# Weak bases and quasi-pseudo-metrization of bispaces 

Josefa Marín ${ }^{1}$<br>Universidad Politecnica de Valencia, Instituto Universitario de Matematica Pura y Aplicada, 46022 Valencia, Spain

## ARTICLE INFO

## Article history:

Received 15 October 2008
Received in revised form 27 February 2009
Accepted 6 March 2009

## MSC:

54E35
54E55
54E20
54E30

Keywords:
Quasi-pseudo-metrization
Bispace
Weak base
Pairwise stratifiable space
Pairwise developable space


#### Abstract

In this paper it is obtained a quasi-pseudo-metrization theorem which provides a certain unification in the treatment of the biquasi-metrization problem when it is considered via sequences of neighborhoods of each point satisfying certain properties. In particular, the well-known theorems of Fox, Raghavan, Künzi, and Raghavan and Reilly are deduced from our results. We also obtain some quasi-metrization theorems in terms of pairwise locally symmetric bifunctions.


© 2009 Elsevier B.V. All rights reserved.

## 1. Introduction

Throughout this paper the letters $\mathbb{N}$ and $\mathbb{R}^{+}$will denote the set of all positive integer numbers and the set of all nonnegative real numbers, respectively. If $A$ is a subset of $X$ and $\tau$ is a topology on $X$, then $\tau-c l A$ will denote the closure of $A$ in the space $(X, \tau)$.

The importance of Williams' metrization theorem [33] and its antecedents (theorem of Niemytzki [23], Frink [8]) in the solution of the metrization problem is well known. However, as Lindgren and Fletcher have noted [19] the Williams theorem can be deduced from the famous Frink metrization theorem. Frink, in his turn, uses the Alexandroff-Uryshon theorem in the proof of his result. The interest of Frink's theorem has been remarked, among others, by Martin [21,22].

Since Kelly [15] began a systematized study of bitopological spaces one of the main problems in this area has been to obtain necessary and sufficient conditions for quasi-metrizability of bispaces. This problem was considered in [25,18, $32,24,2,3,7,17,27,29,30,28,31]$. In Section 2 of this paper we obtain a quasi-pseudo-metrization theorem in the style of Frink's metrization theorem, by using weak bases. From this result we deduce the Fox-Künzi theorem (which is the biquasimetric generalization of William's theorem), the bitopological extension of the "double sequence" theorem of Nagata (proved independently, by Fox [7], and Raghavan [27] and, in a slightly different form, by Raghavan and Reilly [28]) and one other related result.

Let us recall that the notion of a weak base was introduced by Arhangelskii in [1]; it was recently shown in [20] that it provides a useful tool to the study of topological properties of semicones. In $[14,9,10]$ a cone on $\mathbb{R}^{+}$is defined as a

[^0]semicone $(X,+, \cdot)$ such that $(X,+)$ is an abelian monoid, but there are some structures in computer science that are not abelian. For instance, it is obvious that the set of all finite and infinite words on a nonempty alphabet $\Sigma$ [26] is a monoid when is equipped with the operation o of concatenation. However, it is neither abelian nor cancellative, in general. In fact, if $\Sigma=\{0,1\}$, and put $a=10$, and $b=01$, it is evident that $a \circ b=1001 \neq b \circ a=0110$. Now, if $c=1010$ and $d=101010 \ldots$, then $a \circ d=c \circ d$ but $a \neq c$.

Finally, Section 3 is devoted to obtain some quasi-metrization theorems for pairwise stratifiable and pairwise developable spaces weakening certain conditions considered by Collins and Roscoe in [5].

Let us recall that a quasi-pseudo-metric on a set $X$ is a function $d: X \times X \rightarrow \mathbb{R}^{+}$such that for all $x, y, z \in X$ :
(i) $d(x, x)=0$,
(ii) $d(x, z) \leqslant d(x, y)+d(y, z)$.

If $d$ is a quasi-pseudo-metric satisfying the condition:
(i') $d(x, y)=d(y, x)=0$ if, and only if, $x=y$,
we say that $d$ is a quasi-metric.
We say that a function $d: X \times X \rightarrow \mathbb{R}^{+}$is a symmetric if for all $x, y \in X$ :
(i') $d(x, y)=0$ if, and only if, $x=y$,
(iii) $d(x, y)=d(y, x)$.

If $d$ is a quasi-(pseudo-)metric on $X$ the function $d^{-1}$ defined by $d^{-1}(x, y)=d(y, x)$ is called the conjugate quasi-(pseudo-)metric of $d$ on $X$. If $d$ is a quasi-(pseudo-)metric then the function $d^{s}$ defined by $d^{s}(x, y)=d(x, y) \vee d^{-1}(x, y)$ is a (pseudo-)metric on $X$.

