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Abstract

We prove that the very simple lattices which consist of a largest, a smallest and 2n pairwise incomparable
elements where n is a positive integer can be realized as the lattices of intermediate subfactors of finite index
and finite depth. Using the same techniques, we give a necessary and sufficient condition for subfactors
coming from Loop groups of type A at generic levels to be maximal.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Let M be a factor and N a subfactor of M which is irreducible, i.e., N ′ ∩ M = C. Let K

be an intermediate von Neumann subalgebra for the inclusion N ⊂ M . Note that K ′ ∩ K ⊂
N ′ ∩M = C, K is automatically a factor. Hence the set of all intermediate subfactors for N ⊂ M

forms a lattice under two natural operations ∧ and ∨ defined by:

K1 ∧ K2 = K1 ∩ K2, K1 ∨ K2 = (K1 ∪ K2)
′′.

Let G1 be a group and G2 be a subgroup of G1. An interval sublattice [G1/G2] is the lattice
formed by all intermediate subgroups K,G2 ⊆ K ⊆ G1.
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By cross product construction and Galois correspondence, every interval sublattice of finite
groups can be realized as intermediate subfactor lattice of finite index. The study of intermediate
subfactors has been very active in recent years (cf. [3,18,20,28,39,36] for only a partial list). By
a result of S. Popa (cf. [33]), if a subfactor N ⊂ M is irreducible and has finite index, then the
set of intermediate subfactors between N and M is finite. This result was also independently
proved by Y. Watatani (cf. [39]). In [39], Y. Watatani investigated the question of which finite
lattices can be realized as intermediate subfactor lattices. Related questions were further studied
by P. Grossman and V.F.R. Jones in [18] under certain conditions. As emphasized in [18], even
for a lattice which shapes like a Hexagon and consists of six elements, it is not clear if it can be
realized as intermediate subfactor lattice with finite index. This question has been solved recently
by M. Aschbach in [1] among other things. In [1], M. Aschbach constructed a finite group G1
with a subgroup G2 such that the interval sublattice [G1/G2] is a Hexagon. The lattices that
appear in [18,39,1] can all be realized as interval sublattice of finite groups.

It turns out that which finite lattice can be realized as an interval sublattice [G1/G2] with G1
finite is an old problem in finite group theory. See [31] for an excellent review and a list of
references.

Most of the attention has been focused on the very simple lattice Mn consisting of a largest,
a smallest and n pairwise incomparable elements. For n = 1,2, q +1 (where q is a prime power),
examples of Mn have been found in the finite solvable groups. After the first interesting examples
found by W. Feit (cf. [11]), A. Lucchini (cf. [30]) discovered new series of examples for n = q+2

and for n = (qt+1)
(q+1)

+ 1 where t is an odd prime.
At the present the only values of n for which Mn occurs as an interval sublattice of a finite

group are n = 1,2, q +1, q +2,
(qt+1)
(q+1)

+1 where t is an odd prime. The smallest undecided case
is n = 16. In a major contribution to the problem about subgroup lattices of finite groups in [2],
R. Baddeley and A. Lucchini have reduced the problem of realizing Mn as interval sublattice of
finite groups to a collection of questions about finite simple groups. These questions are still quite
hard, but eventually they might be resolved using the classification of finite simple groups. In this
paper, the authors are cautious, but their ultimate goal seems to be to show that the list above is
complete. In view of the above results about finite groups, it seems an interesting problem to ask
if M16 can be realized as the lattice of intermediate subfactors with finite index. This problem
is the main motivation for our paper. One of the main results of this paper, Theorem 2.40, states
that all M2n are realized as the lattice of intermediate subfactors of a pair of hyperfinite type III1
factors with finite depth. Note that by [36] this implies that M2n can also be realized as the lattice
of intermediate subfactors of a pair of hyperfinite type II1 factors with finite depth. Thus modulo
the conjectures of R. Baddeley, A. Lucchini and possibly others we have an infinite series of
lattices which can be realized by the lattice of intermediate subfactors with finite index and finite
depth but cannot be realized by interval sublattices of finite groups.

The subfactors which realize M2n are “orbifold subfactors” of [10,5,41], and we are motivated
to examine these subfactors by the example of lattice of type M6 in [18] which is closely related
to an Z2 orbifold. To explain their construction, after first two preliminary sections, we will first
review the result of A. Wassermann (cf. [21,38]) about Jones–Wassermann subfactors (cf. Re-
mark 2.27) coming from representations of Loop groups of type A in Section 2.5. Section 2.6 is
then devoted to a description of “orbifold subfactors” from an induction point of view. Although
it is not too hard to show that the subfactor contains 2n incomparable intermediate subfactors,
the hard part of the proof of Theorem 2.40 is to show that there are no more intermediate sub-
factors. Here we give a brief explanation of basic ideas behind our proof and describe how the
paper is structured. We will use freely notations and concepts that can be found in preliminary
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sections. Let ρ(M) ⊂ M be a subfactor and M1 be an intermediate subfactor. In our examples
below all factors are isomorphic to the hyperfinite type III1 factor, and ρρ̄ are direct sums of sec-
tors from a set Δ with finitely many irreducible sectors and a nondegenerate braiding. Here we
use the endomorphism theory pioneered by R. Longo (cf. [25]). Since M1 is isomorphic to M ,
we can choose an isomorphism c1 :M → M1. Denoting c2 = c−1

1 ρ we have ρ = c1c2 where
c1, c2 ∈ End(M). Note that c1c̄1 ≺ ρρ̄ is in Δ. Our basic idea to investigate the property of c1 is
to consider the following set Hc1 := {[a] | a ≺ λc1, λ ∈ Δ, a irreducible}. Since Δ has finitely
many irreducible sectors, Hc1 is a finite set. Moreover since c1c̄1 ∈ Δ, an induction method using
braidings as in [42] is available. This induction method was used by the author in [42] to study
subfactors from conformal inclusions, and developed further by J. Böckenhauer, D. Evans and
J. Böckenhauer, D. Evans and Y. Kawahigashi in [4–9], and leads to strong constraints on the
set Hc1 . Thus by using λ ∈ Δ to act from the left on c1, one may hope to find what c1 is made of.
In the cases of Theorem 2.40 and Corollary 5.23, it turns out that there is a sector c in Hc1 with
smallest index such that c1 ≺ λc, and c is close to be an automorphism (it is an automorphism
in the case of Corollary 5.23), and the corresponding subfactors have been well studied as those
in [42]. In the simplest case n = 2, due to A − D − E classification of graphs with norm less
than 2, the above idea can be applied directly to give a rather quick proof of Theorem 2.40. We
refer the reader to the paragraph after Theorem 2.40 which illustrates the above idea.

When n > 2, the norms of fusion graphs are in general greater than 2, no A − D − E classifi-
cation is available, and this is the main problem we must resolve to carry out the above idea. To
explain our method, we note that S matrix as defined in Eq. (3) has the property

∣∣∣∣Sλμ

S1μ

∣∣∣∣ � Sλ1

S11
, ∀μ

and
∣∣∣∣Sλμ

S1μ

∣∣∣∣ = Sλ1

S11
, ∀μ

iff λ is an automorphism, i.e., λ has the smallest index 1. Our first observation is that for small
index (close to 1) sectors c, certain entries of S-matrix like quantities (cf. Definition 3.10, Corol-
lary 3.14) called ψ -matrix attain their extremum just like S-matrices. Hence to detect these small
index sectors, we need to have a good estimation of the entries of ψ -matrix. In view of the Ver-
linde formula (cf. Eq. (4)) relating S-matrix with fusion rules, it is natural to use the known
fusion rules to estimate ψ matrix. However, since the definition of ψ involves sectors which are
not braided, the above idea does not work unless one can show that certain intertwining operators
are central (cf. Theorem 3.8 and Section 5.1 for discussions). Our second observation is that a
class of intertwining operators in Definition 3.7 is central (cf. Theorem 3.8). Thanks to a number
of known results about representations of Loop groups of type A, we show that the assumption
of Theorem 3.8 is verified in our case (cf. Proposition 4.7).

This allows us to show that certain sector with small index does exist (cf. Corollary 3.14),
we can indeed find that c1 is made of known subfactors. After a straightforward calculations
involving known fusion rules in Proposition 4.10, we are able to finish the proof of Theorem 2.40
for general n.

In the last section we discuss a few related issues. Conjecture 5.1 is formulated which is equiv-
alent to centrality of certain intertwining operators (cf. Proposition 5.7), and this is motivated by
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our proof of Theorem 2.40. We show in Proposition 5.11 that these intertwining operators are
central on a subspace which is a linear span of products of (cf. Definition 5.9) cups, caps and
braiding operators only. These motivate us to make Conjecture 5.12 which claims that the sub-
space is in fact the whole space. In view of recent development using category theory (cf. [12]),
both conjectures can in fact be stated in categorical terms, and we do not know any counter
examples in the categorical setting. In Proposition 5.17 we prove that a weaker version of Con-
jecture 5.12 implies Conjecture 5.1, and from this we are able to prove Conjecture 5.1 for modular
tensor category from SU(n) at level k (cf. Corollary 5.18).

In Section 5.2 we give applications of Corollary 5.18. To explain these applications, recall that
a subfactor N ⊂ M is called maximal if M1 is an intermediate von Neumann algebra between N

and M implies that M1 = M or M1 = N . This notion is due to V.F.R. Jones when he outlined
an interesting programme to investigate questions in group theory using subfactors (cf. [22]). In
the case when M is the crossed product of N by a finite group G, it is easy to see that N ⊂ M

is maximal iff G is an abelian group of prime order. Hence for most of G the corresponding
subfactor is not maximal. Corollary 5.23 gives a necessary and sufficient condition for subfactors
from representations λ of SU(n) at level k 
= n±2, n to be maximal: λ is maximal iff λ is not fixed
by a nontrivial cyclic automorphism of extended Dynkin diagram (such cyclic automorphisms
generate a group isomorphic to Zn). Hence it follows from Corollary 5.23 that most of such
λ are maximal. For an example, if k 
= n ± 2, n, k and n are relatively prime, then all λ are
maximal.

Besides propositions and theorems that have been already mentioned, the first two preliminary
sections are about sectors, covariant representations, braiding-fusion equations, Yang–Baxter
equations, Rehren’s S,T matrices. The third preliminary section summarizes properties of an
induction method from [42]. These properties have been extensively studied and applied in
subsequent work in [4–9] from a different point of view where induction takes place between
two different but isomorphic algebras, and we recall a dictionary relating these two as provided
in [44]. We think that in this paper it is simpler to take the point of view of [42] when discussing
intermediate subfactors, and it is convenient to represent these intermediate subfactors as the
range of endomorphisms of one fixed factor, so we do not have to switch between different but
isomorphic algebras.

Using the dictionary we translate some properties of relative braidings and local extensions
from [7] to our setting (cf. Proposition 2.24). The next two preliminary sections are devoted to
subfactors from representations of SU(n) at level k and its extensions. We collect a few properties
about fusion rules, S matrices, and we define the subfactor which appears in Theorem 2.40.
In Proposition 2.41 we show that this subfactor contains 2n incomparable proper intermediate
subfactors.

2. Preliminaries

For the convenience of the reader we collect here some basic notions that appear in this paper.
This is only a guideline and the reader should look at the references such as preliminary sections
of [24] for a more complete treatment.

2.1. Sectors

Let M be a properly infinite factor and End(M) the semigroup of unit preserving endomor-
phisms of M . In this paper M will always be the unique hyperfinite III1 factors. Let Sect(M)
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denote the quotient of End(M) modulo unitary equivalence in M . We denote by [ρ] the image
of ρ ∈ End(M) in Sect(M).

It follows from [25] and [26] that Sect(M), with M a properly infinite von Neumann algebra,
is endowed with a natural involution θ → θ̄ ; moreover, Sect(M) is a semiring.

Let ρ ∈ End(M) be a normal faithful conditional expectation ε :M → ρ(M). We define a
number dε (possibly ∞) by:

d−2
ε := Max

{
λ ∈ [0,+∞)

∣∣ ε(m+) � λm+, ∀m+ ∈ M+
}

(cf. [32]).
We define

d = Minε{dε | dε < ∞}.

d is called the statistical dimension of ρ and d2 is called the Jones index of ρ. It is clear from
the definition that the statistical dimension of ρ depends only on the unitary equivalence classes
of ρ. The properties of the statistical dimension can be found in [25–27].

Denote by Sect0(M) those elements of Sect(M) with finite statistical dimensions. For λ, μ ∈
Sect0(M), let Hom(λ,μ) denote the space of intertwiners from λ to μ, i.e. a ∈ Hom(λ,μ) iff
aλ(x) = μ(x)a for any x ∈ M . Hom(λ,μ) is a finite dimensional vector space and we use 〈λ,μ〉
to denote the dimension of this space. 〈λ,μ〉 depends only on [λ] and [μ]. Moreover we have
〈νλ,μ〉 = 〈λ, ν̄μ〉, 〈νλ,μ〉 = 〈ν,μλ̄〉 which follows from Frobenius duality (see [26]). We will
also use the following notation: if μ is a subsector of λ, we will write as μ ≺ λ or λ � μ. A sector
is said to be irreducible if it has only one subsector.

For any ρ ∈ End(M) with finite index, there is a unique standard minimal inverse φρ :M → M

which satisfies

φρ

(
ρ(m)m′ρ(m′′)

) = mφρ(m′)m′′, m,m′,m′′ ∈ M.

