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Smoke-water prepared from burning plant material and smoke-derived compounds significantly promote seed
germination and enhance growth of many plant species. Since large amounts of smoke are generated and re-
leased into the air during wildfires, it is possible that angiosperm pollen germination and pollen tube elongation
may be affected by plant-derived smoke even when the plants are some distance from the fire. We assessed
the effect of smoke on pollen germination and pollen tube elongation for three species of Amaryllidaceae
that occur naturally in areas prone to winter fire in South Africa. In vitro pollen germination and pollen tube
growth of Clivia gardenii, Cyrtanthus mackenii and Scadoxus multiflorus were assessed by preparing hanging
drop slides with different concentrations of smoke-water, karrikinolide and 3,4,5-trimethylfuran-2(5H)-one
combined with Brewbaker and Kwack's medium and a sucrose and boric acid medium. These slides were incu-
bated for 2 h at 25 °C. Pollen germination and pollen tube lengths were recorded by capturing images with a
compound microscope aided by a digital camera. Low concentrations of smoke-water (1:1000 and 1:2000 v:v)
significantly increased pollen germination and pollen tube length in the three species, when applied alone or in
combination with either Brewbaker and Kwack's medium or sucrose and boric acid medium. Low concentrations
of smoke-water significantly increased in vitro pollen germination and pollen tube growth evenwhenno additional
calciumwas added. Consequently, smoke from grassland fires may have favourable implications for the reproduc-
tive process of flowering plants.

© 2013 SAAB. Published by Elsevier B.V. All rights reserved.
1. Introduction

Fire has a great influence on vegetation ecology. Shrub species from
fire-prone ecosystems show diverse responses to fire with post-fire
regeneration evident in shrublands around the world (Keeley and
Zedler, 1978; Kruger, 1977). Smoke generated from burning plant
material is now widely recognized as an important germination and
seedling growth cue for many plant species (Downes et al., 2013;
Kulkarni et al., 2007; Light and Van Staden, 2004). In fire-prone areas,
fire-stimulated flowering is also a common phenomenon, especially in
herbaceous plants (Gill and Groves, 1981; Rundel, 1981). For example,
flowering of Cyrtanthus ventricosus (Amaryllidaceae), a fynbos geophyte
commonly known as the ‘fire-lily’, is associated with fire (LeMaitre and
Brown, 1992; Olivier and Werner, 1980). Fire also plays a role in mass
flowering of Watsonia borbonica (Iridaceae) which leads to abundant
fruit set (Le Maitre, 1984) and seedling recruitment (Kruger, 1978;
Kruger and Bigalke, 1984; Le Maitre, 1984). Greater fruiting has also
been observed in the grasstree Xanthorrhoea preissii, in summer-burnt
populations compared to autumn- and spring-burnt populations
(Lamont et al., 2000). Despite numerous reports of fire-stimulated
y Elsevier B.V. All rights reserved.
flowering, no study has been carried out on the effect of smoke on
angiosperm pollen.

Smoke-water (SW), prepared by bubbling plant-derived smoke
through distilled water, has been used extensively as a “smoke equiva-
lent” in many studies (Adkins and Peters, 2001; Baxter et al., 1994;
Doherty and Cohn, 2000; Drewes et al., 1995; Kulkarni et al., 2011).
Some of the active principles in smoke have been identified and the
activity is still being studied. Karrikinolide (KAR1), the first biologically
active compound isolated from smoke, promotes seed germination in
a wide variety of species (Chiwocha et al., 2009; Light et al., 2009).
These reviews indicate that smoke-water and the smoke-derived
compounds act like plant growth regulators in stimulating seed germi-
nation. 3,4,5-Trimethylfuran-2(5H)-one (trimethylbutenolide (TMB))
is also present in plant-derived smoke and inhibits the promotory
activity of KAR1 (Light et al., 2010).

