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a b s t r a c t

Let G be an edge-colored graph. An alternating cycle of G is a cycle of G in which any two
consecutive edges have distinct colors. Let dc(v), the color degree of a vertex v, be defined
as themaximumnumber of edges incidentwith v that have distinct colors. In this paper,we
study color degree conditions for the existence of alternating cycles of prescribed length.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V , E) be a graph. An edge-coloring of G is a function C : E → N, where N is the set of natural numbers. If G is
assigned such a coloring C , then we say that G is an edge-colored graph. Let C(e) denote the color of the edge e ∈ E. For a
subgraphH ofG, let C(H) = {C(e) : e ∈ E(H)} and c(H) = |C(H)|. For a color i ∈ C(H), let iH = |{e : C(e) = i and e ∈ E(H)}|
and say that color i appears iH times in H . For an edge-colored graph G, if c(G) = c , we call it a c-edge-colored graph.
For a vertex v in edge-colored graph G, a color neighborhood of v is defined as a set T ⊆ N(v) such that the colors of the

edges joining v and vertices of T are pairwise distinct. Amaximum color neighborhood Nc(v) of v is a color neighborhood of
v with maximum size. Let dc(v) = |Nc(v)| and call it the color degree of v.
If P = v1v2 · · · vp is a path, let P[vi, vj] denote the subpath vivi+1 · · · vj, and P−[vi, vj] denote the subpath vjvj−1 · · · vi.

The length of a path is the number of its edges.
A path or cycle in an edge-colored graph is called alternating if any two consecutive edges have distinct colors. Note that

this definition of alternating paths or cycles differs from the usual one, which is with respect to only two colors. Besides
a number of applications in graph theory and algorithms, the concept of alternating paths and cycles, appears in various
other fields: Genetics [7–9], social sciences [6], etc. A good resource on alternating paths and cycles is the survey paper [2]
by Bang-Jensen and Gutin.
Grossman and Häggkvist were the first to study the problem of the existence of alternating cycles in c-edge-colored

graphs. They proved Theorem 1.1 below in the case c = 2. The case c ≥ 3 was proved by Yeo [13]. Let v be a cut-vertex
in an edge-colored graph G. We say that v separates colors if no component of G − v is joined to v by at least two edges of
different colors.
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Fig. 1. An edge-colored graph Gi .

Theorem 1.1 (Grossman and Häggkvist [10], and Yeo [13]). Let G be a c-edge-colored graph, for c ≥ 2, such that every vertex of
G is incident with at least two edges of different colors. Then either G has a cut-vertex separating colors, or G has an alternating
cycle.

We use the notation K cn to denote a complete graph on n vertices, each edge of which is colored by a color from the
set {1, 2, . . . , c}. Let ∆(K cn ) be the maximum number of edges of the same color adjacent to a vertex of K

c
n . We have the

following conjecture due to Bollobás and Erdős [3].

Conjecture 1.2 (Bollobás and Erdős [3]). If ∆(K cn ) < b
n
2c, then K

c
n contains an alternating Hamiltonian cycle.

Bollobás and Erdős managed to prove that ∆(K cn ) <
n
69 implies the existence of an alternating Hamiltonian cycle in

K cn . This result was improved by Chen and Daykin [5] to ∆(K
c
n ) <

n
17 and by Shearer [12] to ∆(K

c
n ) <

n
7 . So far the best

asymptotic estimate was obtained by Alon and Gutin [1].

Theorem 1.3 (Alon and Gutin [1]). For every ε > 0, there exists an n0 = n0(ε) so that for every n > n0, K cn satisfying
∆(K cn ) ≤ (1−

1
√
2
− ε)n has an alternating Hamiltonian cycle.

In [11], Li, Wang and Zhou proved the following result.

Theorem 1.4 (Li, Wang and Zhou [11]). If ∆(K cn ) < b
n
2c, then K

c
n contains an alternating cycle of length at least d

n+2
3 e + 1.

2. Main results

Webeginwith a studyof the existence of an alternating cyclewith aprescribedproperty andprove the following theorem.

Theorem 2.1. Let G be an edge-colored graph of order n, for n ≥ 3. If for each vertex v of G, dc(v) > n+1
3 , then G has an

alternating cycle AC such that each color in C(AC) appears at most two times in AC.

Moreover, for the existence of an alternating cycle, we have the following proposition.