φρ is completely positive. If t ∈ Hom(ρ1, ρ2) then we have

dρ1φρ1(mt) = dρ2φρ2(tm), m ∈ M. (1)

2.2. Sectors from conformal nets and their representations

We refer the reader to §3 of [24] for definitions of conformal nets and their representations.
Suppose a conformal net A and a representation λ are given. Fix an open interval I of the circle
and let M := A(I ) be a fixed type III1 factor. Then λ gives rises to an endomorphism still denoted
by λ of M . We will recall some of the results of [35] and introduce notations.

Suppose {[λ]} is a finite set of all equivalence classes of irreducible, covariant, finite-index
representations of an irreducible local conformal net A. We will use ΔA to denote all finite
index representations of net A and will use the same notation ΔA to denote the corresponding
sectors of M .2

2 Many statements in this section and Section 2.3 hold true in general case when the set {[λ]} is only braided (cf. [8])
and we hope to consider such cases elsewhere.
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We will denote the conjugate of [λ] by [λ̄] and identity sector (corresponding to the vacuum
representation) by [1] if no confusion arises, and let Nν

λμ = 〈[λ][μ], [ν]〉. Here 〈μ,ν〉 denotes
the dimension of the space of intertwiners from μ to ν (denoted by Hom(μ, ν)). We will denote
by {Te} a basis of isometries in Hom(ν, λμ). The univalence of λ and the statistical dimension
of (cf. §2 of [19]) will be denoted by ωλ and d(λ) (or dλ)) respectively. The unitary braiding
operator ε(μ,λ) (cf. [19]) verifies the following

Proposition 2.1.

(1) Yang–Baxter-Equation (YBE)

ε(μ,γ )μ
(
ε(λ, γ )

)
ε(λ,μ) = γ

(
ε(λ,μ)

)
ε(λ, γ )λ

(
ε(μ,γ )

)
.

(2) Braiding-Fusion-Equation (BFE)

For any w ∈ Hom(μγ, δ)

ε(λ, δ)λ(w) = wμ
(
ε(λ, γ )

)
ε(λ,μ),

ε(δ, λ)w = λ(w)ε(μ,λ)μ
(
ε(γ,λ)

)
,

ε(δ, λ)∗λ(w) = wμ
(
ε(γ,λ)∗

)
ε(μ,λ)∗,

ε(λ, δ)∗λ(w) = wμ
(
ε(γ,λ)∗

)
ε(λ,μ)∗.

Lemma 2.2. If λ,μ are irreducible, and tν ∈ Hom(ν, λμ) is an isometry, then

tνε(μ,λ)ε(λ,μ)t∗ν = ων

ωλωμ

.

By Proposition 2.1, it follows that if ti ∈ Hom(μi, λ) is an isometry, then

ε(μ,μi)ε(μi,μ) = t∗i ε(μ,λ)ε(λ,μ)ti .

We shall always identify the center of M with C. Then we have the following

Lemma 2.3. If

ε(μ,λ)ε(λ,μ) ∈ C,

then

ε(μ,μi)ε(μi,μ) ∈ C, ∀μi ≺ λ.

Let φλ be the unique minimal left inverse of λ, define:

Yλμ := d(λ)d(μ)φμ

(
ε(μ,λ)∗ε(λ,μ)∗

)
, (2)

where ε(μ,λ) is the unitary braiding operator (cf. [19]).
We list two properties of Yλμ (cf. (5.13), (5.14) of [35]):
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Lemma 2.4.

Yλμ = Yμλ = Y ∗
λμ̄ = Yλ̄μ̄,

Yλμ =
∑

k

Nν
λμ

ωλωμ

ων

d(ν).

We note that one may take the second equation in the above lemma as the definition of Yλμ.
Define a := ∑

i d
2
ρi

ω−1
ρi

. If the matrix (Yμν) is invertible, by proposition on p. 351 of [35]
a satisfies |a|2 = ∑

λ d(λ)2.

Definition 2.5. Let a = |a| exp(−2πi
c0
8 ) where c0 ∈ R and c0 is well defined mod 8Z.

Define matrices

S := |a|−1Y, T := C Diag(ωλ) (3)

where

C := exp

(
−2πi

c0

24

)
.

Then these matrices satisfy (cf. [35]):

Lemma 2.6.

SS† = T T † = id,

ST S = T −1ST −1,

S2 = Ĉ,

T Ĉ = ĈT ,

where Ĉλμ = δλμ̄ is the conjugation matrix.

Moreover

Nν
λμ =

∑
δ

SλδSμδS
∗
νδ

S1δ

(4)

is known as Verlinde formula. The commutative algebra generated by λ’s with structure con-
stants Nν

λμ is called fusion algebra of A. If Y is invertible, it follows from Lemma 2.6, (4) that

any nontrivial irreducible representation of the fusion algebra is of the form λ → Sλμ for some μ.

S1μ
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2.3. Induced endomorphisms

Suppose that ρ ∈ End(M) has the property that γ = ρρ̄ ∈ ΔA. By §2.7 of [29], we can find
two isometries v1 ∈ Hom(γ, γ 2),w1 ∈ Hom(1, γ )3 such that ρ̄(M) and v1 generate M and

v∗
1w1 = v∗

1γ (w1) = d−1
ρ ,

v1v1 = γ (v1)v1.

By Theorem 4.9 of [29], we shall say that ρ is local if

v∗
1w1 = v∗

1γ (w1) = d−1
ρ , (5)

v1v1 = γ (v1)v1, (6)

ρ̄
(
ε(γ, γ )

)
v1 = v1. (7)

Note that if ρ is local, then

ωμ = 1, ∀μ ≺ ρρ̄. (8)

For each (not necessarily irreducible) λ ∈ ΔA, let ε(λ, γ ) :λγ → γ λ (resp. ε̃(λ, γ )), be the
positive (resp. negative) braiding operator as defined in Section 1.4 of [42]. Denote λε ∈ End(M)

which is defined by

λε(x) := ad
(
ε(λ, γ )

)
λ(x) = ε(λ, γ )λ(x)ε(λ, γ )∗,

λε̃(x) := ad
(
ε̃(λ, γ )

)
λ(x) = ε̃(λ, γ )∗λ(x)ε̃(λ, γ )∗, ∀x ∈ M.

By (1) of Theorem 3.1 of [42], λερ(M) ⊂ ρ(M),λε̃ρ(M) ⊂ ρ(M), hence the following defini-
tion makes sense.4

Definition 2.7. If λ ∈ ΔA define two elements of End(M) by

a
ρ
λ (m) := ρ−1(λερ(m)

)
, ã

ρ
λ (m) := ρ−1(λε̃ρ(m)

)
, ∀m ∈ M.

a
ρ
λ (resp. ã

ρ
λ ) will be referred to as positive (resp. negative) induction of λ with respect to ρ.

Remark 2.8. For simplicity we will use aλ, ãλ to denote a
ρ
λ , ã

ρ
λ when it is clear that inductions

are with respect to the same ρ.

The endomorphisms aλ are called braided endomorphisms in [42] due to their braiding prop-
erties (cf. (2) of Corollary 3.4 in [42]), and enjoy an interesting set of properties (cf. Section 3

3 We use v1,w1 instead of v,w here since v,w are used to denote sectors in Section 2.5.
4 We have changed the notations aλ, ãλ of [42] to ãλ, aλ of this paper to make some of the formulas such as Eq. (13)

simpler.
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of [42]). Though [42] focus on the local case5 which was clearly the most interesting case in
terms of producing subfactors, as observed in [4–7] that many of the arguments in [42] can be
generalized. These properties are also studied in a slightly different context in [4–6]. In these
papers, the induction is between M and a subfactor N of M , while the induction above is on
the same algebra. A dictionary between our notations here and these papers has been set up
in [44] which simply use an isomorphism between N and M . Here one has a choice to use this
isomorphism to translate all endomorphisms of N to endomorphims of M , or equivalently all
endomorphims of M to endomorphims of N . In [44] the later choice is made (hence M in [44]
will be our N below). Here we make the first choice which makes the dictionary slightly simpler.
Our dictionary here is equivalent to that of [44]. Set N = ρ̄(M). In the following the notations
from [4] will be given a subscript BE. The formulas are:

ρ�N = iBE, ρ̄ρ�N = īBEiBE, (9)

γ = ρ̄−1θBEρ̄, ρ̄ρ = γBE, (10)

λ = ρ̄−1λBEρ̄, ε(λ,μ) = ρ̄
(
ε+(λBE,μBE)

)
, (11)

ε̃(λ,μ) = ρ̄
(
ε−(λBE,μBE)

)
. (12)

The dictionary between aλ ∈ End(M) in Definition 2.7 and α−
λ as in Definitions 3.3, 3.5 of [4] is

given by:

aλ = α+
λBE

, ãλ = α−
λBE

. (13)

The above formulas will be referred to as our dictionary between the notations of [42] and that
of [4]. The proof is the same as that of [44]. Using this dictionary one can easily translate results
of [42] into the settings of [4–9] and vice versa. First we summarize a few properties from [42]
which will be used in this paper (cf. Theorem 3.1, Corollary 3.2 and Theorem 3.3 of [42]):

Proposition 2.9.

(1) The maps [λ] → [aλ], [λ] → [ãλ] are ring homomorphisms;
(2) aλρ̄ = ãλρ̄ = ρ̄λ;
(3) When ρρ̄ is local, 〈aλ, aμ〉 = 〈ãλ, ãμ〉 = 〈aλρ̄, aμρ̄〉 = 〈ãλρ̄, ãμρ̄〉;
(4) (3) remains valid if aλ, aμ (resp. ãλ, ãμ) are replaced by their subsectors.

Definition 2.10. Hρ is a finite dimensional vector space over C with orthonormal basis consisting
of irreducible sectors of [λρ], ∀λ ∈ ΔA.

[λ] acts linearly on Hρ by [λ][a] = ∑
b〈λa,b〉[b] where [b] are elements in the basis of Hρ .6

By abuse of notation, we use [λ] to denote the corresponding matrix relative to the basis of Hρ .

5 As we will see in Proposition 2.24, the induction with respect to nonlocal ρ is closely related to induction with respect
to certain local ρ′ related to ρ.

6 By abuse of notation, in this paper we use
∑

b to denote the sum over the basis [b] in Hρ .
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By definition these matrices are normal and commuting, so they can be simultaneously diago-
nalized. Recall the irreducible representations of the fusion algebra of A are given by

λ → Sλμ

S1μ

.

Definition 2.11. Assume 〈λa,b〉 = ∑
μ,i∈(Exp)

Sλμ

S1μ
· φ

(μ,i)
a φ

(μ,i)∗
b where φ

(μ,i)
a are normalized

orthogonal eigenvectors of [λ] with eigenvalue Sλμ

S1μ
, Exp is a set of μ, i’s and i is an index

indicating the multiplicity of μ. Recall if a representation is denoted by 1, it will always be the
vacuum representation.

The following lemma is elementary:

Lemma 2.12.

(1)
∑

b

d2
b = 1

S2
11

where the sum is over the basis of Hρ . The vacuum appears once in Exp and

φ(1)
a = S11da;

(2)
∑

i

φ
(λ,i)
a φ

(λ,i)
a

∗

S2
1λ

=
∑
ν

〈ν̄a, b〉Sνλ

S1λ

where if λ does not appear in Exp then the right-hand side is zero.

Proof. Ad (1): By definition we have

[aρ̄] =
∑
λ

〈aρ̄, λ〉[λ] =
∑
λ

〈a,λρ〉[λ]

where in the second = we have used Frobenius reciprocity. Hence

dadρ̄ =
∑
λ

〈aρ̄, λ〉dλ

and we obtain
∑
λ

d2
λ =

∑
λ,a

〈aρ̄, λ〉dλda/dρ =
∑
a

d2
a

(2) follows from definition and orthogonality of S matrix. �
2.4. Relative braidings

In [42], commutativity among subsectors of aλ, ãμ was studied. We record these results in the
following for later use:
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Lemma 2.13.

(1) Let [b] (resp. [b′]) be any subsector of aλ (resp. ãλ). Then

[aμb] = [baμ], [ãμb′] = [b′ãμ] ∀μ, [bb′] = [bb′];
(2) Let [b] be a subsector of aμãλ, then [aνb] = [baν], [ãνb] = [bãν], ∀ν.

Proof. (1) follows from (1) of Theorem 3.6 and Lemma 3.3 of [42]. (2) follows from the proof
of Lemma 3.3 of [42]. Also cf. Lemma 3.20 of [6]. �

In the proof of these commutativity relations in [42], an implicit use of relative braidings was
made. These braidings are further studied in [5,6] and let us recall their properties in our setting
by using our dictionary (9), (13).

Let β̃, δ ∈ End(M) be subsectors of ãλ and aμ. By Lemma 3.3 of [42], [β̃] and [δ] commute.
Denote εr(β̃, δ) given by:

εr(β̃, δ) := s∗aμ(t∗)ρ̄(σλμ)ãλ(s)t ∈ Hom(βδ, δβ), (14)

εr(δ, β̃) := εr(β̃, δ)−1, (15)

with isometries t ∈ Hom(β̃, ãλ) and s ∈ Hom(δ, aμ). Also

εr(ãλ, aμ) = ρ̄(σλμ), εr (aλ, ãμ) = ρ̄(σ̃λμ).

Lemma 2.14. The operator εr(β, δ) defined above does not depend on λ,μ and the isome-
tries s, t in the sense that, if there are isometries x ∈ Hom(β, ãν) and y ∈ Hom(δ, aδ1), then

εr(β, δ) = s∗aδ1(t
∗)ρ̄(σνλ1)ãν(y)x.

