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a b s t r a c t

In this work, we consider a corrosion model of iron based alloy in a nuclear waste
repository. It consists of a PDE system, similar to the steady-state drift–diffusion system
arising in semiconductor modelling. The main difference lies in the boundary conditions,
since they are Robin boundary conditions and imply an additional coupling between the
equations. Using a priori estimates for the solution and Schauder’s fixed point theorem, we
show the existence of solutions to the corrosion model.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Presentation of the model

In this work, we consider a system of partial differential equations arising in corrosion modelling. This model, presented
in [1] and called the Diffusion Poisson CoupledModel, is amodel of iron based alloy in a nuclear waste repository. It assumes
that the metal (for instance that of a nuclear waste canister in a geological repository) is covered by an oxide layer which
is in contact with a solution. In most cases, the thickness of the oxide layer ranges from nanometers to micrometers. This
thickness is always much smaller than the sizes of the metal and of the solution. Therefore, a 1D modelling is sufficient to
describe the system.

The oxide layer is thought of as a semiconductor: charge carriers are convected by the electric field and the electric
potential is coupled to the charge densities through a Poisson equation. Moreover, the oxide layer is in contact on one side
with the metal and on the other side with a solution. Charge carriers are created and consumed at both interfaces. The
kinetics of the electrochemical reactions at both interfaces provides boundary conditions.

We consider here the casewhere only two charge carriers are taken into account: electrons and cations, Fe3+. We assume
that there is no evolution of the layer thickness andwe consider a steady-state model. The unknowns of the problem are the
density of electrons N , the density of cations P and the electric potential Ψ (there are dimensionless variables). The system
is written as:

– Equation and boundary conditions for Ψ :

−λ2∂2
xxΨ = −N + 3P + ρhl on (0, 1), (1)

Ψ − α0∂xΨ = 1Ψ
pzc
0 at x = 0, (2)

Ψ + α1∂xΨ = V − 1Ψ
pzc
1 at x = 1. (3)
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– Equation and boundary conditions for P:

∂xJP = 0, JP = −∂xP − 3P∂xΨ on (0, 1), (4)

JP = m0
1(Pm − P) exp(−3b01Ψ ) − k01P exp(3a01Ψ ) at x = 0, (5)

JP = mL
1P exp(−3bL1(V − Ψ )) − kL1(Pm − P) exp(3aL1(V − Ψ )) at x = 1. (6)

– Equation and boundary conditions for N:

∂xJN = 0, JN = −∂xN + N∂xΨ on (0, 1), (7)

JN = m0
2(Nm − N) exp(b02Ψ ) − k02N exp(−a02Ψ ) at x = 0, (8)

JN = mL
2N exp(bL2(V − Ψ )) − kL2(Nm − N) exp(−aL2(V − Ψ )) at x = 1. (9)

The system of partial differential equations (1), (4), (7) is the steady-state drift–diffusion system, well-known in
semiconductor modelling (see [2,3]). But, while the boundary conditions in semiconductor modelling are in general mixed
Dirichlet–Neumann boundary conditions (with ohmic contacts or insulating boundary segments), we have here Robin
boundary conditions. They come from the kinetics of the electrochemical reactions at each interface, which are assumed
to follow Butler–Volmer laws (see [4]).

The parameters arising in the set of expressions Eqs. (1)–(9) satisfy the following hypotheses, denoted by (H):

− (k0i , k
L
i ,m

0
i ,m

L
i )i=1,2 are interface kinetic functions. In what follows, we assume that these functions

are constant and verify: k0i , k
L
i > 0 andm0

i ,m
L
i ≥ 0 for i = 1, 2.

− (a0i , a
L
i , b

0
i , b

L
i )i=1,2 are positive transfer coefficients, which satisfy a0i + b0i = 1 and aLi + bLi = 1 for i = 1, 2.

− Pm is the maximum occupancy for octahedral cations in the host lattice,Nm is the density of states in
the conduction band. They are positive constants (in the applications, Pm = 2 and Nm = 1).

− ρhl is the net charge density of the ionic species in the host lattice. In what follows, we assume that
ρhl is constant throughout the whole layer, with ρhl = −5.

− 1Ψ
pzc
0 , 1Ψ

pzc
1 are respectively the outer and the inner pzc voltages, and V is the applied voltage. Let us set

U0 = 1Ψ
pzc
0 and U1 = V − 1Ψ

pzc
1 .

− λ2, α0, α1 are positive dimensionless parameters arising from the scaling of the model.

1.2. Changing the variables

In order to eliminate the convection terms in (4) and (7), we propose the following change of variables, which is classical
in the study of the drift–diffusion system (see [2]):

P = e−3Ψ u, N = eΨ v.