Each quasi-pseudo-metric $d$ on a set $X$ induces a topology $\tau(d)$ on $X$ where for all $x \in X$ and all $r>0, B_{d}(x, r)=\{y \in X$ : $d(x, y)<r\}$ is an open $d$-ball and the family of open $d$-balls $\left\{B_{d}(x, r): x \in X, r>0\right\}$ is a base for the topology $\tau(d)$.

A bispace (a bitopological space in [15]) is a triple ( $X, \tau_{1}, \tau_{2}$ ) where $X$ is a nonempty set and $\tau_{1}$ and $\tau_{2}$ are two topologies on $X$. A bispace ( $X, \tau_{1}, \tau_{2}$ ) is quasi-(pseudo-)metrizable if there exists a quasi-(pseudo-)metric $d$ on $X$ such that $\tau(d)=\tau_{1}$ and $\tau\left(d^{-1}\right)=\tau_{2}$.

A local quasi-uniformity on a set $X$ is a filter $\mathcal{U}$ on $X \times X$ such that:
(i) for each $U \in \mathcal{U}, \Delta=\{(x, x) \in X\} \subseteq U$,
(ii) for each $U \in \mathcal{U}$ and each $x \in X$ there exists some $V \in \mathcal{U}$ such that $V^{2}(x) \subseteq U(x)$ where, $V^{2}=V \circ V$ and $U(x)=\{y \in X$ : $(x, y) \in U\}$.

A quasi-uniformity on a set $X$ is a local quasi-uniformity $\mathcal{U}$ on $X$ satisfying:
(ii') for each $U \in \mathcal{U}$ there exists some $V \in \mathcal{U}$ such that $V^{2} \subseteq U$.
A local uniformity on a set $X$ is a local quasi-uniformity $\mathcal{U}$ on $X$ satisfying:
(iii) for each $U \in \mathcal{U}$ there exists some $V \in \mathcal{U}$ such that $V^{-1} \subseteq U$.

Each local quasi-uniformity on a set $X$ induces a topology $\tau(\mathcal{U})$ on $X$ where a set $A \subseteq X$ is $\tau(\mathcal{U})$-open if for each $x \in A$ there is a $U \in \mathcal{U}$ such that

$$
x \in U(x)=\{y \in X:(x, y) \in U\} \subseteq A
$$

We say that a bispace $\left(X, \tau_{1}, \tau_{2}\right)$ has a compatible local quasi-uniformity if there exists a local quasi-uniformity $\mathcal{U}$ on $X$, such that $\mathcal{U}^{-1}$ is a local quasi-uniformity on $X$, and $\tau(\mathcal{U})=\tau_{1}$ and $\tau\left(\mathcal{U}^{-1}\right)=\tau_{2}$.

Let $(X, \tau)$ be a topological space. A family $\mathcal{B}$ of subset of $X$ is a weak base [1] for the topology $\tau$ if for each $x \in X$, there is a subfamily $\mathcal{B}_{X}$ of $\mathcal{B}$, such that:
(a) $x \in B$, for each $B \in \mathcal{B}_{x}$,
(b) if $A, B \in \mathcal{B}_{\chi}$, there is a $C \in \mathcal{B}_{X}$ such that $C \subseteq A \cap B$,
(c) a subset $U \subseteq X$ is $\tau$-open if, and only if, for each $x \in U$ there exists a subset $B \in \mathcal{B}_{x}$ such that $B \subseteq U$.

The family $\mathcal{B}_{x}$ is called a local weak base at $\chi$.


Fig. 1.

Example. ([11]) Let $\rho$ be the usual metric on $\mathbb{R}$, and denote by $S$ the following equivalence relation: for $x, y \in \mathbb{R}, x S y$ if, and only if, $x=y$ or there exists $n \in \mathbb{N}$ such that $x=n$ and $y=1 / n$. Let $f: \mathbb{R} \rightarrow X=\mathbb{R} / S$, and denote the elements of $X$ by $[x]$, then the function $d$ given by

$$
d([x],[y])=\rho\left(f^{-1}[x], f^{-1}[y]\right)
$$

is a symmetric on $X$. The family $\left\{B_{d}([0], \varepsilon): \varepsilon>0\right\}$ is a local weak base at [0] but it is not a neighborhood base (see Fig. 1).

## 2. Quasi-pseudo-metrization theorems

We shall use the quasi-uniform analogue [6, Theorem 4] of the Alexandroff-Uryshon metrization theorem, namely, a bispace is quasi-pseudo-metrizable if, and only if, it has a compatible quasi-uniformity with a countable base, to obtain an analogous to Frink's metrization theorem, in terms of weak bases.