Lemma 2.15. The system of unitaries of Eq. (14) provides a relative braiding between represen-
tative endomorphisms of subsectors of ãλ and aμ in the sense that, if β, δ,ω, ξ are subsectors of
[ãλ], [aμ], [ãν], [aδ1 ], respectively, then we have initial conditions

εr(idM,δ) = εr(β, idM) = 1,

compositions rules

εr(βω, δ) = εr(β, δ)β
(
εr(ω, δ)

)
, εr (β, δξ) = δ

(
εr(β, ξ)

)
εr(β, δ),

and naturality

δ(q+)εr (β, δ) = εr(ω, δ)q+, q−, εr (β, δ) = εr(β, ξ)β(q−)

whenever q+ ∈ Hom(β,ω) and q− ∈ Hom(δ, ξ).
For the collection of β, δ such that β ≺ aλ,β ≺ ãλ and δ ≺ aμ, δ ≺ ãμ for some (varying)

λ,μ ∈ Δα , the unitaries εr(β, δ), εr (δ,β) define a braiding: i.e., they verify YBE and BFE in
Proposition 2.1.
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Lemma 2.16. Let r ∈ Hom(λ3, λ1λ2). Then

ρ̄(r) ∈ Hom(aλ3 , aλ1aλ2) ∩ Hom(ãλ3, ãλ1 ãλ2).

Proof. When ρρ̄ is local, the lemma follows from Theorem 3.3 of [42]. Let us prove the general
case. Since aλρ̄ = ρ̄λ, we have ρ̄(r) ∈ Hom(aλ3 ρ̄, aλ1λ2 ρ̄). Since M is generated by ρ̄(M), v1,
to finish the proof we just need to check that

ρ̄(r)aλ3(v1) = aλ1λ2(v1)ρ̄(r).

Since ρ is one-to-one, applying ρ to the above equation it is sufficient to check that

γ (r)ρaλ3(v1) = ρaλ1λ2(v1)γ (r).

Using ρaλ = ε(λ, γ )λρε(λ, γ )∗, one can check directly that this equation follows from Proposi-
tion 2.1. �

The following is Lemma 3.25 of [4] in our setting:

Lemma 2.17. If r ∈ Hom(ρ̄λ, ρ̄μ), then

rρ̄
(
ε(μ1, λ)

) = ρ̄
(
ε(μ1, λ)

)
aμ1(r), rρ̄

(
ε̃(μ1, λ)

) = ρ̄
(
ε̃(μ1, λ)

)
ãμ1(r).

Following [8] we define

Definition 2.18. For λ,μ ∈ ΔA, Zλμ := 〈aλ, ãμ〉.

We can now translate Theorems 5.7 and 6.12 of [8] into our setting:

Proposition 2.19.

(1) μ appears in Exp as defined in Definition 2.11 with multiplicity Zμμ;
(2) Zλμ as a matrix commutes with S,T matrices as defined in Eq. (3).

By Lemma 2.12 and Proposition 2.19 we have the following:

Lemma 2.20. If

∑
ν

〈ν̄a, b〉Sνλ

S1λ


= 0,

then 〈aλ, ãλ〉 � 1.

The following follows from Proposition 3.1 of [8]:

Lemma 2.21. For any λ ∈ ΔA, b ∈ Hρ we have ε(λ, bρ̄) ∈ Hom(λb, baλ), ε̃(λ, bρ̄) ∈
Hom(λb, bãλ).



F. Xu / Advances in Mathematics 220 (2009) 1317–1356 1329
Later we will consider the following analogue of S-matrix using relative braidings. Suppose
that Tμ ∈ Hom(aμ, ãμ), ∀μ ∈ ΔA (Tμ can be zero).

Definition 2.22. For μ ∈ ΔA, b ∈ Hρ irreducible, define

ψ
(Tμ)

b := S11dbdμφμ

(
ε(bρ̄,μ)b(Tμ)ε(μ,bρ̄)

)
.

Lemma 2.23.

(1) ψ
(Tμ)

b depends only on [b];

(2)
∑

b

ψ
(Tμ)

b

∗[b]

is either zero or an eigenvector of [λ] with eigenvalue Sλμ

S1μ
, and

∑
b ψ

(Tμ)

b db = 0 unless
[μ] = [1];

(3) If Tμ,Tμ̄ are unitaries, and for any irreducible λ ≺ μμ̄, 1 ≺ aλ iff [λ] = [1], then

|∑b ψ
(Tμ)

b ψ
(Tμ̄)

b | = 1;

(4) If Tμ is unitary then |ψ(Tμ)

b | � S11dμdb .

Proof. Ad (1): Suppose that [b1] = [b] and let U ∈ Hom(b1, b) be a unitary. We have

ψ
(Tμ)

b = S11dbdμφμ

(
ε(bρ̄,μ)b(Tμ)ε(μ,bρ̄)

)
= S11dbdμφμ

(
μ(U∗)ε(bρ̄,μ)bρ̄(Tμ)ε(μ,bρ̄)μ(U)

)
= S11dbdμφμ

(
ε(b1ρ̄,μ)U∗b(Tμ)Uε(μ,b1ρ̄)

)
= S11dbdμφμ

(
ε(b1ρ̄,μ)b1(Tμ)ε(μ,b1ρ̄)

)
= ψ

(Tμ)

b1

where we have used BFE of Proposition 2.1 in the third = .
Ad (2): Let tb,i ∈ Hom(b, λ̄b′) be isometries such that

∑
i tb,i t

∗
b,i = 1. Then

∑
b

ψ
(Tμ)

b 〈b, λ̄b′〉 =
∑
b,i

S11dμdλdb′φλ̄φμ

(
μ(tb,i )ε(bρ̄,μ)∗b(Tμ)ε(μ,bρ̄)μ

(
t∗b,i

))

where we have used Eq. (1). By Proposition 2.1 we have

∑
b,i

S11dμdλdb′φλ̄φμ

(
μ(tb,i )ε(bρ̄,μ)b(Tμ)ε(μ,bρ̄)μ

(
t∗b,i

))

= S11dμdλdb′φλ̄φμ

(
ε(λ̄b′ρ̄,μ)b(Tμ)ε(μ, λ̄b′ρ̄)

)

= Sλ̄μ
ψ

(Tμ)

b′ .

S1μ
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Hence

∑
b

[λ]ψ(Tμ)

b

∗[b] =
∑
b,b′

ψ
(Tμ)

b

∗〈b, λ̄b′〉[b′] = Sλμ

S1μ

∑
b′

ψ
(Tμ)

b′
∗[b′].

By (1) of Lemma 2.12 we conclude that
∑

b ψ
(Tμ)

b db = 0 unless [μ] = [1].
Ad (3): Let tλ,i ∈ Hom(λ,μμ̄) be isometries such that

∑
λ,i tλ,i t

∗
λ,i = 1. Then

ψ
(Tμ)

b ψ
(Tμ̄)

b = S11dbdμφμ̄

(
ψ

(Tμ)

b ε(bρ̄, μ̄)b(Tμ)ε(μ̄, bρ̄)
)

= S2
11d

2
bdμφμμ̄

(
ε(bρ̄,μμ̄)b

(
Tμaμ(Tμ̄)

)
ε(μμ̄, bρ̄)

)
= S2

11db

∑
λ,i

dbdλφλ

(
ε(bρ̄, λ)b

(
ρ̄(tλ,i )

∗Tμaμ(Tμ̄)ρ̄(tλ,i )
)
ε(λ, bρ̄)

)

where we have used Eq. (1) and Lemma 2.21 in the second = and BFE of Proposition 2.1 in the
third = . By (2) of Lemma 2.23

∑
b

dbdbdλφλ

(
ε(bρ̄, λ)b

(
ρ̄(tλ,i )

∗Tμaμ(Tμ̄)ρ̄(tλ,i )
)
ε(λ, bρ̄)

) = 0

unless [λ] = [1]. Denote by t1 ∈ Hom(1,μμ̄) the unique (up to scalar) isometry. Then we have
(recall we always identify the center of M with C)

∑
b

ψ
(Tμ)

b ψ
(Tμ̄)

b = ρ̄(t1)
∗Tμaμ(Tμ̄)ρ̄(t1).

On the other hand since Tμ,Tμ̄ are unitaries, we have

∑
λ,i

ρ̄(t1)
∗Tμaμ(Tμ̄)ρ̄(tλ,i )ρ̄(tλ,i )

∗aμ(Tμ̄)∗T ∗
μρ̄(t1) = 1.

Since ρ̄(t1)
∗Tμaμ(Tμ̄)ρ̄(tλ,i ) ∈ Hom(aλ,1), by assumption it is 0 unless [λ] = [1]. We con-

clude that |ρ̄(t1)
∗Tμaμ(Tμ̄)ρ̄(t1)| = 1 and (3) is proved. (4) follows since φμ is completely

positive. �
Using Eqs. (9), (13), the following is a translation of Proposition 3.2 and Theorem 4.7 of [7]

into our setting:

Proposition 2.24. Suppose that ρρ̄ ∈ Δ. Then:

(1) ρ is local iff 〈1, aμ〉 = 〈ρρ̄,μ〉, ∀μ ∈ ΔA;

(2) ρ = ρ′ρ′′ = ρ̃′ρ̃′′

where ρ′, ρ′′, ρ̃′, ρ̃′′ ∈ End(M), and ρ′, ρ̃′ are local which verifies
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〈ρ′ρ̄′,μ〉 = 〈1, aμ〉 = 〈
1, aρ′

μ

〉
,

〈ρ̃′ρ̃′,μ〉 = 〈1, ãμ〉 = 〈
1, ãρ̃′

μ

〉

∀μ ∈ ΔA.

The following lemma is Proposition 3.23 of [4] (the proof was also implicitly contained in the
proof of Lemma 3.2 of [42]):

Lemma 2.25. If ρρ̄ is local, then [aλ] = [ãλ] iff ε(λ,ρρ̄)ε(ρρ̄, λ) = 1.

2.5. Jones–Wassermann subfactors from representation of Loop groups

Let G = SU(n). We denote by LG the group of smooth maps f :S1 �→ G under point-
wise multiplication. The diffeomorphism group of the circle DiffS1 is naturally a subgroup
of Aut(LG) with the action given by reparametrization. In particular the group of rotations
RotS1 � U(1) acts on LG. We will be interested in the projective unitary representations
π :LG → U(H) that are both irreducible and have positive energy. This means that π should
extend to LG � RotS1 so that H = ⊕

n�0 H(n), where the H(n) is the eigenspace for the ac-

tion of RotS1, i.e., rθ ξ = exp(inθ) for θ ∈ H(n) and dimH(n) < ∞ with H(0) 
= 0. It follows
from [34] that for fixed level k which is a positive integer, there are only finite number of such
irreducible representations indexed by the finite set

P k++ =
{
λ ∈ P

∣∣∣ λ =
∑

i=1,...,n−1

λiΛi, λi � 0,
∑

i=1,...,n−1

λi � k

}

where P is the weight lattice of SU(n) and Λi are the fundamental weights. We will write
λ = (λ1, . . . , λn−1), λ0 = k − ∑

1�i�n−1 λi and refer to λ0, . . . , λn−1 as components of λ.

We will use Λ0 or simply 1 to denote the trivial representation of SU(n). For λ,μ, ν ∈ P k++,

define Nν
λμ = ∑

δ∈Pk++ S
(δ)
λ S

(δ)
μ S

(δ∗)
ν /S

(δ
Λ0

where S
(δ)
λ is given by the Kac–Peterson formula (cf.

Eq. (17) below for an equivalent formula):

S
(δ)
λ = c

∑
w∈Sn

εw exp
(
iw(δ) · λ2π/n

)

where εw = det(w) and c is a normalization constant fixed by the requirement that S
(δ)
μ is an

orthonormal system. It is shown in [23, p. 288] that Nν
λμ are nonnegative integers. Moreover,

define Gr(Ck) to be the ring whose basis are elements of P k++ with structure constants Nν
λμ.

The natural involution ∗ on P k++ is defined by λ �→ λ∗ = the conjugate of λ as representation
of SU(n).

We shall also denote S
(Λ)
Λ0

by S
(Λ)
1 . Define dλ = S

(λ)
1

S
(Λ0)

1

. We shall call (S
(δ)
ν ) the S-matrix of

LSU(n) at level k.
We shall encounter the Zn group of automorphisms of this set of weights, generated by

σ : λ = (λ1, λ2, . . . , λn−1) → σ(λ) = (k − 1 − λ1 − · · ·λn−1, λ1, . . . , λn−2).
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Define col(λ) = Σi(λi − 1)i. The central element exp 2πi
n

of SU(n) acts on representa-

tion of SU(n) labeled by λ as exp(
2πi col(λ)

n
). The irreducible positive energy representations

of LSU(n) at level k give rise to an irreducible conformal net A (cf. [24]) and its covariant rep-
resentations. We will use λ = (λ1, . . . , λn−1) to denote irreducible representations of A and also
the corresponding endomorphism of M = A(I ).

All the sectors [λ] with λ irreducible generate the fusion ring of A.
For λ irreducible, the univalence ωλ is given by an explicit formula (cf. 9.4 of [34]). Let us

first define hλ = c2(λ)
k+n

where c2(λ) is the value of Casimir operator on representation of SU(n)

labeled by dominant weight λ. hλ is usually called the conformal dimension. Then we have:
ωλ = exp(2πihλ). The conformal dimension of λ = (λ1, . . . , λn−1) is given by

hλ = 1

2n(k + n)

∑
1�i�n−1

i(n − i)λ2
i + 1

n(k + n)

∑
1�j�i�n−1

j (n − i)λjλi

+ 1

2(k + n)

∑
1�j�n−1

j (n − j)λj . (16)

The following form of Kac–Peterson formula for S matrix will be used later:

Sλμ

S1μ

= Chλ′(x1, . . . , xn−1,1) (17)

Where Chλ′ is the character associated with finite irreducible representation of SU(n) labeled

by λ, and xi = exp(−2πi
μ′

i

k+n
),μ′

i = ∑
i�j�n−1(μj + 1),1 � i � n − 1.

