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Abstrac t  

Polynomial bounds for the coefficient of fl-mixing are established for diffusion processes under 
weak recurrency assumptions. The method is based on direct evaluations of the moments and 
certain functionals of hitting-times of the process and on the change of time. © 1997 Elsevier 
Science B.V. 
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I .  I n t r o d u c t i o n  

The importance of  mixing coefficient bounds for certain classes of  stochastic pro- 

cesses is well-known. Such bounds allow to get various limit theorems, there are also 
applications to parameter estimation, etc. While exponential mixing bounds were ob- 

tained by many authors for various classes o f  processes (see Meyn and Tweedie (1993), 

Veretennikov (1987), etc.), the polynomial bounds were studied less. It is known, how- 

ever, that polynomial bounds may be obtained under assumptions like 

Exz m <.h(x) (1) 

and some additional hypotheses, where z = in f ( t>~0 :  Xt E D )  for some "petite" set 

D, Xt being the process under consideration and h certain function (cf. Gulinsky and 

Veretennikov (1993), etc.). Tuominen and Tweedie (1994) obtained a criterion for 

polynomial convergence rate to the invariant measure which is very close to the polyno- 
mial mixing rate. Indeed, Ango Nze applied this criterion to get corresponding mixing 
coefficient bounds (see Ango Nze (1994)). This criterion could provide some good 

explicit examples for the processes o f  the type 

Xn+l = f ( X n )  + ~n+l (~, - i.i.d.) 
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under assumptions like 

If(x)[ ~< Ixl(1 - Ix[-~), 

and 

O<cz< 1, Ixl>~Mo, (2) 

el~.lS<o~, s>0. (3) 

We consider the solution of the d-dimensional stochastic differential equation 

dXt = b ( X t ) d t  + a(Xt)dwt ,  Xo = x E  Na, (4) 

either with non-random initial data X0 = x E Na, either with stationary distributed X0 

(however, throughout the paper Xt means a solution with a fixed initial data x, if  the 
other meaning is not noted specially). Here wt is a dl-dimensional Wiener process, 
dl ~ d, b - d-dimensional locally bounded Borel function, a-bounded continuous non- 
degenerate matrix d x dl  function. In Section 2 the c a s e  dl  = d and tr -= I is considered, 
Section 5 is devoted to a general case. 

It is likely that the analogue of condition (2) for the process (4) would be 

(b(x),x/Ixl)<_ - [ x l  -~, Ixl~>M0, 0 < c t < l .  (5) 

On the other hand, there is no analogue for assumption (3) because wt has all poly- 
nomial moments so to say automatically. 

We will establish polynomial bounds for "fl-mixing" (see below) as well as for the 
convergence rate to the invariant measure under even less restrictive assumption: there 
exist constants M0 >~0 and r > 0  such that 

(b(x),x/lxl)<~ - r/lxl, Ix[>~g0. (6) 

The rate of fl-mixing and the convergence rate to the invariant measure depend on the 
value r which plays an important role in the theorems below. The method is based on 
direct estimation of the left-hand side in (1). Similar bounds may be obtained also for 
the equation 

dxt = b(t, xt) dt + a(t, xt) dwt. 

We use the weak existence result and the strong markovian property of  solutions of  
Eq. (4) due to Krylov (1969) and Krylov (1973). 

Sections 2 and 5 contain the main results, in Sections 3, 4 and 6 one will find 
preliminary results and proofs. 

Note. After this paper was submitted the article Menshikov and Williams (1996) ap- 
peared with estimates for SDEs and martingales very close to the hitting-time estimate 
of  Theorem 3 (below). Moreover, Prof. Menshikov and the referee draw the author's 
attention to the paper Lamperti (1963), two papers by Aspandiiarov and Iasnogorodski 
(1994a, b) and the paper Aspandiiarov et al. (1994) with a similar approach and close 
results for discrete-time case. In three latter papers applications to a random walk in 
the quadrant on the plane are studied. The approach of this article is different which 
may also be of interest. 
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2. Main results for the unit diffusion 

