Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/disc)

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Color degree and alternating cycles in edge-colored graphs^{$\dot{\mathbf{z}}$}

Gu[a](#page-0-1)nghui Wang ^{a[,b,](#page-0-2)[∗](#page-0-3)}, Hao Li ^{[b,](#page-0-2)[c](#page-0-4)}

a *School of Mathematics and System Science, Shandong University, 250100 Jinan, Shandong, China*

b *Laboratoire de Recherche en Informatique, UMR 8623, C.N.R.S.-Université de Paris-sud, 91405-Orsay cedex, France*

c *School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China*

ARTICLE INFO

Article history: Received 2 December 2007 Received in revised form 16 January 2009 Accepted 21 January 2009 Available online 23 February 2009

Keywords: Alternating cycle Color neighborhood Color degree

A B S T R A C T

Let *G* be an edge-colored graph. An alternating cycle of *G* is a cycle of *G* in which any two consecutive edges have distinct colors. Let $d^c(v)$, the color degree of a vertex v , be defined as the maximum number of edges incident with v that have distinct colors. In this paper, we study color degree conditions for the existence of alternating cycles of prescribed length. © 2009 Elsevier B.V. All rights reserved.

1. Introduction

Let $G = (V, E)$ be a graph. An *edge-coloring* of *G* is a function $C : E \to \mathbb{N}$, where \mathbb{N} is the set of natural numbers. If *G* is assigned such a coloring *C*, then we say that *G* is an *edge-colored graph*. Let $C(e)$ denote the color of the edge $e \in E$. For a subgraph H of G, let $C(H) = {C(e) : e \in E(H)}$ and $C(H) = |C(H)|$. For a color $i \in C(H)$, let $i_H = |{e : C(e) = i}$ and $e \in E(H)}|$ and say that *color i appears i^H times in H*. For an edge-colored graph *G*, if *c*(*G*) = *c*, we call it a *c*-*edge-colored graph*.

For a vertex v in edge-colored graph *G*, a *color neighborhood* of v is defined as a set $T \subseteq N(v)$ such that the colors of the edges joining v and vertices of *T* are pairwise distinct. A *maximum color neighborhood* $N^c(v)$ of v is a color neighborhood of v with maximum size. Let $d^c(v) = |N^c(v)|$ and call it the *color degree* of v.

If $P = v_1v_2\cdots v_p$ is a path, let $P[v_i, v_j]$ denote the subpath $v_iv_{i+1}\cdots v_j$, and $P^-[v_i, v_j]$ denote the subpath $v_jv_{j-1}\cdots v_i$. The length of a path is the number of its edges.

A path or cycle in an edge-colored graph is called *alternating* if any two consecutive edges have distinct colors. Note that this definition of alternating paths or cycles differs from the usual one, which is with respect to only two colors. Besides a number of applications in graph theory and algorithms, the concept of alternating paths and cycles, appears in various other fields: Genetics [\[7–9\]](#page-5-0), social sciences [\[6\]](#page-5-1), etc. A good resource on alternating paths and cycles is the survey paper [\[2\]](#page-4-0) by Bang-Jensen and Gutin.

Grossman and Häggkvist were the first to study the problem of the existence of alternating cycles in *c*-edge-colored graphs. They proved [Theorem 1.1](#page-1-0) below in the case $c = 2$. The case $c \geq 3$ was proved by Yeo [\[13\]](#page-5-2). Let v be a cut-vertex in an edge-colored graph *G*. We say that v *separates colors* if no component of *G* − v is joined to v by at least two edges of different colors.

 $\hat{\tau}$ This research is supported by NNSF(60373012 and 10871119) and RFDP(200804220001) of China, the French-Chinese foundation for sciences and their applications and the China scholarship Council.

[∗] Corresponding author at: School of Mathematics and System Science, Shandong University, 250100 Jinan, Shandong, China. *E-mail addresses:* sdughw@hotmail.com (G. Wang), li@lri.fr (H. Li).