Variables u and v are called Slotboom variables. The system then becomes:

– Equation and boundary conditions for u:

∂x(e−3Ψ ∂xu) = 0 on (0, 1), (10)

∂xu −

m0

1e
−3b01Ψ

+ k01e
3a01Ψ


u = −Pmm0

1e
−3b01Ψ e3Ψ at x = 0, (11)

∂xu +

mL

1e
−3bL1(V−Ψ )

+ kL1e
3aL1(V−Ψ )


u = PmkL1e

3aL1(V−Ψ )e3Ψ at x = 1. (12)

– Equation and boundary conditions for v:

∂x(eΨ ∂xv) = 0 on (0, 1), (13)

∂xv −

m0

2e
b02Ψ

+ k02e
−a02Ψ


v = −Nmm0

2e
b02Ψ e−Ψ at x = 0, (14)

∂xv +

mL

2e
bL2(V−Ψ )

+ kL2e
−aL2(V−Ψ )


v = NmkL2e

−aL2(V−Ψ )e−Ψ at x = 1. (15)

– Equation and boundary conditions for Ψ :

−λ2∂2
xxΨ = −eΨ v + 3e−3Ψ u − 5 on (0, 1), (16)

Ψ − α0∂xΨ = U0 at x = 0, (17)

Ψ + α1∂xΨ = U1 at x = 1. (18)
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1.3. The main result

The goal of this work is to establish the following result:

Theorem 1. Let the assumptions (H) hold. Then, the problem (10)–(18) has a weak solution (u, v, Ψ ), with (u, v, Ψ ) ∈

C([0, 1]) × C([0, 1]) × H1(0, 1), which satisfies the following L∞-estimates:

0 ≤ u(x) ≤ max


kL1
mL

1
e3V ,

m0
1

k01


Pm, 0 ≤ v(x) ≤ max


kL2
mL

2
e−V ,

m0
2

k02


Nm, ∀x ∈ [0, 1]. (19)

The proof of this result is based on decoupling the equations for u, v and Ψ and using the Schauder fixed point
theorem.

2. A priori estimates

This section is devoted to the proof of a priori estimates which will allow the use of a fixed point theorem. We first show
that, for a given Ψ , the solutions u and v of (10)–(15) can be computed explicitly, and we deduce L∞-estimates for u and v
independent of Ψ . Then assuming that u and v are known, we prove that there exists a unique solution Ψ to the nonlinear
elliptic problem (16)–(18) and we obtain estimates for Ψ .

2.1. Calculus and estimates for u and v

Proposition 2. Let the assumptions (H) hold and assume that Ψ ∈ H1(0, 1) is given. Then, there exists a unique weak solution
u ∈ H1(0, 1) to (10)–(12) and a unique weak solution v ∈ H1(0, 1) to (13)–(15). Furthermore, u and v belong to C1([0, 1]) and
verify the L∞-estimate (19).

Proof. The differential problems for u and v (10)–(15) are both of the form

∂x(eλΨ ∂xw) = 0 on (0, 1), (20)

∂xw − A0w = −B0 at x = 0, (21)

∂xw + A1w = B1 at x = 1, (22)

with A0, A1 > 0, B0, B1 ≥ 0 (thanks to (H)) and Ψ ∈ H1(0, 1) ⊂ C([0, 1]). Using (20), there exists a constant J such that
eλΨ ∂xw = J and then, the solution to this problem is unique and defined by

w(x) = w(0) + J
 x

0
e−λΨ (s) ds, ∀x ∈ [0, 1]

with

w(0) =
B0

A0
+

J
A0

e−λΨ (0) and J =
B1/A1 − B0/A0 1

0 e−λΨ (x)dx + e−λΨ (1)/A1 + e−λΨ (0)/A0

.

It is clear that w ∈ C1([0, 1]). Furthermore, if B1/A1 − B0/A0 ≥ 0, J is positive and the function w is increasing.
Hence

0 ≤
B0

A0
≤ w(0) ≤ w(x) ≤ w(1) ≤

B1

A1
∀x ∈ [0, 1].

But, if B1/A1 − B0/A0 ≤ 0, J is negative and the function w is decreasing. Hence

0 ≤
B1

A1
≤ w(1) ≤ w(x) ≤ w(0) ≤

B0

A0
∀x ∈ [0, 1].

Therefore, in any case we have 0 ≤ w(x) ≤ max


B0
A0

,
B1
A1


for all x ∈ [0, 1].