Throughout this section d l=d ,  a=_I (the identity matrix d x d ) .  Let /~s = 
a(Xu, u<~s), Ffs=a(Xu,  u>~s). We recollect the definitions of two mixing coeffi- 

cients, ~(t) and fl(t): 
Strong mixing coefficient or Rosenblatt's coefficient 

~(t) = sup sup IP(AB)-P(A)P(B)[; 
s>O AEFXs,BEF~'t+s 

Complete regularity coefficient or Kolmogorov's coefficient 

fl(t) = sup E varB~F~,+ ~ (P(BI~)-P(B)) .  
s>~O 

The inequality ~(t)~<fl(t) is well-known. 
Denote by c~x(t) and respectively fix(t) these coefficients for fixed non-random initial 

data Xo = x and by ~inv(t) and respectively flin~(t) those for stationary distributed initial 

data X0. 

Theorem 1. Under assumption (6) with r>(d /2)  + l ,Jor any k, O<k <r- - (d /2 ) - I  
with m E (2k + 2,2r - d), 

/~x(t)~C(l + Ixl~)(1 + t) (k+l), (7) 

flm~(t)~<C(1 + t) -(k+l) 8) 

(k, m are not necessarily integers). 

Theorem 2. Under assumptions of Theorem 1, 

var(pX(t)-#i~')<~C(x)(1 + t) -(k~l), C(x)=C(1 + [xlm), (9) 

where #x(t) is the distribution of Xt, x being the initial data, and #i~ is the invarmnt 
measure ./"or Xt; in particular, #i~, does exist. 

3. Preliminary results 

Theorem 3. Under assumption (6) with r>(d /2 )  + 1, for any 0 < k < r -  d/2 - 1, 
m c ( 2k  + 2 , 2 r -  d) 

E ~  k÷l ~<C(l + [xl m) 

(here constant C depends on m). z = inf(t ~> 0 Ixtl <~M), M ~ M o  

(lO) 

Lemma 1. Under assumption (6) with r>d/2, , for  any m < 2 r -  d there exists such 
a constant C that for any t and an)' x 

ExlX~lm ~ C(1 + Ixlm). 

Proof. Follows from Lemmas 2-5 .  
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L e m m a  2. Let r' <r,  

b ( v ) = - / v  - l + ( d - 1 ) ( 2 v )  -~, v~>O, 

vt be a solution o f  the stochastic differential equation with non-sticky reflecting bound- 
dry condition 

dvt =[~(vt)dt + dCvt + dot, 

/o' ~ot = I(vs = Mo) dq)s, 

where ~o increases. Here 

d 

dwt = ~ (X// lxt l)dw~, ~,o = 0 .  
i=1 

(Note that ~t is a Wiener process). Then 

P(vt>>-lXtf, t~>O)= 1. 

vt >~Mo, vo = Ixl, 

(po = O, E I ( v s = M o ) d s = O ,  
(11) 

(12) 

(13) 

P r o o f  of  L e m m a  2. We have, for Ix~l >M0 (in fact, for IXt[ > 0 ) ,  

f X/bi(Xt)  +_d/2 X/X/  } 
= ~ (ZJ_~ (X/)2) 1/2 - 2(}2J=~ (g)2)3/2  dt + 

Yt* dw I 
(~"~'jd__ 1 (YtJ)2)l/2 

= [(Xt/]Xtl,b(Xt)) + (d - 1)(2]Xtl)- l ]dt  + dv~t 

(Xib i m e a n s  ~-~iXibi).  Hence, the It6 formula for the process Xt and the function 

h(z ) = max(]zI,Mo ), gives one 

dh(Xt) -= [(Xt/]Xt], b(Xt ) ) + (d - 1)(2]Xtl)-l]I(]Xt[ > M 0 )  dt 

+I(IXt] > M 0 )  dwt + d~t, 

Jo ~b increases, ~gt = I([Xs] =M0)dffs ,  ~ 0 = 0 .  

Since [(Xt/[Xtl,b(Xt) ) + (d - 1 ) ( 2 [ X t ] ) - l ] ~ < -  ( r -  ( d -  1)/2 )/]Xtl for [Xtl>Mo and 
- (r  - (d - 1 )/2)/[x I < - ( r '  - (d - 1 )/2)/Ix I V [x[ > 0 and, at last, both functions b l (v) = - 
( r -  ( d -  1)/2)/v and b 2 ( v ) =  - ( / - ( d -  1)/2)/v are continuous in v (v > 0), then the 
comparison theorem gives one the result. 

