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The recently observed IceCube PeV events could be due to heavy dark matter (DM) decay. In this 
paper, we propose a simple DM model with extra U (1)X gauge symmetry and bridge it with standard 
model particles through heavy right-handed neutrino. The Dirac fermion DM χ with mass ∼ 5 PeV can 
dominantly decay into a dark Higgs (φ), the SM Higgs (h) and a neutrino (ν). If the lifetime of χ is 
∼ O (1028) s, the resulting neutrino flux can fit data consistently. The neutrino flux from χ → φhν in our 
model is softer than the one predicted from χ → νh, for example. We also discuss a possible mechanism 
to produce DM with the right relic abundance.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Recently, the IceCube Collaboration has reported the detection 
of 37 neutrino events with energy between 30 TeV and 2 PeV, 
of which three have energy above 1 PeV [1–3]. According to the 
recent analyses [4–7], the three-year data are consistent with 
equal fluxes of all three neutrino flavors and with isotropic ar-
rival directions. However, the neutrino flux required to fit the data 
in O(100)TeV–O(1)PeV range is around 10−8 GeV cm−2 s−1 sr−1

per flavor, and rejects a purely atmospheric explanation at 5.7σ . 
Therefore astrophysical and/or new physics explanations have been 
pursued for the origin of these high energy neutrinos.

Possible astrophysical sources are involved with supernova 
remnants (SNR) [8–12], active galactic nuclei (AGN) [13–16], 
and gamma-ray bursts (GRB) [17,18], all of which assume some 
specific emission spectra due to different production environ-
ments. In a model independent analysis, the best-fit power law 
spectrum from the IceCube analysis [1] is E2

νd�ν/dEν � 1.5 ×
10−8(Eν/100 TeV)−0.3 cm−2 s−1 sr−1. It is not very straightforward 
to fit such a spectrum by astrophysical sources. In all cases, ex-
tragalactic sources are needed due to the isotropic feature and 
galactic constraints [19–22]. Then identifying such astrophysical 
sources will be crucial for further understanding of IceCube events.

Dark matter (DM) and other new physics interpretations have 
been also investigated in various ways or models. Heavy DM might 
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decay into SM particles that give energetic PeV neutrinos [23–37],1

or it could decay into some light DM particles which interact 
with nucleons and mimic neutrino events [39,40]. The resulting 
neutrino flux would still be consistent with isotropy so far, since 
galactic and extragalactic DM contribute at the similar order. One 
unique feature of DM explanation is that there should be sharp 
energy cut-off in the neutrino spectrum, which could be tested 
by future data. Also, a possible gap around 400 TeV–1 PeV, al-
though not statistically significant yet, motivated considerations of 
new interactions, two-component flux and leptophilic DM decay 
[32,41–47].

In this paper, we propose a simple DM model to explain the 
IceCube PeV events. A dark sector with new U (1)X gauge sym-
metry is introduced and can have connection with the standard 
model (SM) sector through neutrino-portal interactions as well as 
the Higgs portal interaction. Fermionic DM (χ ) has ∼PeV mass and 
mostly decays into three-body final state with dark Higgs (φ), SM 
Higgs (h) and active neutrino. The produced neutrinos from pri-
mary χ decay and the secondary h and φ decays can explain the 
observed PeV event spectra, while the atmospheric and astrophys-
ical neutrinos are included for the low-energy part.

This paper is organized as follows. In Section 2 we introduce 
our DM model with dark U (1)X gauge symmetry, heavy right-
handed neutrino portal and Higgs portal interactions. In Section 3
we outline the general formalism for calculating neutrino flux from 

1 If involving of dark halo substructure, Ref. [38] showed annihilating DM scenario 
may also be possible.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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galactic and extragalactic DM decay. In Section 4 we present both 
total and differential decay width for the relevant three-body de-
cay in our model and compare the numerical results with IceCube 
data. In Section 5 we discuss a possible mechanism to generate 
the correct relic density for DM and direct/indirect detection con-
straints. Finally, we give our conclusions.

2. Model

We consider a dark sector with a dark Higgs field � and a Dirac 
fermion DM χ associated U (1)X gauge symmetry. Their U (1)X

charges are assigned as follows2:

(Q �, Q χ ) = (1,1).