It follows that S matrix verifies:

Sλωi(μ) = exp

(
2πi col(λ)

n

)
Sλμ. (18)

The following result is proved in [38] (see Corollary 1 of Chapter V in [38]).

Theorem 2.26. Each λ ∈ P
(k)
++ has finite index with index value d2

λ . The fusion ring generated by

all λ ∈ P
(k)
++ is isomorphic to Gr(Ck).

Remark 2.27. The subfactors in the above theorem are called Jones–Wassermann subfactors
after the authors who first studied them (cf. [21,38]).

Definition 2.28. v := (1,0, . . . ,0), v0 := (1,0, . . . ,0,1), ωi = kΛi , 0 � i � n − 1.

The following is observed in [16]:

Lemma 2.29. Let (0, . . . ,0,1,0, . . . ,0) be the ith (1 � i � n − 1) fundamental weight. Then
[(0, . . . ,0,1,0, . . . ,0)λ] are determined as follows: μ ≺ (0, . . . ,0,1,0, . . . ,0)λ iff when the
Young diagram of μ can be obtained from Young diagram of λ by adding i boxes on i differ-
ent rows of λ, and such μ appears in [(0, . . . ,0,1,0, . . . ,0)λ] only once.
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Lemma 2.30.

(1) If [λ] 
= ωi for some 0 � i � n − 1, then v0 ≺ λλ̄;
(2) If λ1λ2 is irreducible, then either λ1 or λ2 = ωi for some 0 � i � n − 1.

Proof. By Lemma 2.29 we have that

〈vλ, vλ〉 = 1

iff λ = ωi for some 0 � i � n − 1. By Frobenius reciprocity

〈vλ, vλ〉 = 〈1 + v0, λλ̄〉 = 1 + 〈v0, λλ̄〉.
Hence

〈v0, λλ̄〉 = 0

iff λ = ωi for some 0 � i � n − 1. If λ1λ2 is irreducible, then by Frobenius reciprocity again we
have

〈λ1λ̄1, λ2λ̄2〉 = 1 � 1 + 〈v0, λ1λ̄1〉〈v0, λ2λ̄2〉.
Hence either

〈v0, λ1λ̄1〉 = 0

or

〈v0, λ2λ̄2〉 = 0

and the lemma follows. �
Lemma 2.31. Suppose λ ∈ ΔA and λ is not necessarily irreducible. Then

ε(λ, v)ε(v,λ) ∈ C

iff [λ] = ∑
j [ωj ] where the summation is over a finite set.

Proof. By Proposition 2.1 we have that

ε
(
vm,λ

)
ε
(
λ,vm

) ∈ C

for all m � 0. Since any irreducible μ is a subsector of vm for some m � 0, by Lemma 2.3
we have that ε(μ,λ1)ε(λ1,μ) ∈ C, ∀μ,λ1 ≺ λ. By definition of S matrix we have |Sμλ1 |2 =
|S1λ1dμ|2. Summing over μ we have dλ1 = 1, i.e., λ1 is an automorphism, and this implies that
vλ1 is irreducible. The lemma now follows from Lemma 2.30. �
Lemma 2.32. For any m � 1,Hom(vm, vm) is generated as an algebra by 1, vi(ε(v, v)), 1 �
i � m − 1.
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Proof. This is (3) of Lemma 3.1.1 in [44] and is essentially contained in [40]. �
Now let ρρ̄ ∈ ΔA where A is the conformal net associated with SU(n) at level k, and consider

induction with respect to ρ as defined in Definition 2.7. We have

Lemma 2.33.

(1) av, ãv are always irreducible;
(2) dv0 = 1 iff k = n = 2;
(3) If k 
= n ± 2, n, then av0, ãv0 are irreducible.

Proof. It is enough to prove the lemma for positive induction. The negative induction case is

similar. Assume that ρ = ρ′ρ′′ as in Proposition 2.24, since 〈aλ,1〉 = 〈ρ′ρ̄′, λ〉 = 〈aρ′
λ ,1〉, ∀λ, it

is enough to prove the lemma for induction with respect to ρ′. Hence we may assume that ρ is
local. By (3) of Proposition 2.9 we have

〈av, av〉 = 〈ρρ̄, vv̄〉 = 1 + 〈ρρ̄, v0〉.
Since ωv0 = exp( 2πin

k+n
) 
= 1, by Eq. (8) we conclude that 〈ρρ̄, v0〉 = 0 and (1) is proved. (2) fol-

lows from Eq. (17).
Ad (3) By Lemma 2.29 we have

[
v2

0

] = [1] + 2[v0] + [
(2,0, . . . ,0,2)

] + [
(0,1,0, . . . ,1,0)

] + [
(0,1,0, . . . ,0,2)

]
+ [

(2,0, . . . ,0,1,0)
]
.

By computing the conformal dimensions of the descendants of v2
0 using Eq. (16) we have

h(2,0,...,0,2) = 2 + 2n

k + n
, h(0,1,...,0,2) = h(2,0,...,1,0) = 2n

k + n
, h(0,1,...,1,0) = 2n − 2

k + n
.

By Eq. (8) we conclude that if k 
= n ± 2, n, then 〈v2
0, ρρ̄〉 = 1 and (3) is proved. �

2.6. Induced subfactors from simple current extensions

In this section we assume that the level k = n′n where n′ � 3, and n′ is an even integer
if n is even. This last condition comes from [41]. For such level it is shown in §3 of [5] that
there is ρo ∈ End(M) such that [ρoρ̄o] = ∑

0�i�n−1[ωi] and ρoρ̄o is local. It also follows from

definitions that one can choose ρ̄oρo = ∑
0�i�n−1[gi] where [gn] = [1] and [ãv] = [avg] (cf.

§6.1 of [24]). Also note that [aωi ] = [1], ∀i. The following is a consequence of Lemma 2.12 and
Proposition 2.9:

Lemma 2.34. There exists an orthonormal basis
∑

a φ
μ
a [a] where col(μ) = 0 mod n and the sum

is over all irreducible subsectors of aλ, ∀λ, such that

〈aλa, b〉 =
∑

μ,i,col(μ)=0 mod n

Sλμ

S1μ

φ(μ,i)
a φ

(μ,i)
b

∗
.
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The following follows from Corollary 4.9 of [24]:

Lemma 2.35.

(1) Let λ be irreducible and suppose l is the smallest positive integer with [ωlλ] = [λ]. Then
[aλ] = ∑

1�i�l′ [xi] where l′l = n and [gix1g
−i] = [xi], 1 � i � l′, [xi] 
= [xj ] if i 
= j .

Similar statements hold true for ãλ;
(2) 〈aλ, aμ〉 
= 0 iff [λ] = [ωj (μ)] for some 1 � j � n iff [aλ] = [aμ]. Similar statements hold

true for ãλ, ãμ.

Later we will use the following analogue of Lemma 2.31:

Lemma 2.36. If ε(v0, λ)ε(λ, v0) ∈ C, then [λ] = ∑
j ωj where the sum is over a finite set of

positive integers.

Proof. By Proposition 2.1 and Lemma 2.3 we have that ε(vm
0 , λ1)ε(λ1, v

m
0 ) ∈ C for all m � 0,

λ1 ≺ λ. By Lemma 2.3 again we have ε(μ,λ1)ε(λ1,μ) ∈ C for all μ ≺ vm
0 , λ1 ≺ λ. Since by

Lemma 2.29 any μ with col(μ) = 0 mod n is a subsector of vm
0 for some m � 0, we conclude

that ε(μ,λ1)ε(λ1,μ) ∈ C for all μ, col(μ) = 0 mod n,λ1 ≺ λ. By the definition of S matrix we
have

|Sμλ1 | = dλ1 |Sμ1|, ∀μ, col(μ) = 0 mod n.

Setting [a] = [b] = [1] in Lemma 2.34 we have

〈aλ1, aλ1〉 =
∑

μ,i,col(μ)=0 mod n

d2
λ1

φ
(μ,i)
1 φ

(μ,i)
1

∗ = d2
λ1

.

By Lemma 2.35 we have

dλ1 � 〈aλ1 , aλ1〉
and we conclude that dλ1 = 1, and in particular vλ1 is irreducible. The lemma now follows from
Lemma 2.30. �

The subfactors aλ(M) ⊂ M are type III analogue of “orbifold subfactors” studied in [10]
and [41].

Lemma 2.37. If x ≺ aλ, λ irreducible and dx = 1, then [λ] = [ωi],1 � i � n and [x] = [1].

Proof. If [λ] 
= [ωi], ∀i, then by Lemma 2.30 λλ̄ � v0, and by Lemma 2.33 we have aλaλ̄ � av0 .
Since x ≺ aλ, dx = 1, by Lemma 2.35 we conclude that dav0

= dv0 = 1. This is impossible by
Lemma 2.33 and our assumption k = n′n, n′ � 3. �

Let (n′, n′, . . . , n′) be the unique fixed representation under the action of Zn. By Lemma 2.35

[a(n′,n′,...,n′)] =
∑

1�i�n

[bi],
[
gib1g

−i
] = [bi+1], 0 � i � n − 1.
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Definition 2.38. Denote u := (n′ + 1, n′, n′, . . . , n′).

Note that by Lemma 2.35 au is irreducible.

Lemma 2.39.

(1) Suv0 
= 0;

(2) Let Λ = (n,0, . . . ,0). Then 〈aΛ, ãΛ̄〉 = 0, and SuΛ 
= 0.

Proof. Ad (1) Since n[au] = [avbi], by Lemma 2.34

Suv0

S1v0

= Svv0

nS1v0

S(n′,...,n′)v0

S1v0

.

Direct computation using Eq. (17) shows that
Svv0
S1v0


= 0. Note that by Eq. (18)

S(n′,...,n′)v
S1v

= 0

since col(v) = 1, hence

S(n′,...,n′)v0

S1(n′,...,n′)
= −1

and this implies that S(n′,...,n′)v0 
= 0 and (1) is proved.
Ad (2) Since k = n′n � 3n, it follows that 〈ωjΛ, Λ̄〉 = 0, ∀1 � j � n. By Lemma 2.35

〈aΛ, ãΛ̄〉 = 0. Since [ava(n′,n′,...,n′)] = n[au], by Lemma 2.34 we have

n
SuΛ

S1Λ

= SvΛ

S1Λ

S(n′,...,n′)Λ
S1Λ

.

Hence to finish the proof we just have to check that SvΛ 
= 0, S(n′,...,n′)Λ 
= 0. Since
Chv′(x1, . . . , xn) = ∑

1�i�n xi , by Eq. (17) up to a nonzero constant SvΛ is equal to

exp
(−2πi(2n − 1)/(k + n)

) +
∑

0�j�n−2

exp
(−2πij/(k + n)

)
.

This sum is equal to 0 iff n = k = 2. Note that ChΛ′(x1, . . . , xn) is a complete symmetric polyno-
mial of degree n. SvΛ 
= 0 now follows directly from Eq. (17) (cf. (2.7a) of [14] for more general
statement). �

The main theorem of this section is:

Theorem 2.40. The lattice of intermediate subfactors of au(M) ⊂ M is M2n.
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The proof will be given in Section 4. Let us first show that the subfactor in Theorem 2.40
contains 2n incomparable intermediate subfactors. By fusion rule with v in Lemma 2.29 we
have

[au] = [avbi] = [biav], ∀1 � i � n.

Therefore we can assume that

au = UiavbiU
∗
i = VibiavV

∗
i , 1 � i � n,

where Ui,Vi are unitaries.

Proposition 2.41.

(1) As von Neumann algebras

Uiav(M)U∗
i = Ujav(M)U∗

j , Vibi(M)V ∗
i = Vjbj (M)V ∗

j

iff i = j ;
(2) Uiav(M)U∗

i is not an intermediate subfactor in Vjbj (M)V ∗
j ⊂ M;

(3) Vjbj (M)V ∗
j is not an intermediate subfactor in Uiav(M)U∗

i ⊂ M .