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter © 2009 Elsevier B.V. All rights reserved. [doi:10.1016/j.disc.2009.01.016](http://dx.doi.org/10.1016/j.disc.2009.01.016)

Fig. 1. An edge-colored graph *Gⁱ* .

Theorem 1.1 (*Grossman and Häggkvist* [\[10\]](#page-5-3)*, and Yeo* [\[13\]](#page-5-2)). Let *G* be a c-edge-colored graph, for $c \geq 2$, such that every vertex of *G is incident with at least two edges of different colors. Then either G has a cut-vertex separating colors, or G has an alternating cycle.*

We use the notation K_n^c to denote a complete graph on *n* vertices, each edge of which is colored by a color from the set $\{1, 2, \ldots, c\}$. Let $\Delta(K_n^c)$ be the maximum number of edges of the same color adjacent to a vertex of K_n^c . We have the following conjecture due to Bollobás and Erdős [\[3\]](#page-5-4).

Conjecture 1.2 (*Bollobás and Erdős [\[3\]](#page-5-4)*). *If* $\Delta(K_n^c) < \lfloor \frac{n}{2} \rfloor$, then K_n^c contains an alternating Hamiltonian cycle.

Bollobás and Erdős managed to prove that $\Delta(K_n^c) < \frac{n}{69}$ implies the existence of an alternating Hamiltonian cycle in *K*^c, This result was improved by Chen and Daykin [\[5\]](#page-5-5) to $\Delta(K_n^c) < \frac{n}{17}$ and by Shearer [\[12\]](#page-5-6) to $\Delta(K_n^c) < \frac{n}{7}$. So far the best asymptotic estimate was obtained by Alon and Gutin [\[1\]](#page-4-1).

Theorem 1.3 (Alon and Gutin [\[1\]](#page-4-1)). For every $\epsilon > 0$, there exists an $n_0 = n_0(\epsilon)$ so that for every $n > n_0$, K_n^c satisfying $\Delta(K_n^c)$ ≤ $(1 - \frac{1}{\sqrt{2}} - \epsilon)$ n has an alternating Hamiltonian cycle.

In [\[11\]](#page-5-7), Li, Wang and Zhou proved the following result.

Theorem 1.4 (Li, Wang and Zhou [\[11\]](#page-5-7)). If $\Delta(K_n^c) < \lfloor \frac{n}{2} \rfloor$, then K_n^c contains an alternating cycle of length at least $\lceil \frac{n+2}{3} \rceil + 1$.

2. Main results

We begin with a study of the existence of an alternating cycle with a prescribed property and prove the following theorem.

Theorem 2.1. Let G be an edge-colored graph of order n, for $n \ge 3$. If for each vertex v of G, $d^c(v) > \frac{n+1}{3}$, then G has an *alternating cycle AC such that each color in C*(*AC*) *appears at most two times in AC.*

Moreover, for the existence of an alternating cycle, we have the following proposition.

Proposition 2.2. For any positive integer i, there exists an edge-colored graph G_i such that for each vertex v of G_i , d^c(v) $\geq i$, and *Gⁱ contains no alternating cycle.*

Proof. The graph G_i are constructed inductively for $i \geq 1$. We let G_1 be the graph K_1 with color $C(K_1) = 1$, and, having constructed G_{i-1} ($i\geq 2$), obtain G_i as follows (see [Fig. 1\)](#page-1-1). Let $G_{i-1}^1, G_{i-1}^2, \ldots, G_{i-1}^l$ denote i vertex disjoint copies of G_{i-1} and $\{c_i^1, c_i^2, \ldots, c_i^i\}$ be the colors such that $\{c_i^1, c_i^2, \ldots, c_i^i\} \cap C(G_{i-1}) = \phi$. Now G_i is obtained by adding the edges between a new vertex v_i and each vertex in G_{i-1}^j and coloring these edges by c_i^j , for $j=1,\ldots,i$. Clearly G_i is an edge-colored graph such that for each vertex v of G_i , $d^c(v) \geq i$, and G_i contains no alternating cycle. \Box

For the short alternating cycle, we prove the following theorem.