We begin with the following renormalizable and gauge invariant 
Lagrangian including just one singlet right-handed (RH) neutrino 
N and one lepton flavor (more Ns and/or flavors can be easily gen-
eralized):

L = LSM + 1

2
N̄i/∂N −

(
1

2
mN N̄c N + yL̄ H̃ N + h.c.

)
− 1

4
Xμν Xμν − 1

2
sinε Xμν F μν

Y

+ Dμ�† Dμ� − V (�, H) + χ̄
(
i/D − mχ

)
χ

− ( f χ̄�N + h.c.) , (2.1)

where L = (ν l)T is a left-handed (LH) SM SU(2) lepton dou-
blet, H is the SM Higgs doublet, Xμν = ∂μ Xν − ∂ν Xμ is the 
field strength for U (1)X gauge field Xμ , F μν

Y is for SM hyper-
charge U (1)Y , and ε is the kinetic mixing parameter. Two types 
of Yukawa couplings, y and f , can be taken as real parameters, ig-
noring CP violation for simplicity. We define covariant derivative 
as Dμ = ∂μ − ig X Xμ . Since we are interested in explaining the Ice-
Cube PeV events in terms of DM χ decay, we shall take mχ ∼ PeV. 
Other parameters in our model are free variables.

The scalar potential V of this model is given by

V = λH

(
H† H − v2

H

2

)2

+ λφH

(
H† H − v2

H

2

)(
�†� − v2

φ

2

)

+ λφ

(
�†� − v2

φ

2

)2

. (2.2)

Both electroweak and dark gauge symmetries are spontaneously 
broken by the nonzero vacuum expectations values of H and �: 

〈H〉 =
(

0, v H/
√

2
)T

, 〈�〉 = vφ/
√

2. Here v H � 246 GeV is the 
same as SM value but vφ might be taken as a free parameter. In 
the unitarity gauge, we can replace the scalar fields with

H → 1√
2

(
0

v H + h(x)

)
and � → vφ + φ(x)√

2
. (2.3)

Note that h and φ shall mix with each other thanks to the Higgs-
portal operator (the λφH term).3 Through this mixing, φ can decay 
into SM particles. Another important mixing happens among three 
neutral gauge bosons, photon Aμ , Zμ and Xμ . Such a mixture 
would enable an extra mass eigenstate Z ′

μ (mostly Xμ) to decay 
SM fermion pairs. Then DM χ scattering off nucleus is possible by 

2 A similar setup with different dark charge assignments has been considered for 
the AMS02 positron excess [48]. One may also use discrete symmetries, see Ref. [49]
for example.

3 The λhφ term can also help to stabilize the electroweak vacuum [50–53].
the Z ′ exchange, and the cross section essentially depends on ε , 
vφ , mZ ′ . It is easy to choose small ε , or heavy masses to evade the 
constraints from DM direct detection [54].

When the right-handed neutrino N is much heavier than χ , we 
can integrate it out and obtain an effective operator,

yf

mN
χ̄�H†L + h.c., (2.4)

which would make χ decay possible but long lived. After spon-
taneous gauge symmetry breaking, we have several higher di-
mensional effective operators from the aforementioned operator 
Eq. (2.4) as follows:

vφ v H

mN
χ̄ν,

vφ

mN
χ̄hν,

v H

mN
χ̄φν,

1

mN
χ̄φhν, (2.5)

with the common factor 
yf

2
for all these operators. If kinemat-

ically allowed, all the above operators induce χ decays into dif-
ferent channels with fixed relative branching ratios. Within the 
heavy χ limit, mχ 
 mφ, mZ ′ , mh, mZ , mW , the mass operator χ̄ν
in Eq. (2.5) would induce a tiny mixing between χ and ν with the 
mixing angle β approximately given by

β � yf

2

vφ v H

mNmχ
. (2.6)

Then the gauge interactions for χ and ν will generate the decay 
channels,

χ → Z ′ν, Zν, W ∓l±, (2.7)

with their branching ratios being proportional to ∼ v2
H : v2

φ : 2v2
φ . 