Proposition 2.2. For any positive integer i, there exists an edge-colored graph Gi such that for each vertex v of Gi, dc(v) ≥ i, and
Gi contains no alternating cycle.

Proof. The graph Gi are constructed inductively for i ≥ 1. We let G1 be the graph K1 with color C(K1) = 1, and, having
constructed Gi−1(i ≥ 2), obtain Gi as follows (see Fig. 1). Let G1i−1,G

2
i−1, . . . ,G

i
i−1 denote i vertex disjoint copies of Gi−1 and

{c1i , c
2
i , . . . , c

i
i } be the colors such that {c

1
i , c

2
i , . . . , c

i
i } ∩ C(Gi−1) = φ. Now Gi is obtained by adding the edges between a

new vertex vi and each vertex in G
j
i−1 and coloring these edges by c

j
i , for j = 1, . . . , i. Clearly Gi is an edge-colored graph

such that for each vertex v of Gi, dc(v) ≥ i, and Gi contains no alternating cycle. �

For the short alternating cycle, we prove the following theorem.

Theorem 2.3. Let G be an edge-colored graph of order n, for n ≥ 3. If for each vertex v of G, dc(v) ≥ 37n−17
75 , then G contains at

least one alternating triangle or one alternating quadrilateral.

We also consider long alternating paths and cycles in edge-colored graphs and prove the following result.

Theorem 2.4. Let G be an edge-colored graph. If for each vertex v of G, dc(v) ≥ d ≥ 2, then either G has an alternating path of
length at least 2d, or G has an alternating cycle of length at least d 2d3 e + 1.
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Theorem 2.4 implies the following corollary.

Corollary 2.5. Let G be an edge-colored graph of order n, for n ≥ 4. If for each vertex v of G, dc(v) ≥ n
2 , then G has an alternating

cycle of length at least d n3e + 1.

We believe that the bound in the above corollary may be improved and propose the following conjecture.

Conjecture 2.6. Let G be an edge-colored graph of order n, for n ≥ 3. If for each vertex v of G, dc(v) ≥ n
2 , then G has an

alternating Hamiltonian cycle.

If the above conjecture is true, it would be best possible. We present the following example to prove this. For any integer
m, let Km, K ′m+1 be two properly edge-colored complete graphs with orders m and m + 1, respectively. Choose a vertex
u′ ∈ K ′m+1. For every vertex u ∈ Km, add the edge uu

′ and let C(uu′) = c0, where c0 6∈ C(Km). The new edge-colored graph
is denoted by B. Clearly, |V (B)| = n = 2m + 1. Moreover, for every vertex v of B, it holds that dc(v) ≥ m = n−1

2 , and B
contains no alternating Hamiltonian cycle.
Since the proof of Theorem 2.1 is analogous to that of Theorem 2.3 and simpler than it, we omit this proof. The proofs of

Theorems 2.3 and 2.4 will be given in Section 3.

3. Proofs of the main results

3.1. Proof of Theorem 2.3

If n = 3, 4, clearly Theorem 2.3 holds. So assume that n ≥ 5. Suppose that Theorem 2.3 is not true. Let G be a
counterexample. For an edge uv, let Nc1(u),N

c
1(v) denote the maximum color neighborhood of u, v, respectively, such that

v ∈ Nc1(u), u ∈ N
c
1(v) and |N

c
1(u) ∪ N

c
1(v)| is maximum. Let N

c(u, v) denote Nc1(u) ∪ N
c
1(v). Choose an edge uv ∈ E(G) such

that |Nc(u, v)| is maximum.
Without loss of generality, assume that Nc1(u) = {v, u1, u2, . . . , us} and N

c
1(v) \ N

c
1(u) = {u, v1, v2, . . . , vt}, in which

s = dc(u) − 1. Let X = {u1, . . . , us, v1, . . . , vt}. Note that |Nc(u, v)| = s + t + 2. Consider graph G[X], and we have the
following claim.

Claim 1. Suppose e ∈ E(G[X]),
(i) if e = uiuj (1 ≤ i, j ≤ s), then C(e) ∈ {C(uui), C(uuj)};
(ii) if e = vivj (1 ≤ i, j ≤ t), then C(e) ∈ {C(vvi), C(vvj)};
(iii) if e = uivj (1 ≤ i ≤ s, 1 ≤ j ≤ t) and C(uui) 6= C(vvj), then C(e) ∈ {C(uui), C(vvj)}.

