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Abstract

We prove that the very simple lattices which consist of a largest, a smallest and 2n pairwise incomparable
elements where 7 is a positive integer can be realized as the lattices of intermediate subfactors of finite index
and finite depth. Using the same techniques, we give a necessary and sufficient condition for subfactors
coming from Loop groups of type A at generic levels to be maximal.
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1. Introduction

Let M be a factor and N a subfactor of M which is irreducible, i.e., N "M = C. Let K
be an intermediate von Neumann subalgebra for the inclusion N C M. Note that K’ N K C
N’'NM =C, K is automatically a factor. Hence the set of all intermediate subfactors for N ¢ M
forms a lattice under two natural operations A and V defined by:

KinKy,=K|NK», KiVvK,=(KiUK>)".

Let G| be a group and G, be a subgroup of G. An interval sublattice [G1/G2] is the lattice
formed by all intermediate subgroups K, G, € K C G.
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By cross product construction and Galois correspondence, every interval sublattice of finite
groups can be realized as intermediate subfactor lattice of finite index. The study of intermediate
subfactors has been very active in recent years (cf. [3,18,20,28,39,36] for only a partial list). By
a result of S. Popa (cf. [33]), if a subfactor N C M is irreducible and has finite index, then the
set of intermediate subfactors between N and M is finite. This result was also independently
proved by Y. Watatani (cf. [39]). In [39], Y. Watatani investigated the question of which finite
lattices can be realized as intermediate subfactor lattices. Related questions were further studied
by P. Grossman and V.F.R. Jones in [18] under certain conditions. As emphasized in [18], even
for a lattice which shapes like a Hexagon and consists of six elements, it is not clear if it can be
realized as intermediate subfactor lattice with finite index. This question has been solved recently
by M. Aschbach in [1] among other things. In [1], M. Aschbach constructed a finite group G
with a subgroup G such that the interval sublattice [G{/G>] is a Hexagon. The lattices that
appear in [18,39,1] can all be realized as interval sublattice of finite groups.

It turns out that which finite lattice can be realized as an interval sublattice [G1/G2] with G
finite is an old problem in finite group theory. See [31] for an excellent review and a list of
references.

Most of the attention has been focused on the very simple lattice M,, consisting of a largest,
a smallest and n pairwise incomparable elements. For n = 1, 2, g 4+ 1 (where g is a prime power),
examples of M,, have been found in the finite solvable groups. After the first interesting examples
found by W. Feit (cf. [11]), A. Lucchini (cf. [30]) discovered new series of examples for n = g +2
and forn = ("tj_rll) + 1 where ¢ is an odd prime.

At the present the only values of n for which M,, occurs as an interval sublattice of a finite
grouparen =1,2,g+1,q+2, (((i] ':11)) + 1 where ¢ is an odd prime. The smallest undecided case
is n = 16. In a major contribution to the problem about subgroup lattices of finite groups in [2],
R. Baddeley and A. Lucchini have reduced the problem of realizing M,, as interval sublattice of
finite groups to a collection of questions about finite simple groups. These questions are still quite
hard, but eventually they might be resolved using the classification of finite simple groups. In this
paper, the authors are cautious, but their ultimate goal seems to be to show that the list above is
complete. In view of the above results about finite groups, it seems an interesting problem to ask
if M1e can be realized as the lattice of intermediate subfactors with finite index. This problem
is the main motivation for our paper. One of the main results of this paper, Theorem 2.40, states
that all M», are realized as the lattice of intermediate subfactors of a pair of hyperfinite type /11
factors with finite depth. Note that by [36] this implies that M3, can also be realized as the lattice
of intermediate subfactors of a pair of hyperfinite type /I factors with finite depth. Thus modulo
the conjectures of R. Baddeley, A. Lucchini and possibly others we have an infinite series of
lattices which can be realized by the lattice of intermediate subfactors with finite index and finite
depth but cannot be realized by interval sublattices of finite groups.

The subfactors which realize M»,, are “orbifold subfactors” of [10,5,41], and we are motivated
to examine these subfactors by the example of lattice of type M in [18] which is closely related
to an Z, orbifold. To explain their construction, after first two preliminary sections, we will first
review the result of A. Wassermann (cf. [21,38]) about Jones—Wassermann subfactors (cf. Re-
mark 2.27) coming from representations of Loop groups of type A in Section 2.5. Section 2.6 is
then devoted to a description of “orbifold subfactors” from an induction point of view. Although
it is not too hard to show that the subfactor contains 2n incomparable intermediate subfactors,
the hard part of the proof of Theorem 2.40 is to show that there are no more intermediate sub-
factors. Here we give a brief explanation of basic ideas behind our proof and describe how the
paper is structured. We will use freely notations and concepts that can be found in preliminary
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sections. Let p(M) C M be a subfactor and M; be an intermediate subfactor. In our examples
below all factors are isomorphic to the hyperfinite type 111 factor, and pp are direct sums of sec-
tors from a set A with finitely many irreducible sectors and a nondegenerate braiding. Here we
use the endomorphism theory pioneered by R. Longo (cf. [25]). Since M| is isomorphic to M,
we can choose an isomorphism ¢y : M — M. Denoting ¢ = ¢, p we have p = cjcy where
c1, 2 € End(M). Note that cic] < pp is in A. Our basic idea to investigate the property of ¢ is
to consider the following set H,, := {[a] | a < Ac1, A € A, a irreducible}. Since A has finitely
many irreducible sectors, H,, is a finite set. Moreover since ¢i¢; € A, an induction method using
braidings as in [42] is available. This induction method was used by the author in [42] to study
subfactors from conformal inclusions, and developed further by J. Bockenhauer, D. Evans and
J. Bockenhauer, D. Evans and Y. Kawahigashi in [4-9], and leads to strong constraints on the
set H,. Thus by using A € A to act from the left on ¢, one may hope to find what ¢ is made of.
In the cases of Theorem 2.40 and Corollary 5.23, it turns out that there is a sector ¢ in H,, with
smallest index such that c¢; < Ac, and c is close to be an automorphism (it is an automorphism
in the case of Corollary 5.23), and the corresponding subfactors have been well studied as those
in [42]. In the simplest case n = 2, due to A — D — FE classification of graphs with norm less
than 2, the above idea can be applied directly to give a rather quick proof of Theorem 2.40. We
refer the reader to the paragraph after Theorem 2.40 which illustrates the above idea.

When n > 2, the norms of fusion graphs are in general greater than 2, no A — D — E classifi-
cation is available, and this is the main problem we must resolve to carry out the above idea. To
explain our method, we note that S matrix as defined in Eq. (3) has the property

% <&7 Yu
Siu S1

and
S S
Qiu :Ll7 Yu
Siu S

iff A is an automorphism, i.e., A has the smallest index 1. Our first observation is that for small
index (close to 1) sectors c, certain entries of S-matrix like quantities (cf. Definition 3.10, Corol-
lary 3.14) called 1 -matrix attain their extremum just like S-matrices. Hence to detect these small
index sectors, we need to have a good estimation of the entries of i{r-matrix. In view of the Ver-
linde formula (cf. Eq. (4)) relating S-matrix with fusion rules, it is natural to use the known
fusion rules to estimate ¢ matrix. However, since the definition of v involves sectors which are
not braided, the above idea does not work unless one can show that certain intertwining operators
are central (cf. Theorem 3.8 and Section 5.1 for discussions). Our second observation is that a
class of intertwining operators in Definition 3.7 is central (cf. Theorem 3.8). Thanks to a number
of known results about representations of Loop groups of type A, we show that the assumption
of Theorem 3.8 is verified in our case (cf. Proposition 4.7).

This allows us to show that certain sector with small index does exist (cf. Corollary 3.14),
we can indeed find that ¢; is made of known subfactors. After a straightforward calculations
involving known fusion rules in Proposition 4.10, we are able to finish the proof of Theorem 2.40
for general n.

In the last section we discuss a few related issues. Conjecture 5.1 is formulated which is equiv-
alent to centrality of certain intertwining operators (cf. Proposition 5.7), and this is motivated by
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our proof of Theorem 2.40. We show in Proposition 5.11 that these intertwining operators are
central on a subspace which is a linear span of products of (cf. Definition 5.9) cups, caps and
braiding operators only. These motivate us to make Conjecture 5.12 which claims that the sub-
space is in fact the whole space. In view of recent development using category theory (cf. [12]),
both conjectures can in fact be stated in categorical terms, and we do not know any counter
examples in the categorical setting. In Proposition 5.17 we prove that a weaker version of Con-
jecture 5.12 implies Conjecture 5.1, and from this we are able to prove Conjecture 5.1 for modular
tensor category from SU(n) at level k (cf. Corollary 5.18).

In Section 5.2 we give applications of Corollary 5.18. To explain these applications, recall that
a subfactor N C M is called maximal if M| is an intermediate von Neumann algebra between N
and M implies that M1 = M or M| = N. This notion is due to V.ER. Jones when he outlined
an interesting programme to investigate questions in group theory using subfactors (cf. [22]). In
the case when M is the crossed product of N by a finite group G, it is easy to see that N C M
is maximal iff G is an abelian group of prime order. Hence for most of G the corresponding
subfactor is not maximal. Corollary 5.23 gives a necessary and sufficient condition for subfactors
from representations A of SU(n) atlevel k £ n£2, n to be maximal: A is maximal iff A is not fixed
by a nontrivial cyclic automorphism of extended Dynkin diagram (such cyclic automorphisms
generate a group isomorphic to Z,). Hence it follows from Corollary 5.23 that most of such
A are maximal. For an example, if k £ n £ 2,n, k and n are relatively prime, then all A are
maximal.

Besides propositions and theorems that have been already mentioned, the first two preliminary
sections are about sectors, covariant representations, braiding-fusion equations, Yang—Baxter
equations, Rehren’s S, T matrices. The third preliminary section summarizes properties of an
induction method from [42]. These properties have been extensively studied and applied in
subsequent work in [4-9] from a different point of view where induction takes place between
two different but isomorphic algebras, and we recall a dictionary relating these two as provided
in [44]. We think that in this paper it is simpler to take the point of view of [42] when discussing
intermediate subfactors, and it is convenient to represent these intermediate subfactors as the
range of endomorphisms of one fixed factor, so we do not have to switch between different but
isomorphic algebras.

Using the dictionary we translate some properties of relative braidings and local extensions
from [7] to our setting (cf. Proposition 2.24). The next two preliminary sections are devoted to
subfactors from representations of SU(n) at level k and its extensions. We collect a few properties
about fusion rules, S matrices, and we define the subfactor which appears in Theorem 2.40.
In Proposition 2.41 we show that this subfactor contains 2n incomparable proper intermediate
subfactors.

2. Preliminaries

For the convenience of the reader we collect here some basic notions that appear in this paper.
This is only a guideline and the reader should look at the references such as preliminary sections
of [24] for a more complete treatment.