Two dim-4 operators, χ̄hν and χ̄φν , would lead χ to the follow-
ing decays,

χ → hν,φν, (2.8)

with their branching ratios being proportional to ∼ v2
φ : v2

H . It is 
also straightforward to get the following relation for the branching 
ratios,

Br(χ → φν) : Br(χ → Z ′ν) � 1 : 1 . (2.9)

Therefore, all the decay branching ratios are basically calculable 
and completely fixed in this model.4 Note that the decay modes 
with Z ′ or φ are unique features of DM models with dark gauge 
symmetries.5

Another interesting phenomenon in this model is that three 
body decay channel χ → φhν is dominant over all other channels 
when mχ 
 vφ :

�3 (χ → φhν)

�2 (χ → hν,φν)
� 1

16π2

m2
χ

v2
φ + v2

H


 1, (2.10)

since we actually have an enhancement from heavy mχ even 
though there is a phase space suppression from three-body fi-
nal states. There are another three-body decay channels that are 
equally important:

χ → φ/Z ′ + h + ν, φ/Z ′ + Z + ν, φ/Z ′ + W ± + l∓,

with branching ratios 1 : 1 : 2 due to the Goldstone boson equiva-
lence theorem. In the following, if not otherwise stated explicitly, 
we use χ → φhν to represent all these channels and in numerical 
calculations we take all of them into account.

4 This is also true in the model for the AMS02 positron excess [48].
5 This is also true of three-body decays of DM discussed in the following para-

graph.
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To give a rough impression for the relevant parameter ranges, 
we can perform an order-of-magnitude estimation (complete for-
mulas and details of calculation are given in Appendix A):

�3 (χ → φhν) ∼ m3
χ

96π3

(
yf

mN

)2

∼ 1

1028 s
(2.11)

⇒ yf

mN
∼ 10−36 GeV−1, (2.12)

which shows the required value for the combination yf /mN . If 
one additionally assumes that N should be responsible for neu-
trino mass through the usual Type-I see-saw mechanism, then 
we have y ∼ 10−5√mN/PeV. Therefore we would have y ∼ 1 and 
f ∼ 10−22 for mN ∼ 1014 GeV and, y ∼ 10−5 and f ∼ 10−25 for 
mN ∼ PeV. In any case, f is very tiny and seems unnaturally 
small. However, it is still natural a la ’t Hooft [55] since taking 
f = 0 enhances symmetries of the theory, namely DM number 
conservation.6 In later discussion, we shall take y, f , mN as free 
parameters, unless specified.

3. Neutrino flux from DM decay

The neutrino flux from dark matter decay is composed of galac-
tic and extragalactic contributions which are equally important as 
we shall see below. Galactic neutrino flux at kinetic energy E from 
DM decay in our Milky Way dark halo is given by

d�G
ν

dEν

∣∣∣∣
Eν=E

= 1

4π

∑
i

�i

∞∫
0

dr
ρG

χ

(
r′)

mχ

dNi
ν

dEν

∣∣∣∣∣
Eν=E

, (3.1)

where �i is partial width for decay channel i, dNi
ν/dEν is the neu-

trino spectrum at production, r′ =
√

r2� + r2 − 2r�r cos θ , r is the 
distance to earth from the DM decay point, r� � 8.5 kpc for the 
solar system and θ is the observation angle between the line-of-
sight and the center of the Milky Way. For the galactic DM density 
distribution, we use the following standard NFW profile [56],

ρG
χ

(
r′) = ρ�

[ r�
r′

][
1 + r�/rc

1 + r′/rc

]2

, (3.2)

with parameters rc � 20 kpc and ρ� � 0.4 GeV/cm3. For decaying 
dark matter the flux is not very sensitive to DM density profile, 
so our discussions and results will still apply if another different 
profile is used.

We can also get the extragalactic or cosmic contribution from a 
formula similar to the above one, by taking cosmic expansion into 
account, namely the red-shift effect [24]:

d�EG
ν

dEν

∣∣∣∣
Eν=E

= ρc�χ

4πmχ

∑
i

�i

∞∫
0

dz

H
dNi

ν

dEν

∣∣∣∣∣
Eν=(1+z)E

, (3.3)

where E ′ is red-shifted to E as E ′ = (1 + z)E , the red-shift z is 
defined as 1 + z = a0/a with present scale factor a0 being normal-
ized to 1, the critical energy density ρc = 5.5 × 10−6 GeV/cm3 and 
�χ � 0.27 is DM χ ’s fraction. The Hubble parameter H is related 
to its present value through

H = H0

√
�� + �m(1 + z)3 + �r(1 + z)4,

�λ , �m and �r are energy fractions of dark energy, all matter, 
and radiations, respectively. We shall use the latest results from
Planck [57] for numerical evaluation.