Indeed, let bo(x)=[(x/Ix],b(x ) + ( d -  1)(2[x[)-l]I(lx[>Mo). Let us consider the 
function (v)2+ =v2I ( v > 0 ) .  Due to the It6 formula, one obtains 

d(h(Xt) - vt) 2 = 2(h(Xt) - vt) + d(h(Xt) - vt) 

= 2(h(Xt) - vt)+(bo(Xt) - b2(vt)) + 2(h(Xt) - vt)+(d~t - d~t) 

< 2(h(Xt) - vt)+(b~([Xt[) - bz(vt)) + 2(h(Xt) - vt)+(d~t - dq~t). 
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We recollect that h ( X t ) -  vt > 0  implies l(IYtl ~ m o ) : 0 ,  so that one has the identity 

2(h(X, ) - vt)+(dfft - I(IX, I >Mo)  d~ t )  

: 2(h(Xt) - v,)+I([Xtl ~<Mo) d~t  =- O. 

Suppose IX, l=v, for some stopping time t. The equality ]Xtl=vt implies the strict 
inequality bl (IX, I ) <  b2(v~)-v  for some right neighbourhood t < s  <so,  so being again 
a stopping time and v > 0. Thus, the expression (h(X~)- vs)+ (b l( IX, I ) -  b2 (v~)) is strictly 
negative for t < s  <so if IXtl = yr. Further, the second expression 2(h(Xt) - v~ )+(d0~ 
dq~t) may be nonzero only if h (Xt )>  vt. But this implies dot : 0, so 2(h(Xt)-v~ )+(d~bt 
d(pt)~<0. Thus, P(IXtl<~vt, t ~ > 0 ) =  1. Lemma 2 is proved. 

Lemma 3. Let f)t be a solution of the stochastic differential equation with nonsticky 
reflecting boundary conditions 

d~t = b(~t)dt  + d~,  + d~t, 

~5 t = l(f), = [xl) d0 , ,  = 0, E [ ~  ~o 
Jo 

1(g, = Ixl)ds : 0 ,  (14) 

0 increases. Then 

P(f),>~vt, t > ~ 0 ) =  1. (15) 

Proof. Follows from similar comparison arguments and strong uniqueness (see 
Veretennikov ( 1981 )). 

Lemma 4. Let vt be a solution of the stochastic differential equation with nonsticky 
reflecting boundary conditions 

d~t =;(v.t)dt +d~t  + d O t ,  ~t>~lx[, 5/?(~o)=fi in~, 

/o q5 t = I(~,, = [xl) d~s, q5 o = 0 ,  E I(~, = Ix[) ds = 0, (16) 

(o increases, where 5~(fJo) is the distribution off)o, r.v. ?:o ts independent of w, fiim: iS" 
the invariant measure for this" equation (see Lemma 5 below). Then 

P(St~>~t, t ~ > 0 ) =  1. (17) 

Proof.  Follows from the uniqueness theorem: strong solution of  Eq. (14) (or (16)) is 
unique (see Veretennikov (1981 )), hence if there are two solutions of  the same equation 
with ~0 >t ~0 then after the intersection they should coincide. At any rate, vt ~> ~t for all 
t~>0 a.s, 

Lemma 5. Under condition (6) with r>d/2,  r' E(d/2, r ) , for  any m < 2 r ' - d  

EIX, I m <E~ t <~E~'~ <~ C(1 + Ixlm). 
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Proof of L e m m a  5. One should only prove the last inequality. Process vt possesses a 

density p which satisfies the equation 

(1 /2 )p" (v )  - ( ~ ' v - l p f ( v ) = 0 ,  v~> Ixl, ~ = r '  - (d - 1)/2. 

The solution is 

p(v)  = vq(v) = Cv -2~, v >1 Ixl. 