Proof. Ad (1): If Uiav(M)U∗
i = Ujav(M)U∗

j , then Uiav(m)U∗
i = Ujav(θ(m))U∗

j , ∀m ∈ M ,
where θ is an automorphism of M . By Frobenius reciprocity we have [θ ] ≺ [avav̄]. By
Lemma 2.37 we conclude that [θ ] = [1] and hence

Uiav(m)U∗
i = Ujav(U)av(m)av(U)∗U∗

j , ∀m ∈ M,

for some unitary U ∈ M . Hence

AdUi
avbi = AdUj av(U)avbi = AdUj

avbj

and we conclude that [bi] = [bj ], hence i = j . The second statement in (1) is proved similarly.
Ad (2): If Uiav(M)U∗

i is an intermediate subfactor in Vjbj (M)V ∗
j ⊂ M , then AdVj

bj =
AdUi

avC for some C ∈ End(M), and it follows that [bj b̄j ] � [avāv] � [av0 ]. Hence

〈avbj , avbj 〉 = 〈bj b̄j , avāv〉 � 2

contradicting the irreducibility of [au] = [avbj ].
Ad (3): If Vjbj (M)V ∗

j is an intermediate subfactor in Uiav(M)U∗
i ⊂ M , then there is

C′ ∈ End(M) such that [bjC
′] = [av]. Since [avāv] = [1] + [av0] and av0 is irreducible by

Lemma 2.33, we must have [bj b̄j ] = [avāv] and therefore dC′ = 1. By Frobenius reciprocity
C′ ≺ [b̄j av], but [b̄j av] is irreducible since au is irreducible, a contradiction. �

Here we give a quick proof of Theorem 2.40 for n = 2 and k 
= 10,28 to illustrate some ideas
behind the proof. Suppose that M1 is an intermediate subfactor of au(M) ⊂ M . Since all factors
in this paper are isomorphic to hyperfinite type III1 factor, we can find c1, c2 ∈ End(M) such
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that au = c1c2 and c1(M) = M1. Let ρ = ρ0c1, and enumerate the basis of Hρ by irreducible
sectors a. Note that a must be of the form ρ0c with c irreducible, and so da � dρ0 = √

2.
Consider the fusion graph associated with the action of v on Hρ : the vertices of this graph are

irreducible sectors a, and vertices a and b are connected by 〈va, b〉 edges. By Lemma 2.12 this
graph is connected and has norm 2 cos( π

k+2 ), and hence it must be A−D−E graph (cf. Chapter 1

of [17]). Since k 
= 10,28 it must be A or D graph. By Lemma 2.12 we have
∑

a d2
a = 1

S2
11

=
1

1
k+2 sin2( π

k+2 )
. Since da � dρ0 = √

2 are the entries of Perron–Frobenius eigenvector for the graph

(such eigenvector is unique up to a positive scalar), compare with the eigenvectors of A−D −E

graphs listed for example in Chapter 1 of [17]) we conclude that the graph is D graph and there
is a sector c with dc = 1 and c1 ≺ aμc for some μ ∈ Δ. We conclude that either [c1] = [aμc], or
[c1] = [bic], 1 � i � 2. In the former case [c2] = [c−1aλ] or [c2] = [c−1bj ], 1 � j � 2. But if
[c2] = [c−1aλ] then [au] = [aμaλ] is irreducible, and by Lemma 2.30 [aμ] = [au] or [aμ] = [1],
which implies that M1 is either au(M) or M . If [c2] = [c−1bj ], 1 � j � 2, then [au] = [aμbj ]
and by computing the index and note that the colors of u and bj are 1 mod 2, 0 mod 2 respectively
we have aμ = av , and we conclude that M1 must be one of the intermediate subfactors given in
Proposition 2.41. The case of [c1] = [bic], 1 � i � 2 is treated similarly. By Proposition 2.41 we
have proved Theorem 2.40 for n = 2, k 
= 10,28. The same idea as presented above can be used
to give a complete list of all intermediate subfactors of Goodman–Harpe–Jones subfactors. We
hope to discuss this and related problems elsewhere.

3. Centrality of a class of intertwiners and its consequences

We preserve the setup of Section 2.5.
Assume that ρρ̄ ∈ ΔA. We will investigate a class of inductions which are motivated by

finding a proof of Theorem 2.40.
In this section we assume that [av] = [hãv], [hn] = [1], av0 is irreducible, and if μ ≺ v2

0 ,
1 ≺ aμ, then [μ] = [1].

Choose a unitary T ∈ Hom(av, hãv). Such T is unique up to scalar since av is irreducible.
By Lemma 2.13 we have [hãv] = [ãvh]. Choose a unitary T1 ∈ Hom(ãvh,hãv). Note that T1 is
unique up to scalar since hãv is irreducible.

Definition 3.1. Denote Un := T av(T )a2
v(T ) . . . an−1

v (T ) ∈ Hom(an
v , (hãv)

n).
Denote Ti := T1ãv(T1) . . . ãi−1

v (T1) ∈ Hom(ãi
vh,hãi

v), 1 � i � n − 1.
Choose T ′ ∈ Hom(hn,1) (T ′ is unique up to scalar).

Definition 3.2. Set w = vn and define uw := T ′hn−1(Tn−1)h
n−2(Tn−2) . . . h(T1)Un ∈

Hom(an
v , ãn

v ).

For example when n = 3, uw = T ′h2(T1)h
2(ãv(T1))h(T1)T av(T )a2

v(T ). The reader is en-
couraged to give a diagrammatic representation of uw as in [42].

Lemma 3.3. Suppose that x, y are sectors such that

[x] =
∑

[xi], [y] =
∑

[yi], dxi
< dxj

, dyi
< dyj
1�i�m 1�i�m
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if i < j , and xi, yi are irreducible. Let Tx,i ∈ Hom(xi, x), Ty,i ∈ Hom(yi, y), i = 1, . . . ,m be
isometries.

If U ∈ Hom(x, y) is unitary then UTx,iT
∗
x,iU

∗ = Ty,iT
∗
y,i , i = 1, . . . ,m.

Proof. By assumption Hom(x, x),Hom(y, y) are finite dimensional abelian algebras, and so for
each 1 � i � m we have UTx,iT

∗
x,iU∗ = Ty,j T

∗
y,j for some j .

By Eq. (1) we have

dyφy(UTx,iT
∗
x,iU

∗) = dxφx(Tx,iT
∗
x,i) = dxi

.

Hence dxi
= dyj

. By assumption it follows that i = j , 1 � i � m. �
Lemma 3.4. Let U ∈ Hom(a2

vh
j , hi ã2

v), i, j � 0 be a unitary. Then hi(ρ̄(ε(v, v)))U =
Uρ̄(ε(v, v)).

Proof. Since av0 is irreducible, we have 〈avav, avav〉 = 〈avāv, avāv〉 = 2. We note that [avav] =
[a(2,0,...,0)] + [a(0,1,0,...,0)] and

da(2,0,...,0)

da(2,0,...,0)
= sin(

(n+1)π
k+n

)

sin(
(n−1)π

k+n
)
> 1 and so the assumption of Lemma 3.3

is verified. Denote by P1,P2 ∈ Hom(v2, v2) the two different minimal projections correspond-
ing to (2,0, . . . ,0), (0,1, . . . ,0) respectively. Note that ρ̄(Pl), h

i(ρ̄(Pl)), l = 1,2, are minimal
projections in Hom(a2

vh
j , a2

vh
j ), Hom(hi ã2

v, h
i ã2

v) respectively and by Lemma 3.3 we have
U∗hi(ρ̄(Pl))U = ρ̄(Pl), l = 1,2.

Assume that ε(v, v) = z1P1 + z2P2 where z1, z2 ∈ C (cf. Lemma 3.1.1 in [44] for explicit for-
mulas for z1, z2). Then hi(ρ̄(ε(v, v))) = z1h

i(ρ̄(P1))+ z2h
i(ρ̄(P2)) and the lemma follows. �

Lemma 3.5. ãi
v(ρ̄(ε(v, v)))uw = uwai

v(ρ̄(ε(v, v)), 0 � i � n − 2.

Proof. By Definition 3.2 we can write uw = V ′
1V

′
2V

′
3 where

V ′
3 = ai+2

v (V3), V3 = hn−i−3(Tn−i−3) . . . h2(T2)h(T1) ∈ Hom
(
an−i−2
v , hn−i−2ãn−i−2

v

)
.

V ′
2 = ai

v(V2), V2 = hn−i−1(T2) . . . h2(T2)h(T1)T av(T ) ∈ Hom
(
a2
vh

n−i−2, hn−i ã2
v

)

and

V ′
1 = T ′hn−1(Ti) . . . hi(Ti)h

i−1(Ti−1)h
i−2(Ti−2) . . . h(T1)T av(T ) . . . ai−1

v (T )

∈ Hom
(
ai
vh

n−i , ãi
v

)
.

Although the complicated but explicit formulas of V ′
1,V2,V3 are given above, we only use

their intertwining properties in what follows.
Hence

ãi
v

(
ρ̄
(
ε(v, v)

))
uw = ãi

v

(
ρ̄
(
ε(v, v)

))
V ′

1a
i
v(V2)a

i+2
v (V3)

= V ′
1a

i
v

(
hn−i

(
ρ̄
(
ε(v, v)

))
V2

)
ai+2
v (V3)

= V ′ai
v

(
V2ρ̄

(
ε(v, v)

))
ai+2
v (V3)
1
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= V ′
1a

i
v(V2)a

i
v

(
ρ̄
(
ε(v, v)

)
a2
v(V3)

)
= V ′

1a
i
v(V2)a

i+2
v (V3)a

i
v

(
ρ̄
(
ε(v, v)

))
= uwai

v

(
ρ̄
(
ε(v, v)

))

where in the third = we have used Lemma 3.4. �
Lemma 3.6. ãn−1

v (ρ̄(ε(v, v)))uwaw(uw) = uwaw(uw)an−1
v (ρ̄(ε(v, v))).

Proof. By Definition 3.2 we can write uwaw(uw) = W ′
1W

′
2W

′
3 where W ′

3 = an+1
v (W3), W3 =

hn−2(Tn−2) . . . h(T2)h(T1)T av(T ) . . . an−2
v (T ) ∈ Hom(an−1

v , hn−1ãn−1
v ), W ′

2 = an−1
v (W2),

W2 = T T ′hn−1(T1) . . . h(T1)av(T ) ∈ Hom(a2
vh

n−1, hã2
v) and W ′

1 = T ′hn−1(Tn)h
n−2(Tn−2) . . .

h(T1)T av(T ) . . . an−2
v (T ) ∈ Hom(an−1

v h, ãn−1
v ).

As in the proof of Lemma 3.5, even though explicit formulas of W2,W3,W
′
1 are given as

above, what we need in the following is their intertwining properties.
Hence

ãn−1
v

(
ρ̄
(
ε(v, v)

))
uwãw(uw) = ãn−1

v

(
ρ̄
(
ε(v, v)

))
W ′

1a
n−1
v (W2)a

n+1
v (W3)

= W ′
1a

n−1
v

(
h
(
ρ̄
(
ε(v, v)

))
W2

)
an+1
v (W3)

= W ′
1a

n−1
v (W2)a

n−1
v

(
ρ̄
(
ε(v, v)

)
a2
v(W3)

)
= W ′

1a
n−1
v (W2)a

n+1
v (W3)a

n−1
v

(
ρ̄
(
ε(v, v)

))
= uwaw(uw)an−1

v

(
ρ̄
(
ε(v, v)

))

where in the third = we have used Lemma 3.4. �
Definition 3.7. For each integer m � 1, uwm := uwaw(uw) . . . am−1

w (uw) ∈ Hom(awm, ãwm).

Theorem 3.8. Let m � 1 be any integer and R ∈ Hom(wm,wm). Then

ρ̄(R)uwm = uwmρ̄(R).

Proof. By Lemma 2.32 it is sufficient to prove the theorem for R = vm′
(ρ̄(ε(v, v))), 1 � m′ �

m − 1. When nn1 < m′ < n(n1 + 1), n1 ∈ Z we can write

uwaw(uw) . . . am−1
w (uw) = U ′

1a
n1
w (uw)U ′

2

where U ′
1 ∈ Hom(a

n1
w ,a

n1
w ),U ′

2 ∈ a
n1+1
w (M) and the theorem follows from Lemma 3.5. Similarly

when m′ = nn1, n1 ∈ Z we can write

uwaw(uw) . . . am−1
w (uw) = U ′′

1 an1−1
w

(
uwaw(uw)

)
U ′′

2

with U ′′
1 ∈ Hom(a

n1−1
w ,a

n1−1
w ), U ′′

2 ∈ a
n1+2
w (M) and the theorem follows from Lemma 3.6. �

Lemma 3.9. Suppose that μ ≺ wm are irreducible and let tμ,i ∈ Hom(μ,wm),m � 1 be a set of
isometries such that

∑
tμ,i t

∗ = 1. Then
μ,i μ,i
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(1) For each fixed μ, ρ̄(tμ,i)
∗uwmρ̄(tμ,i) ∈ Hom(aμ, ãμ) is independent of choices of tμ,i ;

(2) ρ̄(tμ,i)
∗uwmρ̄(tμ,i) ∈ Hom(aμ, ãμ) is unitary.

Proof. (1) follows immediately from Theorem 3.8. To prove (2), note that for each fixed μ, i

1 =
∑
λ,j

ρ̄(tμ,i)
∗uwmρ̄(tλ,j )ρ̄(tλ,j )

∗u∗
wmρ̄(tμ,i)

∗ = ρ̄(tμ,i)
∗uwmρ̄(tμ,i)ρ̄(tμ,i)

∗u∗
wmρ̄(tμ,i)

where in the second = we have used Theorem 3.8. Similarly

1 = ρ̄(tμ,i)
∗u∗

wmρ̄(tμ,i)ρ̄(tμ,i)
∗uwmρ̄(tμ,i)

and the proposition is proved. �
The unitary in (2) of Proposition 3.9 will be denoted by uμ (it may depend on m) in the

following.

Definition 3.10. Let μ ∈ ΔA and b ∈ Hρ be irreducible. Define

ψ
(w)
b := S11dbdwφw

(
ε(bρ̄,w)b(uw)ε(w,bρ̄)

)
, b ∈ Hρ.

Lemma 3.11. Let m � 1 tμ,i be as in Proposition 3.9. Then

∣∣∣∣
∑

b

d2
b

(
ψ

(w)
b

dbS11

)m∣∣∣∣ = 1

S2
11

〈
wm,1

〉
, ∀m � 1.

Proof.

(
ψ

(w)
b

dbS11

)m

= dm
w φm

w

(
ε
(
bρ̄,wm

)
b(uwm)ε

(
wm,bρ̄

))

=
∑
μ,i

dμφμ

(
t∗μ,iε

(
b,wm

)
b(uwm)ε

(
wm,bρ̄

)
tμ,i

)

=
∑
μ,i

dμφμ

(
ε(bρ̄,μ)b

(
ρ̄(tμ,i)

∗uwmρ̄(tμ,i)
)
ε(μ,bρ̄)

)

=
∑
μ

〈
μ,wm

〉
dμφμ

(
ε(bρ̄,μ)uμε(μ,bρ̄)

)

where we have used definition of minimal left inverse in the first = , Eq. (1) in the second = ,
Proposition 2.1 in the third = , and Lemma 3.9 in the last = .