6 The DM current jμχ = χ̄γ μχ is conserved in the limit f → 0.
4. Numerical results

To compute the neutrino flux from DM decay, we first need 
to calculate the total and differential three-body decay width for 
χ → φ + h + ν . In the heavy χ limit, we have obtained the total 
width

� � m3
χ

768π3

(
yf

mN

)2

, (4.1)

and normalized differential decay widths

1

�

d�

dEν
� 24E2

ν/m3
χ , 0 < Eν < mχ/2, (4.2)

1

�

d�

dEh
� 12Eh

(
mχ − Eh

)
/m3

χ , 0 < Eh < mχ/2, (4.3)

1

�

d�

dEφ

� 12Eφ

(
mχ − Eφ

)
/m3

χ , 0 < Eφ < mχ/2. (4.4)

The details of the calculation are given in Appendix A where com-
plete formulas with nonzero mass parameters are also presented. 
The above differential widths are essential ingredients to get the fi-
nal neutrino flux. For example, νs from different decay final states 
are given by

dN

dE
(x → ν) =

∫
1

�

d�

dEx

dNν (Ex)

dE
dEx, (4.5)

where x = ν, h, W , Z , Z ′, φ. Note that dNν (Ex) /dE in the inte-
grand can be calculated with Pythia [58] or PPPC4DMID [59].

In Fig. 1 we show the neutrino spectra. Just for illustration, we 
choose the mass of DM χ around 5 PeV and its lifetime 2 ×1028 s. 
The neutrino spectra are multiplied by E2

ν in order to account for 
the energy dependence of the neutrino-nucleus cross section so 
that it might be compared with IceCube data more easily. The blue 
dot-dashed curve indicates the spectrum from final ν in χ ’s decay 
and red dashed one marks h/φ’s contribution. For simplicity, the 
mass of φ has been chosen to be just as the SM Higgs mass. How-
ever, other choice does not affect our result much, since in the left 
panel of Fig. 1 we see that in the high energy part h/φ’s contri-
butions are basically negligible and it is the high energy part that 
explains the IceCube PeV events. In the right panel, we include the 
red-shifted effects and show both galactic (blue dashed) and extra-
galactic (red dot-dashed) contributions.

Next, we compare our model predictions with IceCube three-
year data [1]. To parameterize the possible astrophysical neutrino 
fluxes at low energy, we consider either a broken power law (BPL) 
or unbroken power law (UPL) [32],

E2
ν

d�bkg

dEν
= J BPL

0

(
Eν

100 TeV

)−γ1

exp

(
− Eν

E0

)
, (4.6)

E2
ν

d�bkg

dEν
= J UPL

0

(
Eν

100 TeV

)−γ2

, (4.7)

where the first one has an exponential cut-off at energy scale E0
which is chosen to be 125 TeV in agreement with the SNR re-
sults [8].

We illustrate in Fig. 2 with two different astrophysical flux 
choices. The low energy data are best fitted by varying J0 and 
the spectral index γ , but the high energy PeV data points are 
fit by DM decay. In the left panel, we have used J BPL

0 = 4.1 ×
10−8 GeV cm−2 s−1 sr−1 and γ1 = 0 (red dot-dashed curve). In the 
right panel, we have used J UPL

0 = 1.3 × 10−8 GeV cm−2 s−1 sr−1

and γ2 = 0.7 (red dot-dashed curve). DM’s contributions and total 
flux are labeled with purple dashed and blue solid curves, respec-
tively. As we can see in the figure, our model can agree with the 
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Fig. 1. Neutrino spectra from DM χ decay with mχ ∼ 5 PeV and lifetime τχ = 1/� ∼ 2 × 1028 s. The left panel shows individual contribution of different final states from 
χ ’s decay, ν (blue dot-dashed curve) and h/φ (red dashed curve), respectively. The right panel presents the galactic (blue dashed curve) and extragalactic (red dot-dashed 
curve) neutrino flux. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 2. Neutrino flux from DM χ ’s decay with mχ ∼ 5 PeV and lifetime τχ = 1/� ∼ 2 × 1028 s and IceCube Data [1]. The left (right) panel used a broken (unbroken) power 
law (BPL) for astrophysical neutrino flux with a red dot-dashed curve. DM’s contributions and total flux are labeled with purple dashed and blue solid curves, respectively. 
See details in the text. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 3. Same as Fig. 2 but with preliminary updated results based on 4-year data [61], with J BPL
0 = 5.6 × 10−8 GeV cm−2 s−1 sr−1 and τχ ∼ 1.5 × 1028 s (left), and J UPL