The last constant here C = ( 2 ~ -  1)[x[ 2~-1. Hence, 

lxl v m p ( v ) d v < ° °  

i f  and only i f  - 2 ~  + m < - 1 ,  that is, m < 2 r  ~ - d ,  and in this case 

lx~V'np(v) dv = (27 - 1 ) lxY -1 (2~ - m - 1 )Ix[ 'n-2~+1 = Crlxl m. 
I 

Here Ixl ~>M0, For small Ix[ one should use 1 + Ixl instead. Lemma 5 is proved. [] 

L e m m a  6. Let  assumptions o f  Theorem 3 be satisfied zt = min(z, t ) .  Then Ve>O for  
any 7n>m there exists C =  C(rh) s.t. 

E [(1 + s )k- l lx~l  'n ÷ ( 1  +s)klX~lm-2]I(lX~12>~(1 ÷ s ) )ds~<C(1  ÷ Ixlm). 

P r o o f  of  L e m m a  6. One has, with m < vh < 2r  - d, a -  1 + c -  1 = 1, a, c > 1, am = rh and 

using H61der's inequality and Lemma 1 

E (1 +s)k-llx~lml(IX~12>e(1 + s ) ) d s  

~< (1 + s)k-l(ElXs[ma)l/a[ElXslrh(1 + s)-~/2] 1/c ds 

~< c(1 + Ixl '~) (1 +s)k-l-'~/(2C)ds. 

The integral here is finite i f  and only i f  k -  1 - r h / ( 2 c ) <  - 1 ,  that is, k <rh/ (2c) .  This 

can be done, at any rate, i f  k <vh/2. Then m should satisfy the inequality m <Tn/a 
which is possible in the case r > d/2 (see Lemma 1). 

Similarly, with another a - I  ÷ c -1 --  1, 

/0 /0 E (1 +s)klx~lm-Zl(lXslZ>e(1 + s ) ) d s < . C ( 1  + Ixl '~) (1 +s)k-'~/(2C)ds, 

and the integral here is finite i f  k ÷ 1 < rh/(2c), that is, i f  k + 1 <v  h/2 which is possible 

i f  k +  1 < r -  d/2. Lemma 6 is proved. [] 
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Proof  of Theorem 3. Due to the It6 formula one gets, 

E(1 + ~t)klX¢,l ~ - Ixl" 

I ¢ '  s)~_ 1 = E  (1 + IXs[m-Z[klX~l 2 + ( 1  +s)m(Xs, b ( L ) )  
d 0  

+ m(m + d - 2)(1 + s)/2] × {I(IXsl 2 ~<e(1 + s)) + l(IX~l 2 >~(1 + s))} ds 

--HI +/42. 

Due to Lemma 6, for any e > 0  one has H2~<C(1 + Ixl'~), rh>m. On the other hand, 
if ~:>0 is small enough then due to the assumptions, (1 + s)m(Xs, b(Xs) + klXs[ 2 + 
m ( m + d - 2 ) ( 1  +s)/2<~-Co(1 +s) with a certain co >0. Hence, again due to Lemma 6, 
one gets 

HI <~-Cofx (1 + s)~lXs lm-2I( IXs l  2 <<.~(1 + s))as 

= - c o E  (1 +s)klXslm-2ds+co E (1 +s)klXslm-2I(lXsl2>e(l + s ) ) d s  

-coMm-2(k q- 1)-lEx'c~ +1 + C(1 -k [xlrh). 

Hence, one has, 

Exrkt +l <C(1 + Ixl'~). 

Fatou's lemma now gives one the same inequality for z. Theorem 3 is proved. [] 

Now, let (Xt, Yt) be a couple of two independent copies of solutions of Eq. (5), 
only with different initial data, x and y correspondently. Let 7 = inf(t ~>0 IX, I ~<M and 
IYtl ~<M) and 7t =min(7, t). 