Theorem 2.3. Let G be an edge-colored graph of order n, for $n \ge 3$. If for each vertex v of G, d^c(v) $\ge \frac{37n-17}{75}$, then G contains at *least one alternating triangle or one alternating quadrilateral.*

We also consider long alternating paths and cycles in edge-colored graphs and prove the following result.

Theorem 2.4. Let G be an edge-colored graph. If for each vertex v of G, d^c(v) $\geq d \geq 2$, then either G has an alternating path of length at least 2d, or G has an alternating cycle of length at least $\lceil \frac{2d}{3} \rceil + 1$.

[Theorem 2.4](#page-1-2) implies the following corollary.

Corollary 2.5. Let G be an edge-colored graph of order n, for $n \geq 4$. If for each vertex v of G, $d^c(v) \geq \frac{n}{2}$, then G has an alternating *cycle of length at least* $\lceil \frac{n}{3} \rceil + 1$ *.*

We believe that the bound in the above corollary may be improved and propose the following conjecture.

Conjecture 2.6. Let G be an edge-colored graph of order n, for $n \ge 3$. If for each vertex v of G, $d^c(v) \ge \frac{n}{2}$, then G has an *alternating Hamiltonian cycle.*

If the above conjecture is true, it would be best possible. We present the following example to prove this. For any integer *m*, let K_m , K'_{m+1} be two properly edge-colored complete graphs with orders *m* and $m + 1$, respectively. Choose a vertex *u*′ ∈ K'_{m+1} . For every vertex $u \in K_m$, add the edge uu' and let $C(uu') = c_0$, where $c_0 \notin C(K_m)$. The new edge-colored graph is denoted by *B*. Clearly, $|V(B)| = n = 2m + 1$. Moreover, for every vertex v of *B*, it holds that $d^c(v) \ge m = \frac{n-1}{2}$, and *B* contains no alternating Hamiltonian cycle.

Since the proof of [Theorem 2.1](#page-1-3) is analogous to that of [Theorem 2.3](#page-1-4) and simpler than it, we omit this proof. The proofs of [Theorems 2.3](#page-1-4) and [2.4](#page-1-2) will be given in Section [3.](#page-2-0)

3. Proofs of the main results

3.1. Proof of [Theorem 2.3](#page-1-4)

If $n = 3, 4$, clearly [Theorem 2.3](#page-1-4) holds. So assume that $n \geq 5$. Suppose that Theorem 2.3 is not true. Let *G* be a counterexample. For an edge *uv*, let $N_1^c(u)$, $N_1^c(v)$ denote the maximum color neighborhood of *u*, *v*, respectively, such that $v \in N_1^c(u)$, $u \in N_1^c(v)$ and $|N_1^c(u) \cup N_1^c(v)|$ is maximum. Let $N^c(u, v)$ denote $N_1^c(u) \cup N_1^c(v)$. Choose an edge $uv \in E(G)$ such that $|\dot{N}^c(u, v)|$ is maximum.

Without loss of generality, assume that $N_1^c(u) = \{v, u_1, u_2, \ldots, u_s\}$ and $N_1^c(v) \setminus N_1^c(u) = \{u, v_1, v_2, \ldots, v_t\}$, in which $s = d^c(u) - 1$. Let $X = \{u_1, \ldots, u_s, v_1, \ldots, v_t\}$. Note that $|N^c(u, v)| = s + t + 2$. Consider graph G[X], and we have the following claim.

Claim 1. *Suppose* $e \in E(G[X])$ *,*

(i) *if* $e = u_i u_i$ ($1 \le i, j \le s$), then $C(e) \in \{C(uu_i), C(uu_i)\}$;

(ii) *if* $e = v_i v_j (1 \le i, j \le t)$, then $C(e) \in \{C(vv_i), C(vv_j)\}$;

(iii) if $e = u_i v_i$ $(1 \le i \le s, 1 \le j \le t)$ and $C(uu_i) \ne C(vv_i)$, then $C(e) \in \{C(uu_i), C(vv_i)\}$.