2.1. Sectors

Let M be a properly infinite factor and End(M) the semigroup of unit preserving endomor-
phisms of M. In this paper M will always be the unique hyperfinite /71| factors. Let Sect(M)
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denote the quotient of End(M) modulo unitary equivalence in M. We denote by [p] the image
of p € End(M) in Sect(M).

It follows from [25] and [26] that Sect(M), with M a properly infinite von Neumann algebra,
is endowed with a natural involution & — 6; moreover, Sect(M) is a semiring.

Let p € End(M) be a normal faithful conditional expectation € : M — p(M). We define a
number d, (possibly co) by:

d;? :=Max|x € [0, +00) | €(my) > Am, Ym, € My}

(cf. [32]).
We define

d =Ming{d, | de < o0}.

d is called the statistical dimension of p and d? is called the Jones index of p. It is clear from
the definition that the statistical dimension of p depends only on the unitary equivalence classes
of p. The properties of the statistical dimension can be found in [25-27].

Denote by Secty(M) those elements of Sect(M) with finite statistical dimensions. For A, u €
Secto(M), let Hom(X, i) denote the space of intertwiners from A to u, i.e. a € Hom(x, n) iff
ai(x) = p(x)a for any x € M. Hom(A, w) is a finite dimensional vector space and we use (A, i)
to denote the dimension of this space. (A, 1) depends only on [A] and [i]. Moreover we have
(VA, ) = (A, D), (VA, ) = (v, uA) which follows from Frobenius duality (see [26]). We will
also use the following notation: if u is a subsector of A, we will write as i < A or A > p. A sector
is said to be irreducible if it has only one subsector.

For any p € End(M) with finite index, there is a unique standard minimal inverse ¢, : M — M
which satisfies

B (pGmym' p(m")) =mg,(mym". m,m'.m" € M.
¢, is completely positive. If € Hom(p1, p2) then we have

dp1¢p1 (mt) =dp2¢p2(tm), meM. (1)
2.2. Sectors from conformal nets and their representations

We refer the reader to §3 of [24] for definitions of conformal nets and their representations.
Suppose a conformal net .A and a representation A are given. Fix an open interval I of the circle
and let M := A(I) be a fixed type I1I| factor. Then A gives rises to an endomorphism still denoted
by A of M. We will recall some of the results of [35] and introduce notations.

Suppose {[A]} is a finite set of all equivalence classes of irreducible, covariant, finite-index
representations of an irreducible local conformal net A. We will use A 4 to denote all finite
index representations of net A and will use the same notation A 4 to denote the corresponding
sectors of M .2

2 Many statements in this section and Section 2.3 hold true in general case when the set {[1]} is only braided (cf. [8])
and we hope to consider such cases elsewhere.
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We will denote the conjugate of [A] by [A] and identity sector (corresponding to the vacuum
representation) by [1] if no confusion arises, and let N;# = ([A1[w], [v]). Here (u, v) denotes
the dimension of the space of intertwiners from u to v (denoted by Hom(u, v)). We will denote
by {T.} a basis of isometries in Hom(v, Ax). The univalence of A and the statistical dimension
of (cf. §2 of [19]) will be denoted by w, and d(A) (or d,)) respectively. The unitary braiding
operator € (u, A) (cf. [19]) verifies the following

Proposition 2.1.
(1) Yang-Baxter-Equation (YBE)
e(u, Y)n(e(h, v))e(h, ) =y (e(h, ) ek, YA (e, ).
(2) Braiding-Fusion-Equation (BFE)
For any w € Hom(u1y, §)
£( )Mw) = wit((h y))e(ho ),
e(8, Mw =r(w)e(u, Mu(e(y, 1)),

e(8, M) A(w) = wp(e(y, N )e(u, 1),
e, 8)*A(w) = wu(e(y, )»)*)8()», w*.

Lemma 2.2. If A, i are irreducible, and t, € Hom(v, Aw) is an isometry, then

wy

tve(, Me(h, wit; = —
AOp

By Proposition 2.1, it follows that if #; € Hom(u;, A) is an isometry, then
e, pmi)e (i, ) =t (i, Me(r, ;.
We shall always identify the center of M with C. Then we have the following
Lemma 2.3. If
e(u, Ve, n) € C,
then
e(p, pi)e(ui, w) € C,  Vu; <A.
Let ¢, be the unique minimal left inverse of A, define:
Yoy = AWy (e, ) e(h, ), )

where €(u, 1) is the unitary braiding operator (cf. [19]).
We list two properties of Yy, (cf. (5.13), (5.14) of [35]):
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Lemma 2.4.

YVip=Yu = Y;ﬂ =Y

Yiu=Y N},
k

w

w)wy

d(v).

v

We note that one may take the second equation in the above lemma as the definition of Yy,.

Define a := ), d/%i w;il. If the matrix (Y,) is invertible, by proposition on p. 351 of [35]

a satisfies |a|? = >, d()2.
Definition 2.5. Let @ = |a| exp(—2mi %") where ¢ € R and ¢ is well defined mod 87Z.
Define matrices
S:=lal"'Y, T := C Diag(wy) (3)

where

C:= exp(—Znii—Z).

Then these matrices satisfy (cf. [35]):

Lemma 2.6.

§?=C,
7¢C =CT,
where C e = O 1s the conjugation matrix.
Moreover
SasSusS*
Niu=2 g Q)

8

is known as Verlinde formula. The commutative algebra generated by A’s with structure con-
stants N, , 1s called fusion algebra of A. If Y is invertible, it follows from Lemma 2.6, (4) that

any nontrivial irreducible representation of the fusion algebra is of the form A — % for some (.
%
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2.3. Induced endomorphisms

Suppose that p € End(M) has the property that y = pp € A 4. By §2.7 of [29], we can find
two isometries v € Hom(y, yz), w; € Hom(1, y)3 such that p(M) and v; generate M and

—1
viwr =viy(wi) =d,
vivy =y (V).

By Theorem 4.9 of [29], we shall say that p is local if

viw =viyw) =d, ", (5)
vivy =y (v, (6)
pe(y,y))vi = 1. (7)
Note that if p is local, then
w,=1, Yu<pp. 3

For each (not necessarily irreducible) A € A 4, let e(A, y): Ay — yA (resp. £(A, ¥)), be the
positive (resp. negative) braiding operator as defined in Section 1.4 of [42]. Denote A, € End(M)
which is defined by

Ae(x) :=ad(e(h, y))A(x) = e(h, )L (), ¥)*,
A (x) :=ad(E(h, y))A(x) =&, y) A(x)EMR, )", VxeM.

By (1) of Theorem 3.1 of [42], A,p(M) C p(M), Azp(M) C p(M), hence the following defini-
tion makes sense.*

Definition 2.7. If A € A 4 define two elements of End(M) by
af(m):=p~ (kep(m)), @y (m):=p~" (hzp(m)), VmeM.
af (resp. &f ) will be referred to as positive (resp. negative) induction of A with respect to p.

Remark 2.8. For simplicity we will use a;, a, to denote af , &f when it is clear that inductions
are with respect to the same p.

The endomorphisms a, are called braided endomorphisms in [42] due to their braiding prop-
erties (cf. (2) of Corollary 3.4 in [42]), and enjoy an interesting set of properties (cf. Section 3

3 We use vy, w instead of v, w here since v, w are used to denote sectors in Section 2.5.
4 We have changed the notations a,, a, of [42] to a;, a,, of this paper to make some of the formulas such as Eq. (13)
simpler.
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of [42]). Though [42] focus on the local case® which was clearly the most interesting case in
terms of producing subfactors, as observed in [4-7] that many of the arguments in [42] can be
generalized. These properties are also studied in a slightly different context in [4—6]. In these
papers, the induction is between M and a subfactor N of M, while the induction above is on
the same algebra. A dictionary between our notations here and these papers has been set up
in [44] which simply use an isomorphism between N and M. Here one has a choice to use this
isomorphism to translate all endomorphisms of N to endomorphims of M, or equivalently all
endomorphims of M to endomorphims of N. In [44] the later choice is made (hence M in [44]
will be our N below). Here we make the first choice which makes the dictionary slightly simpler.
Our dictionary here is equivalent to that of [44]. Set N = p(M). In the following the notations
from [4] will be given a subscript BE. The formulas are:

pIN =ige, ppIN =ipgigE, )
y=p"'08ep. PP =VBE. (10)
r=p""agep, &0, w)=p(e" Ope. 1sE)). (11)
E, ) = p(e~ (ApE, 1BE)). (12)

The dictionary between a; € End(M) in Definition 2.7 and o, as in Definitions 3.3, 3.5 of [4] is
given by:

ar=of ar=oaj, . (13)

The above formulas will be referred to as our dictionary between the notations of [42] and that
of [4]. The proof is the same as that of [44]. Using this dictionary one can easily translate results
of [42] into the settings of [4-9] and vice versa. First we summarize a few properties from [42]
which will be used in this paper (cf. Theorem 3.1, Corollary 3.2 and Theorem 3.3 of [42]):

Proposition 2.9.

(1) The maps [M] — [ay], [A] — [a,] are ring homomorphisms;

(2) ap=ayp=pi;

(3) When pp is local, (ay., au) = (G, Gu) = (@15, up) = (@rf, Gup);

(4) (3) remains valid if ay, a,, (resp. ay, a,) are replaced by their subsectors.

Definition 2.10. H, is a finite dimensional vector space over C with orthonormal basis consisting
of irreducible sectors of [Ap], VA € A 4.

[A] acts linearly on H, by [A][a] = )", () a, b)[b] where [b] are elements in the basis of Hp.6
By abuse of notation, we use [A] to denote the corresponding matrix relative to the basis of H,.

5 As we will see in Proposition 2.24, the induction with respect to nonlocal p is closely related to induction with respect
to certain local p’ related to p.
6 By abuse of notation, in this paper we use »_,, to denote the sum over the basis [b] in H.
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By definition these matrices are normal and commuting, so they can be simultaneously diago-
nalized. Recall the irreducible representations of the fusion algebra of .4 are given by

Sut

A— .
Siu

Definition 2.11. Assume (Aa,b) =}, ic(xp) g?ﬁ Ll z)¢(u,i)* where ¢*" are normalized

orthogonal eigenvectors of [A] with eigenvalue g?—“, Exp is a set of w,i’s and i is an index
"

indicating the multiplicity of w. Recall if a representation is denoted by 1, it will always be the
vacuum representation.

The following lemma is elementary:

Lemma 2.12.

1
M Y=
b Sll

where the sum is over the basis of H,. The vacuum appears once in Exp and

oD = Sy1dy;

o0y Sun
@) e M
- ST " i

where if A does not appear in Exp then the right-hand side is zero.