Lemma 1. Let $X$ be a nonempty set such that for each $x \in X$ there exist two decreasing sequences $\left\{g_{i}(n, x): n \in \mathbb{N}\right\}, i=1,2$, of subsets of $X$ with $x \in \bigcap_{n=1}^{\infty}\left(g_{i}(n, x) \cap g_{j}(n, x)\right), i \neq j$, for all $x \in X$. Suppose that, given $x \in X$ and $n \in \mathbb{N}$ there exists $m=m(n, x)>n$ satisfying for $i, j=1,2, i \neq j$ :

$$
g_{i}(m, x) \cap g_{j}(m, y) \neq \emptyset \quad \Rightarrow \quad g_{i}(m, y) \subset g_{i}(n, x) .
$$

Then, there exists a quasi-pseudo-metric $d$ on $X$ such that, for all $x \in X,\left\{g_{1}(n, x): n \in \mathbb{N}\right\}$ is base of $\tau(d)$-neighborhoods and $\left\{g_{2}(n, x): n \in \mathbb{N}\right\}$ is base of $\tau\left(d^{-1}\right)$-neighborhoods of $x$.

Proof. For each $x \in X$, put $n_{1}(x)=1$ and $n_{2}(x)=m(1, x)$. Following this process, let $n_{k}(x)=m\left(n_{k-1}(x), x\right)$ for all $k>1$. Now, we define, for all $n \in \mathbb{N}$,

$$
U_{1, k}(x)=\bigcup\left\{g_{1}\left(n_{k}(p), p\right): x \in g_{2}\left(n_{k}(p), p\right)\right\}
$$

and

$$
U_{2, k}(x)=\bigcup\left\{g_{2}\left(n_{k}(p), p\right): x \in g_{1}\left(n_{k}(p), p\right)\right\}
$$

and for $i=1,2$,

$$
U_{i, k}=\left\{(x, y): x \in X \text { and } y \in U_{i, k}(x)\right\}
$$

It is easy to prove that $\left\{U_{1, k}: k \in \mathbb{N}\right\}$ is a base for a quasi-uniformity $\mathcal{U}$ on $X$. Similarly, $\left\{U_{2, k}: k \in \mathbb{N}\right\}$ is a base for a quasi-uniformity $\mathcal{V}$ on $X$. Since $(x, y) \in U_{1, k}$ if, and only if, $(y, x) \in U_{2, k}$, we deduce $\mathcal{U}^{-1}=\mathcal{V}$, so by [6, Theorem 4], there exists a quasi-pseudo-metric $d$ on $X$ satisfying $\tau(d)=\tau(\mathcal{U})$ and $\tau\left(d^{-1}\right)=\tau\left(\mathcal{U}^{-1}\right)$.

On the other hand, for each $x \in X$, we have $U_{i, m(n, x)}(x) \subseteq g_{i}(n, x)$, which implies that the family $\left\{g_{1}(n, x): n \in \mathbb{N}\right\}$ is a base of $\tau(d)$-neighborhoods of $x$ and the family $\left\{g_{2}(n, x): n \in \mathbb{N}\right\}$ is a base of $\tau\left(d^{-1}\right)$-neighborhoods of $x$. This concludes the proof.

Theorem 1. A bispace ( $X, \tau_{1}, \tau_{2}$ ) is quasi-pseudo-metrizable if, and only if, for each $x \in X$ there exist two decreasing sequences

$$
\mathcal{B}_{i, x}=\left\{V_{i}(n, x): n \in \mathbb{N}\right\}
$$

with $i=1,2$ of subsets of $X$ such that $\mathcal{B}_{i}=\bigcup\left\{\mathcal{B}_{i, x}: x \in X\right\}$ is a weak base for $\left(X, \tau_{i}\right)$ and such that given $x \in X$ and $n \in \mathbb{N}$, there exists $m=m(n, x)>n$ satisfying

$$
V_{i}(m, x) \cap V_{j}(m, y) \neq \emptyset \quad \Rightarrow \quad V_{i}(m, y) \subseteq V_{i}(n, x)
$$

for $i, j=1,2$, and $i \neq j$.
Proof. Necessity. Let $d$ be a quasi-pseudo-metric on $X$ such that $\tau(d)=\tau_{1}$ and $\tau\left(d^{-1}\right)=\tau_{2}$. It is enough to put, for all $x \in X$ and all $n \in \mathbb{N}$,

$$
V_{1}(n, x)=B_{d}\left(x, 2^{-n}\right) \quad \text { and } \quad V_{2}(n, x)=B_{d^{-1}}\left(x, 2^{-n}\right)
$$

The sufficiency follows from Lemma 1 with $g_{i}(n, x)=V_{i}(n, x)$ for $i=1,2, x \in X$ and $n \in \mathbb{N}$.
Theorem 2. A bispace ( $X, \tau_{1}, \tau_{2}$ ) is quasi-pseudo-metrizable if, and only if, for each $x \in X$ there exist four decreasing sequences

$$
\left\{U_{i}(n, x): n \in \mathbb{N}\right\} \quad \text { and } \quad\left\{S_{i}(n, x): n \in \mathbb{N}\right\}
$$

$i=1,2$, of supersets of $x$ such that if $i, j=1,2$, and $i \neq j$ :
(i) For each $x \in X,\left\{U_{i}(n, x): n \in \mathbb{N}\right\}$ is a local weak base for $\left(X, \tau_{i}\right)$ at $x$.
(ii) If $S_{i}(n, x) \cap S_{j}(n, y) \neq \emptyset$ then $S_{i}(n, y) \subseteq U_{i}(n, x)$.
(iii) Given $S_{i}(n, x)$ there exists $m \in \mathbb{N}$ such that $U_{i}(m, x) \subseteq S_{i}(n, x)$.