Proof. Clearly (i) and (ii) hold, otherwise *G* contains an alternating triangle, which is a contradiction.

If (iii) does not hold, then there exists an edge $e = u_i v_j$ ($1 \le i \le s, 1 \le j \le t$) such that $C(uu_i) \ne C(vv_j)$ and $C(e) \notin \{C(uu_i), C(vv_j)\}\)$. Since $v, u_i \in N_1^c(u), C(uu_i) \neq C(uv)$. Similarly, it holds that $C(vv_j) \neq C(uv)$. Now uvv_ju_iu is an alternating quadrilateral, which is a contradiction. \Box

Given graph $G[X]$, let D_1 denote the digraph obtained by the following operations.

(1) Remove any edge u_iv_j from G[X] if $C(uu_i) = C(vv_j)$, $1 \le i \le s$ and $1 \le j \le t$. Note that if $C(uu_i) = C(vv_j)$ and *u*_{*i*}v_{*j*} ∈ *E*(*G*[*X*]), then *C*(*u*_{*i*})) = *C*(*uu*_{*i*}) = *C*(*vv*_{*j*})).

(2) Orient the rest edges by the rule: For an edge $xy \in E(G_1[X])$, if $C(xy) = C(uy)$ or $C(xy) = C(vy)$, then the orientation of *xy* is from *x* to *y*; otherwise, by Claim 1, $C(xy) = C(ux)$ or $C(xy) = C(vx)$, then the orientation of *xy* is from *y* to *x*.

For any vertex $w \in V(D_1)$, let $N_{D_1}^+$ $D_{D_1}^+(w)$ denote the outneighbors of w in D_1 and d_D^+ $D_1^+(w) = |N_D^+|$ $D_{D_1}^{+}(w)$ |. Let *G*₀ = *G*[*X* ∪ {*u*, *v*}].

Lemma 3.1. *Every simple digraph with minimum outdegree at least* 1 *has a directed cycle.*

Claim 2. *There exists a directed cycle in D*1*.*

Proof. Otherwise, by [Lemma 3.1,](#page-2-1) there is a vertex w such that d_{D}^{+} $D_{D_1}^+(w) = 0$. Without loss of generality, assume that *w* ∈ *N*₁^{*c*}(*u*). If *N^c*(*w*) is a maximum color neighbor of *w* in *G*, then it holds that $|N^c(w) \setminus (X \cup \{u, v\})| \ge d^c(w) - 1$. By the choice of the edge *uv*, it follows that $d^c(w) - 1 \le t$. Thus

$$
n \ge |X| + |u| + |v| + |N^{c}(w) \setminus (X \cup \{u, v\})|
$$

\n
$$
\ge d^{c}(u) + t - 1 + 2 + d^{c}(w) - 1
$$

\n
$$
\ge d^{c}(u) + 2d^{c}(w) - 1
$$

\n
$$
\ge 3\left(\frac{37n - 17}{75}\right) - 1
$$

\n
$$
> 3\left(\frac{n + 1}{3}\right) - 1 = n.
$$

This contradiction finishes the proof. \square

Claim 3. *If* $\overrightarrow{C_p}$ *is a directed cycle in* D_1 *, then* C_p *is an alternating cycle in G*, *and each color in* $C(C_p)$ *appears at most two times in Cp.*

Proof. First, we will prove that *C^p* is an alternating cycle of *G*. Assume that *xy* and *yz* are adjacent edges of *Cp*, and furthermore, in $\overrightarrow{C_p}$, the orientations of *xy* and *yz* are from *x* to *y*, from *y* to *z*, respectively. By the orientation rule, we conclude that $C(xy) = C(uy)$ or $C(xy) = C(vy)$, and $C(yz) = C(uz)$ or $C(yz) = C(vz)$.

If $C(xy) = C(uy)$ and $C(yz) = C(uz)$, or $C(xy) = C(vy)$ and $C(yz) = C(vz)$, then by the definition of the maximum color neighborhood, it holds that $C(uy) \neq C(uz)$ and $C(vy) \neq C(vz)$. Thus we have that $C(xy) \neq C(yz)$.