Proof. Ad (1): By definition we have
lap) =Y (ap, MM =) (a, rp)[A
A A
where in the second = we have used Frobenius reciprocity. Hence

deds =Y (ap.))d;

A

and we obtain
D odi=) (ap, Wdrdafd, =) d;
s A,a a

(2) follows from definition and orthogonality of § matrix. O
2.4. Relative braidings

In [42], commutativity among subsectors of a;, a, was studied. We record these results in the
following for later use:
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Lemma 2.13.
(1) Let [b] (resp. [b']) be any subsector of ay, (resp. ay,). Then

laub] = [ba,], [a,b'1=[ba,] vu, [bb'] = [bD'];
(2) Let [b] be a subsector of a,ay, then [a,b] = [ba,], [a,b] = [ba,], Yv.

Proof. (1) follows from (1) of Theorem 3.6 and Lemma 3.3 of [42]. (2) follows from the proof
of Lemma 3.3 of [42]. Also cf. Lemma 3.20 of [6]. O

In the proof of these commutativity relations in [42], an implicit use of relative braidings was
made. These braidings are further studied in [5,6] and let us recall their properties in our setting
by using our dictionary (9), (13).

Let B, 8 € End(M) be subsectors of a; and a,,. By Lemma 3.3 of [42], [B] and [§] commute.
Denote ¢, (ﬁ ,8) given by:

(B, 8) :=5%a, (t*)p(02,)d:.(5)t € Hom(B3, 8B), (14)
& ©, ) =e(B.0)7, (15)
with isometries ¢ € Hom(,é, a) and s € Hom(é, a, ). Also
er(an, ay) = p(owy), €r(@x, ay) = p(oip)-

Lemma 2.14. The operator €.(B,8) defined above does not depend on A, u and the isome-
tries s, t in the sense that, if there are isometries x € Hom(f, a,) and y € Hom($, as, ), then

€-(B,8) =s"as, (t*)p(ovn,)av(y)x.

Lemma 2.15. The system of unitaries of Eq. (14) provides a relative braiding between represen-
tative endomorphisms of subsectors of a, and a,, in the sense that, if B, 8, w, § are subsectors of
(@], lau], [av], las, ], respectively, then we have initial conditions

€-(idpy, ) =€-(B,idy) =1,
compositions rules
& (Bw, 8) =& (B, $)B(&r (@, 9)), € (B,85) =8(er (B, §))er (B, ),
and naturality
8(q+)er(B,8) = €r(@,8)q+,q—, € (B,8) =€ (B,5)B(g-)

whenever g+ € Hom(B, w) and g € Hom(3, &).

For the collection of B, 6 such that B < a;, B < a), and § < a,, 8 < a, for some (varying)
A, L € Ay, the unitaries (B, 8), €-(8, B) define a braiding: i.e., they verify YBE and BFE in
Proposition 2.1.
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Lemma 2.16. Let r € Hom(\3, A1 A2). Then
o(r) € Hom(ay,, ay,ay,) NHom(a;,, ay,dy,).
Proof. When pp is local, the lemma follows from Theorem 3.3 of [42]. Let us prove the general
case. Since a, p = pA, we have p(r) € Hom(a,,p, a;,,,0). Since M is generated by o(M), vy,
to finish the proof we just need to check that
p(r)ax; (V) = ap, (W) P(r).
Since p is one-to-one, applying p to the above equation it is sufficient to check that
Y (Npax; (1) = paj,, () y ().

Using pa; = e(X, y)Ape(r, y)*, one can check directly that this equation follows from Proposi-
tion2.1. O

The following is Lemma 3.25 of [4] in our setting:
Lemma 2.17. If r € Hom(pX, pu), then
rp(e(u, ) = (e, V)ap, (), rpEGL D) = B(E (1, 1)y, (r).
Following [8] we define
Definition 2.18. For A, u € A 4, Zy, = {ax, au).
We can now translate Theorems 5.7 and 6.12 of [8] into our setting:
Proposition 2.19.

(1) w appears in Exp as defined in Definition 2.11 with multiplicity Z,,,;
(2) Zyy as a matrix commutes with S, T matrices as defined in Eq. (3).

By Lemma 2.12 and Proposition 2.19 we have the following:

Lemma 2.20. If

3 (a.5) % 0,
Six

v

then {(ay, a,) > 1.
The following follows from Proposition 3.1 of [8]:

Lemma 2.21. For any L € Ayp,b € Hy we have (A, bp) € Hom(Ab, bay), &(A,bp) €
Hom(\b, ba,).
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Later we will consider the following analogue of S-matrix using relative braidings. Suppose
that 7,, e Hom(ay, a,), Yu € A 4 (T, can be zero).

Definition 2.22. For u € A 4, b € H,, irreducible, define

(T[L

U = Sidpdudy (e (05, WH(Te (. bp)).

Lemma 2.23.

) WIET“) depends only on [b];
Tl,

T,
is either zero or an eigenvector of [\] with eigenvalue SAT" and )", w( )db = 0 unless
n

(ul=I[1];
(3) If T, Ty are unitaries, and for any irreducible ) < pp, 1 < a; iff [A] = [1], then

T y T
DI =1

@4 IfT, is umtary then |1/f( H)|

< Snidydp.

Proof. Ad (1): Suppose that [b;] = [b] and let U € Hom(by, b) be a unitary. We have

U = S1idypdydy (e (05, WH(T)e (i, b))
= Si1dpd,y (1 (U)e b, Wb (T, (1, bp)n(U))
= S11dpdy gy (e(b1p, U*b(T,)Use(, b1 p))
= Sndpd, ¢y (b1, b1 (Ty)e (i, b1 p))

1l/(TM)

where we have used BFE of Proposition 2.1 in the third =.
Ad (2): Let 1, ; € Hom(b, Ab") be isometries such that ) _; 7, ;#; ; = 1. Then

T ,, - - -
Z Uy ", 30) = 3 Stidydsdy ¢, (11t e (BB, 1) b(T)e (e, bA)(E7))
b,i
where we have used Eq. (1). By Proposition 2.1 we have

> Sudyudydy ¢3¢ (1ty.0)e (b, b(T)e (i, bp)u(ty ;)
b,i

= Stidudydy ¢3¢0 (0" D, (T, e (1, Ab'p))



1330 F. Xu / Advances in Mathematics 220 (2009) 1317—-1356

Hence

me}gm Z‘p(“ (b i) b]_Swa(T)

b b, Siu %

By (1) of Lemma 2.12 we conclude that Zb W}ET")db =0 unless [u] =[1].
Ad (3): Let 1, ; € Hom(X, wjt) be isometries such that Z/\,i tyity ; = 1. Then

(T

(Tp)
v

U = S11dpd,n (y " e (b, BT, e, bp))
= Stdjdydpii (e (0p., nb(Tuan(Tp))e(uit. bp))

= Sty Y dpds s (e(bp. Wb (5 (3.0 Tuan (T p(13.0))e (. b))
ALl

where we have used Eq. (1) and Lemma 2.21 in the second = and BFE of Proposition 2.1 in the
third = . By (2) of Lemma 2.23

Z dpdpd; 93 (s(bp, Mb(p(6.) Tuau (T)p(13,1))e(h, bp)) =0
b

unless [A] = [1]. Denote by #; € Hom(1, wt) the unique (up to scalar) isometry. Then we have
(recall we always identify the center of M with C)

(Tw) (T ) - _
Zw = p(0)* Tua, (To) 5 ().
On the other hand since 7},, Tj; are unitaries, we have

Z p () Tpan (Tp)p (i) p(t,i) au(Tp) Ty p(t) = 1.
M

Since p(11)*Tya, (Tz)p(t.,i) € Hom(ay, 1), by assumption it is 0 unless [A] = [1]. We con-
clude that |p(t1)*Tya, (Ta)p(t1)] =1 and (3) is proved. (4) follows since ¢, is completely
positive. O

Using Eqgs. (9), (13), the following is a translation of Proposition 3.2 and Theorem 4.7 of [7]
into our setting:

Proposition 2.24. Suppose that pp € A. Then:

(1) pislocal iff (1,a,) =(pp, ), Y € Ay;
2) p=p'p"=pp"
where o', p”, o', p”" € End(M), and p’, p’ are local which verifies
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(/5 1) = (1,a,) =(1,a2),
(BF = (1,d,) =1, )
YueAy.

The following lemma is Proposition 3.23 of [4] (the proof was also implicitly contained in the
proof of Lemma 3.2 of [42]):

Lemma 2.25. If pp is local, then [a,] = [a)] iff e(X, pp)e(pp, L) = 1.
2.5. Jones—Wassermann subfactors from representation of Loop groups

Let G = SU(n). We denote by LG the group of smooth maps f:S' — G under point-
wise multiplication. The diffeomorphism group of the circle Diff S! is naturally a subgroup
of Aut(LG) with the action given by reparametrization. In particular the group of rotations
RotS' ~ U(1) acts on LG. We will be interested in the projective unitary representations
w:LG — U(H) that are both irreducible and have positive energy. This means that 7 should
extend to LG x RotS! so that H = @,@0 H (n), where the H (n) is the eigenspace for the ac-

tion of Rot S, i.e., ro€& = exp(inf) for 6 € H(n) and dim H (n) < oo with H(0) # 0. It follows
from [34] that for fixed level k which is a positive integer, there are only finite number of such
irreducible representations indexed by the finite set

Pi+={AeP‘X= Yo kAL 0, Y ,\,-gk}

i=l1,..., n—1 i=1,...n—1

where P is the weight lattice of SU(n) and A; are the fundamental weights. We will write
A=A, .., 1), A=k — Zlgignq A; and refer to Ag, ..., A,—1 as components of A.
We will use Ag or simply 1 to denote the trivial representation of SU(n). For A, u, v € P_’ﬁ 1
(8) ¢(8) ¢(8%) /o8 @) i o
define N)‘\’M =D sc P, S$,78,°8 /S Ao where S, is given by the Kac—Peterson formula (cf.
Eq. (17) below for an equivalent formula):

Si‘s) =c Z ewexp(iw(8) - A27/n)

weSy,

where &, = det(w) and c is a normalization constant fixed by the requirement that S,(LB) is an
orthonormal system. It is shown in [23, p. 288] that N} ,, are nonnegative integers. Moreover,

define Gr(Cy) to be the ring whose basis are elements of P_]f_ . with structure constants N)]ju'
The natural involution * on PJ’ﬁ  is defined by A > A* = the conjugate of A as representation
of SU(n).
@) 1y o) _ s ®) ,
We shall also denote S Ao by §,7. Define d), = Pk We shall call (S)’) the S-matrix of
1

LSU(n) at level k.
We shall encounter the Z,, group of automorphisms of this set of weights, generated by

o:A=0An A, ) oW =Gk —1—=A1 —- A1, A, Ap2).
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Define col(A) = X;(A; — 1)i. The central element exp 2nﬂ of SU(n) acts on representa-
tion of SU(n) labeled by A as exp(w). The irreducible positive energy representations
of LSU(n) at level k give rise to an irreducible conformal net A (cf. [24]) and its covariant rep-
resentations. We will use A = (A1, ..., A,—1) to denote irreducible representations of .4 and also
the corresponding endomorphism of M = A(I).

All the sectors [A] with A irreducible generate the fusion ring of A.