Proof. Sufficiency. For each $x \in X$ and each $n \in \mathbb{N}$ define $V_{i}(n, x)=\bigcap_{r=1}^{n} S_{i}(r, x)$, with $i=1$, 2. It is easily seen that $\left\{V_{i}(n, x): n \in \mathbb{N}\right\}$ is a $\tau_{i}$-local weak base at $x$. The quasi-pseudo-metrizability of $\left(X, \tau_{1}, \tau_{2}\right)$ follows from Theorem 1 . We omit the easy proof of the necessity.

From the preceding theorem we deduce the following two versions for bispaces of the "double sequence" Nagata metrization theorem.

Corollary 1. ([7,27]) A bispace ( $X, \tau_{1}, \tau_{2}$ ) is quasi-pseudo-metrizable if, and only if, for each $x \in X$ there exist four decreasing sequences of $\tau_{i}$-neighborhoods of $x$,

$$
\left\{U_{i}(n, x): n \in \mathbb{N}\right\} \quad \text { and } \quad\left\{S_{i}(n, x): n \in \mathbb{N}\right\}
$$

$i=1,2$, such that if $i, j=1,2$, and $i \neq j$ :
(i) For each $x \in X,\left\{U_{i}(n, x): n \in \mathbb{N}\right\}$ is a base of $\tau_{i}$-neighborhoods of $x$.
(ii) If $S_{i}(n, x) \cap S_{j}(n, y) \neq \emptyset$ then $y \in U_{i}(n, x)$.
(iii) If $y \in S_{i}(n, x)$ then $S_{i}(n, y) \subseteq U_{i}(n, x)$.

Corollary 2. ([28]) A bispace ( $X, \tau_{1}, \tau_{2}$ ) is quasi-pseudo-metrizable if, and only if, for each $x \in X$ there exist two countable bases of $\tau_{i}$-neighborhoods of $x$,

$$
\left\{S_{i}(n, x): n \in \mathbb{N}\right\}
$$

$i=1,2$, such that if $i, j=1,2$, and $i \neq j$ :
(i) If $S_{i}(n, x) \cap S_{j}(n, y) \neq \emptyset$ then $y \in S_{i}(n-1, x)$.
(ii) If $y \in S_{i}(n, x)$ then $S_{i}(n, y) \subseteq S_{i}(n-1, x)$.

The next result is deduced in a similar way to Theorem 2.
Corollary 3. ([7,17]) A bispace $\left(X, \tau_{1}, \tau_{2}\right)$ is quasi-pseudo-metrizable if, and only if, it has a compatible local quasi-uniformity with a countable base.

Proof. Sufficiency. Let $\mathcal{U}$ be a local quasi-uniformity on $X$ with a decreasing countable base $\left\{U_{n}: n \in \mathbb{N}\right\}$ such that $\mathcal{U}^{-1}$ is a local quasi-uniformity, and $\tau(\mathcal{U})=\tau_{1}$ and $\tau\left(\mathcal{U}^{-1}\right)=\tau_{2}$. For each $x \in X$ and each $n \in \mathbb{N}$, we deduce, similarly to Theorem 2 , that there exist $k, m \in \mathbb{N}$ such that $k>m>n$ and $U_{k}^{3}(x) \subseteq U_{m}^{2}(x) \subseteq U_{n}(x)$, and $\left(U_{k}^{-1}\right)^{3}(x) \subseteq\left(U_{m}^{-1}\right)^{2}(x) \subseteq U_{n}^{-1}(x)$. If we define $V_{1}(n, x)=U_{n}(x)$ and $V_{2}(n, x)=U_{n}^{-1}(x)$, then it is clear that condition $V_{i}(k, x) \cap V_{j}(k, y) \neq \emptyset$ implies $V_{i}(k, y) \subseteq V_{i}(n, x)$ for $i, j=1,2, i \neq j$.

## 3. Pairwise local symmetry and quasi-metrization

The conditions (i) and (ii) given in Corollary 1 provide a natural extension for bispaces of the notion of a Nagata space [4]. On the other hand, it is well known that a topological space is a Nagata space if, and only if, it is a stratifiable and a first countable space. Next we recall the definitions of a pairwise stratifiable space, which may be found in $[7,12,16]$.