Otherwise, without loss of generality, assume that $C(xy) = C(uy)$ and $C(yz) = C(vz)$. By (1) and Claim 1(iii), we have that $C(uy) \neq C(vz)$. It follows that $C(xy) \neq C(yz)$.

Thus C_p is an alternating cycle of G. Moreover, by the definition of $N^c(u,v)$, we can conclude that each color in $C(C_p)$ appears at most two times in C_p . \Box

The *girth* of a digraph *D* containing directed cycles is the length of the smallest directed cycle in *D*. Since *G* has neither alternating triangle nor alternating quadrilateral, it follows that the girth of D_1 is at least 5.

Lemma 3.2 (Häggkvist [\[4\]](#page-5-8)). Let D be a digraph on m vertices with girth at least 5, then $\delta^+ < \frac{9(m-1)}{28}$.

Let $\alpha=\frac{9}{28}.$ By [Lemma 3.2,](#page-3-0) there is a vertex w of D_1 such that d^+_D $D_1(x) < \alpha(|V(D_1)|-1) = \alpha(s+t-1) = \alpha(d^c(u)+t-2).$ Without loss of generality, assume that $w \in N_1^c(u)$. If $N^c(w)$ is a maximum color neighborhood of w in *G* and $N_{G_0}^c(w)$ is a maximum color neighborhood of w in G_0 , then $|N_{G_0}^c(w)| = |N_{D_0}^+|$ $|v_{D_1}^+(w)| + |u| = d_D^+$ $\bar{D}_1^+(w) + 1$. It follows that

$$
|N^{c}(w) \setminus (X \cup \{u, v\})| \geq d^{c}(w) - |N^{c}_{G_0}(w)| > d^{c}(w) - \alpha(d^{c}(u) + t - 2) - 1.
$$

If $d^c(w) - \alpha(d^c(u) + t - 2) - 1 > t$, then consider the edge *uw* and it holds that

$$
|N^{c}(u, w)| \geq |\{v, u_{1}, u_{2}, \dots, u_{s}\}| + |N^{c}(w) \setminus (X \cup \{u, v\})| + |u|
$$

> s + t + 2
= |N^{c}(u, v)|,

which contradicts with the choice of *u*v.

Now $d^c(w) - \alpha(d^c(u) + t - 2) - 1 \le t$, that is $t \ge \frac{d^c(w)}{1+\alpha} - \frac{\alpha d^c(u)}{1+\alpha} + \frac{2\alpha-1}{1+\alpha}$. It follows that

$$
n \ge |X| + |u| + |v| + |N^{c}(w) \setminus (X \cup \{u, v\})|
$$

> $d^{c}(u) + t - 1 + 2 + d^{c}(w) - \alpha(d^{c}(u) + t - 2) - 1$

$$
\ge \frac{1 - \alpha}{1 + \alpha} d^{c}(u) + \frac{2}{1 + \alpha} d^{c}(w) + \frac{5\alpha - 1}{1 + \alpha}.
$$

Since for each vertex v of *G*, $d^c(v) \ge \frac{37n-17}{75}$, and $\alpha = \frac{9}{28}$, the above inequality is

$$
n>\frac{3-\alpha}{1+\alpha}\frac{37n-17}{75}+\frac{5\alpha-1}{1+\alpha}\geq n.
$$

This contradiction completes the proof of [Theorem 2.3.](#page-1-4) \Box

3.2. Proof of [Theorem 2.4](#page-1-2)

If *d* = 2, [Theorem 2.4](#page-1-2) holds clearly. So assume that *d* ≥ 3. Suppose that [Theorem 2.4](#page-1-2) is false. Let *G* be a counterexample. Without loss of generality, we assume that $P_l = v_1v_2\cdots v_l$ is a longest alternating path of *G*. Clearly $l \leq 2d$. Choose a maximum color neighborhood $N^c(v_1)$ of v_1 such that $v_2 \in N^c(v_1)$. By the choice of *l*, it holds that $N^c(v_1) \subseteq V(P_l)$. Since $|N^{c}(v_1)| = d^{c}(v) \geq d$, it follows that $l \geq d + 1$.