For A irreducible, the univalence w; is given by an explicit formula (cf. 9.4 of [34]). Let us

first define h) = a®) where c2(A) is the value of Casimir operator on representation of SU(n)

k+n
labeled by dominant weight A. &, is usually called the conformal dimension. Then we have:
w), = exp(2mwih,). The conformal dimension of A = (A1, ..., Ay—1) is given by

__ il L o — DA
LAt v S DL S s S DRI

1<i<n—1 1<j<i<n—1
1
T — j(n— jA;. 16
ST Z Jn= i (16)
1<j<n—1

The following form of Kac—Peterson formula for S matrix will be used later:

S
2ME— Chy(x1y ey Xnet1, 1) (17)
Sin

Where Ch,; is the character associated with finite irreducible representation of SU(n) labeled

by A, and x; :exp(—2nik/i"n), ,u; = Zigjgn—l(“j +1),1<i<n—1.

It follows that S matrix verifies:

2mi col())
Srof (1) =exp<T>Sw. (18)

The following result is proved in [38] (see Corollary 1 of Chapter V in [38]).

Theorem 2.26. Each A € Pj_kj_ has finite index with index value d)%. The fusion ring generated by

all A € PJ(rkJ)r is isomorphic to Gr(Cy).

Remark 2.27. The subfactors in the above theorem are called Jones—Wassermann subfactors
after the authors who first studied them (cf. [21,38]).

Definition 2.28. v := (1,0, ...,0), v :=(1,0,...,0, 1), o =kA;,0<i<n—1.

The following is observed in [16]:
Lemma 2.29. Let (0,...,0,1,0,...,0) be the ith (1 <i < n — 1) fundamental weight. Then
[0,...,0,1,0,...,0)A] are determined as follows: u < (0,...,0,1,0,...,0)0A iff when the

Young diagram of u can be obtained from Young diagram of ) by adding i boxes on i differ-
ent rows of A, and such  appears in [(0,...,0,1,0,...,0)1] only once.
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Lemma 2.30.

(@)) I]‘[A];éw for some 0 <i<n—1, then v0<AA
(2) If M Ay is irreducible, then elther A or iy =o' for some 0<i<n—1.

Proof. By Lemma 2.29 we have that
(vh,vA) =1
iff A = o' for some 0 <i <n — 1. By Frobenius reciprocity
(A, vA) = (1 4 vg, AL) = 1 + (vg, AL).
Hence
(vg, ALY =0

iff A = o' for some 0 <i <n — 1. If A A, is irreducible, then by Frobenius reciprocity again we
have

(A1A1, A2d2) =12 14 (vo, kA1) (vo, A222).

Hence either

(vo, A1h1) =0
or

(v0, A2A2) =0
and the lemma follows. O
Lemma 2.31. Suppose X € A 4 and A is not necessarily irreducible. Then

e(h,v)e(w,2)eC
ifFrr=> j [w/ ] where the summation is over a finite set.
Proof. By Proposition 2.1 we have that
e(v", A)e(r, ™) eC

for all m > 0. Since any irreducible u is a subsector of v for some m > 0, by Lemma 2.3
we have that e(u, )e(rg, n) € C, Yu, A1 < A. By definition of S matrix we have |SM1| =
|Slk1du|2- Summing over p we have dj, =1, i.e., A1 is an automorphism, and this implies that

vA1 is irreducible. The lemma now follows from Lemma 2.30. O

Lemma 2.32. For any m > 1, Hom(v™, v™) is generated as an algebra by 1,v' (¢(v,v)), 1 <
i<m-—1.
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Proof. This is (3) of Lemma 3.1.1 in [44] and is essentially contained in [40]. O

Now let pp € A 4 where A is the conformal net associated with SU(n) at level k, and consider
induction with respect to p as defined in Definition 2.7. We have

Lemma 2.33.

(1) ay, ay are always irreducible;
2) dyy=1iffk=n=2;
(3) Ifk #n£2,n, then ay,, a,, are irreducible.

Proof. It is enough to prove the lemma for positive induction. The negative induction case is
similar. Assume that p = p’p" as in Proposition 2.24, since (ay, 1) = (0’0, A) = (af 1), VA, it
is enough to prove the lemma for induction with respect to p’. Hence we may assume that p is

local. By (3) of Proposition 2.9 we have

<av’ av> = (pﬁ7 Ul_)) =1 + <1057 U()).

Since w,, = exp(i”ﬁ) # 1, by Eq. (8) we conclude that (pp, vg) =0 and (1) is proved. (2) fol-

lows from Eq. (17).
Ad (3) By Lemma 2.29 we have

[v5] = [11+ 2[vol + [(2.0....,0.2)] + [(0.1,0,.... 1,0)] +[(0. 1,0, ..., 0,2)]
+[2.0,...,0,1,0)].
By computing the conformal dimensions of the descendants of v(z) using Eq. (16) we have

242n n - . 2n h _ 2n—2
K 0,1,...,0,2) = 1(2,0,...,1,0) = K 0.1,...,1,0) = n

ho,o...,02) =

By Eq. (8) we conclude that if k # n £ 2, n, then (vg, pp)=1and (3)is proved. O
2.6. Induced subfactors from simple current extensions

In this section we assume that the level k = n’n where n’ > 3, and n’ is an even integer
if n is even. This last condition comes from [41]. For'such level it is shown in §3 of [5] that
there is p, € End(M) such that [p,0,] = Zogign—l [w'] and p,p, is local. It also follows from

definitions that one can choose 0,0, = Zogign—l[gi] where [¢"] = [1] and [a,] = [ayg] (cf.

§6.1 of [24]). Also note that [a,,] = [1], Vi. The following is a consequence of Lemma 2.12 and
Proposition 2.9:

Lemma 2.34. There exists an orthonormal basis ), oL [al where col(u) = 0 mod n and the sum
is over all irreducible subsectors of a,, Y\, such that

Sy . s
(aa,b) = Z S_“¢{5M,t)¢l(7u,z) _

w,i,col(un)=0 mod n lu



F. Xu / Advances in Mathematics 220 (2009) 1317-1356 1335

The following follows from Corollary 4.9 of [24]:
Lemma 2.35.

(1) Let X be irreducible and suppose | is the smallest positive integer with [w'\] = [A]. Then
lax] = X <icrlxil where I'l =n and [g'x1g7' 1 = [x;], 1 <i <V, ] # [x;1if i # .
Similar statements hold true for a;;

2) (ar,au) #0iff [A] = [w/ ()] for some 1 < j < niff lay] = [ay]. Similar statements hold
true for a;, a,.

Later we will use the following analogue of Lemma 2.31:

Lemma 2.36. If ¢(vg, )e(A, vo) € C, then [A] = Zj @/ where the sum is over a finite set of
positive integers.

Proof. By Proposition 2.1 and Lemma 2.3 we have that (v, A1)e(A1, vy') € C for all m > 0,
A1 < A. By Lemma 2.3 again we have (i, A1)e(A1, n) € C for all u < vg', A1 < A. Since by
Lemma 2.29 any p with col(u) = 0 mod 7 is a subsector of v6” for some m > 0, we conclude
that (e, A1)e(A1, n) € C for all wu, col() =0 mod n, A1 < A. By the definition of S matrix we
have

[Spa | =daISpu1l, Y, col(w) =0 mod n.

Setting [a] = [b] = [1] in Lemma 2.34 we have

2 i JB)* 2
(a)L] s a}»] > = Z dkl(piu l)(p}li i) — dM .
,i,col(u)=0 mod n

By Lemma 2.35 we have
d}»] = <a)ul ’ a)\,])

and we conclude that d,, = 1, and in particular vA; is irreducible. The lemma now follows from
Lemma 2.30. O

The subfactors a; (M) C M are type IIl analogue of “orbifold subfactors” studied in [10]
and [41].

Lemma 2.37. If x < a;, X irreducible and d, = 1, then [A] = [0'],1<i<nand[x]=[1]

Proof. If [A] # [w'], Vi, then by Lemma 2.30 A4 > v, and by Lemma 2.33 we have a,a; > ay,.
Since x < a;, d, = 1, by Lemma 2.35 we conclude that dav0 =d,, = 1. This is impossible by
Lemma 2.33 and our assumption k =n'n,n’ > 3. O

Let (n/,n’, ..., n’) be the unique fixed representation under the action of Z,. By Lemma 2.35

law w...on) =Y bl [¢'br1g™ ] =1bi1], 0<i<n—1.
1<ign
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Definition 2.38. Denote u := (n' + 1,n’,n’/,...,n').
Note that by Lemma 2.35 a,, is irreducible.
Lemma 2.39.

(1) Syvy #0;
(2) Let A= (n,0,...,0). Then (ap,az) =0, and S, o #O0.

Proof. Ad (1) Since n[a,] = [a,b;], by Lemma 2.34

Suvo _ SUUO S(n/,...,n’)vo
Slv() nSlv() Slv()

Direct computation using Eq. (17) shows that _S;”O = 0. Note that by Eq. (18)
Y0

since col(v) = 1, hence

and this implies that S, )y, 7 0 and (1) is provgd. B
Ad (2) Since k = n'n > 3n, it follows that (w/ A, A) =0, V1 < j < n. By Lemma 2.35
(aa,az)=0.Since [ayaq ... )] =nla,], by Lemma 2.34 we have

nSuA _ Sva S, a
Sia Sia Sia

Hence to finish the proof we just have to check that Sy4 # 0,Su.. .4 # 0. Since
Chy(xX1,...,xp) = Zlgign xi, by Eq. (17) up to a nonzero constant S, 4 is equal to

exp(—2mi@2n—1)/(k+m)+ > exp(=2mij/(k+n)).
0<j<n—2

This sum is equal to 0 iff n = k = 2. Note that Ch o/ (x1, ..., X,) is a complete symmetric polyno-
mial of degree n. S, 4 # 0 now follows directly from Eq. (17) (cf. (2.7a) of [14] for more general
statement). O

The main theorem of this section is:

Theorem 2.40. The lattice of intermediate subfactors of a,(M) C M is My,,.
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The proof will be given in Section 4. Let us first show that the subfactor in Theorem 2.40
contains 2n incomparable intermediate subfactors. By fusion rule with v in Lemma 2.29 we
have

lau] =lavbi] = [biay], VI<i<n.
Therefore we can assume that
ay = Ujayb U = Vibija, V', 1<i<n,
where U;, V; are unitaries.
Proposition 2.41.

(1) As von Neumann algebras
Uiay(M)U! =Uja,(M)U7, V,-bi(M)Vl-"‘=ijj(M)V]?IF
iffi = j;

(2) Uiay(M)U} is not an intermediate subfactor in Vb (M) Vj* CcM;
(3) Vibj(M) Vj* is not an intermediate subfactor in Uja,(M)U} C M.