Lemma 7. Under Assumption (6) with r>(d /2)  + 1, for any k <r - l d/2 and 
m ~ (2k + 2,2r - d) there exists such M1 >~Mo that .for any M>M1 

Ex7 k+~ ~<Ck(1 + Ixl m + [ylm). (18) 

Proof. Follows from calculations and bounds similar to those in the proof of Theorem 3 
applied to the process (1 + s)k([Xs[ m + IYslm). Now one should consider the following 

possibilities for [Xt[:IXt[ ~<M0, M0 < IX, l ~M,  IX, t > M  and also Ixtl 2 ~<~(1 + 1) and 
Ix, I 2 >~(1 + t), and the same for Yr. Proceeding in such a way, one obtains, 

Ex, y(1 + 7t)k([sTt] m ~- IY.Itl m) - (Ixt m -]-[yl m) 

~0 7t ~-CIMrn-2E (1 + s)k[1 - I ( [XlZ>e(1  + s),IY~I2 >e(1 + s))]ds 

+ C M.mE .k+l f ; ' ( 1  2 o ~t + C 3 ( M ) + E  +s)k-llXs[ m-2 
Jo 
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× [klXs[2_ m(m+d-22)(1+s)]/ ( lXs[2>e(  1 + s ) ) d s  

~o ~' [ m ( m + d - 2 ) ( l + s ) ]  + E  (1 +s)k-llyslm-2 klYsl 2 + 

× I(IYs] 2 >e(1 + s)) ds. 

Here C3(M) is some polynomial of the variable M. Similar to Lemma 6 one finds that 
last two integrals do not exceed C(m')(1 + Ixl m' + [yl m') with any m'>m. The same 
bound holds true for E fd" ( 1 + s)kI(]Y[ 2 > ~( 1 + s), I Ys[ 2 > e( 1 + s))ds. So one gets 

C a . m - - 2 r ,  k + l  I . ~  A.cmJ7 ,k+I  ~ ' llVl lZx, y~) % L,21vl 0 Z~x,y? -~- C 3 ( M )  -'}- C(m')(1 + Ixl m + [y[m ). 

Finally, if one chooses M s.t. C]Mm-2>C2My+I, one gets (18). (Details may be 
found in Veretennikov (1996); similar exponential bound for a hitting-time of a cou- 
ple of independent "exponentially recurrent" processes may be found in Veretennikov 
(1987)). Lemma 7 is proved. [] 

Lemma 8. I f  r>(d/2) then the &variant m e a s u r e  /jinv for Eq. (1) does exist, it is 
unique and for any m < 2 r -  d 

Einvlst[m < oo. (19) 

Proof. Existence follows from Theorem 3 with k ~> 1 and Lemma 1 by virtue of 
Has'minski's criterion (Has'minski, 1980, Theorem 4.4.1). Note that in Has'minski 
(1980) Lipschitz conditions are assumed for drift and diffusion coefficients (see Re- 
mark 3.6.5). Nevertheless, the result holds true without that condition as well due to 
Harnack inequality for parabolic equation with measurable coefficients (Krylov and Sa- 
fonov, 1981). Uniqueness follows from Corollary 4.5.2 in Has'minski (1980) due to 
the same inequalities of Theorem 3 and Lemma 1. 

Let v* be a stationary distributed solution of equation with nonsticky boundary 
condition 

dvt =b(vt)dt + dwt + d~pt, 

~Pt = I(vs = Mo) d(p,, 

v, ~>M0, 

/o E I(vs=Mo)ds=O, ~o increases 

(see Lemma 5). Inequality Ei"vIX~I"<~ follows from comparison arguments if one 
compares v* and Xt with the same distribution for [X0[: then 5~(~ t )=d(~0)  while 
P(IStl~v*, t~>0)= 1. Lemma 8 is proved. [] 

4. Proofs of Theorems 1 and 2 

Proof of Theorem l .  We use the coupling technique, see Nummelin (1984), for SDEs 
Veretennikov (1987). Consider the couple of independent processes (Xt, Yt) both being 
solutions of Eq. (1) with different independent Wiener processes wt and w~ and initial 
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data Xo = x ENd, Iio distributed with the invariant measure l~ i~'. Fix so ~> 0. Define the 

sequence of  stopping-times 71 <72 < " "  in the following way: 

71 =inf( t~>so:  IXtI~<M and lYric<M), 

for n>~l 

T~ =min{inf ( t~>7 , :  I)(tl>~M + 1  or [YtI~>M + 1),'/, + 1}; 

"/~+l = inf(t~>T,: IX, l ~<M and Ir, l~<M). 

We have due to Lemma 6, 

E((Tt - so ) k+~ l~X 'V)<~C( l  + IYso] m 4-IXs0lm). 