Choose integer *s* such that

 (R_1) $v_s \in N_c^c(v_1);$ $(R_2) s \geq \lceil \frac{2d}{3} \rceil + 1;$

 (R_3) subject to (R_1) , (R_2) , *s* is minimum.

Since $d \geq 3$, it holds that $d - \lceil \frac{2d}{3} \rceil \geq \lfloor \frac{d}{3} \rfloor$, then $s < l$.

Claim 1. (1.1) *s* < *l;*

(1.2) *If* $v_i \in N^c(v_1)$ and $s \le i \le l-1$, then $C(v_i v_{i+1}) \ne C(v_1 v_i)$.

Proof. If $s = \lceil \frac{2d}{3} \rceil + 1$, then $s = \lceil \frac{2d}{3} \rceil + 1 < d + 1 \le l$. If $s > \lceil \frac{2d}{3} \rceil + 1$, then $v_{\lceil \frac{2d}{3} \rceil + 1} \notin N^c(v_1)$. Thus $N^c(v_1) \cap V(P[v_1, v_{\lceil \frac{2d}{3}\rceil + 1}]) \leq \lceil \frac{2d}{3}\rceil - 1$. By the minimality of s, $N^c(v_1) \cap V(P[v_1, v_5]) \leq \lceil \frac{2d}{3}\rceil$. Since $|N^c(v_1)| \geq d > \lceil \frac{2d}{3}\rceil$, $s < l$.

If (1.2) is false, then there exists $s \le i \le l$ such that $C(v_i v_{i+1}) = C(v_1 v_i)$. Since P_l is an alternating path, $C(v_{i-1}v_i) \ne$ $C(v_i v_{i+1})$. Thus $P[v_1, v_i]v_i v_1$ is an alternating cycle of length $i \ge s \ge \lceil \frac{2d}{3} \rceil + 1$, which is a contradiction.

Fig. 2. An alternating cycle : $v_1v_jP[v_j, v_l]v_lv_iP^{-}[v_i, v_1]$.

We choose a maximum color neighborhood of $N^c(v_l)$ of v_l such that $v_{l-1} \in N^c(v_l)$. Similarly, $N^c(v_l) \subseteq V(P_l)$. Choose integer *t* satisfying

 (R'_1) $v_t \in N^c(v_l)$;

 (R'_2) $t \leq l - \lceil \frac{2d}{3} \rceil;$

 (R_3^{\prime}) subject to (R_1^{\prime}) , (R_2^{\prime}) , *t* is maximum.

Similarly, we have the following claim, here we omit the proof.

Claim 2. (2.1) *t* > 1*;* (2.2) *If* $v_i \in N^c(v_i)$ and $2 \le i \le t$, then $C(v_{i-1}v_i) \ne C(v_iv_i)$.

Claim 3. *s* < *t.*

Proof. Otherwise, it holds that $s \geq t$. If $s > t$, then $AC^0 = v_1v_sP[v_s, v_l]v_iv_tP^{-}[v_t, v_1]$ is an alternating cycle. Also, $|AC^0| = |V(P[v_s, v_l])| + |V(P[v_1, v_t])| \ge 2(d - \lceil \frac{2d}{3} \rceil + 1) = 2(\lfloor \frac{d}{3} \rfloor + 1) = 2\lfloor \frac{d}{3} \rfloor + 2 \ge \lceil \frac{2d}{3} \rceil + 1$, which is a contradiction.