Let us come back to u. The system (10)–(12) for u has the form (20)–(22) with

λ = −3, A0 = m0
1e

−3b01Ψ (0)
+ k01e

3a01Ψ (0), A1 = mL
1e

−3bL1(V−Ψ (1))
+ kL1e

3aL1(V−Ψ (1)),

B0 = Pmm0
1e

−3b01Ψ (0)e3Ψ (0) B1 = PmkL1e
3aL1(V−Ψ (1))e3Ψ (1).
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But, since aL1 + bL1 = 1 and a01 + b01 = 1,

B1

A1
= Pm e3Ψ (1)

1+
mL
1

kL1
e3Ψ (1)e−3V

≤
kL1
mL

1
e3VPm,

B0

A0
= Pm e3Ψ (0)

1+
k01
m0
1
e3Ψ (0)

≤
m0

1
k01

Pm.

Similar computations for v conclude the proof of (19) and of Proposition 2. �

2.2. Estimates for Ψ

Proposition 3. Let the assumptions (H) hold and assume that u, v ∈ C([0, 1]) are given and satisfy (19). There exists a unique
weak solution Ψ ∈ H1(0, 1) to (16)–(18). Furthermore, there exists M depending only on the data of the problem (in (H)) such
that

∥Ψ ∥H1(0,1) ≤ M and ∥Ψ ∥C([0,1]) ≤ M. (23)

Proof. A weak solution to (16)–(18) is a function Ψ ∈ H1(0, 1) such that for all ϕ ∈ H1(0, 1) 1

0
∂xΨ ∂xϕ dx +

1
α1

Ψ (1)ϕ(1) +
1
α0

Ψ (0)ϕ(0) =
U1

α1
ϕ(1) +

U0

α0
ϕ(0) −

1
λ2

 1

0


eΨ v − 3e−3Ψ u + 5


ϕ dx. (24)

The uniqueness of a weak solution is obtained by contradiction. We assume that there exist two weak solutions Ψ1 and Ψ2
and we take the difference of (24) for Ψ1 and Ψ2. With ϕ = Ψ1 − Ψ2 as the test function, using the monotonicity of the
application Ψ → eΨ v − 3e−3Ψ u (because u and v are nonnegative), we get 1

0
|∂x(Ψ1 − Ψ2)|

2 dx +
1
α1

|Ψ1(1) − Ψ2(1)|2 +
1
α0

|Ψ1(0) − Ψ2(0)|2 ≤ 0,

which yields Ψ1 = Ψ2.
Let us now introduce I defined on H1(0, 1) by

I(Φ) =
1
2

 1

0
(∂xΦ)2 +

1
2α1

Φ(1)2 +
1

2α0
Φ(0)2 +

1
λ2

 1

0
(eΦv + e−3Φu + 5Φ) −

U1

α1
Φ(1) −

U0

α0
Φ(0).

It is a continuous and strictly convex function on H1(0, 1) and (24) corresponds to the Euler–Lagrange equation for the
function I. Therefore, we prove the existence of a weak solution to (16)–(18) by proving the existence of a minimum for I.
As H1(0, 1) is reflexive and I strictly convex, it remains to verify that I is coercive (see for instance [5]).

We provide H1(0, 1) with its usual norm ∥ · ∥H1 and a new norm ||| · |||H1 defined by

∥Φ∥
2
H1(0,1) =

 1

0
(∂xΦ)2 +

 1

0
Φ2 and |||Φ|||

2
H1(0,1) =

 1

0
(∂xΦ)2 + Φ(0)2 + Φ(1)2.

Using the compact injection from H1(0, 1) to C([0, 1]) and an adaptation of Poincaré inequality, it can be shown that these
two norms are equivalent.

Now, using the Young inequality and positivity of u and v we haveU1

α1
Φ(1)

 ≤
1

4α1
Φ(1)2 + α1U2

1 ,

U0

α0
Φ(0)

 ≤
1

4α0
Φ(0)2 + α0U2

0 ,

 1

0
(eΦv + e−3Φu) ≥ 0.

Hence

I(Φ) ≥ min


1
2
,

1
4α1

,
1

4α0


|||Φ|||

2
H1(0,1) +

5
λ2

 1

0
Φ


− α1U2

1 − α0U2
0 , ∀Φ ∈ H1(0, 1).

Using Cauchy–Schwartz inequality, equivalence of norms and again the Young inequality, we obtain

I(Φ) ≥ µ|||Φ|||
2
H1(0,1) − ν ∀Φ ∈ H1(0, 1), (25)

where µ > 0 and ν ≥ 0 only depend on the data U0,U1, α0, α1 and λ2. Therefore I is coercive and admits a minimum Ψ on
H1(0, 1). From I(Ψ ) ≤ I(0) =

1
λ2

 1
0 (u + v) and (25), we get

∥Ψ ∥H1(0,1) ≤ M(sup u, sup v,U0,U1, α0, α1, λ
2).