Similarly, 

x k +  1 I F A (  Y "~ ~<~ , ~  E ( ( T n + l - T n )  ;," ) ~ t ~ ,  n>~l. 

Let n ( t ) : =  sup(n>~0: 7n~<t). By virtue of  the last inequality and a strong markovian 

property of  (Xt, Yt), one gets 

P ( n ( t )  ~ oc, t --~ o c ) =  1. 

Using a coupling method for SDEs (Veretennikov, 1987) it is possible to define a new 
process )(t and a random value Lso ) s o  on a certain extension of  the probability space 
( f2 ,F ,P)  (we do not change the notation for the probability space, though) s.t. 

d)(, = b(J(t) dt 4- dv3t, X0 = x, 

where (wt) is some new Wiener process and (wt,  F x' r,2 ), (w;, F x' r.2 ), (v?t, F x" v.:? ) are 

still Wiener processes; moreover, 

P ( L  =X,,t<<.L,,, - 1) = P ( ~  = Y, , t>~L,o)= 1, 

and L~o is a /'t = Fff' r.2_stopping time. Moreover, there exists q E (0, 1 ) s.t. 

s u p P ( L , o > 7 , l F ,  o)<<.q n Vn. 
,s'o ~> 0 

x,r ,2 
Hence, VB E F>~t+so, 

So, 

le(alPs0) - e (8 ) l  ~< e(c~0 > t  + soiL0). 

f ix(t) <<. E P (  Lso > t + so [/~'~0 ) = P(  Lso > t + so). 
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NOW, 

oo 

P(Lso >t  + so ILo ) = ~ E(l(Lso >t  + so)I(Tn ~ t  + so < ])n+l ) l L 0  ) 
n=0 
oo 

<<. Z P(Lso >YnlFso)l/ap(Tn+l >t  + so115so) l/c 
n=0 
(3o 

n/a <~ ~ q  P(Tn+l>t+so]Fso) '/c 
n=O 

(here a -1 + c - 1 =  1, a > l ,  c > l ;  we used H61der's inequality). Due to Bienaim6-  

Chebyshev 's  inequality, one gets 

P(Tn+l > t  4" s0[/Oso) ~< t-(k+l)E((Tn+l -- S0) k+l [/~So) 

n 

<~ t-(k+l)(n + I) k ZE((Tj+, - 7j)k+'lPso) 
j=0 

< t-(k+')(n 4. 1)k(C(1 Jr [)(s01 m 4. IYso[ m) 4, Cn). (20) 

Therefore, due to Lemma 7 

P(Lso > t 4. so) <. ~_~ qn/a[t-(k+l)(n 4" 1 )k(C(1 4- 121 m ) + c.)] 'Iv. (21) 
n~>0 

For any v > 0  there exists such c close to 1 and C < ec that 

flx( t ) <.P(Lso > t 4, so ) <. Ct-(k+l-v)(1 4. [x[m). 

Theorem 1 is proved. [] 

P r o o f  of  Theorem 2. Let so = 0. One gets, by  virtue of  the same arguments, 

var(#X(t) - ]A inv) = sup(P(P(t E A) - P(Yt E A)) 
A 

<~ P(Lo > t) <. Ct -(k+l -v)(1 4. Ix[ m ) 

for any v > 0 with some C = C(v). Theorem 2 is proved. [] 

5. Main results for the general case 

Now we will study Eq. (5)  with d l  ~>d and continuous nondegenerate a. Denote 

2 _ = i n f  a a  (x , , 2 + = s u p  a a  (x , , 
x~O x~O 

Tr aa*(x) 
A = sup (22) 

x d 
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ro = [r - (dA - 2_ )/2]2+ 1. (23) 

Theorem 4. Under Assumptions (6) with r0 > 3/2, for  any k E (0, r0 - 3/2), m C (2k + 
2 , 2 r o -  1) 

E~r k+l ~<C(1 + Ixlm). (24) 

Note that in the case a = I one has Z_ = 2+ = A and r0 = r - (d - 1)/2; hence, the 

assumption r0 > 3 / 2  in this case corresponds to the assumption r > ( d / 2 ) +  1. Further, 

2 r -  d corresponds to 2to - 1 and 2k + 2 remains 2k + 2. 