Proof. Ad (1): If Uja,(M)U} = Ujav(M)UJ’f‘, then U;a,(m)U} = U.,'av(H(m))U]’f, VmeM,
where 6 is an automorphism of M. By Frobenius reciprocity we have [0] < [aya;]. By
Lemma 2.37 we conclude that [#] = [1] and hence

Uiay(m)U = Ujay(U)a,(m)a,(U)*U;, VmeM,
for some unitary U € M. Hence
AdU,-avbi = AdeaU(U)avbi = Adeanj

and we conclude that [b;] =[b;], hence i = j. The second statement in (1) is proved similarly.
Ad (2): If Ujay(M)U} is an intermediate subfactor in ijj(M)V/?k C M, then Ady;bj =
Ady,a,C for some C € End(M), and it follows that [bjl;j] > [ayay] > [ay,]. Hence

{(avbj,avbj) =(b; bj,avav>>2

contradicting the irreducibility of [a,] = [ayb;].
Ad (3): If Vjb; (M)V* is an intermediate subfactor in U;a,(M)U; C M, then there is
" € End(M) such that [b iC'] = [ay]. Since [ayay] = [1] + [ay,] and a,, is irreducible by
Lemma 2.33, we must have [b; b i1 = lavay] and therefore dcv = 1. By Frobenius reciprocity
C' <[b jay], but [b jay] is irreducible since a,, is irreducible, a contradiction. O

Here we give a quick proof of Theorem 2.40 for n = 2 and k ## 10, 28 to illustrate some ideas
behind the proof. Suppose that M is an intermediate subfactor of a,, (M) C M. Since all factors
in this paper are isomorphic to hyperfinite type Il factor, we can find c1, ¢z € End(M) such
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that a, = c1c2 and ¢1 (M) = M. Let p = pgcy, and enumerate the basis of H,, by irreducible
sectors a. Note that ¢ must be of the form pgc with ¢ irreducible, and so d, > d,, = V2.
Consider the fusion graph associated with the action of v on H,,: the vertices of this graph are
irreducible sectors a, and vertices a and b are connected by (va, b) edges. By Lemma 2.12 this
graph is connected and has norm 2 cos(k”ﬁ), and hence it must be A — D — E graph (cf. Chapter 1

of [17]). Since k # 10, 28 it must be A or D graph. By Lemma 2.12 we have ), dg =

= =
S]l

! .Since dy > dp, = /2 are the entries of Perron—Frobenius eigenvector for the graph

s sin?(75)
(kstlzch eigéznvector is unique up to a positive scalar), compare with the eigenvectorsof A — D — E
graphs listed for example in Chapter 1 of [17]) we conclude that the graph is D graph and there
is a sector ¢ with d. =1 and ¢ < ay.c¢ for some u € A. We conclude that either [c1] = [a,c], or
[c1] = [bic], 1 <i < 2. In the former case [c2] = [¢~'ax] or [e2] = [¢7!b;], 1 < j < 2. Butif
[c2] = [c'a,] then [a,] = [a,ay] is irreducible, and by Lemma 2.30 [a,] = [a,] or [a,] =[1],
which implies that M| is either a, (M) or M. If [c2] = [c’]bj], 1 < j <2, then [a,] =[aub;]
and by computing the index and note that the colors of # and b; are 1 mod 2, 0 mod 2 respectively
we have a, = a,, and we conclude that M must be one of the intermediate subfactors given in
Proposition 2.41. The case of [c1] = [bic], 1 <i < 2 is treated similarly. By Proposition 2.41 we
have proved Theorem 2.40 for n = 2, k # 10, 28. The same idea as presented above can be used
to give a complete list of all intermediate subfactors of Goodman—Harpe—Jones subfactors. We
hope to discuss this and related problems elsewhere.

3. Centrality of a class of intertwiners and its consequences

We preserve the setup of Section 2.5.

Assume that pp € A 4. We will investigate a class of inductions which are motivated by
finding a proof of Theorem 2.40.

In this section we assume that [a,] = [hay], [A"*] = [1], ay, is irreducible, and if u < v(z),
1 <ay, then [u] =[1].

Choose a unitary 7 € Hom(ay, hay,). Such T is unique up to scalar since a, is irreducible.
By Lemma 2.13 we have [ha,] = [ayh]. Choose a unitary T} € Hom(ayh, ha,). Note that T} is
unique up to scalar since ha,, is irreducible.

Definition 3.1. Denote U, := Ta,(T)ay(T)...ay~"(T) € Hom(a}}, (ha,)").
Denote T; := T1a,(Ty) ...a,~'(Ty) e Hom(a' h, hal), 1 <i <n—1.
Choose T’ € Hom(h", 1) (T’ is unique up to scalar).

Definition 3.2. Set w = v" and define uy = T'hW" N (T—)h" 2(Tp—s)...h(T))U, €

n ~n
Hom(ay, ay).

For example when n = 3, u,, = T'h*(T1)h*(@y(T1))h(T1)Ta,(T)a2(T). The reader is en-
couraged to give a diagrammatic representation of u,, as in [42].

Lemma 3.3. Suppose that x, y are sectors such that

K= D [l D= ) il dy <dy, dy <dy,

1<i<m 1<i<m
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ifi < j, and x;,y; are irreducible. Let T, ; € Hom(x;, x), Ty ; € Hom(y;, y),i =1,...,m be
isometries.
If U € Hom(x, y) is unitary then UTX,,-TX*J.U* = Ty,iT;‘i,i =1,...,m.

Proof. By assumption Hom(x, x), Hom(y, y) are finite dimensional abelian algebras, and so for
each 1 <i <m we have UTX,,-Txfl.U* = Ty,jTyfj for some j.
By Eq. (1) we have
d)f¢y(UTx,i TX*J U*) = dx¢x (Tx,i Tx*,i) = dx,- .

Hence dy; =d,;. By assumption it follows thati = j, 1 <i <m. O

Lemma 34. Let U € Hom(a2h/,hia2),i,j > 0 be a unitary. Then h'(p(e(v,v))U
Up(e(v, v)).

Proof. Since ay, is irreducible, we have {(a,ay, ayay) = (ayay, aya,) = 2. We note that [aya,] =

dagy 9.,...0) Sin(%) ;
lac.o....0] + [a©,1.0..0] and === = 0= > | and so the assumption of Lemma 3.3

4(2,0,...,0) sin()
is verified. Denote by P;, P> € Hom(v?2, v?) the two different minimal projections correspond-
ing to (2,0,...,0),(0,1,...,0) respectively. Note that p(P;), hi(,5(P1)), [ =1, 2, are minimal
projections in Hom(alz)hj ,afh-/ ), Hom(h‘fzf, h’fl%) respectively and by Lemma 3.3 we have
U*h' (p(P))U = p(P)), 1 =1,2.

Assume that e (v, v) = z1 P; + z2 P> where z1, 72 € C (cf. Lemma 3.1.1 in [44] for explicit for-
mulas for z1, z2). Then A (5(e(v, v))) = 21K (5(P1)) + z2h' (H(P2)) and the lemma follows. O

Lemma 3.5. i (5(¢(v, v)))uy = uyal (p(e(v,v)), 0<i <n—2.
Proof. By Definition 3.2 we can write u,, = V|V, V5 where
Vi=d"2(V3), Va=h"""3(T,—i—3)...h*(T))h(Ty) € Hom(al 2, h" 71~ 2a)—172).
Vy=ai(Va), Va=h""""NTy)...h*(T)h(T1)Tay(T) € Hom(aZh" "2, h"~'a?l)
and

Vi=T'R""NT) . R (TR (T 2 (Tim0) . h(T) Tay(T) ...y (T)
€ Hom(aih"ii, a )
Although the complicated but explicit formulas of V|, V5, V3 are given above, we only use
their intertwining properties in what follows.
Hence
a (p(e(v, v)))uw =a (5(ev, v))) Viai (Va)al 2 (Vs)

= V{ai (h" 7 (p(e(v, v))) V2)ait?(V3)
= l’af)(Vzﬁ(e(v, v)))af')+2(V3)
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= V{ai (V))al (5 (e(v, v))aZ(V3))
= V{al,(V2)ait*(V3)al (5((v, v)))
= uwaf)(,é(a(v, v)))

where in the third = we have used Lemma 3.4. O

Lemma 3.6. a ' (5(e (v, v))utyaw (Uw) = yaw (Uy)ar =" (5(e(v, v))).

Proof. By Definition 3.2 we can write uyay (uy) = W{ W, W; where W; = a™t(wy), W3 =
W=2(Ty2) .. . h(T)WT) Tay(T) ...al~>(T) € Hom(a!~ ', n"~1ar=ly, W} = a'~'(Wy),
Wy = TT'h""N(T1)...h(T1)ay(T) € Hom(a2h"~', ha2) and W] = T'h"~N(T,)h""2(Ty—2) . ..
h(T)Tay(T)...a""*(T) € Hom(a""'h,a"~1).

As in the proof of Lemma 3.5, even though explicit formulas of W2, W3, W] are given as
above, what we need in the following is their intertwining properties.

Hence

a1 (5 (e (v, V) ) uway (uy) = a2 (5 (e (v, ) ) Wial~ (Wa)a ! (W3)
= Wiay ™ (h(p(e(v. v))) Wa)ay ' (W3)
= W;a;j—l(wz)a,';—l (5(e(v, v))a(W3))
= Wial ' (Woat (Wy)al ! (p(e(v, v)))
= U@y (Uy)al (5 (e (v, v)))
where in the third = we have used Lemma 3.4. O

Definition 3.7. For each integer m > 1, uym 1= uyay (Uy) .. 1(uw) € Hom(aym, aym).

Theorem 3.8. Let m > 1 be any integer and R € Hom(w™, w™). Then
P(R)uym = uymp(R).

Proof. By Lemma 2.32 it is sufficient to prove the theorem for R = v’”/(ﬁ(a(v, V), 1 <m’ <
m — 1. When nny <m’ <n(n; + 1), n1 € Z we can write

U@y () ... a™ N uy) = Ula®) () U,

where U] € Hom(ay,!, ai'), Uj e aZ,“Ll (M) and the theorem follows from Lemma 3.5. Similarly

when m’ =nny, n; € Z we can write
UGy (Uy) . ..a m l(uw)_ U// nl ](uwaw(uw))Ué/
with U{" € Hom(ay)' ~ Uam=h, Uj e a2 (M) and the theorem follows from Lemma 3.6. [

Lemma 3.9. Suppose that . < w™ are irreducible and let t,, ; € Hom(u, w™), m > 1 be a set of
isometries such that Z i tM,,tW = 1. Then
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(1) For each fixed p, p(ty,;) uym p(ty,;) € Hom(ay, a,) is independent of choices of t,, ;;
2) p(tu,i) uywn p(ty,i) € Hom(ay, a,) is unitary.

Proof. (1) follows immediately from Theorem 3.8. To prove (2), note that for each fixed pu, i

U= 5t ) wum p(ta, At ) Wi Pt i) = P i) U ()P (ty0,i) W B (E10,0)
A

where in the second = we have used Theorem 3.8. Similarly
1= ﬁ(tu,i)*uz)m ﬁ(tu,i)ﬁ(tu,i)*uwmﬁ(tu,i)
and the proposition is proved. O

The unitary in (2) of Proposition 3.9 will be denoted by u,, (it may depend on m) in the
following.