Definition 1. A bispace $\left(X, \tau_{1}, \tau_{2}\right)$ is called pairwise stratifiable if to each $\tau_{i}$-closed set $H \subseteq X$ one can assign a sequence $\left\{H_{n}: n \in \mathbb{N}\right\}$ of $\tau_{j}$-open set such that for $i, j=1,2, i \neq j$ :
(i) $H=\bigcap_{n=1}^{\infty} H_{n}$,
(ii) if $G \subseteq H$ are $\tau_{i}$-closed sets then $G_{n} \subseteq H_{n}$,
(iii) $H=\bigcap_{n=1}^{\infty} \tau_{i} c l\left(H_{n}\right)$.

Theorem 3. For a bispace $\left(X, \tau_{1}, \tau_{2}\right)$ the following are equivalent:
(a) $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise stratifiable and $\left(X, \tau_{i}\right)$ are first countable spaces $i=1,2$.
(b) For each $x \in X$ there exist four sequences of $\tau_{i}$-neighborhoods of $x,\left\{U_{i}(n, x): n \in \mathbb{N}\right\}$ and $\left\{S_{i}(n, x): n \in \mathbb{N}\right\}, i=1,2$, such that if $i, j=1,2$, and $i \neq j$ :
(i) For each $x \in X,\left\{U_{i}(n, x): n \in \mathbb{N}\right\}$ is a base of $\tau_{i}$-neighborhoods of $x$.
(ii) If $S_{i}(n, x) \cap S_{j}(n, y) \neq \emptyset$ then $y \in U_{i}(n, x)$.
(c) For each $x \in X$ there exist two functions $g_{i}: \mathbb{N} \times X \rightarrow \tau_{i}$ such that $x \in \bigcap_{n=1}^{\infty} g_{i}(n, x), i=1,2$, and if $g_{i}(n, x) \cap g_{j}\left(n, x_{n}\right) \neq \emptyset$ then the sequence $\left\{x_{n}: n \in \mathbb{N}\right\} \tau_{i}$-converges to $x$, for $i, j=1,2, i \neq j$.

Definition 2. A topological space $(X, \tau)$ is a $\gamma$-space [13] if there is a function $g: \mathbb{N} \times X \rightarrow \tau$ such that $x \in \bigcap_{n=1}^{\infty} g(n, x)$, and if $x_{n} \in g(n, x)$ and $y_{n} \in g\left(n, x_{n}\right)$ then the point $x$ is a cluster point for the sequence $\left\{y_{n}: n \in \mathbb{N}\right\}$. In this case, we say that $g$ is a $\gamma$-function for $(X, \tau)$.

It is clear that every quasi-pseudo-metrizable topological space is a $\gamma$-space and that every $\gamma$-space is a first countable space. On the other hand, it is well known [19] that a topological space $(X, \tau)$ is a $\gamma$-space if, and only if, for each $x \in X$ there exist two sequences of neighborhoods of $x$ satisfying the conditions (i) and (iii) of Corollary 1. This observation jointly with Theorem 3 permits us to deduce from Corollary 1 the following essentially known result.

Theorem 4. A bispace $\left(X, \tau_{1}, \tau_{2}\right)$ is quasi-pseudo-metrizable if, and only if, it is pairwise stratifiable and $\left(X, \tau_{i}\right)$ is a $\gamma$-space for $i=1,2$.

Definition 3. A pair open cover in a bispace $\left(X, \tau_{1}, \tau_{2}\right)$ is a family of pairs

$$
\left(\mathcal{G}_{1}, \mathcal{G}_{2}\right)=\left\{\left(G_{1, \alpha}, G_{2, \alpha}\right): \alpha \in I\right\}
$$

such that:
(i) for each $\alpha \in I, G_{i, \alpha} \in \tau_{i}$, for each $i=1,2$,
(ii) $\mathcal{G}_{i}=\left\{G_{i, \alpha}: \alpha \in I\right\}$ is a cover of $X$, for each $i=1,2$,
(iii) for each $x \in X$ there is an $\alpha \in I$ such that $x \in G_{1, \alpha} \cap G_{2, \alpha}$.

Let $\left(\mathcal{G}_{1}, \mathcal{G}_{2}\right)$ and $\left(\mathcal{G}_{1}^{\prime}, \mathcal{G}_{2}^{\prime}\right)$ be pair open covers of $\left(X, \tau_{1}, \tau_{2}\right)$. We say that ( $\mathcal{G}_{1}^{\prime}, \mathcal{G}_{2}^{\prime}$ ) refines $\left(\mathcal{G}_{1}, \mathcal{G}_{2}\right)$ (that is $\left(\mathcal{G}_{1}^{\prime}, \mathcal{G}_{2}^{\prime}\right)<$ $\left.\left(\mathcal{G}_{1}, \mathcal{G}_{2}\right)\right)$ if for each pair $\left(G_{1, \alpha}^{\prime}, G_{2, \alpha}^{\prime}\right) \in\left(\mathcal{G}_{1}^{\prime}, \mathcal{G}_{2}^{\prime}\right)$ there is a pair $\left(G_{1, \beta}, G_{2, \beta}\right) \in\left(\mathcal{G}_{1}, \mathcal{G}_{2}\right)$ such that $G_{i, \alpha}^{\prime} \subseteq G_{i, \beta}$ for each $i=1$, 2 . Let $\left(\mathcal{G}_{1}, \mathcal{G}_{2}\right)$ be a pair open cover of $\left(X, \tau_{1}, \tau_{2}\right)$. Let $A$ be a nonempty subset of $X$, we define for each $i, j=1,2$ and $i \neq j$,