It follows that

∑
d2
b

(
ψ

(w)
b

dbS11

)m

=
∑〈

μ,wm
〉
d2
bdμφμ

(
ε(bρ̄,μ)uμε(μ,bρ̄)

)

b b,μ
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=
∑
μ

〈
μ,wm

〉
dμ

∑
b

dbdbφμ

(
ε(bρ̄,μ)b(uμ)ε(μ,bρ̄)

)

=
∑

b

d2
bφ1(u1)

〈
1,wm

〉

where we have used Lemma 2.23 in the third = . Since u1 ∈ Hom(1,1) is unitary by Proposi-
tion 3.9, |φ1(u1)| = 1 and we have proved that

∣∣∣∣
∑

b

d2
b

(
ψ

(w)
b

dbS11

)m∣∣∣∣ = 1

S2
11

〈
wm,1

〉
.

Proposition 3.12. There is a sector c ∈ Hρ such that |ψ
(w)
c

S11
| = dcdw .

Proof. By Lemma 3.11 we have

∣∣∣∣
∑

b

d2
b

(
ψ

(w)
b

dbS11

)m∣∣∣∣ = 1

S2
11

〈
wm,1

〉
, ∀m � 1.

By repeatedly using Verlinde formula we have

〈
wm,1

〉 = ∑
μ

1

S2
1μ

(
Svμ

S1μ

)nm

.

By Lemma 2.31, when m goes to infinity, the leading order of |∑b d2
b (

ψ
(w)
b

dbS11
)m| must be ndm

w .

Note that by Lemma 2.23 | ψ
(w)
b

dbS11
| � dw . It follows that there is a sector c ∈ Hρ such that |ψ

(w)
c

S11
| =

dcdw . �
Choose m = 1 and let tμ,i be isometries as in Lemma 3.9.

Definition 3.13. Assume that μ ∈ ΔA and [b] ∈ Hρ is irreducible. Define

ψ
(μ)
b

S11
:= dbdμφμ

((
ε(bρ̄,μ)b

(
ρ̄(tμ,i)

∗uwρ̄(tμ,i)
)
ε(μ,bρ̄)

))
.

Note that by Lemma 3.9 ψ
(μ)
b is independent of the choice of i.

Corollary 3.14. Assume that [av] = [hãv], [hn] = [1], av0 is irreducible, and if μ ≺ v2
0 , 1 ≺ aμ,

then [μ] = [1]. Then there is [c] ∈ Hρ such that |ψ
(λ)
c

S11 | = dcdλ, ∀λ, col(λ) = 0 mod n and [cc̄ ] =∑
1�i � n [ωi2i1] where i1 is a divisor of n.
2 i1
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Proof. Choose m = 1 and let tμ,i be isometries as in Lemma 3.9. By Eq. (1) we have

ψ
(w)
c

S11
=

∑
μ

〈μ,w〉ψ
(μ)
c

S11
.

By Lemma 2.23 we have

∣∣∣∣ψ
(μ)
c

S11

∣∣∣∣ � dcdμ.

By Proposition 3.12 we conclude that

∣∣∣∣ψ
(μ)
c

S11

∣∣∣∣ = dcdμ, ∀μ ≺ w.

In particular |ψ
(v0)
c

S11
| = dcdv0 . By Lemma 2.23 we know that

∑
b ψ

(v0)
b

∗[b] is a nonzero eigen-
vector of the action of [λ] on Hρ . Since 〈av0, ãv0〉 = 1, by Proposition 2.19 we must have

ψ
(v0)
b = zφ

(v0)
b , for some constant z independent of b. Since [v̄0] = [v0], ∑

b φ
(v0)
b b is also an

eigenvector of the action of [λ] with eigenvalue
Sλv0
S1v0

, it follows that φ
(v0)
b

∗ = z′φ(v0)
b , for some

constant |z′| = 1 independent of b. Hence

∑
b

ψ
(v0)
b

2 =
∑

b

z2z̄′φ(v0)
b φ

(v0)
b

∗ = z2z̄′.

By (3) of Lemma 2.23 and our assumption we conclude that |z| = 1, and so by Lemma 2.12 we
have

d2
c =

∣∣∣∣ψ
(v0)
c

S1v0

∣∣∣∣
2

=
∣∣∣∣φ

(v0)
c

S1v0

∣∣∣∣
2

=
∑
μ

〈cc̄,μ〉Sμv0

S1v0

.

Since
Sμv0
S1v0

� dμ, we must have
Sμv0
S1v0

= dμ, ∀μ ≺ cc̄.

By Lemma 2.36 we conclude that if μ ≺ cc̄, then μ = ωi for some 1 � i � n. Let 1 �
i1 � n be the smallest positive integer such that [ωi1c] = [c]. Then it is clear that [cc̄] =∑

1�i2� n
i1

[ωi2i1] where i1 is a divisor of n. �
4. Proof of Theorem 2.40

In this section we preserve the setting of Section 2.6. Let c1, c2 ∈ End(M) such that au = c1c2,
c1(M) = M1, M1 
= au(M),M . By Proposition 2.41 to prove Theorem 2.40 it is enough to show
that M1 is one of the intermediate subfactors in Proposition 2.41.
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4.1. Local consideration

Suppose c is a sector such that cc̄ ≺ a
ρo
μ where μ ∈ ΔA is a direct sum of irreducible sectors

with colors divisible by n. Recall from Section 2.6 that if λ = 0 mod n, then [aρo

λ ] = [ãρo

λ ], and
we can apply induction of a

ρo

λ with respect to c. The following lemma is proved by a translation
of the proof of (3) of Lemma 3.3 in [43] into our setting:

Lemma 4.1. If λ = 0 mod n, then [ac

a
ρo
λ

] = [aρoc
λ ].

By Proposition 2.24 we have c1 = c′
1c

′′
1 . Let c′

2 = c′′
1c2 so that au = c′

1c
′
2. Consider induction

with respect to ρoc
′
1.

We have

Lemma 4.2. [c′
1c̄

′
1] = [1].

Proof. Applying Lemma 2.12 to a = ρ0c
′
1, b = ρ0c̄

′
2 we have

∑
i

φ
(λ,i)
a φ

(λ,i)
b

∗

S2
1λ

=
∑
ν

〈
ρ0c

′
1c

′
2ρ̄0, ν

〉Sνλ

S1λ

=
∑
ν

〈uρ0ρ̄0, ν〉Sνλ

S1λ

=
∑

1�i�n

exp

(
2πi col(λ)

n

)
Suλ

S1λ

.

Choosing λ = v0 and using Lemma 2.39 we have

∑
i

φ
(λ,i)
a φ

(λ,i)
b

∗

S2
1λ


= 0.

Hence by Lemma 2.20 we obtain 〈aρ0c
′
1

v0 , ã
ρoc

′
1

v0 〉 � 1. For any μ ∈ ΔA, since ρ0c
′
1c̄

′
1ρ̄o ≺ ρoauūρ̄o

and each irreducible sector of [ρoauūρ̄o] = [ρ0ρ̄ouū] has color divisible by n, it follows that if
col(μ) 
= 0 mod n, then 〈μ,ρ0c

′
1c̄

′
1ρ̄o〉 = 0. On the other hand if col(μ) = 0 mod n, by Lemma 4.1

and Proposition 2.9 we have

〈
a

ρoc
′
1

μ ,1
〉 = 〈

aρo
μ , c′

1c̄
′
1

〉 = 〈
μ,ρ0c

′
1c̄

′
1ρ̄o

〉
.

By (1) of Proposition 2.24 it follows that ρoc
′
1 is local.

By Lemma 2.33 we have [aρ0c
′
1

v0 ] = [ãρ0c
′
1

v0 ], and by Lemmas 2.25 and 2.36 we conclude that
[ρoc

′
1c̄

′
1ρ̄o] = ∑

j [ωj ] where the sum is over a finite set of positive integers. Since ρ0c
′
1 is irre-

ducible and [ρ0ρ̄0] = ∑
1�j�n[ωj ] we conclude that [ρ0c

′
1c̄

′
1ρ̄0] = ∑

1�j�n[ωj ]. Hence dc′
1
= 1

and [c′
1c̄

′
1] = [1]. �

By Proposition 2.24 we have proved

Corollary 4.3. If λ ∈ ΔA is irreducible, then 〈1, a
ρoc1
λ 〉 � 1 iff λ = ωi , 1 � i � n.
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4.2. Verifying assumptions of Corollary 3.14

Set ρ = ρ0c1 and all inductions in the rest of this section are with respect to ρ.

Lemma 4.4. aλ is irreducible for all irreducible descendants of v2v̄2, vv̄3.

Proof. By Lemma 2.29 and Proposition 2.9 we have for n � 3

[avv̄avv̄] = 2[1] + 4[av0] + [a(2,0,...,0,2)] + [a(0,1,0,...,1,0)] + [a(0,1,0,...,0,2)] + [a(2,0,...,0,1,0)].

Note that by Corollary 4.3 we have

〈aλ, aμ〉 = 〈1, aλ̄μ〉 � 2

iff [ωj (λ)] = [μ] for some 1 � j � n − 1. It is easy to check with the explicit formulas above
that aλ is irreducible for all irreducible descendants of v2v̄2. n = 2 case is simpler, and similarly
one can check directly that aλ is irreducible for all irreducible descendants of vv̄v̄3. �
Lemma 4.5. For all λ with col(λ) = 0, [aλ] = [ãλ].

Proof. By (2) of Proposition 2.19 and Theorem 2.1 of [13] all Zλμ with Z1,λ 
= 0 iff λ = ωi ,
1 � i � n are classified. Using Corollary 4.3, it follows by inspection of Theorem 2.1 of [13]
that for all λ with col(λ) = 0, Zλλ = 〈aλ, ãλ〉 
= 0 or Zλλ = 〈aλ̄, ãλ〉 
= 0, ∀λ. In the lat-
ter case by Proposition 2.19 we conclude that λ appears in Exp iff 〈aλ, aλ̄〉 
= 0. Choose
λ = (n,0, . . . ,0) = Λ as in Lemma 2.39. It follows from Lemma 2.39 and Corollary 2.20 that
Λ ∈ Exp, but 〈aΛ, āΛ〉 = 0, contradiction. Hence 〈aλ, ãλ〉 
= 0, ∀λ, col(λ) = 0 mod n, and by
Lemma 2.35 we conclude that for all λ with col(λ) = 0, [aλ] = [ãλ]. �
Lemma 4.6. Suppose that xi ≺ aλi

ãμi
, i = 1,2 and x1x2 is a direct sum of aν with aν irreducible.

Then [x1x2] = [x2x1].

Proof. By assumption it is enough to check that

〈x1x2, aν〉 = 〈x2x1, aν〉.

By Lemma 2.13 we have [aνx̄2] = [x̄2aν], together with Frobenius reciprocity we obtain

〈x1x2, aν〉 = 〈x1, aν x̄2〉 = 〈x1, x̄2aν〉 = 〈x2x1, aν〉. �
Proposition 4.7. There exists h ∈ End(M) such that [ãv] = [hav], [hn] = [1].

Proof. First suppose that there is no automorphism h such that [ãv] = [hav] or [ãv̄] = [hav]. By
Lemma 4.5 [avav̄] = [ãvãv̄] = [1]+ [av0 ]. By Lemma 2.33 av0 is irreducible, it follows that there
are sectors xi, yi with dxi

> 1, dyi
> 1 such that

[avãv] = [x1] + [x2], [av̄ãv] = [y1] + [y2].
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We compute

[avãvãv̄] = [x1ãv̄] + [x2ãv̄] = [avavav̄] = 2[av] + [a(2,0,...,0,1)] + [a(0,1,0,...,0,1)]

where we have used Lemma. 4.5 in the second = . By assumption dxi
> 1, i = 1,2, we have

xi ãv̄ � av , but [xi ãv̄] 
= [av], i = 1,2. Hence we can assume that

[x1ãv̄] = [av] + [a(2,0,...,0,1)], [x2ãv̄] = [av] + [a(0,1,0,...,0,1)].

Hence

〈av̄xi, av̄xi〉 = 〈xiav̄, xiav̄〉 = 〈xi, xiav̄v〉 = 〈xi, xi ãv̄v〉 = 2

where we have used Lemma 2.13 in the first = and Lemma. 4.5 in the third = . We can assume
that

[av̄xi] = [ãv] + [ui], i = 1,2,

where ui , i = 1,2, is irreducible and we may have [u1] = [u2]. Note that [av̄x1] + [av̄x2] =
[avy1] + [avy2] = [av̄avãv].

The same argument applies to yi , i = 1,2, and we may choose yi such that

[av̄xi] = [avyi], i = 1,2.

Consider now

[
a2
vv̄

] = [x1x̄1] + [x2x̄2] + [x1x̄2] + [x2x̄1]
= 2[1] + 4[av0] + [a(2,0,...,0,2)] + [a(0,1,0,...,1,0)] + [a(0,1,0,...,0,2)] + [a(2,0,...,0,1,0)].

Note that xi x̄i � avv̄ , and [xi x̄j ] = [x̄j xi] by Lemmas 4.4 and 4.6. Hence

〈x2x̄1, x2x̄1〉 = 〈x2x̄2, x1x̄1〉 � 2.

By computing the index of sectors we conclude that

[x1x̄1] = [avv̄] + [a(2,0,...,0,2)], [x1x̄2] = [av0] + [a(0,1,...,0,2)],
[x2x̄2] = [avv̄] + [a(0,1,0,...,1,0)], [x2x̄1] = [av0] + [a(2,0,...,0,1,0)].