Proof. Clearly (i) and (ii) hold, otherwise G contains an alternating triangle, which is a contradiction.
If (iii) does not hold, then there exists an edge e = uivj (1 ≤ i ≤ s, 1 ≤ j ≤ t) such that C(uui) 6= C(vvj) and

C(e) 6∈ {C(uui), C(vvj)}. Since v, ui ∈ Nc1(u), C(uui) 6= C(uv). Similarly, it holds that C(vvj) 6= C(uv). Now uvvjuiu is an
alternating quadrilateral, which is a contradiction. �

Given graph G[X], let D1 denote the digraph obtained by the following operations.
(1) Remove any edge uivj from G[X] if C(uui) = C(vvj), 1 ≤ i ≤ s and 1 ≤ j ≤ t . Note that if C(uui) = C(vvj) and

uivj ∈ E(G[X]), then C(uivj) = C(uui) = C(vvj)).
(2) Orient the rest edges by the rule: For an edge xy ∈ E(G1[X]), if C(xy) = C(uy) or C(xy) = C(vy), then the orientation

of xy is from x to y; otherwise, by Claim 1, C(xy) = C(ux) or C(xy) = C(vx), then the orientation of xy is from y to x.
For any vertexw ∈ V (D1), letN+D1(w) denote the outneighbors ofw inD1 and d

+

D1
(w) = |N+D1(w)|. Let G0 = G[X ∪{u, v}].

Lemma 3.1. Every simple digraph with minimum outdegree at least 1 has a directed cycle.

Claim 2. There exists a directed cycle in D1.
Proof. Otherwise, by Lemma 3.1, there is a vertex w such that d+D1(w) = 0. Without loss of generality, assume that
w ∈ Nc1(u). If N

c(w) is a maximum color neighbor of w in G, then it holds that |Nc(w) \ (X ∪ {u, v})| ≥ dc(w) − 1. By
the choice of the edge uv, it follows that dc(w)− 1 ≤ t . Thus

n ≥ |X | + |u| + |v| + |Nc(w) \ (X ∪ {u, v})|
≥ dc(u)+ t − 1+ 2+ dc(w)− 1
≥ dc(u)+ 2dc(w)− 1

≥ 3
(
37n− 17
75

)
− 1

> 3
(
n+ 1
3

)
− 1 = n.

This contradiction finishes the proof. �
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Claim 3. If
−→
Cp is a directed cycle in D1, then Cp is an alternating cycle in G, and each color in C(Cp) appears at most two times

in Cp.

Proof. First, we will prove that Cp is an alternating cycle of G. Assume that xy and yz are adjacent edges of Cp, and
furthermore, in

−→
Cp , the orientations of xy and yz are from x to y, from y to z, respectively. By the orientation rule, we conclude

that C(xy) = C(uy) or C(xy) = C(vy), and C(yz) = C(uz) or C(yz) = C(vz).
If C(xy) = C(uy) and C(yz) = C(uz), or C(xy) = C(vy) and C(yz) = C(vz), then by the definition of the maximum color

neighborhood, it holds that C(uy) 6= C(uz) and C(vy) 6= C(vz). Thus we have that C(xy) 6= C(yz).
Otherwise, without loss of generality, assume that C(xy) = C(uy) and C(yz) = C(vz). By (1) and Claim 1(iii), we have

that C(uy) 6= C(vz). It follows that C(xy) 6= C(yz).
Thus Cp is an alternating cycle of G. Moreover, by the definition of Nc(u, v), we can conclude that each color in C(Cp)

appears at most two times in Cp. �

The girth of a digraph D containing directed cycles is the length of the smallest directed cycle in D. Since G has neither
alternating triangle nor alternating quadrilateral, it follows that the girth of D1 is at least 5.

Lemma 3.2 (Häggkvist [4]). Let D be a digraph on m vertices with girth at least 5, then δ+ < 9(m−1)
28 .

Let α = 9
28 . By Lemma 3.2, there is a vertexw ofD1 such that d

+

D1
(w) < α(|V (D1)|−1) = α(s+ t−1) = α(dc(u)+ t−2).

Without loss of generality, assume that w ∈ Nc1(u). If N
c(w) is a maximum color neighborhood of w in G and NcG0(w) is a

maximum color neighborhood ofw in G0, then |NcG0(w)| = |N
+

D1
(w)| + |u| = d+D1(w)+ 1. It follows that

|Nc(w) \ (X ∪ {u, v})| ≥ dc(w)− |NcG0(w)| > d
c(w)− α(dc(u)+ t − 2)− 1.