0 =
2.1 × 10−8 GeV cm−2 s−1 sr−1 and τχ ∼ 2 × 1028 s (right).
PeV data. Also a gap could appear around 400 TeV although the 
current data cannot tell existence of the gap is statistically signif-
icant. The feature for the DM decay spectrum is that there would 
be a sudden drop around Eν � mχ/2. As more data are accumu-
lated, it should be possible to test our model in the future.

We should note that in our discussion J0 and γ are just ad-
justed visually to be consistent with the low-energy data points. 
Dedicated investigation would require global fitting, which is be-
yond our scope here. Just for comparison, IceCube [60] gives the 
best-fit parameters of a single unbroken power law for neutrinos 
energies between 25 TeV and 2.8 PeV without DM contribution, 
J0 = 6.7+1.1 × 10−8 GeV cm−2 s−1 sr−1 and γ = 0.5 ± 0.09.
−1.2
In Fig. 3, we also compare our model with the preliminary 
updated results [61] based on IceCube 4-year data which has al-
ready filled the gap a bit. Here we have only shifted to J BPL

0 =
5.6 × 10−8 GeV cm−2 s−1 sr−1 and τχ ∼ 1.5 × 1028 s (left panel), 
and J UPL

0 = 2.1 × 10−8 GeV cm−2 s−1 sr−1 and τχ ∼ 2 × 1028 s
(right panel). In Fig. 4, we illustrate two cases, one with mχ =
8 PeV, τχ ∼ 1.7 × 1028 s, and the other mχ = 10 PeV, τχ ∼ 1.5 ×
1028 s.

There are some crucial differences between our model and 
some others in the literature. For example, the authors in Refs. [23,
29] considered the effective operator, yL̄ H̃χ with y ∼ 10−30, 
which induces mainly two-body decay of DM χ ,
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Fig. 4. Same as the right panel of Fig. 3 but with mχ = 8 PeV, τχ ∼ 1.7 × 1028 s (left), and mχ = 10 PeV, τχ ∼ 1.5 × 1028 s (right).
χ → νh, ν Z , l±W μ.

In this scenario, the neutrino spectrum shows that there should be 
no gap between 400 TeV–1 PeV [26]. Our model predicts that the 
dominant decay mode are

χ → φ/Z ′ + h + ν, φ/Z ′ + Z + ν, φ/Z ′ + W ± + l∓,

which is a consequence of U (1)X dark gauge symmetry and 
the dark charge assignments of the dark Higgs and dark mat-
ter fermion χ . The neutrino spectra from primary χ decay and 
the secondary decays of h and φ have different shapes and could 
account for the possible gap. However, we should note that the 
current data cannot favor one over another yet due to its low 
statistics. Also the neutrino flux in our model is softer than the 
one predicted in Ref. [23,29], for example.

In Ref. [32], leptophilic three-body decay induced by dimension-
six L̄αlβ L̄γ χ was considered with global U (1) or A4 flavor symme-
tries. Besides the neutrino spectrum difference, our model involves 
an additional gauge boson which mediates the DM–nucleon scat-
tering, and could be tested by DM direct searches.

Our scenario is also different from those in which DM decay is 
also responsible for the low-energy flux [24]. The DM lifetime in 
Ref. [24] should be around 2 ×1027 s, as mainly determined by the 
low energy part of events. This is partly due to the reason that the 
branching ratio into neutrinos and bb̄ there should be about 10%
and 90%, respectively, to account for the possible gap. On the other 
hand, in our scenario 1/2 of the decay channels have prompt neu-
trinos. Another main difference is that three-body-decay usually 
gives broader spectra at PeV range than two-body-decay consid-
ered in Ref. [24], but more data is required in order to discriminate 
this difference.