$$
\operatorname{St}\left(A, \mathcal{G}_{i}, \mathcal{G}_{j}\right)=\bigcup\left\{G_{i, \alpha} \in \mathcal{G}_{i}: A \cap G_{j, \alpha} \neq \emptyset\right\}
$$

If $x \in X$ we define

$$
\operatorname{St}\left(x, \mathcal{G}_{i}, \mathcal{G}_{j}\right)=\bigcup\left\{G_{i, \alpha} \in \mathcal{G}_{i}: x \in G_{j, \alpha}\right\}
$$

and

$$
\operatorname{St}^{2}\left(x, \mathcal{G}_{i}, \mathcal{G}_{j}\right)=\operatorname{St}\left(\operatorname{St}\left(x, \mathcal{G}_{i}, \mathcal{G}_{j}\right), \mathcal{G}_{i}, \mathcal{G}_{j}\right)
$$

Definition 4. A pair development in a bispace $\left(X, \tau_{1}, \tau_{2}\right)$ is a sequence $\left\{\left(\mathcal{G}_{1, n}, \mathcal{G}_{2, n}\right): n \in \mathbb{N}\right\}$ of pair open covers of $X$ such that, for each $x \in X,\left\{\operatorname{St}\left(x, \mathcal{G}_{1, n}, \mathcal{G}_{2, n}\right): n \in \mathbb{N}\right\}$ is a base of $\tau_{i}$-neighborhoods of $x$. A bispace ( $X, \tau_{1}, \tau_{2}$ ) is pairwise developable if it is a pair development $\left\{\left(\mathcal{G}_{1, n}, \mathcal{G}_{2, n}\right): n \in \mathbb{N}\right\}$ such that $\left(\mathcal{G}_{1, n+1}, \mathcal{G}_{2, n+1}\right)<\left(\mathcal{G}_{1, n}, \mathcal{G}_{2, n}\right)$ for each $n \in \mathbb{N}$.

The following results are useful characterizations of pairwise stratifiable spaces and pairwise developable spaces (see $[3,31])$.

Proposition 1. A bispace $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise stratifiable if, and only if, there exist two functions $g_{i}: \mathbb{N} \times X \rightarrow \tau_{i}, i=1$, 2 such that:
(i) $x \in g_{1}(n, x) \cap g_{2}(n, x)$ for each $x \in X$ and each $n \in \mathbb{N}$,
(ii) for each $\tau_{i}$-closed $H$ and each $x \in X-H$ there exists an $n \in \mathbb{N}$ such that $x \in X-\tau_{i} c l\left(\bigcup\left\{g_{j}(n, y): y \in H\right\}\right), i, j=1,2, i \neq j$.

The pair $\left(g_{1}, g_{2}\right)$ is called a pairwise stratifiable bifunction for $\left(X, \tau_{1}, \tau_{2}\right)$.
Proposition 2. A bispace $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise developable if, and only if, there exist two functions $g_{i}: \mathbb{N} \times X \rightarrow \tau_{i}, i=1,2$, such that:
(i) $x \in g_{1}(n, x) \cap g_{2}(n, x)$ for each $x \in X$ and each $n \in \mathbb{N}$,
(ii) if $x \in g_{i}\left(n, y_{n}\right)$ and $x_{n} \in g_{j}\left(n, y_{n}\right)$ for all $n \in \mathbb{N}$ then $x$ is a $\tau_{j}$-cluster point of the sequence $\left\{x_{n}: n \in \mathbb{N}\right\}, i=1,2, i \neq j$.

Then we say that the pair $\left(g_{1}, g_{2}\right)$ is a pairwise developable bifunction for $\left(X, \tau_{1}, \tau_{2}\right)$.
Definition 5. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a bispace and let $g_{i}: \mathbb{N} \times X \rightarrow \tau_{i}$ be two functions verifying for $i=1,2, i \neq j$ :
(i) $x \in g_{1}(n, x) \cap g_{2}(n, x)$ for each $x \in X$ and each $n \in \mathbb{N}$,
(ii) for each $x \in X$ and each $n \in \mathbb{N}$ there exists $m=m(n, x)>n$ such that $x \in g_{j}(n, y)$ whenever $y \in g_{i}(m, x)$.