In vitro pollen growth studies are largely aimed at determining
the growth requirements of pollen from different plant species
(Abdelgadir et al., 2012; Bolat and Pirlak, 1999; Brewbaker and
Kwack, 1963; Franklin-Tong, 1999; Khatun and Flowers, 1995; Kumari
et al., 2009; Lyra et al., 2011; Sato et al., 1998; Tuinstra and Wedel,
2000; Wang et al., 2004). Various plant growth regulators such as
auxins, brassinosteroids, cytokinins and gibberellic acid have been
found to induce pollen germination and pollen tube growth in several
species (Bamzai and Randhawa, 1967; Hewitt et al., 1985; Singh et al.,
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2002; Smith, 1942; Voyiatzis and Paraskevopoulou-Paroussi, 2000).We
predict that given the plant growth regulator-like germination inducing
effects of smoke, smoke may also have an effect on pollen.

Fire is a common phenomenon in most regions of South Africa with
the majority of the flora being exposed to smoke from naturally occur-
ring wildfires. Fire plays an important role as a germination stimulant
and assures the reproductive success ofmanyplant species. It is possible
that smoke from these fires may affect the reproductive success of
plants at the pollen level. In the present study, the effect of smoke-
water and two smoke-derived compounds was tested on pollen germi-
nation and pollen tube growth of three Amaryllidaceae species, all of
which are generally found in fire-prone areas.

2. Materials and methods

2.1. Flower and pollen collection

The three Amaryllidaceae species used in this study were Clivia
gardenii Hook., Cyrtanthus mackenii Hook.f. subsp. mackenii and
Scadoxus multiflorus (Martyn) Raf. subsp. multiflorus. These species
produce hermaphrodite flowers in an umbel arrangement. Flowers
were collected from the University of KwaZulu-Natal's botanical
garden (Pietermaritzburg, South Africa; S 29° 37.50′, E 30° 24.23′).
Following anthesis, anthers were collected from flowers between
07:00 and 09:00 in the morning.

2.2. Pollen viability

Three pollen staining methods were used to differentiate between vi-
able and dead pollen. For all three staining methods, a small quantity of
pollen grains was transferred to a drop of dye, mixed thoroughly to a ho-
mogenous pollen suspension using a pin and covered with a cover slip.
Pollen grains were observed with an Olympus AX70 fluorescence micro-
scope (Camera Nikon DS-Ri1, Tokyo, Japan). The number of viable pollen
grainswas recorded in eachfield of viewout of the total number of pollen
grains. Pollen grains were observed in four different fields of view (repli-
cated four times). The dyes usedwere: (1) Aqueous 2,3,5-triphenyl tetra-
zolium chloride (TTC, Merck) [pollen grains that turned red under
fluorescence were considered viable (Abdelgadir et al., 2012; Hauser
and Morrison, 1964; Khatun and Flowers, 1995; Stanley and Linskens,
1974)]. (2) Aniline blue-lactophenol (ANB, Merck) staining solution
consisting of 5 mL phenol, 20 mL lactic acid, 40 mL glycerol, and 20 mL
distilled water (Kearns and Inouye, 1993) [pollen grains were considered
viable if they fluoresced blue (Kearns and Inouye, 1993; Khatun and
Flowers, 1995; Wang et al., 2004)]. (3) Fluorescein diacetate (FDA)
(Sigma-Aldrich) dissolved in acetone (2 mg mL−1) and used in combina-
tionwith 10−6 M sucrose solutionwas used for thefluorochromatic reac-
tion (FCR) [pollen grains that fluoresced brightly were taken as viable
(Heslop-Harrison and Heslop-Harrison, 1970; Heslop-Harrison et al.,
1984; Jain and Shivanna, 1988; Kearns and Inouye, 1993; Khatun and
Flowers, 1995; Shivanna and Heslop-Harrison, 1981; Wang et al.,
2004)]. The microscope slides for all three staining methods were kept
in humidity chambers (N90% RH) and placed in the dark for 1 h at 25 °C.