Similarly we obtain

[y1ȳ1] = [avv̄] + [a(2,0,...,0,2)], [y1ȳ2] = [av0] + [a(0,1,...,0,2)],
[y2ȳ2] = [avv̄] + [a(0,1,0,...,1,0)], [y2ȳ1] = [av0] + [a(2,0,...,0,1,0)].

Next compute

[av̄2avv̄] = [av̄ãvav̄ãv̄] = [y1x̄1] + [y1x̄2] + [y2x̄1] + [y2x̄2].



F. Xu / Advances in Mathematics 220 (2009) 1317–1356 1347
Note that

〈y2ȳ1, x2x̄1〉 = 〈x̄2y2, x̄1y1〉 = 2,

2 = 〈av̄xi, avyi〉 = 〈
a2
v̄ , yi x̄i

〉

and

〈yi x̄i , yi x̄i〉 = 〈yi ȳi , xi x̄i〉 = 3,

〈y1x̄2, y1x̄2〉 = 〈y1ȳ2, x2x̄2〉 = 2

where we have also used Lemma 4.6. From these equations we conclude that

[y1x̄1] = [
a2
v̄

] + [a(1,0,...,0,3)]

or

[y1x̄1] = [
a2
v̄

] + [a(1,0,...,0,1,0,0)].

From [av̄x1] = [avy1] we obtain

[av̄x1x̄1] = [avy1x̄1].

Using the formulas for x1x̄1, y1x̄1 we obtain

[av̄a(2,0,...,0,2)] = [ava(1,0,...,0,1,0,0)]

or

[av̄a(2,0,...,0,2)] = [ava(1,0,...,0,3)].

Both identities are incompatible with Lemmas 2.29 and 4.5.
Therefore there is an automorphism h such that [ãv] = [hav] or [ãv̄] = [hav]. Hence hn ≺

[ãv̄navn] = [av̄navn] or hn ≺ [ãvnavn] = [avnavn] by Lemma 4.5. Assume that hn ≺ aμ for
some μ, col(μ) = 0 mod n. Since ρ = ρ0c1, by Lemma 4.1 there is a sector x of a

ρ0
μ such

that [ac1
x ] = [hn]. Since dx = 1, by Lemma 2.37 we conclude that [x] = [1] and [hn] = [1].

If [ãv̄] = [hav], use [hn] = [1] we have [avn] = [av̄n]. Hence ωj (n,0, . . . ,0) ≺ v̄n for some
1 � j � n which is incompatible with fusion rules in Lemma 2.29 since k = n′n � 3n. �
4.3. Properties of sectors related to au

Lemma 4.8. If ε(ωl, λ)ε(λ,ωl) = 1, then n|l col(λ).

Proof. By monodromy equation ε(ωl, λ)ε(λ,ωl) = exp(
2πil col(λ)

n
) and the lemma follows. �
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Lemma 4.9. If [vλ] = ∑
1�j�k1−1[ωl1jw] where k1l1 = n, [ωjl1w] = [ωj ′l1w] iff j =

j ′ mod k1, and
∑

1�i�n−1 λi � k − 1. Then λ = (0, . . . ,0, k/k1,0, . . . ,0, k/k1, . . . ,0) where
(0, . . . ,0, k/k1) (with l1 − 1 0’s) appears k1 − 1 times, and the last l1 − 1 entries are 0’s, and
col(λ) = 0 mod n.

Proof. Since [ωl1λ] = [λ], in the components of λ, (λ0, . . . , λl1−1) appears k1 times. By assump-
tion vλ is a sum of k1 distinct irreducible subsectors, it follows from Lemma 2.29 that λ has only
k1 nonzero components. Since λ0 
= 0, and col(λ) = kl1(k1−1)

2 , the lemma follows. �
Proposition 4.10. If [au] = [x1y1], 1 < dx1 < du where x1 ≺ aλ1 , y1 ≺ aλ2 , then either [x1] =
[av], [y1] = [bi] or [y1] = [av], [x1] = [bi], 1 � i � n.

Proof. By using the action of ω if necessary, we may assume that the zero-th components of
λ1, λ2 are positive. By Lemma 2.35 we can assume that

[aλ1] =
∑

1�i�k1

[xi],
[
ωl1λ1

] = [λ1],
[
gix1g

−i
] = [xi], 0 � i � k1 − 1, k1l1 = n,

[aλ2] =
∑

1�i�k2

[yi],
[
ωl2λ2

] = [λ2],
[
gix1g

−i
] = [xi], 0 � i � k2 − 1, k2l2 = n.

Since au ≺ aλ1λ2 , col(λ1) + colλ2 = col(u) = 1 mod n. By Lemma 4.8 ki | col(λi), i = 1,2.
Hence (k1, k2) = 1.

Since x1y1, av0 are irreducible, we may assume that 〈x̄1x1, av0〉 = 0, i.e., avx1 is irreducible.
Let w ≺ vλ1. Since ωl1[λ1] = [λ1], ωl1w ≺ vλ1. Let t1|k1 be the least positive integer such that
[ωl1t1w] = [w]. By Lemma 4.8 n|l1t1 col(w). But col(w) = 1 + colλ1 mod n with k1| col(λ1).
We conclude that t1 = k1 and

[vλ1] ≺
∑

0�j�k1−1

[
ωl1jw

]
.

Since aw ≺ avλ1 = ∑
1�j�k1

[avxj ] and each avxj is irreducible, daw = dw � dvdx1 = dvdλ1/n.
Hence

[vλ1] =
∑

0�j�k1−1

[
ωl1jw

]
.

By Lemma 4.9 we have col(λ1) = 0 mod n. Hence col(λ2) = 1 mod n and k2 = 1. If l1 = 1, then
λ1 = (n′, . . . , n′), and dλ2 = dv . By proposition on p. 10 of [15] λ2 must be in the orbit of v or v̄

under the action of ω. But col(λ2) = 1 mod n, so [aλ2] = [av] and proposition is proved. In the
following we assume that l1 � 2 to reach a contradiction.

Note that [aλ1λ2] = k1[au], hence [λ1λ2] = ∑
0�i�k1−1[ωl1iu]. By Lemma 2.30 k1 � 2. We

have

〈λ1λ2, λ1λ2〉 = k1 � 1 + 〈λ1λ̄1, v0〉〈λ2λ̄2, v0〉 = 1 + (k1 − 1)〈λ2λ̄2, v0〉.

Hence 〈vλ2, vλ2〉 = 2.
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On the other hand since n = k1l1 � 4, by Lemma 2.29 we have 〈λ1λ̄1, (0,1,0, . . . ,0)(0,0,

. . . ,1,0)〉 � k1 + 1, [(0,1,0, . . . ,0)(0,0, . . . ,1,0)] = [vv̄] + [(0,1,0, . . . ,0,1,0)] and we con-
clude that

〈
λ1λ̄1, (0,1,0, . . . ,0,1,0)

〉
� 1.

We must have

〈
(0,1,0, . . . ,0)λ2, (0,1,0, . . . ,0)λ2

〉 = 2.

Hence by Lemma 2.29 λ2 = (m,0, . . . ,0) or λ2 = (0, . . . ,0,m).
Note that [(2,0, . . . ,0)] + [(0,1,0, . . . ,0)] = [v2]. If m > 1 then by fusion rules

[
(2,0, . . . ,0)(0,0, . . . ,2)

] = [vv̄] + [
(2,0, . . . ,2)

]
,

〈
(2,0, . . . ,0)λ2, (2,0, . . .0)λ2

〉 = 3.

We obtain 〈(2,0, . . . ,2), λ2λ̄2〉 = 1. Similarly we obtain that 〈(2,0, . . . ,2), λ1λ̄1〉 � 1, hence
〈λ1λ2, λ1λ2〉 = k1 � k1 + 1, a contradiction. Therefore λ2 = v or v̄. But col(λ2) = 1 mod n we
have λ2 = v.

From [λ1v] = [λ1λ2] = ∑
0�i�k1−1[ωl1iu] and Lemma 4.9 we conclude that λ1 = (n′, n′,

. . . , n′). Hence l1 = 1 contradicting our assumption l1 > 1. �
4.4. The proof of Theorem 2.40

By Lemma 2.33, Corollary 4.3 and Proposition 4.7, the assumptions of Corollary 3.14 are
verified. We can find ρoc ∈ Hρ as in Corollary 3.14. Since [ρoρ̄o] = ∑

1�i�n[ωi], it follows that
dc = 1, and we conclude that ρoc1 ≺ λρoc for some λ, and by Proposition 2.9 we have

1 � 〈ρoc1, ρoaλc〉 = 〈c1, ρ̄oρoaλc〉 = 〈c1, aλρ̄oρoc〉.

It follows that c1 ≺ aλg
ic for some 1 � i � n. Since c1(g

ic)−1(M) = c1(M) as a set, replacing c1
by c1(g

ic)−1 if necessary, we may assume that [gic] = [1], and c1 ≺ aλ. Since au = c1c2 it
follows that c2 ≺ aμ for some μ. By Proposition 4.10 we conclude that [c1] = [av], [c2] =
[bi], or [c1] = [bi], [c2] = [av], 1 � i � n. Assume first that c1 = UavU

∗, c2 = U ′biU
′∗ with

U,U ′ unitary. Then we have au = adUav(U ′)avbi = adUi
avbi . Since avbi is irreducible we have

Uav(U
′)U∗

i ∈ C, and this implies that the intermediate subfactor c1(M) = adUi
av(M), i.e., it is

one of the subfactors in Proposition 2.41. The case when [c1] = [bi], [c2] = [av] 1 � i � n is
treated similarly. By Proposition 2.41 Theorem 2.40 is proved.

5. Related issues

5.1. Centrality of a class of intertwiners

We preserve the general setup of Section 2.3. If ρ = μc, μ ∈ ΔA, dc = 1 it follows from
Definition 2.7 that [aλ] = [ãλ] = [c−1λc], ∀λ, hence Zλλ1 = δλ,λ1 . Motivated by our proof of
Theorem 2.40 we make the following:

Conjecture 5.1. If Zλλ = δλ,λ , then ρ = μc, μ ∈ ΔA, dc = 1.
1 1
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We will prove that Conjecture 5.1 is equivalent to the centrality of a class of intertwiners.
Assume that Zλλ1 = δλ,λ1 . Then for each irreducible λ there is (up to scalar) a unique unitary
uλ ∈ Hom(aλ, ãλ).

Similar to Definition 3.7 we define:

Definition 5.2. uλ1λ2...λm := uλ1aλ1(uλ2) . . . aλ1λ2...λn−1(uλn) ∈ Hom(aλ1λ2...λm, ãλ1λ2...λm).

If ρ = μc, μ ∈ ΔA, dc = 1, then it follows from definition (2.7) that we can choose uλ such
that uλ = c−1(ε̃(λ, μ̄)ε̃(μ̄, λ)). Using BFE in Proposition 2.1 we have

uλ1λ2...λm = c−1(ε̃(λ1λ2 . . . λm, μ̄)ε̃(μ̄, λ1λ2 . . . λm)
) ∈ Hom(aλ1λ2...λm, ãλ1λ2...λm),

Hom(aλ1λ2...λm, ãλ1λ2...λm) = c−1(Hom(μ̄λ1λ2 . . . λm, μ̄λ1λ2 . . . λm)
)
.

By using BFE in Proposition 2.1 again we have proved the following:

Lemma 5.3. If ρ = μc, μ ∈ ΔA, dc = 1, then uλ1λ2...λmT u∗
λ1λ2...λm

= T , ∀T ∈
Hom(aλ1λ2...λm, aλ1λ2...λm).

Using uλ we define:

Definition 5.4. For any irreducible [b] ∈ Hρ , λ ∈ ΔA,

ψ
(λ)
b := S11dbdλφλ

(
ε(bρ̄, λ)b(uλ)ε(λ, bρ̄)

)
.

Lemma 5.5. For any irreducible [b] ∈ Hρ , ψ
(λ)
b = cλφ

(λ)
b , |cλcλ̄| = 1 where cλ are complex

numbers independent of b.

Proof. Since by Lemma 2.23
∑

b ψ
(λ)
b

∗[b] is an eigenvector of the action of μ with eigenvalue
Sμλ

S1λ
, and by Proposition 2.19 there is up to scalar a unique such eigenvector, it follows that

there is a complex number cλ independent of b such that ψ
(λ)
b = cλφ

(λ)
b , ∀b. Similarly since∑

b φ
(λ)
b

∗[b] is an orthogonal eigenvector of the action of μ with eigenvalue
Sμλ̄

S1λ̄
, we have φ

(λ̄)
b =

c′
λφ

(λ)
b

∗
, |c′

λ| = 1, ∀b. We have φ
(λ̄)
b = cλ̄c

′
λφ

(λ)
b

∗
, ∀b, |c′

λ| = 1. By Lemma 2.23
∑

b ψ
(λ)
b ψ

(λ̄)
b

has absolute value 1, and it follows that |cλcλ̄| = 1. �
The following lemma is proved in the same way as Lemma 3.9:

Lemma 5.6. If uλ1λ2...λm is central, then for fixed μ, if tμ ∈ Hom(μ,λ1λ2 . . . λm) is an isometry,
then ρ̄(tμ)∗uλ1λ2...λm ρ̄(tμ) ∈ Hom(aμ, ãμ) is a unitary independent of the choice of tμ, and is a
scalar multiple of uμ.

