00ðzÞ þW0ðzÞ � S
2

w00ðzÞwðzÞ
� �

; ðA:2Þ

T 1 þ iT 2 ¼ �2i½XðzÞ þ zX0ðzÞ þWðzÞ � S
2

wðzÞw0ðzÞ�zz0
; ðA:3Þ

u1 þ iu2 ¼
3� 4v

G
XðzÞ � 1

G
zX0ðzÞ � 1

G
WðzÞ þ S

2G
wðzÞw0ðzÞ þ mk � m?

2

Z
w0ðzÞ½ �2 dz; ðA:4Þ
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where X(z) and W(z) are complex potentials, which are given in Eqs. (28a) and (28b) for the matrix, Eqs. (28c)
and (28d) for the inclusion, respectively, for the problem described in this paper. w(z) is the complex potential
of magnetic induction, which is presented in Eq. (1a) for the matrix and Eq. (1b) for the inclusion, respectively.
The symbol S is a combination of parameters given in Eq. (22). A prime represents the derivative with respect
to the complex variable, z. The resultant force is integration of the surface tractions along the interface, i.e.
T1 + iT2 = �(t1 + it2)ds.

Appendix B

The relation between the coefficients a0, b0, c0, d0, b2 and c2 are as follows:
kn

GM
ð3� 4mMÞa0 �

kn

GM
b0 �

kn

GI
ð3� 4mIÞc0 þ

kn

GI
d0 �

kn

GM
b2 �

kn

GI
ð1� 4mIÞ þ 4

a

� �
c2 ¼ 0; ðB:1Þ

� ks

GM
ð3� 4mMÞa0 þ

ks

GM
b0 þ

ks

GI
ð3� 4mIÞc0 �

ks

GI
d0 �

ks

GM
b2 �

ks

GI
ð5� 4mIÞ þ 4

a

� �
c2 ¼ 0; ðB:2Þ

� a0 � b0 þ c0 þ d0 þ 2c2 ¼ 0; ðB:3Þ
� b2 þ c2 ¼ 0; ðB:4Þ
from which b2 and c2 can be solved to be zero, i.e. b2 = c2 = 0. To eliminate the rigid displacements, one can
generally set the displacement of the origin (z = 0,f = 0) to be zero, i.e. (u1 + iu2)Ijf=0 = 0. Therefore, the fol-
lowing equation can be arrived:
3� 4mI

GI
c0 �

1

GI
d0 ¼ 0: ðB:5Þ
Together with the supplementary Eq. (B.5), the coefficients of a0, b0, c0, d0 are linked by
3� 4mM

GM
a0 �

1

GM
b0 ¼ 0; ðB:6Þ

3� 4mI

GI
c0 �

1

GI
d0 ¼ 0; ðB:7Þ

a0 þ b0 ¼ c0 þ d0: ðB:8Þ
Without loss of generality, setting one of these coefficients to be zero, e.g. a0 = 0, then all the others three coef-
ficients b0, c0, d0 vanish. The equations of ak�2, bk, ck, dk�2 (k P 4) are listed as follows:
kn

GM
ð3� 4mMÞ þ kn

GM
ðk � 2Þ

� �
ak�2 �

kn

GM
bk

þ 2

a
ðk � 3Þk � kn

GI
ð3� 4mIÞ þ kn

GI
k

� �
ck þ

2

a
ðk � 2Þ þ kn

GI

� �
dk�2 ¼ 0; ðB:9Þ

ks

GM
ð3� 4mMÞ � ks

GM
ðk � 2Þ

� �
ak�2 þ

ks

GM
bk

þ 2

a
ðk � 1Þk þ ks

GI
ð3� 4mIÞ þ ks

GI
k

� �
ck þ

2

a
ðk � 2Þ � ks

GI

� �
dk�2 ¼ 0; ðB:10Þ

ðk � 2Þak�2 � bk þ ck ¼ 0; ðB:11Þ
� ak�2 þ kck þ dk�2 ¼ 0: ðB:12Þ
It can be easily found that all the coefficients ak�2, bk, ck, dk�2 (k P 4) equal zero.
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