Definition 3.10. Let u € A 4 and b € H, be irreducible. Define
3" = Stidpdi (e (bf. w)b(uw)e(w, bp))., b€ Hp.
Lemma 3.11. Let m > 1 t, ; be as in Proposition 3.9. Then

(i) |-

1
- Sh

(wm, 1), Vm > 1.

Proof.

( ) — 41 (b5, w"Yb(atum)e (w" b5))

= Z duou (t;:’is(b, wm)b(uwm)e(wm, bﬁ)tu,,')

i

=Zdu¢u (b, 1Wb(p (i) uwn p(t.i))e(iL, bp))
—Z 1w )y (e (b, e, bp))

where we have used definition of minimal left inverse in the first =, Eq. (1) in the second =,
Proposition 2.1 in the third =, and Lemma 3.9 in the last =.
It follows that

w(w) ” _ _
> d; (dbsll) = (. w")dyd iy (e(bp, upe(p. bp))

b b,
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Z w")dy Y dydpdy (B b, )e (. bP))

b

=Y did1 )1, w™)

b

where we have used Lemma 2.23 in the third =. Since #; € Hom(1, 1) is unitary by Proposi-
tion 3.9, |¢1 (u1)| = 1 and we have proved that

w(w)
dj
Z <dbS11>

b

1
-2
St

<wm, 1>.

(w)
Proposition 3.12. There is a sector ¢ € H, such that Idg‘l | | =d.dy.
Proof. By Lemma 3.11 we have

,(p(w)
d
Z (dbSn)

b

1
= S—lzl(wm, 1), Vm>1

By repeatedly using Verlinde formula we have

= (2)”
' Slz,u Sl//,

m

By Lemma 2.31, when m goes to infinity, the leading order of |}, db( )m| must be nd)).

dpS11

Note that by Lemma 2.23 |(1,,le.| <dy.
d.d,. O

Choose m =1 and let #,, ; be isometries as in Lemma 3.9.

Definition 3.13. Assume that u € A 4 and [b] € H,, is irreducible. Define

St

1= dpd (6P, Wb (D10, 0w b (1,1)) (1, bP))).

Note that by Lemma 3.9 ¥\ is independent of the choice of i.

Corollary 3.14. Assume that [a,] = [hay], [1"] = [1], ay, is irreducible, and if < v%, 1 <ay,
)
then [1] = [ Ve | = d.d;, Y, col(A) =0 modn and [c¢] =

(
- Sl
i) - ..
) lgizgﬁ[w ] where i1 is a divisor of n.
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Proof. Choose m =1 and let ¢, ; be isometries as in Lemma 3.9. By Eq. (1) we have

(w) (1)
C c

=D (wow) .
S11 m St

By Lemma 2.23 we have

’w(#)

<ded,.

By Proposition 3.12 we conclude that

I/f(l/«)
St

=d.d,, Yu=<w.

In particular |'/’§(:J?) | = dcdy,. By Lemma 2.23 we know that ), w;”")*[b] is a nonzero eigen-
vector of the action of [A] on H,. Since (ay,, ay,) = 1, by Proposition 2.19 we must have
Iﬂ(v") = Z¢[SU0) for some constant z independent of b. Since [vp] = [vo], D, qbl(;UO)b is also an
eigenvector of the action of [A] with eigenvalue < S0 it follows that qb(vO) z’¢,§v°) , for some

constant |z'| = 1 independent of b. Hence

Z w(UO) Z ¢(U0)¢(UO) 22

b

By (3) of Lemma 2.23 and our assumption we conclude that |z| = 1, and so by Lemma 2.12 we
have

(vo) |2 (vo) |2 S
dL2 1# c <C5 ,U«> 7N
Slvo Slv() SlUO
Suy Sy
Since Sty < dy, we must have =dy, Yu <cc.

By Lemma 2.36 we conclude that if uw < cc, then u = o' for some 1 <i <n. Letl<
i1 < n be the smallest positive integer such that [@''c] = [c]. Then it is clear that [cc] =
Zlgizgﬁ [@'2"1] where i; is a divisorof n. O

4. Proof of Theorem 2.40

In this section we preserve the setting of Section 2.6. Let ¢, ¢2 € End(M) such that a, = cjca,
c1(M) =My, My # a,(M), M. By Proposition 2.41 to prove Theorem 2.40 it is enough to show
that M is one of the intermediate subfactors in Proposition 2.41.
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4.1. Local consideration

Suppose c is a sector such that c¢c < ap ” where (€ A 4 is a direct sum of irreducible sectors
with colors divisible by n. Recall from Sectlon 2.6 that if A = 0 mod n, then [ax"] = [af"] and
we can apply induction of a;” with respect to c. The following lemma is proved by a translation
of the proof of (3) of Lemma 3.3 in [43] into our setting:

Lemma 4.1. [f 1 = 0 mod n, then [a‘,,] = [a}“].
s

By Proposition 2.24 we have ¢ = ¢|c/. Let ¢, = ¢{ ¢ so that g, = ¢|¢}. Consider induction

with respect to p,c].
We have

Lemma 4.2. [¢|¢}]=[1].
Proof. Applying Lemma 2.12 to a = poc), b = poc) we have

¢()L l)¢()t Ji)*

- Sua _ Sva <2nicol(k)) S
’J v v

Y == (pocichipo. v) o= =D (upopo, v) = Y exp| ——— )=
s2, > (Pocics )Su ” St . P n Sin

i
Choosing A = vy and using Lemma 2.39 we have

A0, (AD*
> + #0.
i 1A
Hence by Lemma 2.20 we obtain (afg i aﬁgcl) 1. Forany u € A 4, since poc’ ¢} po < PoluiPo
and each irreducible sector of [p,a,i00] = [Popouit] has color divisible by n, it follows that if
col(p) # 0 mod n, then (i, poc ¢} po) = 0. On the other hand if col() = 0 mod n, by Lemma 4.1
and Proposition 2.9 we have

(a5 1) = g €481) = e poch ).

By (1) of Proposition 2.24 it follows that ;ogc1 is local.

By Lemma 2.33 we have [au0 l] = [~p0 1] and by Lemmas 2.25 and 2.36 we conclude that

[pocC’ clp,) =y j [w’] where the sum is over a finite set of positive integers. Since ,ooc/1 is irre-
ducible and [pgpp] = Zlgjgn [w/] we conclude that [poc) ) pol = Zlgjgn[wj]' Hence dc’l =1
and [cjci]=[1]. O

By Proposition 2.24 we have proved

Corollary 4.3. If A € A 4 is irreducible, then (1, ax"c') >liffa= o, 1<i<n.
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4.2. Verifying assumptions of Corollary 3.14

Set p = pocy and all inductions in the rest of this section are with respect to p.

Lemma 4.4. a;_is irreducible for all irreducible descendants of v*v%, vi°.

Proof. By Lemma 2.29 and Proposition 2.9 we have for n > 3

laviavs] =2[1] + 4lav] + [a@,0,...02] + [a©,1.0.....1.0] + [a@,1,0....02] + [a....0,1,0]
Note that by Corollary 4.3 we have

<a)\,1 au) = (17 axu> > 2

iff [w/ (A)] = [u] for some 1 < j <n — 1. It is easy to check with the explicit formulas above
that ay, is irreducible for all irreducible descendants of v, n = 2 case is simpler, and similarly
one can check directly that a;, is irreducible for all irreducible descendants of vvv>. O
Lemma 4.5. For all A with col(A) =0, [ay] = [ay].
Proof. By (2) of Proposition 2.19 and Theorem 2.1 of [13] all Z;,, with Z;; #0iff A = o',
1 <i < n are classified. Using Corollary 4.3, it follows by inspection of Theorem 2.1 of [13]
that for all A with col(A) =0, Zy, = (ax,ax) # 0 or Zy, = (a3, a,) # 0, VA. In the lat-
ter case by Proposition 2.19 we conclude that A appears in Exp iff (ay,a;) # 0. Choose
A=(m,0,...,0) = A as in Lemma 2.39. It follows from Lemma 2.39 and Corollary 2.20 that
A € Exp, but {(au,as) =0, contradiction. Hence (a,, a;) # 0, VA, col(A) = 0 mod n, and by

Lemma 2.35 we conclude that for all A with col(A) =0, [ax] =[a,]. O

Lemma 4.6. Suppose that x; < ay;ay,,i = 1,2 and x1x3 is a direct sum of a, with a,, irreducible.
Then [x1x2] = [x2x1].

Proof. By assumption it is enough to check that
(x1x2, ay) = (x2x1, av).
By Lemma 2.13 we have [a,x2] = [x2a,], together with Frobenius reciprocity we obtain
(x1x2, ay) = (x1, avX2) = (x1, X2av) = (x2x1,ay). O
Proposition 4.7. There exists h € End(M) such that [ay] = [hay], [F"] =[1].
Proof. First suppose that there is no automorphism # such that [a,] = [ha,] or [a;] = [hay]. By
Lemma 4.5 [aya;] = [ayas] = [1]4 [ay,]. By Lemma 2.33 a,, is irreducible, it follows that there

are sectors x;, y; with dy; > 1, dy, > 1 such that

lavay] = [x1] + [x2], [agay] = [y1] + [y2].
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We compute
lavavas] = [x1a5] + [x2a5] = [avavas] = 2[ay] + [a,0,....0,0] + [a,1,0,....0,1)]

where we have used Lemma. 4.5 in the second =. By assumption d,;, > 1, i =1, 2, we have
Xiag > ay, but [x;a;] # [ay], i = 1, 2. Hence we can assume that

[x1a5] = [ay] + [ae,o.,...0.0], [x2a5] = lay] + [a(,1,0,....0,n) ]
Hence
(agx;, agx;) = (xiap, x;ap) = (X, X;apy) = (X;, X;iAgy) =2

where we have used Lemma 2.13 in the first = and Lemma. 4.5 in the third =. We can assume
that

lagxi] =[ay] +[u;], i=1,2,
where u;, i = 1,2, is irreducible and we may have [u1] = [u2]. Note that [azx1] + [a;x2] =
layy1] + [avy2] = [asavay].
The same argument applies to y;, i = 1, 2, and we may choose y; such that
lagxi]l =layyi]l, i=1,2.
Consider now
[ags] = [x131] + [x2%2] + [x1%2] + [x2%1]
=2[1] +4[ay,] + [ae,0,....0,2] + [a@,1,0,....,1,00] + [a(,1,0,....,0,2] + [a2,0.,...0,1,0)]-
Note that x;X; > ayg, and [x;X;] = [x;x;] by Lemmas 4.4 and 4.6. Hence
(x2X1, X2X1) = (xX2X2, X1X1) = 2.
By computing the index of sectors we conclude that
[x1x1] = [avs] + [a2,0....,0,2)]. [x1X2] = [ay,] + [ac,1,...,0,2)],
[x2x2] = [avs] + [a(o,1,0...,1,0], [x2x1] = [ay,] + [a@.0,...0,1,0]-
Similarly we obtain
iyl =lavs] +ao.,...02)] [y1y2] = [aw,] + [ac,1.....02)],
[v232] = lavs] + [a(,1,0,...,1,0], [v2y1] = lay, ] + lae,o.,...0,1,0)]-

Next compute

lapavs] = lasavasas] = [yiX1] + [yiX2] + [y2x1] + [y2x%2].
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Note that
(y231, x2X1) = (X2y2, X131) =2,
2 = (apx;, avy;) = (a5 yi%i)
and
(yiXi, yiXi) = (yiyi, xiXi) =3,
(y1%2, y1X2) = (y1y2, X2X2) =2
where we have also used Lemma 4.6. From these equations we conclude that
yix1] = [az] + laqo....0.3]
or
[yixi]= [ag] + [aq,0,...,0,1,0,0]-
From [a;x1] = [a,y1] we obtain
[asx1x1] = [ayy1X1]-
Using the formulas for x1x1, y;X; we obtain
[asap,o....02)] = lavaq,o.,...,0,1,0,0)]
or
lasae,o,....02] = lavaq,o,...0,3)]
Both identities are incompatible with Lemmas 2.29 and 4.5.