Then we say that the pair ( $g_{1}, g_{2}$ ) is a pairwise locally symmetric bifunction for $\left(X, \tau_{1}, \tau_{2}\right)$.
The following results provide quasi-pseudo-metrization theorems using pairwise locally symmetric bifunctions.
Theorem 5. Let $\left(X, \tau_{1}\right)$ and $\left(X, \tau_{2}\right)$ be two topological spaces. Then the bispace $\left(X, \tau_{1}, \tau_{2}\right)$ is quasi-metrizable if, and only if, it has a pairwise locally symmetric pairwise stratifiable bifunction.

Proof. Let $\left(g_{1}, g_{2}\right)$ be a pairwise locally symmetric pairwise stratifiable bifunction for ( $X, \tau_{1}, \tau_{2}$ ). We can suppose, without loss of generality, that for all $x \in X$ and $n \in \mathbb{N}, g_{i}(n+1, x) \subseteq g_{i}(n, x), i=1,2$. It suffices to show that ( $X, \tau_{1}$ ) and ( $X, \tau_{2}$ ) are $\gamma$-spaces. It is easy to prove that the family $\left\{g_{i}(n, x): n \in \mathbb{N}\right\}$ is a base of $\tau_{i}$-neighborhoods of $x, i=1$, 2. Define for all $x \in X$ and $n \in \mathbb{N}, h_{i}(n, x)=g_{i}(m(n, x), x), i=1,2$. Suppose that $x_{n} \in h_{i}(n, x), y_{n} \in h_{i}\left(n, x_{n}\right)$ but $x$ is not a cluster point of $\left\{y_{n}: n \in \mathbb{N}\right\}$. Then, there exists a $\tau_{i}$-open neighborhood $U$ of $x$ and a $p \in \mathbb{N}$, such that $y_{n} \in H=X-U$ for $n \geqslant p$. By Proposition 1 there exists $k \in \mathbb{N}$ such that $g_{i}(k, x) \cap\left(\bigcup\left\{g_{j}(k, y): y \in H\right\}\right)=\emptyset, i \neq j$. Since $x \in g_{j}\left(n, x_{n}\right)$ it follows that the sequence $\left\{x_{n}: n \in \mathbb{N}\right\} \tau_{i}$-converges to $x$. Now let $r \geqslant \max \{p, k\}$ such that for all $n \geqslant r, x_{n} \in g_{i}(k, n)$. Since $x_{n} \in g_{j}\left(n, y_{n}\right) \subseteq$ $g_{j}\left(k, y_{n}\right), n \geqslant r$, we obtain a contradiction. Consequently, $\left(X, \tau_{i}\right)$ is a $\gamma$-space, $i=1,2$. We omit the easy proof of the converse.

Theorem 6. Let $\left(X, \tau_{1}\right)$ and $\left(X, \tau_{2}\right)$ be two topological spaces. Then the bispace $\left(X, \tau_{1}, \tau_{2}\right)$ is quasi-metrizable if, and only if, it has a pairwise locally symmetric developable bifunction.

Proof. Let $\left(g_{1}, g_{2}\right)$ be a pairwise locally symmetric developable bifunction for ( $X, \tau_{1}, \tau_{2}$ ). We can suppose, without loss of generality, that for all $x \in X$ and $n \in \mathbb{N}, g_{i}(n+1, x) \subseteq g_{i}(n, x), i=1,2$. Define for all $x \in X$ and $n \in \mathbb{N}, h_{i}(n, x)=g_{i}(m(n, x), x)$, $i=1$, 2. Suppose that $x_{n} \in h_{i}(n, x), y_{n} \in h_{i}\left(n, x_{n}\right)$. Then $x \in g_{j}\left(n, x_{n}\right)$ and $y_{n} \in g_{i}\left(n, x_{n}\right), i \neq j$. By Proposition $2, x$ is a $\tau_{i}$-cluster point of the sequence $\left\{y_{n}: n \in \mathbb{N}\right\}$ and, hence, $\left(X, \tau_{i}\right)$ is a $\gamma$-space, $i=1,2$. It remains to show that $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise stratifiable. To see this take a $\tau_{i}$-closed set $H$ and $x \in X-H$. Suppose that, for all $n \in \mathbb{N}, x \in \tau_{i} c l \bigcup\left\{h_{j}(n, y): y \in H\right\}, i \neq j$. Then there exists a sequence $\left\{x_{n}: n \in \mathbb{N}\right\}$ satisfying $x_{n} \in h_{i}(n, x) \cap h_{j}\left(n, y_{n}\right)$ whenever $y_{n} \in H$ for all $n \in \mathbb{N}, i \neq j$. It follows, $x \in g_{j}\left(n, x_{n}\right)$ and $y_{n} \in g_{i}\left(n, x_{n}\right)$. By Proposition $2, x$ is a $\tau_{i}$-cluster point of $\left\{y_{n}: n \in \mathbb{N}\right\}$, a contradiction. We omit the easy proof of the converse.