With the compact injection of H1(0, 1) into C([0, 1]), we conclude the proof of (23). �
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3. The existence of steady-state solutions

In this section, we prove Theorem 1. To this end, we introduce

S =

(u, v) ∈ C([0, 1])2; 0 ≤ u(x) ≤ U, 0 ≤ v(x) ≤ V, ∀x ∈ [0, 1]


with U = max


kL1
mL

1
e3V ,

m0
1

k01


Pm and V = max


kL2
mL

2
e−V ,

m0
2

k02


Nm.

Then, we consider the mapping H : (u0, v0) ∈ S → (u, v) ∈ S defined by the two following steps:

– β : (u0, v0) ∈ S → Ψ ∈ H1(0, 1), the unique solution to (16)–(18) (with u0, v0 instead of u, v).
– γ : Ψ ∈ H1(0, 1) → (u, v) ∈ S, the unique solution to (10)–(15).

Thanks to Propositions 2 and 3, we know that this mapping is well defined. Furthermore, each fixed point (u, v) of H
determines clearly a weak solution (Ψ , u, v) to (10)–(18).

Note that S is a closed and convex subset of C([0, 1]). We shall now show that H : S → S is continuous and H(S)
precompact. When this result is established we conclude the existence of a fixed point of H in S from Schauder’s theorem
(see [6]).

The first step: continuity of γ .
Let Ψ ∈ H1(0, 1) and set (u, v) = γ (Ψ ). We have already seen in Section 2.1 that u and v can be explicitly computed.

For u for instance, we have

u(x) = u(0) + J(Ψ )

 x

0
e3Ψ (s) ds ∀x ∈ [0, 1], with (26)

u(0) =
B0(Ψ )

A0(Ψ )
+

J(Ψ )

A0(Ψ )
e3Ψ (0) and J(Ψ ) =

B1(Ψ )/A1(Ψ ) − B0(Ψ )/A0(Ψ ) 1
0 e3Ψ (x)dx + e3Ψ (1)/A1(Ψ ) + e3Ψ (0)/A0(Ψ )

. (27)

All the maps involved in the computation of u (and similarly of v) are continuous from H1(0, 1) to C([0, 1]). Therefore γ is
continuous.

The second step: continuity of β .
For (u0, v0) and (u0, v0) in S, we set Ψ = β(u0, v0),Ψ = β(u0, v0) and θ = Ψ − Ψ . Subtracting (24) written for Ψ andΨ and applying with θ as a test function, we get 1

0
|∂xθ |

2
+

1
α1

θ(1)2 +
1
α0

θ(0)2 = −
1
λ2

 1

0


eΨ v0 − eΨ v0


θdx +

3
λ2

 1

0


e−3Ψ u0 − e−3Ψ u0


θ

≤
1
λ2

 1

0
eΨ (v0 − v0) θdx +

3
λ2

 1

0
e−3Ψ (u0 − u0)θdx.

Setting δ = min(1, 1/α1, 1/α0), we have

λ2δ|||θ |||
2
H1(0,1) ≤

 1

0
eΨ

|v0 − v0| |θ |dx + 3
 1

0
e−3Ψ

|u0 − u0| |θ |dx,

≤ C

∥v0 − v0∥L2(0,1)∥θ∥L2(0,1) + ∥u0 − u0∥L2(0,1)∥θ∥L2(0,1)


,

thanks to (23) and the Cauchy–Schwarz inequality. Using the Young inequality, we obtain

|||θ |||
2
H1(0,1) ≤ C ′


∥v0 − v0∥

2
H1(0,1) + ∥u0 − u0∥

2
H1(0,1)


.

Thus, β is a continuous map.

The third step: compactness of H .
It remains to prove that H maps S into a precompact subset of C([0, 1]). Therefore, we prove that u and v defined by

(u, v) = H(u0, v0) with (u0, v0) ∈ S are bounded in H1(0, 1). Indeed, u, for instance, is defined by (26)–(27) and thanks to
(23), there exists C depending only on the data introduced in (H) such that

|||u|||H1(0,1) ≤ C .

We have a similar result for v.
Finally, with the compact injection of H1(0, 1) into C([0, 1]),H(S) is precompact and H : S → S is continuous. Hence,

by Schauder’s fixed point theorem, H has a fixed point in S and the system (10)–(18) admits a solution. This achieves the
proof of Theorem 1.
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