Therefore there is an automorphism % such that [a,] = [hay] or [a;] = [ha,]. Hence A" <
[agnay] = [agnayn] or h" < [ayrayn] = [ayray] by Lemma 4.5. Assume that A" < a, for
some u, col() = 0 mod n. Since p = poci, by Lemma 4.1 there is a sector x of aﬁo such
that [ay'] = [1"]. Since d, = 1, by Lemma 2.37 we conclude that [x]= [1] and [A"] =[1].

If [a3] = [hay], use [A"] = [1] we have [a,n] = [ag»]. Hence w’ (1,0, ...,0) < 0" for some
1 < j < n which is incompatible with fusion rules in Lemma 2.29 since k =n'n >3n. 0O
4.3. Properties of sectors related to ay

Lemma 4.8. If ¢ (0!, Me(h, o) = 1, then n|l col(X).

Proof. By monodromy equation (@, Neh, o) = exp( W) and the lemma follows. O
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Lemma 4.9. If [vA] = Y ¢, 1[0V w] where kil} = n, [0/'w] = [o/"w] iff j =
j mod ky, and Z]gignfl Ai <k—1.Then A= (0,...,0,k/k1,0,...,0,k/ky,...,0) where
©,...,0,k/ky) (with l1 — 1 O’s) appears ki — 1 times, and the last Iy — 1 entries are Q’s, and
col(A) =0 mod n.

Proof. Since [wllk] = [A], in the components of A, (Ag, ..., A;,—1) appears k; times. By assump-
tion vA is a sum of k; distinct irreducible subsectors, it follows from Lemma 2.29 that A has only
k1 nonzero components. Since Ag # 0, and col(X) = w, the lemma follows. O

Proposition 4.10. If [a,] = [x1y1], 1 < d\, < d, where x1 < a;,, ¥1 < ay,, then either [x1] =
lav], yil =[bi] or [y1]l = lav], [x1]1=[b:i], 1 <i <n.

Proof. By using the action of w if necessary, we may assume that the zero-th components of
A1, Ap are positive. By Lemma 2.35 we can assume that

[, ]= ) [l [o"u]=) [gagT] =l 0<i<ki—1, kili=n,
1<i<k

[a,]= Y il [0n]=0al,  [gxg =], 0<i<ki—1, khh=n.
1<i<ky

Since a, < ay,5,, col(A1) + coli = col(u) = 1 mod n. By Lemma 4.8 k;|col(A;), i =1,2.
Hence (ki, k) = 1.

Since x1y1, ay, are irreducible, we may assume that (X1x1, a,,) =0, i.e., ayx] is irreducible.
Let w < vAj. Since @''[A1] = [M], @''w < vA;. Let 1 |k1 be the least positive integer such that
[w1w] = [w]. By Lemma 4.8 n|lit; col(w). But col(w) = 1 4+ colA; mod n with k1| col(Aq).
‘We conclude that #{ = k; and

wal< > [oVu].

0<j<ki—1

Since ay < ayy, = Zlg,/’gkl [ayx;] and each ayx; is irreducible, d,,, = dy, = dydy, = dydy, /.
Hence

wal= Y [o"w]

0<j <k —1

By Lemma 4.9 we have col(A1) = 0 mod n. Hence col(A2) = 1 mod n and kp = 1. If [{ = 1, then
rM=@,...,n),and dy, = d,. By proposition on p. 10 of [15] A, must be in the orbit of v or v
under the action of w. But col(A;) = 1 mod n, so [a;,] = [a,] and proposition is proved. In the
following we assume that /1 > 2 to reach a contradiction.

Note that [ay,x,] = ki1[a,], hence [A1A2] = Zogigkl—l[wlli“]- By Lemma 2.30 k1 > 2. We
have

(M2, MiA2) = ki = 1+ (AiAr, vo) (kaha, vo) = 1+ (k1 — 1) {A2h2, vo).

Hence (vAo, viy) = 2.
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On the other hand since n = kjl; > 4, by Lemma 2.29 we have ()»1):1, 0,1,0,...,0)(0,0,
., 1,0) >k +1,[(0,1,0,...,0)00,0,...,1,0)] =[vv] +[(0,1,0,...,0,1,0)] and we con-
clude that

(MA1,(0,1,0,...,0,1,0)) > 1.
We must have
((0,1,0,...,0)42, (0, 1,0, ..., 0)A2) = 2.

Hence by Lemma 2.29 Ay = (m,0,...,0) or .o = (0,...,0,m).
Note that [(2,0,...,0)]+[(0,1,0,...,0)] =[v3]. If m > 1 then by fusion rules

[(2.0,...,0)(0,0,....2)] =[] +[(2.0,....,2)].  ((2,0,...,0042,(2,0,...0)x2) =3.

We obtain ((2, 0, ...,2),)\2):2) = 1. Similarly we obtain that ((2,0, . ..,2),)\1)_»1) > 1, hence
(MA2, AMA2) = k1 > k1 + 1, a contradiction. Therefore A» = v or v. But col(A;) = 1 mod n we
have A, = v.

From [Av] = [MA2] = Zogigkﬁl[wlli”] and Lemma 4.9 we conclude that A1 = (n/, n’,
...,n"). Hence I} = 1 contradicting our assumption /] > 1. O

4.4. The proof of Theorem 2.40

By Lemma 2.33, Corollary 4.3 and Proposition 4.7, the assumptions of Corollary 3.14 are
verified. We can find p,c € H,, as in Corollary 3.14. Since [0,00] = Zlgign[wl]’ it follows that
d. =1, and we conclude that p,c; < Ap,c for some A, and by Proposition 2.9 we have

1 <{poC1, Pos.C) = (C1, PoPoAC) = (C1, 2P0 PoC).

It follows that ¢; < ayg’c for some 1 <i < n. Since c1(g'c) (M) = c1(M) as a set, replacing ¢
by cl((gr‘b)_1 if necessary, we may assume that [gic] =[1], and ¢; < ay. Since a, = cjc it
follows that ¢» < a, for some w. By Proposition 4.10 we conclude that [c1] = [ay], [c2] =
[b;1, or [c1] = [b;], [c2] = [av], 1 <i < n. Assume first that ¢; = Ua,U*, ¢; = U'b;U’* with
U, U’ unitary. Then we have a, = adyq,wavb; = ady,ayb;. Since a,b; is irreducible we have
UaU(U’)Ui* € C, and this implies that the intermediate subfactor c| (M) = ady,a, (M), i.e., it is
one of the subfactors in Proposition 2.41. The case when [c1] = [b;], [c2] = [ay] 1 < i < nis
treated similarly. By Proposition 2.41 Theorem 2.40 is proved.

5. Related issues
5.1. Centrality of a class of intertwiners

We preserve the general setup of Section 2.3. If p = uc, u € Ay, d. =1 it follows from
Definition 2.7 that [a;] = [d@,] = [¢~'Ac], VA, hence Zyy, = 0).,,- Motivated by our proof of

Theorem 2.40 we make the following:

Conjecture 5.1. If Z;, =6 »,, then p = puc, p € Ay, de = 1.
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We will prove that Conjecture 5.1 is equivalent to the centrality of a class of intertwiners.
Assume that Zj,, = 6, ,,. Then for each irreducible A there is (up to scalar) a unique unitary
Uy € Hom(a;” El)\).

Similar to Definition 3.7 we define:

Definition 5.2. Upidg..hy = Up Ay (“)\2) B RV T S (M)L”) S Hom(a)\lkz,,,;\m s &)\1)\2~~-)\m)’

If p=pc, u € Ay, d. =1, then it follows from definition (2.7) that we can choose u;, such
that u;, = ¢~ (§(A, )&(f1, A)). Using BFE in Proposition 2.1 we have

Wipgodn =€ (EG122 Doy WE(L 1122 ) € HOM(@2 5.0 00 @y )
Hom(aklkz..,)\m ’ a)»])\z...)nm) = C_l (Hom(ﬁ)\'l)‘-z e )\m’ /:(/)‘-1)‘-2 e )\m))
By using BFE in Proposition 2.1 again we have proved the following:

Lemma 53. If p = uc, u € Ay, d. = 1, then “M)\z---)»mT”;tlxzmxm =T, VT €
Hom(ay 3,2, @135 0)-

Using u; we define:

Definition 5.4. For any irreducible [b] € Hy, A € A 4,

U = Siidpds i (e (b, Mb(us)e (. bp)).

Lemma 5.5. For any irreducible [b] € H), w()‘) =c qb()‘) [cics| =1 where ¢, are complex
numbers independent of b.

Proof. Since by Lemma 2.23 ", 1//()\) [b] is an eigenvector of the action of p with eigenvalue
Sur
S’

there is a complex number ¢, independent of b such that w(’\) c ¢O‘) Vb. Similarly smce

and by Proposition 2.19 there is up to scalar a unique such eigenvector, it follows that

S
>ob d)()‘) [b] is an orthogonal elgenvector of the action of w with eigenvalue <=, we have q’)

o, Ic)| = 1. Vb. We have ¢ = c5¢,¢™". Vb, |c|| = 1. By Lemma 2.23 >, w;w;“
has absolute value 1, and it follows that [c,c;| =1. O

The following lemma is proved in the same way as Lemma 3.9:
Lemma 5.6. If u;,,,,.. 5, is central, then for fixed , if t, € Hom(u, LAz ... Ay) is an isometry,
then p(t)* Uy 5y.. 0, P(t) € Hom(ay, a,) is a unitary independent of the choice of t,,, and is a

scalar multiple of u,.