Theorem 5. Under Assumptions 
(2k + 2, 2r0 - 1 ) 

flinv(t)<~ C(1 + t) (k+l). 

(6) with r0>3 /2 ,  Jor any k ~ ( 0 , r 0 -  3/2) ,m C 

(25) 

Theorem 6. Under Assumption o f  Theorem 5 

var(/~x(t) - #in~) ~<C(1 + Ixlm)(1 + t) -(k+x). 

In particular, the invariant m e a s u r e  ]2 inv d o e s  exist. 

(26) 

6. Proofs of Theorems 4 - 6  

We will show how to reduce Theorems 4 - 6  to the case of  the unit diffusion. Denote 
~c(x) = la*(x)x[/Ix] and consider the change of  time t ' =  t'(t)--= h - l ( t )  where h -1 is the 

inverse function to h(t) = Jo t ~c(X~) 2 ds. Define )(t =Xt,(t). Then one gets, 

dX, =/~(-,~t) dt + f ( ~ )  d~t, 

where ~ is a new d~-dimensional Wiener process, 

[fix) = b(x)/~(x) 2, f ( x )  = a(x)/~c(x). 

Note that Tr fig* ~ 1. Then for Xt ¢ 0 

d i l l  = 8 ( L )  dt + d~,, 

being a (1-dimensional) Wiener process. Here 

B(x) = ~:(x)-2 { Ixl-l(x,  b(x))  - Ix [-3xkxj(aa* )kj(x)/2 + Ix I-  1Tr(aa * )(x)/2 }. 

Due to assumptions on b and a, one gets 

/~(Ixl) -= sup(¢,B(~lx[))~< - ro/Ixl. 
I~1=1 

Similar to the case a - 1 one obtains a comparison type inequality 

P(I~I~< ~ ,  t~>0)=  1, (27) 
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where 9, 7 is a strong solution of the one-dimensional SDE with a nonsticky reflecting 
boundary condition (see Veretennikov, 1981) 

fO 
t 

P,=[xl+#,+ 

f0 f0 ~t = 1( l?s = M0) d~ s, ~0 = 0, E I(/?s = M0) ds = 0, ~ increases. 

Hence, z2<~z ~. Since we have the bound for zv, we obtain the same bound for z2. 
Since zX<~cz 2 with C - 1 =  infxx(X) 2, we get immediately the same bound (with a 
new constant) for vx. This implies the existence of (unique) invariant measure for the 
process X. 

Let us show the estimate (19) for Xt. From the bound for P (see Lemma 1) and from 
inequality (27) one gets Exl2tlm<~ C(1 + Ixlm). As a consequence, applying Lemma 8 to 
2( one obtains the inequality 

Einv]xt[m < ~ .  

Further, the invariant densities p and/3 for X and (respectively) k satisfy the equations 

(a~jpx,)xj - (b~p)x, =0,  (aij/3x,)X, - ([~iP)x, =0,  

with ( a i j ) = a :  aa* /2 , (d i j )=  a/~¢2,/~ = b/I¢ 2. One can easily see that the function x:p 
satisfies the second invariant equation. Hence, this function is the invariant density for 
)(  upto a normalizing constant C > 0. So/3 = CKZp because the invariant density of the 
Markov process _~ is unique. So one obtains 

E i"v IX l m < (28) 

Now, to apply considerations of Section 5 one only needs the analogue of Lemma 7 
for the general case. It may appear that the estimate like in Lemma 1 is required 
for this. However, one can, in fact, use the time change (s ~-~ r = t'(s)): for example, 
f o ( 1  +s)k-l-m/(Zc)(glXslm) 1/c ds ~ C f o ( 1  q-r)k-l-m/(2C)(EVrm) 1/c dr (see the proof of 
Lemma 6) and then apply the estimate Ex~ m ~<(1 + ]xl m) (cf. with Lemma 5). So all 
technique of Sections 3 and 4 including Lemma 7 can be used. In particular, for the 
stationary regime one passes from (20) to (21) using (27) instead of Lemma 1. In the 
proof of Theorem 6 one applies, in fact, the bound (20) with so = 0 for the general 
case which implies (21) for this case directly. This gives assertions of Theorems 4-6 .  
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