So $s = t$. If there exists $v_j \in N^c(v_1)$ such that $s + 1 \leq j \leq l - 1$, then there is an alternating cycle $AC^1 =$ $v_1v_jP[v_j, v_l]v_lv_sP^-[v_s, v_1]$ of length $|AC^1| \geq 2 + |V(P[v_1, v_s])| \geq 3 + \lceil \frac{2d}{3} \rceil$, which gives a contradiction. Similarly, if there exists $v_j \in N^c(v_l)$ such that $2 \le j \le s-1$, then $v_1v_sP[v_s, v_l]v_lv_jP^-[v_j, v_1]$ is an alternating cycle of length $3 + \lceil \frac{2d}{3} \rceil$. We also obtain a contradiction.

Thus we can conclude that $v_j \notin N^c(v_1)$ if $s+1 \leq j \leq l-1$ and $v_j \notin N^c(v_l)$ if $2 \leq j \leq s-1$. On the other hand, by (R_3) there are at least $d - \lceil \frac{2d}{3} \rceil = \lfloor \frac{d}{3} \rfloor \ge 1$ vertices in $V(P[v_{s+1}, v_l]) \cap N^c(v_1)$. Clearly $v_l \in N^c(v_1)$. Similarly, $v_1 \in N^c(v_l)$. Now $C(v_1v_l) \neq C(v_1v_2)$ and $C(v_1v_l) \neq C(v_{l-1}v_l)$. So $P[v_1, v_l]v_lv_1$ is an alternating cycle of length $l \geq d+1 > \lceil \frac{2d}{3} \rceil + 1$, which is a contradiction. \Box

Claim 4. (4.1) *For* $2 \le j \le s - 1$, $v_j \notin N^c(v_l)$; (4.2) *For* $t + 1 \le j \le l - 1$, $v_j \notin N^{\tilde{c}}(v_1)$ *.*

Proof. By symmetry, we only need to prove (4.1). Assume that (4.1) is not true, then there exists $v_j \in N^c(v_l)$ such that $2 \le j \le s-1$. Clearly, $j \le t$, thus by Claim 2(2.2), $C(v_{j-1}v_j) \ne C(v_jv_l)$. Now $AC^2 = v_1v_sP[v_s, v_l]v_lv_jP^{-}[v_j, v_1]$ is an alternating cycle and $|AC^2| \ge |V(P[v_s, v_l])| + 2 \ge \lfloor \frac{2d}{3} \rfloor + 2 \ge \lceil \frac{2d}{3} \rceil + 1$, which is a contradiction.

Let A = $N^c(v_1)$ ∩ $V(P[v_s, v_t])$ and $B = N^c(v_l)$ ∩ $V(P[v_s, v_t])$.

Claim 5. $|A| + |B| \ge 2\lfloor \frac{d}{3} \rfloor + 2$ *.*

Proof. By (R_3) , the number of vertices in $N^c(v_1) \cap V(P[v_3, v_1])$ is at least $d - (|P[v_1, v_{s-1}]| - 1) \geq d - (\lceil \frac{2d}{3} \rceil - 1) = \lfloor \frac{d}{3} \rfloor + 1$. By Claim 4(4.2), $N^{c}(v_1) \cap V(P[v_s, v_l]) = N^{c}(v_1) \cap (V(P[v_s, v_l]) \cup \{v_l\}) = A \cup (N^{c}(v_1) \cap \{v_l\})$. It follows that $|A| \ge$ $\lfloor \frac{d}{3} \rfloor + 1 - |N^{c}(v_{1}) \cap \{v_{l}\}|$. Similarly, $|B| \geq \lfloor \frac{d}{3} \rfloor + 1 - |N^{c}(v_{l}) \cap \{v_{1}\}|$. Now $|A| + |B| \geq 2 \lfloor \frac{d}{3} \rfloor + 2 - (|N^{c}(v_{1}) \cap \{v_{l}\}| + |N^{c}(v_{l}) \cap \{v_{1}\}|)$. We will prove that $|N^c(v_1) \cap \{v_l\}| + |\tilde{N}^c(v_l) \cap \{v_1\}| = 0$, then Claim 5 holds. Otherwise, suppose that $|N^c(v_1) \cap \{v_l\}| +$