Proposition 5.7. Conjecture 5.1 is equivalent to the following statement: if Zλλ1 = δλ,λ1 , then
uλ λ ...λm is central for all λ1, . . . , λm, ∀m.
1 2
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Proof. Suppose that Conjecture 5.1 is true. Then it follows from Lemma 5.3 that if Zλλ1 = δλ,λ1 ,
then uλ1λ2...λm is central for all λ1, . . . , λm, ∀m. Suppose now that uλ1λ2...λm is central for all
λ1, . . . , λm, ∀m. As in the proof of Lemma 3.11 by using centrality uλ1λ2...λm we calculate

ψ
(λ1)
b

ψ
(1)
b

ψ
(λ2)
b

ψ
(1)
b

· · · ψ
(λm)
b

ψ
(1)
b

=
∑
μ

〈μ,λ1 . . . λm〉dμφμ

(
ε(bρ̄,μ)b(uμ)ε(μ,bρ̄)

)
cμ

where |cμ| = 1. Hence using Lemma 2.23 as in the proof of Lemma 3.11 we have

∑
b

∣∣∣∣d2
b

ψ
(λ1)
b

ψ
(λ1)
b

ψ
(λ2)
b

ψ
(1)
b

· · · ψ
(λm)
b

ψ
(1)
b

∣∣∣∣ = 〈1, λ1 . . . λm〉
∑

b

d2
b =

∑
λ

Sλ1λ

S1λ

Sλ2λ

S1λ

· · · Sλmλ

S1λ

d2
λ.

Now choose m = 2m1 and λi+m1 = λ̄i , 1 � i � m1, summing over λ1, . . . , λm1 and using
Lemma 5.5 we obtain

∑
b

1

dm−2
b

=
∑
λ

1

dm−2
λ

.

Letting m = 2m1 go to infinity and noticing that db � 1 we conclude that there must exist a
sector c such that dc = 1 and ρ = μc for some μ ∈ ΔA. �

For each irreducible λ ∈ ΔA we choose Rλλ̄ so that R∗
λλ̄

Rλλ̄ = dλ,λ(R∗̄
λλ

)Rλλ̄ = 1. These
operators are unique up to scalars.

Lemma 5.8.

(1) We can choose uλ such that

ρ̄
(
R∗

λλ̄

)
uλλ̄ = ρ̄

(
R∗

λλ̄

)
, uλλ̄ρ̄(Rλλ̄) = ρ̄(Rλλ̄), ∀λ;

(2) The relative braiding as defined in Lemma 2.15 among aλ’s (resp. ãλ’s) is a braiding and
ε(aλ, aμ) = ε(ãλ, ãμ) = ρ̄(ε(λ,μ)), ∀λ,μ ∈ ΔA.

Proof. Ad (1): Note that ρ̄(R∗
λλ̄

)uλλ̄ is equal to ρ̄(R∗
λλ̄

) up to a constant of absolute value 1,
hence we can choose to multiply uλ,uλ̄ by suitable constants of absolute value 1 so that

ρ̄
(
R∗

λλ̄

)
uλλ̄ = ρ̄

(
R∗

λλ̄

)
.

If

uλλ̄ρ̄(Rλλ̄) = cλρ̄(Rλλ̄), ∀λ,

multipling both sides on the left by ρ̄(Rλλ̄)
∗ we conclude that cλ = 1, ∀λ.

Ad (2): The relative braidings are braidings since [aλ] = [ãλ] by assumption and Lemma 2.15.
By definition we have

ε(aλ, aμ) = u∗
μρ̄

(
ε(λ,μ)

)
aλ(uμ) = u∗

μuμρ̄
(
ε(λ,μ)

) = ρ̄
(
ε(λ,μ)

)
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where we have used Lemma 2.17 in the second = since uμ ∈ Hom(aμ, ãμ) ⊂ Hom(ρ̄μ, ρ̄μ).
The other case is proved similarly. �
Definition 5.9. An operator is a cap (resp. cup) operator if it is μ(Rλλ̄) (resp. μ(Rλλ̄)

∗) for some
μ,λ ∈ ΔA. It is a braiding operator if it is μ(ε(λ, ν)) or μ(ε̃(λ, ν)) for some ν,μ,λ ∈ ΔA.

Definition 5.10. Denote by Bλ1λ2...λm the subspace of Hom(λ1λ2 . . . λm,λ1λ2 . . . λm) which is
linearly spanned by operators in Hom(λ1λ2 . . . λm,λ1λ2 . . . λm) consisting of products of only
caps, cups and braiding operators.

Proposition 5.11. For any T ∈ ρ̄(Bλ1λ2...λm), uλ1...λmT = T uλ1...λm .

Proof. It is enough to check for an operator T which consists of products of only caps, cups and
braiding operators. Note that the statement of proposition is independent of choices of uλ, and
we can choose our uλ so that they verify (1) of Lemma 5.8. It is useful to think of T as an tangle
connecting top m strings labeled by aλ1, . . . , aλm to the bottom m strings labeled by aλ1, . . . , aλm

as in Chapter 2 of [37], where in the tangle only cups, caps and braidings are allowed. Then by
Proposition 2.1, uT u∗ will be represented by the same tangle, except the top and bottom m strings
are now labeled by ãλ1, . . . , ãλm . For each closed string in uT u∗ labeled by aμ, by inserting uμ

we can change the label aμ to ãμ using Proposition 2.1 without changing the operator since we
have a closed string. Therefore uT u∗ is represented by the same tangle T with all labels changed
from the original labels aμ of T to ãμ. Since T consists of products of only caps, cups and
braiding operators, proposition follows from Lemma 5.8. �
Conjecture 5.12. Bλ1λ2...λm = Hom(λ1λ2 . . . λm,λ1λ2 . . . λm), ∀λ1, . . . λm,m � 1.

By Propositions 5.11 and 5.7 we have proved the following:

Proposition 5.13. Conjecture 5.12 implies Conjecture 5.1 .

By examining the proof of Proposition 5.7, we can formulate a weaker version of Conjec-
ture 5.12.

Definition 5.14. We say that λ is a generator for ΔA if for any irreducible μ ∈ ΔA, there is a
positive integer m such that μ ≺ λm.

Conjecture 5.15. For some generator λ of ΔA, Bλλ...λ = Hom(λm,λm), ∀m � 1, where m is the
number of λ that appears in the definition of Bλλ...λ.

Lemma 5.16. Assume that λ is a generator for ΔA. Then the set {[μ] | |Sλμ

S1μ
| = dλ} is a finite

abelian group.

Proof. Note that by definition |Sλμ

S1μ
| = dλ implies that ε(μ,λ)ε(λ,μ) ∈ C. By Proposition 2.1

this implies that ε(μ,λ1)ε(λ1,μ) ∈ C if λ1 ≺ λm, m � 1. Since λ a generator, it follows that

ε(μ,λ1)ε(λ1,μ) ∈ C, ∀λ1 ∈ ΔA. Hence |Sμλ1 | = dμ, ∀λ1 ∈ ΔA. By properties of S matrix

S1λ1
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this implies that dμ = 1. On the other hand if dμ = 1 then |Sλμ

S1μ
| = dλ since μλ is irreducible. It

follows that the set {[μ] | |Sλμ

S1μ
| = dλ} is a finite abelian group. �

Proposition 5.17. Conjecture 5.15 implies Conjecture 5.1.

Proof. Assume Conjecture 5.15 is true. Then by Proposition 5.11 we know that uλm is central.
As in the proof of Proposition 5.7, replacing λi by λ in the summation we have

∣∣∣∣
∑
a

(
ψ

(λ)
a

ψ
(1)
a

)m

d2
a

∣∣∣∣ =
∑
μ

(
Sλμ

S1μ

)m

S2
1μ.

Choose m to be divisible by the order of the finite abelian group in Lemma 5.16 and let m go
to infinity, the RHS of the above equation has leading order (up to multiplication by a positive

number) dm
λ . It follows that there is a sector c such that |ψ

(λ)
c

ψ
(1)
c

| = dλ. For any μ ≺ λl , l � 1. Using

the centrality of uλl we have

(
ψ

(λ)
c

ψ
(1)
c

)l

=
∑
μ

〈
μ,λl

〉ψ(μ)
c

ψ
(1)
c

cμ

where |cμ| = 1. So we have
∑

μ≺λl |ψ
(μ)
c

ψ
(1)
c

| � dl
λ. Since |ψ

(μ)
c

ψ
(1)
c

| � dμ and
∑

μ〈μ,λl〉dμ = dl
λ, we

conclude that |ψ
(μ)
c

ψ
(1)
c

| = dμ, ∀μ ≺ λl . Since λ is a generator, we conclude that |ψ
(μ)
c

ψ
(1)
c

| = dμ, ∀μ.

By Lemma 5.5 we conclude that |φ
(μ)
c

φ
(1)
c

|2 = d2
μ. Summing over μ on both sides we conclude that

dc = 1, and the proposition is proved. �
By Proposition 5.17 and Lemma 2.32 we have proved the following:

Corollary 5.18. Conjecture 5.1 is true for ΔA where A is the net associated with SU(n)k .

5.2. Maximal subfactors

In this section we give an application of Corollary 5.18.
The following notion is due to V.F.R. Jones:

Definition 5.19. A subfactor N ⊂ M is called maximal if M1 is a von Neumann algebra such
that N ⊂ M1 ⊂ M implies M1 = M or M1 = N .

We preserve the setting of Section 2.5. We will say that λ is maximal if λ(M) ⊂ M is a
maximal subfactor.

Lemma 5.20. Suppose Z1λ = δ1λ,Zωiωi = 1. Then Zλμ = δλμ.

Proof. By Proposition 3.2 of [9], from Z1λ = δ1λ we have [aλ] = [ãτ (λ)] where λ → τ(λ) is
an automorphism of fusion ring. Such automorphisms are classified in [15]. By the theorem in
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Section 2 of [15] there is an integer 0 � i � n − 1 such that τ(λ) = ωjλ or τ(λ) = ω−j λ̄ (exact
formulas for j are given in [15] but we will not use them). From Zωiωi = 1 we conclude that
either j + i = i mod n, ∀i or −j − i = i mod n, ∀i, and hence τ(λ) = λ, ∀λ. �
Proposition 5.21. If Svλ 
= 0, then λ is maximal.

Proof. Let M1 be an intermediate subfactor between λ(M) and M . Suppose that λ = c1c2 and
c1 = c′

1c
′′
1 as in Proposition 2.24. Since Svλ 
= 0, applying Lemmas 2.20 and 2.25 to induction

with respect to c′
1, we conclude that ε(v, c′

1c̄
′
1)ε(c

′
1c̄

′
1, v) ∈ C. By Lemma 2.31 we conclude that

[c′
1c̄

′
1] = [1]. By Proposition 2.24 we must have Z

c1
λ1 = δλ1. Since Sλωi 
= 0, by Lemma 2.20

we conclude that Z
c1
ωiωi = 1. By Lemma 5.20 and Proposition 5.18 we conclude that c1 = μc,

μ ∈ ΔA, dc = 1. Replacing c1 by c1c
−1 if necessary we may assume that c1 = μ. It follows

that c2 = μ2 for some μ2 ∈ ΔA. By Lemma 2.30 we conclude that [μ] = [λ] or [μ] = [ωi],
1 � i � n, hence M1 = λ(M) or M1 = M . �
Corollary 5.22. If k + n = pl where p is a prime number, and (k, n) 
= (2,2), then λ is maximal
iff there is no 1 � i � n − 1 such that [ωiλ] = [λ].

Proof. By Theorem 5 of [14] when k + n = pl where p is a prime number, Svα = 0 iff [ωiλ] =
[λ] for some 1 � i � n − 1. Let i1|i be the smallest positive integer such that [ωi1λ] = [λ].
Then [ωiλ] = [λ] for some 1 � i � n − 1, then [λλ̄] ≺ ∑

1�j�n/i1
[ωji1] and by [20] and our

assumption that λ is maximal it follows that [λλ̄] = ∑
1�j�n/i1

[ωji1]. By Lemmas 2.30 and 2.33
this is only possible if k = n = 2. The corollary now follows from Proposition 5.21. �
Corollary 5.23. Suppose that k 
= n− 2, n+ 2, n. Then λ is maximal iff there is no 1 � i � n− 1
such that [ωiλ] = [λ].

Proof. When k = 1 the corollary is obvious. By Lemma 2.33 we can assume that k � 2 and
dv0 > 1. As in the proof of Corollary 5.22, λ is maximal implies that there is no 1 � i � n − 1
such that [ωiλ] = [λ]. Now suppose that there is no 1 � i � n − 1 such that [ωiλ] = [λ]. If
Svλ 
= 0, then λ is maximal by Corollary 5.21. Suppose that Svλ = 0. Since [vv̄] = [1] + [v0]
we have Sv0λ = −S1λ 
= 0. Assume that M1 is an intermediate subfactor between λ(M) and M ,
and λ = c1c2 with c1(M) = M1 and c1 = c′

1c
′′
1 as in Proposition 2.24. Apply Lemma 2.20 we

have 〈ac′
1

v0 , ã
c′

1
v0 〉 � 1. By Lemma 2.33 we must have [ac′

1
v0 ] = [ãc′

1
v0 ] and by Lemma 2.36 [c′

1c̄
′
1] =∑

1�j�n/j1
[ωjj1]. By Frobenius reciprocity we have [ωj1c′

1] = [c′
1]. Since λ = c′

1c
′′
1c2, [ωj1λ] =

[λ], and by assumption j1 = n and [c′
1c̄

′
1] = [1]. The rest of the proof now follows in exactly the

same way as in the proof of Proposition 5.21. �
Example 5.24. When n = 2 we have Jones subfactors and their reduced subfactors. In the case
k = n = 2 there are three irreducible subfactors and they are maximal. Let n = 2, k 
= 2. Then
λ can be labeled by an integer 1 � i � k. Corollary 5.23 implies that i is maximal iff i 
= k/2
(when k = 4 this can be easily checked directly). This can also be proved directly using the same
argument at the end of Section 2.6.
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