## References

[1] A.V. Arhangelskii, Mappings and spaces, Uspekhi Mat. Nauk 21 (1966) 115-162.
[2] L.M. Brown, Sequentially normal bitopological spaces, Karademiz Univ. Math. J. 4 (1981) 18-22.
[3] L.M. Brown, A topic in the theory of bitopological spaces, Karademiz Univ. Math. J. 5 (1982) 142-149.
[4] J.G. Ceder, Some generalizations of metric spaces, Pacific J. Math. 11 (1961) 105-126.
[5] P.J. Collins, A.W. Roscoe, Criteria for metrisability, Proc. Amer. Math. Soc. 90 (1984) 631-640.
[6] P. Fletcher, H.B. Hoyle III, C.W. Patty, The comparison of topologies, Duke Math. J. 36 (1969) 325-331.
[7] R. Fox, On metrizability and quasi-metrizability, Manuscript.
[8] A.H. Frink, Distance functions and the metrization problem, Bull. Amer. Math. Soc. 43 (1937) 133-142.
[9] L.M. García-Raffi, S. Romaguera, E.A. Sánchez-Pérez, The dual space of an asymmetric normed linear space, Quaest. Math. 26 (2003) 83-96.
[10] L.M. García-Raffi, S. Romaguera, E.A. Sánchez-Pérez, O. Valero, Metrizability of the unit ball of the dual of a quasi-normed cone, Boll. Unione Mat. Ital. Sez. B 7 (2004) 483-492.
[11] G. Gruenhage, Generalized metric spaces, in: Handbook of Set Theoretic Topology, North-Holland, 1984, pp. 423-501.
[12] A. Gutierrez, S. Romaguera, On pairwise stratifiable spaces, Rev. Roumaine Math. Pures Appl. 3 (1986) 141-150.
[13] R.E. Hodel, Spaces defined by sequences of open covers which guarantee that certain sequences have cluster points, Duke Math. J. 39 (1972) $253-263$.
[14] K. Keimel, W. Roth, Ordered Cones and Approximation, Springer-Verlag, Berlin, 1992.
[15] J.C. Kelly, Bitopological spaces, Proc. London Math. Soc. 13 (1963) 71-89.
[16] H.P. Künzi, Quasi-metrisierbare Raüme, Thesis, Univ. Berna, 1981.
[17] H.P. Künzi, On strongly quasi-metrizable spaces, Arch. Math. (Basel) 44 (1983) 57-63.
[18] E.P. Lane, Bitopological spaces and quasi-uniform spaces, Proc. London Math. Soc. 17 (1967) 241-256.
[19] W.F. Lindgren, P. Fletcher, Locally quasi-uniform spaces with countable bases, Duke Math. J. 41 (1974) 231-240.
[20] J. Marín, An extension of Alaoglu's theorem for topological semicones, Houston J. Math. 34 (3) (2008) 795-806.
[21] H.W. Martin, A note of the Frink metrization theorem, Rocky Mountain J. Math. 6 (1976) 155-157.
[22] H.W. Martin, Weak bases and metrization, Trans. Amer. Math. Soc. 222 (1976) 337-344.
[23] V.V. Niemytzki, On the third axiom of metric spaces, Trans. Amer. Math. Soc. 29 (1927) 507-513.
[24] C.M. Pareek, Bitopological spaces an quasi-metric spaces, J. Univ. Kuwait Sci. 6 (1980) 1-7.
[25] C.W. Patty, Bitopological spaces, Duke Math. J. 34 (1967) 387-392.
[26] D. Perrin, J.E. Pin, Infinite Words. Automata, Semigroups and Games, Elsevier, Academic Press, 2004.
[27] T.G. Raghavan, On quasi-metrizability, Indian J. Pure Appl. Math. 15 (1984) 1084-1089.
[28] T.G. Raghavan, I.L. Reilly, Characterizations of quasi-metrizable bitopological spaces, J. Aust. Math. Soc. 44 (1984) 271-274.
[29] S. Romaguera, Two characterizations of quasi-pseudo-metrizable bitopological spaces, J. Aust. Math. Soc. 35 (1983) 327-333.
[30] S. Romaguera, On bitopological quasi-pseudo-metrization, J. Aust. Math. Soc. 36 (1984) 126-129.
[31] S. Romaguera, J. Marín, On the bitopological extension of the Bing metrization theorem, J. Aust. Math. Soc. 44 (1988) 233-241.
[32] S. Salbany, Quasi-metrization of bitopological spaces, Arch. Math. (Basel) 23 (1972) 299-306.
[33] J. Williams, Locally uniform spaces, Trans. Amer. Math. Soc. 168 (1972) 435-469.


[^0]:    E-mail address: jomarinm@mat.upv.es.
    1 The author thanks the support of Spanish Ministry of Education and Science and FEDER grant MTM2006-14925-C02-01.