If dc(w)− α(dc(u)+ t − 2)− 1 > t , then consider the edge uw and it holds that
|Nc(u, w)| ≥ |{v, u1, u2, . . . , us}| + |Nc(w) \ (X ∪ {u, v})| + |u|

> s+ t + 2
= |Nc(u, v)|,

which contradicts with the choice of uv.
Now dc(w)− α(dc(u)+ t − 2)− 1 ≤ t , that is t ≥ dc (w)

1+α −
αdc (u)
1+α +

2α−1
1+α . It follows that

n ≥ |X | + |u| + |v| + |Nc(w) \ (X ∪ {u, v})|
> dc(u)+ t − 1+ 2+ dc(w)− α(dc(u)+ t − 2)− 1

≥
1− α
1+ α

dc(u)+
2

1+ α
dc(w)+

5α − 1
1+ α

.

Since for each vertex v of G, dc(v) ≥ 37n−17
75 , and α = 9

28 , the above inequality is

n >
3− α
1+ α

37n− 17
75

+
5α − 1
1+ α

≥ n.

This contradiction completes the proof of Theorem 2.3. �

3.2. Proof of Theorem 2.4

If d = 2, Theorem 2.4 holds clearly. So assume that d ≥ 3. Suppose that Theorem 2.4 is false. Let G be a counterexample.
Without loss of generality, we assume that Pl = v1v2 · · · vl is a longest alternating path of G. Clearly l ≤ 2d. Choose a
maximum color neighborhood Nc(v1) of v1 such that v2 ∈ Nc(v1). By the choice of l, it holds that Nc(v1) ⊆ V (Pl). Since
|Nc(v1)| = dc(v) ≥ d, it follows that l ≥ d+ 1.
Choose integer s such that

(R1) vs ∈ Nc(v1);
(R2) s ≥ d 2d3 e + 1;
(R3) subject to (R1), (R2), s is minimum.

Since d ≥ 3, it holds that d− d 2d3 e ≥ b
d
3c, then s < l.

Claim 1. (1.1) s < l;
(1.2) If vi ∈ Nc(v1) and s ≤ i ≤ l− 1, then C(vivi+1) 6= C(v1vi).

Proof. If s = d 2d3 e + 1, then s = d
2d
3 e + 1 < d + 1 ≤ l. If s > d 2d3 e + 1, then vd 2d3 e+1 6∈ Nc(v1). Thus

Nc(v1) ∩ V (P[v1, vd 2d3 e+1]) ≤ d
2d
3 e − 1. By the minimality of s, N

c(v1) ∩ V (P[v1, vs]) ≤ d 2d3 e. Since |N
c(v1)| ≥ d > d 2d3 e,

s < l.
If (1.2) is false, then there exists s ≤ i ≤ l such that C(vivi+1) = C(v1vi). Since Pl is an alternating path, C(vi−1vi) 6=

C(vivi+1). Thus P[v1, vi]viv1 is an alternating cycle of length i ≥ s ≥ d 2d3 e + 1, which is a contradiction. �
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Fig. 2. An alternating cycle : v1vjP[vj, vl]vlviP−[vi, v1].

We choose a maximum color neighborhood of Nc(vl) of vl such that vl−1 ∈ Nc(vl). Similarly, Nc(vl) ⊆ V (Pl).
Choose integer t satisfying

(R′1) vt ∈ N
c(vl);

(R′2) t ≤ l− d
2d
3 e;

(R′3) subject to (R
′

1), (R
′

2), t is maximum.

Similarly, we have the following claim, here we omit the proof.

Claim 2. (2.1) t > 1;
(2.2) If vi ∈ Nc(vl) and 2 ≤ i ≤ t, then C(vi−1vi) 6= C(vivl).

Claim 3. s < t.

Proof. Otherwise, it holds that s ≥ t . If s > t , then AC0 = v1vsP[vs, vl]vlvtP−[vt , v1] is an alternating cycle. Also,
|AC0| = |V (P[vs, vl])| + |V (P[v1, vt ])| ≥ 2(d− d 2d3 e + 1) = 2(b

d
3c + 1) = 2b

d
3c + 2 ≥ d

2d
3 e + 1, which is a contradiction.