Assuming the dark photon Xμ is much heavier than Z , the DM–
nucleon scattering cross section can be roughly estimated as

σχ N ∼
(

m2
Z

m2
X

)2

sin2 ε × 10−39 cm2. (4.8)

10−39 cm2 is the typical cross section value for SM Z -mediating 
DM–nucleon process. Comparing it with the direct detection bound 
for 100 GeV DM, we should have

σχ N < 10−45 cm2 × mχ

100 GeV
, (4.9)

for heavy mχ ∼ 5 PeV. This can be easily satisfied, for example, 
with mX ∼ TeV and sinε � 0.1.

5. Relic abundance and constraints

In our above investigation, we have not discussed the relic 
abundance for DM χ yet. Since χ is very heavy, the unitary bound 
on its annihilation makes the DM χ impossible to be thermally 
produced and a non-thermal process is needed (see Ref. [62] for 
a recent review on such topics). Here, we discuss one possible 
non-thermal production mechanism for DM χ in our model. We 
assume that the dark Higgs φ7 once shared a common temper-
ature with SM particles and had a thermal distribution when its 
temperature T was larger than mχ . Here we do not specify the 
mechanism how φ reached such a temperature; it could be due to 
reheating after inflation or some heavy particle decays.

In the thermal bath, χ could be produced through φ + φ →
χ + χ̄ , whose thermal cross section is given by

〈σ v〉 ∼ 1

16π

(
f 2

mN

)2

.

Here we considered the mN 
 T case only. We can calculate the 
χ ’s yield, Yχ ≡ nχ+χ̄ /s, where s ∼ g∗s(T )T 3 is the total entropy 
density in the Universe (g∗s(T ) ∼ 100),

Yχ ∼ nφ〈σ v〉/H ∼ T Mpl〈σ v〉
g∗s(T )

√
g∗(T )

. (5.1)

In the above derivation we have used the Hubble parameter H �√
g∗(T )T 2/Mpl, g∗(T ) ∼ 100 is the total effective number of de-

gree of freedom when φ’s temperature is T and Planck mass 
Mpl = √

3/8πG � 4.2 × 1018 GeV. Since the yield has a positive 
power dependence on temperature, χ is mostly produced at φ’s 
highest temperature T φ

max,

Yχ ∼ 〈σ v〉 × T φ
maxMpl

g∗s(T φ
max)

√
g∗(T φ

max)

. (5.2)

Requiring χ give the correct relic density, we have a relation

Yχ ∼ 6 × 10−10
(

�χ

�b

)(
GeV

mχ

)
∼ 3 × 10−15

(
PeV

mχ

)
, (5.3)

which puts a constraint on f and mN ,

(
f 2

mN

)2

� 1.5 × 10−13
(

PeV

mχ

)
× g∗s(T φ

max)

√
g∗(T φ

max)

T φ
maxMpl

. (5.4)

When mN > T φ
max > mχ and mχ ∼ PeV, we are able to give a 

lower bound for f

| f | � 10−6.

7 It should be � precisely since at high temperature symmetries are not yet bro-
ken, but it will not affect our discussion.
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Fig. 5. The gamma-ray flux from DM decay with mχ ∼ 5 PeV and lifetime τχ ∼
2 ×1028 s, confronted with constraints from Fermi-LAT [67] and KASCADE [68] data.

One more thing we can infer from Eq. (2.11) and (5.4) is that 
in this production mechanism y would be too small such that this 
right-hand neutrino N cannot be fully responsible for active neu-
trino mass and mixing angles. This is because, in order to explain 
the active neutrino mass, we should have

y2 v2
H

mN
� 0.1 eV ⇒ y ∼ 10−5

( mN

PeV

)1/2
, (5.5)

which cannot be satisfied simultaneously with Eq. (2.11) and (5.4). 
This is not a problem for this model since we can expect there 
are additional right-handed neutrinos Ni and they can couple to 
L̄ H̃ with large yi but to χ̄� with tiny f i , so that they are just 
responsible for active neutrino mass and mixing angle but not for 
DM χ ’s production.