Proposition 5.7. Conjecture 5.1 is equivalent to the following statement: if Z,, = 8y »,, then
Uj 1oy 1S central forall Ly, ..., Ay, Ym.
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Proof. Suppose that Conjecture 5.1 is true. Then it follows from Lemma 5.3 that if Z;;, =6, 5,,
then uy,z,.., 1s central for all Aq,...,A,,, Vm. Suppose now that u,,,,. 5, is central for all
Als..., Ay, Ym. As in the proof of Lemma 3.11 by using centrality uy,3,...1,, We calculate

m

(A1) . (A2) (Am)
L/ 1/f Z
(s A

. = Am)dy @ lebp, Wb, )e(w, bp))c
o I/,151) b L B " )eu

where |c,| = 1. Hence using Lemma 2.23 as in the proof of Lemma 3.11 we have

A A Aom
zllf( ) 1/f( 2) l/f( ) Sain Saon Simn 1
D=ty | = (k) Zdb— S s s i
b v v, 1 S A
Now choose m = 2m; and Ajym, = Aj, 1 <i < my, summing over A, ..., Ay, and using

Lemma 5.5 we obtain

*[
<3

>

- m—2"

PR

Letting m = 2m1 go to infinity and noticing that d, > 1 we conclude that there must exist a

sector ¢ such thatd. =1 and p = uc forsome p € Ay. O

For each irreducible 2 € A4 we choose R; 3 so that RY; R;; = dy, A(RS,)R;; = 1. These
operators are unique up to scalars.

Lemma 5.8.

(1) We can choose u), such that
/S(R:x)”;\i = /S(R;x)’ u.0(R;5) = p(Ry35), VA

(2) The relative braiding as defined in Lemma 2.15 among a,’s (resp. a,.’s) is a braiding and
ean, ap) = €@y, ap) = pe(r, n), VA, € Ag.

Proof. Ad (1): Note that 'E(R:X)” s 1s equal to '6(R:X) up to a constant of absolute value 1,
hence we can choose to multiply uy, u; by suitable constants of absolute value 1 so that

P(R)uss = B(R}3).
If
u 5 0(Ry5) = cnp(Ry3), VA,

multipling both sides on the left by o(R,;)* we conclude that ¢; =1, VA.
Ad (2): The relative braidings are braidings since [, ] = [a;] by assumption and Lemma 2.15.
By definition we have

e(@, a) = s p(e 0 10))a () = iy p(eGho ) = p(e G, )
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where we have used Lemma 2.17 in the second = since u,, € Hom(a,, a,) C Hom(pu, pp).
The other case is proved similarly. O

Definition 5.9. An operator is a cap (resp. cup) operator if it is (R, ;) (resp. n(R,3)*) for some
W, A € Ay. It is a braiding operator if it is u(e(A, v)) or w(€(A, v)) for some v, u, A € A 4.

Definition 5.10. Denote by By, 3,..5, the subspace of Hom(A A2 ... Ay, A1A2 ... Ay) Which is
linearly spanned by operators in Hom(A A2 ... A, A{A2 ... Ay) consisting of products of only
caps, cups and braiding operators.

Proposition 5.11. For any T € p(Bj p,..0)> Uny.om T = Tup, .5,

m m*

Proof. It is enough to check for an operator T which consists of products of only caps, cups and
braiding operators. Note that the statement of proposition is independent of choices of u;, and
we can choose our u;, so that they verify (1) of Lemma 5.8. It is useful to think of 7' as an tangle
connecting top m strings labeled by a5, ..., a,,, to the bottom m strings labeled by aj,, ..., ay,,
as in Chapter 2 of [37], where in the tangle only cups, caps and braidings are allowed. Then by
Proposition 2.1, uTu* will be represented by the same tangle, except the top and bottom m strings
are now labeled by a;,,, ..., a,,,. For each closed string in u7u* labeled by a,,, by inserting u,,
we can change the label a, to g, using Proposition 2.1 without changing the operator since we
have a closed string. Therefore uTu* is represented by the same tangle 7' with all labels changed
from the original labels a, of T to a,. Since T consists of products of only caps, cups and
braiding operators, proposition follows from Lemma 5.8. O

Conjecture 5.12. B; 3, 5,, = HomA Ao ... Ay, MAo oo Am), YA, Ay, m 2> 1.
By Propositions 5.11 and 5.7 we have proved the following:
Proposition 5.13. Conjecture 5.12 implies Conjecture 5.1 .

By examining the proof of Proposition 5.7, we can formulate a weaker version of Conjec-
ture 5.12.

Definition 5.14. We say that X is a generator for A 4 if for any irreducible p € A 4, there is a
positive integer m such that p < A™.

Conjecture 5.15. For some generator A of A 5, Byy..; = Hom(A™, A™), Ym > 1, where m is the
number of A that appears in the definition of B ;.

Lemma 5.16. Assume that ) is a generator for A 5. Then the set {[] | |%‘j| =d,} is a finite

abelian group.

Proof. Note that by definition |§T: | = d,, implies that e(u, A)e(A, u) € C. By Proposition 2.1

this implies that e(u, A1)e(A1, ) € Cif Ay <A™, m > 1. Since A a generator, it follows that
Sy

e(u, r)e(r, n) € C, YA € Ay4. Hence |S1~ | =d,, YA1 € A 4. By properties of S matrix
A
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this implies that d,, = 1. On the other hand if d,, = 1 then | Siy 2| = d, since A is irreducible. It

follows that the set {[u] | |5 SM | =

d,} is a finite abelian group. O
Proposition 5.17. Conjecture 5.15 implies Conjecture 5.1.

Proof. Assume Conjecture 5.15 is true. Then by Proposition 5.11 we know that u» is central.
As in the proof of Proposition 5.7, replacing A; by X in the summation we have

(A)\ m 5 S5, m )
Z a _Z w
< (1)> 4| = <S1,u) Slu
a "

a
Choose m to be divisible by the order of the finite abelian group in Lemma 5.16 and let m go
to infinity, the RHS of the above equation has leading order (up to multiplication by a positive

)
number) d}”. It follows that there is a sector ¢ such that |%| =d,. Forany u < A1, Using

! o
( <1>>:Z( wm

the centrality of u,; we have

n
where |c,| = 1. So we have ZM<}J | i | dl Since | iy | d,, and Z (e, A1 Yy, = d', we
conclude that |Tl>| =d,, Yu < AL, Since A is a generator, we conclude that |ﬁ| =dy, Y.
By Lemma 5.5 we conclude that |¢ ™ |2 = d2 Summing over u on both sides we conclude that

d. =1, and the proposition is proved a

By Proposition 5.17 and Lemma 2.32 we have proved the following:
Corollary 5.18. Conjecture 5.1 is true for A 4 where A is the net associated with SU(n)y.
5.2. Maximal subfactors

In this section we give an application of Corollary 5.18.
The following notion is due to V.ER. Jones:

Definition 5.19. A subfactor N C M is called maximal if M; is a von Neumann algebra such
that N C M1 C M implies My =M or M = N.

We preserve the setting of Section 2.5. We will say that A is maximal if A(M) C M is a
maximal subfactor.

Lemma 5.20. Suppose Z1;. = 81x, Z i = 1. Then Zy,, = ;.

Proof. By Proposition 3.2 of [9], from Z;; = 81, we have [a,] = [a;)] where A — T(}) is
an automorphism of fusion ring. Such automorphisms are classified in [15]. By the theorem in
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Section 2 of [15] there is an integer 0 < i <n — 1 such that t(}) = @/ xort(A) = w /X (exact
formulas for j are given in [15] but we will not use them). From Z ;,; = 1 we conclude that
either j +i =i modn, Vi or —j —i =i mod n, Vi, and hence T(A) = A, VA. O

Proposition 5.21. If Sy). # 0, then A is maximal.

Proof. Let M| be an intermediate subfactor between A(M) and M. Suppose that A = ¢c2 and
c) =cjcf asin Proposition 2.24. Since Sy, ;é 0, applying Lemmas 2.20 and 2.25 to induction
with respect to cl, we conclude that (v, clc1 )e(c cl, v) € C. By Lemma 2.31 we conclude that
[¢}¢}] = [1]. By Proposition 2.24 we must have Z)L1 = 8;1. Since S, 7 0, by Lemma 2.20
we conclude that Zw i = 1. By Lemma 5.20 and Proposition 5.18 we conclude that ¢; = puc,
e Ay, d. = 1. Replacing c1 by cjc™! if necessary we may assume that ¢; = p. It follows
that ¢y = pu, for some uy € A4. By Lemma 2.30 we conclude that [u] = [A] or [u] = [@'],
1<i<nhence M\i=A(M)or M1 =M. O

Corollary 5.22. If k +n = p' where p is a prime number, and (k,n) # (2,2), then A is maximal
iff there is no 1 <i < n — 1 such that [w'A] = [A].

Proof. By Theorem 5 of [14] when k +n = p[ where p is a prime number, S,, = 0 iff [ A] =
[A] for some 1 <i < n — 1. Let i1]i be the smallest positive integer such that [0 2] = [A].
Then [w'A] = [A] for some 1 <i <n — 1, then [AX] Zl<j<n/”[a)f”] and by [20] and our
assumption that X is maximal it follows that [AA] = > <j<n/in [@’/"]. By Lemmas 2.30 and 2.33
this is only possible if k =n = 2. The corollary now follows from Proposition 5.21. O

Corollary 5.23. Suppose that k #n —2,n + 2, n. Then X is maximal iff there isno 1 <i <n—1
such that [o' X] = [A].

Proof. When k = 1 the corollary is obvious. By Lemma 2.33 we can assume that k > 2 and
dy, > 1. As in the proof of Corollary 5.22, A is maximal implies that there isno 1 <i <n —1
such that [w'A] = [A]. Now suppose that there is no 1 <i < n — 1 such that [w'A] = [A]. If
Sva # 0, then A is maximal by Corollary 5.21. Suppose that S,, = 0. Since [vv] = [1] + [vo]
we have Sy, = —S11 # 0. Assume that M| is an intermediate subfactor between A (M) and M,
and A = clcz with ¢ (M) = M1 and ¢| = ¢/ c] as in Proposmon 2.24. Apply Lemma 2.20 we

have (av;, aUO) 1. By Lemma 2.33 we must have [aUO] [avo] and by Lemma 2.36 [clcl] =
Zl<1<n/11 [w/71]. By Frobenius reciprocity we have [w/! ¢ cj1=[c}]. Since 1 = ¢|cca, [w/'A] =
[A], and by assumption j; = n and [/ 1¢1] =[1]. The rest of the proof now follows in exactly the
same way as in the proof of Proposition 5.21. O

Example 5.24. When n = 2 we have Jones subfactors and their reduced subfactors. In the case
k = n =2 there are three irreducible subfactors and they are maximal. Let n = 2, k # 2. Then
A can be labeled by an integer 1 < i < k. Corollary 5.23 implies that i is maximal iff i # k/2
(when k = 4 this can be easily checked directly). This can also be proved directly using the same
argument at the end of Section 2.6.
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