So s = t . If there exists vj ∈ Nc(v1) such that s + 1 ≤ j ≤ l − 1, then there is an alternating cycle AC1 =
v1vjP[vj, vl]vlvsP−[vs, v1] of length |AC1| ≥ 2 + |V (P[v1, vs])| ≥ 3 + d 2d3 e, which gives a contradiction. Similarly, if there
exists vj ∈ Nc(vl) such that 2 ≤ j ≤ s− 1, then v1vsP[vs, vl]vlvjP−[vj, v1] is an alternating cycle of length 3+d 2d3 e. We also
obtain a contradiction.
Thus we can conclude that vj 6∈ Nc(v1) if s+ 1 ≤ j ≤ l− 1 and vj 6∈ Nc(vl) if 2 ≤ j ≤ s− 1. On the other hand, by (R3)

there are at least d − d 2d3 e = b
d
3c ≥ 1 vertices in V (P[vs+1, vl]) ∩ N

c(v1). Clearly vl ∈ Nc(v1). Similarly, v1 ∈ Nc(vl). Now
C(v1vl) 6= C(v1v2) and C(v1vl) 6= C(vl−1vl). So P[v1, vl]vlv1 is an alternating cycle of length l ≥ d+ 1 > d 2d3 e + 1, which is
a contradiction. �

Claim 4. (4.1) For 2 ≤ j ≤ s− 1, vj 6∈ Nc(vl);
(4.2) For t + 1 ≤ j ≤ l− 1, vj 6∈ Nc(v1).

Proof. By symmetry, we only need to prove (4.1). Assume that (4.1) is not true, then there exists vj ∈ Nc(vl) such that
2 ≤ j ≤ s − 1. Clearly, j ≤ t , thus by Claim 2(2.2), C(vj−1vj) 6= C(vjvl). Now AC2 = v1vsP[vs, vl]vlvjP−[vj, v1] is an
alternating cycle and |AC2| ≥ |V (P[vs, vl])| + 2 ≥ b 2d3 c + 2 ≥ d

2d
3 e + 1, which is a contradiction. �

Let A = Nc(v1) ∩ V (P[vs, vt ]) and B = Nc(vl) ∩ V (P[vs, vt ]).

Claim 5. |A| + |B| ≥ 2b d3c + 2.

Proof. By (R3), the number of vertices in Nc(v1)∩V (P[vs, vl]) is at least d− (|P[v1, vs−1]|−1) ≥ d− (d 2d3 e−1) = b
d
3c+1.

By Claim 4(4.2), Nc(v1) ∩ V (P[vs, vl]) = Nc(v1) ∩ (V (P[vs, vt ]) ∪ {vl}) = A ∪ (Nc(v1) ∩ {vl}). It follows that |A| ≥
b
d
3c+1−|N

c(v1)∩{vl}|. Similarly, |B| ≥ b d3c+1−|N
c(vl)∩{v1}|. Now |A|+|B| ≥ 2b d3c+2−(|N

c(v1)∩{vl}|+|Nc(vl)∩{v1}|).
We will prove that |Nc(v1) ∩ {vl}| + |Nc(vl) ∩ {v1}| = 0, then Claim 5 holds. Otherwise, suppose that |Nc(v1) ∩ {vl}| +

|Nc(vl) ∩ {v1}| ≥ 1. By symmetry, we assume that vl ∈ Nc(v1). If C(vl−1vl) 6= C(vlvl), then P[v1, vl]vlv1 is an alternating
cycle of length l ≥ d+ 1, which is a contradiction. Thus C(vl−1vl) = C(vlvl). Now v1vlvlvtP−[vt , v1] is an alternating cycle
of length at least s+ 2 ≥ d 2d3 e + 3, which is a contradiction. �

Now we finish the proof of Theorem 2.4. It holds that |V (P[vs, vt ])| ≤ l − |V (P[v1, vs−1])| − |V (P[vt+1, vl])| ≤
l − d 2d3 e − d

2d
3 e ≤ 2d − 2d

2d
3 e ≤ 2b

d
3c. By Claim 5, |A| + |B| ≥ 2b

d
3c + 2. Now there exist vj ∈ N

c(v1) and vi ∈ Nc(vl)
such that s ≤ i < j ≤ t . By Claim 1(1.2) and Claim 2(2.2), C(v1vj) 6= C(vjvj+1) and C(vlvi) 6= C(vivi−1). It follows that
v1vjP[vj, vl]vlviP−[vi, v1] is an alternating cycle of length at least s+ 1 ≥ d 2d3 e + 2 (see Fig. 2), which is contradiction. This
completes the proof. �
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