 $|N^{c}(v_1) \cap \{v_1\}| \geq 1$. By symmetry, we assume that $v_l \in N^{c}(v_1)$. If $C(v_{l-1}v_l) \neq C(v_lv_l)$, then $P[v_1, v_l]v_lv_1$ is an alternating cycle of length $l \geq d+1$, which is a contradiction. Thus $C(v_{l-1}v_l)=C(v_l v_l)$. Now $v_1v_l v_l v_l P^{-}[v_t, v_1]$ is an alternating cycle of length at least $s + 2 \geq \lceil \frac{2d}{3} \rceil + 3$, which is a contradiction. \Box

Now we finish the proof of [Theorem 2.4.](#page-1-2) It holds that $|V(P[v_s, v_t])| ≤ l - |V(P[v_1, v_{s-1}])| - |V(P[v_{t+1}, v_l])| ≤$ $1 - \lceil \frac{2d}{3} \rceil - \lceil \frac{2d}{3} \rceil \le 2d - 2\lceil \frac{2d}{3} \rceil \le 2\lfloor \frac{d}{3} \rfloor$. By Claim 5, $|A| + |B| \ge 2\lfloor \frac{d}{3} \rfloor + 2$. Now there exist $v_j \in N^c(v_1)$ and $v_i \in N^c(v_1)$ such that $s\leq i < j \leq t$. By Claim 1(1.2) and Claim 2(2.2), $C(v_1v_j) \neq C(v_jv_{j+1})$ and $C(v_iv_i) \neq C(v_iv_{i-1})$. It follows that $v_1v_jP[v_j, v_l]v_iv_iP^{-}[v_i, v_1]$ is an alternating cycle of length at least $s + 1 \geq \lceil \frac{2d}{3} \rceil + 2$ (see [Fig. 2\)](#page-4-2), which is contradiction. This completes the proof. \square

Acknowledgements

The authors are indebted to Yannis Manoussakis for his helpful discussion.We also thank the referee for their constructive comments.

References

- [1] N. Alon, G. Gutin, Properly colored Hamiltonian cycles in edge colored complete graphs, Random Structures Algorithms 11 (1997) 179–186.
- [2] J. Bang-Jensen, G. Gutin, Alternating cycles and paths in edge-colored multigraphs: A survey, Discrete Math. 165–166 (1997) 39–60.
- [3] B. Bollobás, P. Erdős, Alternating Hamiltonian cycles, Israel J. Math. 23 (1976) 126–131.
- [4] L. Caccetta, R. Häggkvist, On minimal digraphs with given girth, in: Proceedings, Ninth S-E Conference on Combinatorics, Graph Theory and Computing, 1978, pp. 181–187.
- [5] C.C. Chen, D.E. Daykin, Graphs with Hamiltonian cycles having adjacent lines different colors, J. Combin. Theory Ser. B. 21 (1976) 135–139.
- [6] W.S. Chow, Y. Manoussakis, O. Megalakaki, M. Spyratos, Z. Tuza, Paths through fixed vertices in edge-colored graphs, J. Math. Inform. Sci. Humaines. 32 (1994) 49–58.
- [7] D. Dorninger, On permutations of chromosomes, in: Contributions to General Algebra, vol. 5, Verlag Hölder-Pichler-Tempsky, Wien, 1987, pp. 95–103, Teubner, Stuttgart.
- [8] D. Dorninger, Hamiltonian circuits determining the order of chromosomes, Discrete Appl. Math. 50 (1994) 159–168.
- [9] D. Dorninger, W. Timischl, Geometrical constraints on Bennett's predictions of chromosome order, Heredity 58 (1987) 321–325.
-
- [10] J.W. Grossman, R. Häggkvist, Alternating cycles in edge-partitioned graphs, J. Combin. Theory Ser. B. 34 (1983) 77–81.
[11] H. Li, G.H. Wang, S. Zhou, Long alternating cycles in edge-colored complete graphs, in: FAW
-
- [13] A. Yeo, Alternating cycles in edge-coloured graphs, J. Combin. Theory Ser. B. 69 (1997) 222–225.