DM direct detection can constrain DM–nucleon scattering cross 
section, whose value in our model is determined by the kinetic 
mixing parameter ε , gauge coupling g X and the mass of Z ′ . For 
GeV–TeV DM, there is already plenty of viable parameter space to 
evade such a constraint, see Ref. [63] for example. For PeV DM, 
the constraint is even relaxed due to the low number density, see 
Eq. (4.9). Indirect detection from positron, anti-proton and γ rays 
also constrain DM χ ’s decay lifetime, see Refs. [64–66] and refer-
ences therein for example. We have checked that τχ ∼ 1028 s is 
still allowed by all such constraints.

As an illustration, in Fig. 5 we show the expected gamma-ray 
flux from DM decay with mχ ∼ 5 PeV and lifetime τχ ∼ 2 ×1028 s. 
We have included the prompt gamma-rays and those from inverse 
Compton scattering (ICS) of charged particles on CMB, starlight 
and dust-rescattered light. For extragalactic contribution, we have 
taken absorption factor into account. As we can easily see, the 
flux is well below the current constraints from Fermi-LAT [67] and 
KASCADE [68]. Our results are also consistent with the recent in-
vestigations about gamma-ray constraints on the lifetime of PeV 
DM in different scenarios [36,69], τχ � 3 × 1027.

6. Conclusion

In this paper, we have proposed a dark matter (DM) model that 
can explain the IceCube PeV events in terms of DM decay. The 
model is based on an extra U (1)X dark gauge symmetry which 
is spontaneously broken by a dark Higgs field, �. One crucial 
bridge between DM χ and standard model (SM) particles is es-
tablished by heavy right-handed (RH) neutrino portal interactions. 
This heavy neutrino can induce DM decays into SM particles, in-
cluding the light neutrinos.
The dominant decay channel of DM is the three-body final state 
with SM Higgs, dark Higgs, and neutrino (χ → φ + h + ν) (and 
other channels due to the Goldstone boson equivalence theorem), 
and not the usual two-body decays such as χ → Zν , W ±l∓ , etc.
This is a unique feature of the present model based on U (1)X dark 
gauge symmetry and the RH neutrino portal interactions. We have 
calculated both total and differential decay width to evaluate the 
galactic and extragalactic neutrino fluxes. We have found that neu-
trino flux from these decay products can agree well with the Ice-
Cube spectrum. Together with an astrophysical flux for lower en-
ergy events, we are able to fit IceCube data around 100 TeV–2 PeV 
if we assume DM mass is about mχ ∼ 5 PeV and its lifetime is 
τχ ∼ 2 × 1028 s.
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Appendix A

Here we show the complete differential decay width for χ →
h + φ + ν . Throughout the calculation, we work in the rest frame 
of χ , so χ ’s momentum is (mχ , 0, 0, 0). For unpolarized χ , we 
have

d� = 1

(2π)3

1

8mχ

∑
pol

|M|2dEνdEh

= 1

(2π)3

(
yf

2mN

)2

EνdEνdEh, (A.1)

where we have used the averaged, squared matrix element,∑
pol
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(
yf

mN

)2 (
mχ Eν − m2

ν

)
� 2

(
yf

mN

)2

mχ Eν .

Then we get

d�

dEν
= Eν

(2π)3

(
yf

2mN

)2
Emax

h∫
Emin

h

dEh

= Eν

(2π)3

(
yf

2mN

)2
(

m2
φν

)
max

−
(

m2
φν

)
min

2mχ

= 2Eν

(2π)3 mχ

(
yf

2mN

)2 √
E∗2

φ − m2
φ

√
E∗2
ν − m2

ν (A.2)

� E2
ν

(2π)3

(
yf

2mN

)2 (
with Eν < mχ/2

)
. (A.3)

In the last line we have used the heavy mχ limit, mχ 
 mh , mχ 

mφ and mν � 0. Some definitions are listed below,
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Eh = m2
χ + m2
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and some other kinematic variables,(
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where E∗
φ and E∗

ν are the energies of φ and ν in the mhφ rest 
frame, respectively. From the above differential decay width, we 
can easily get the total width

� � 1
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The differential decay width as function of Eh or Eφ can also 
be calculated similarly. For example,
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Again, in the second line we have used the massless limit. The 
neutrino energy Eν in χ ’s rest frame can be written as

Eν = m2
χ + m2

ν − m2
φh

2mχ
, (A.7)

with similar definitions and kinematic bounds,(
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now here E∗
φ and E∗

h are the energies of φ and h in the mφν rest 
frame, respectively.
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