2.3. In vitro pollen germination and pollen tube elongation

All test solutions were evaluated for activity individually and in
combination with either Brewbaker and Kwack's (BWK) medium and
sucrose or boric acid (SB) medium. The BWK medium was prepared
by making a 10% sucrose solution to which 100 mg L−1 boric acid,
300 mg L−1 calcium nitrate, 100 mg L−1 potassium nitrate and
200 mg L−1 magnesium sulphate were added (Brewbaker and Kwack,
1963; Shivanna and Rangaswamy, 1992). The SB medium consisted of
a 10% sucrose solution with 100 mg L−1 boric acid (Kumari et al.,
2009; Linskens, 1967; Shivanna and Rangaswamy, 1992). Smoke-
water (SW) was prepared by burning 5 kg dry Themeda triandra
(Poaceae) leaf material in a 20 L metal drum and bubbling the smoke
through 500 mL distilled water for 45 min. The SW solutions, 1:500
(v:v), 1:1000 (v:v) and 1:2000 (v:v), were prepared by diluting 1 part
SW in 500, 1000 and 2000 parts distilled water. Karrikinolide and
3,4,5-trimethylfuran-2(5H)-one [trimethylbutenolide (TMB)] were iso-
lated from SW as described in Van Staden et. al. (2004), and Light et al.
(2010), respectively. The different liquid media used were as follows:
(1) distilled water; (2) BWK; (3) SB; (4) gibberellic acid, GA3 (10−4 M);
(5) GA3 (10−5 M); (6) SW (1:500); (7) SW (1:1000); (8) SW (1:2000);
(9) BWK + SW (1:500); (10) BWK + SW (1:1000); (11) BWK + SW
(1:2000); (12) SB + SW (1:500); (13) SB + SW (1:1000); (14)
SB + SW (1:2000); (15) karrikinolide, KAR1 (10−6 M); (16) KAR1

(10−7 M); (17) KAR1 (10−8 M); (18) BWK + KAR1 (10−6 M); (19)
SB + KAR1 (10−6 M); (20) TMB (10−3 M); (21) BWK + TMB
(10−3 M) and (22) SB + TMB (10−3 M). Since the 10−6 M concentra-
tion of KAR1 gave the best results in the absence of the sucrose media,
this concentration was used in combination with the two sucrose
media. Similarly, the 10−3 M TMB solution gave the best results, and
no other concentrations were therefore included. All chemicals that
are not otherwise specified were obtained from Sigma-Aldrich.

Six hanging drop slides were prepared for each test solution (repli-
cated four times). A thin film of petroleum jelly was applied to the rim
of the cavity of each cavity slide to prevent evaporation of the test solu-
tions. A consistent amount of pollen grains were transferred from the
anthers to each hanging drop slide andmixed into a homogenous pollen
suspension using a pin. Preparation of the slides was scheduled in a
manner that allowed for the images to be captured exactly 2 h following
incubation at 25 °C. Images were taken using a compound microscope
(Olympus AX70; Camera Nikon DS-Ri1, Tokyo, Japan). Pollen grains
were considered germinated when an intact tube had emerged from
them. The percentage of germinated pollen grains was calculated by
counting the number of germinated pollen grains out of the total num-
ber of pollen grains per field of view. Pollen tube lengths were deter-
mined by analysing the images captured using the on-board NIS
elements BR4.00.016 software. Mean pollen tube length was calculated
as the average length of 20 pollen tubes per replicate (replicated three
times).

2.4. Statistical analysis

Statistical analysis of the data was conducted using a one-way anal-
ysis of variance (ANOVA) (GenStat®, Edition 14). Significant differences
were determined using the Duncan's multiple range test (P b 0.05).

3. Results

3.1. Pollen viability

The three staining methods, TTC, ANB and FCR successfully stained
and indicated viable pollen grains. Viability ranged between 92.2%–
94.2%, 76.9%–90.1% and 75.0%–91.0% for C. gardenii, C. mackenii and
S. multiflorus, respectively (Fig. 1). No significant differences were
found between the three staining methods.

3.2. In vitro pollen germination

In vitro pollen germinationwas initiatedwithin thefirst 30 minwith
BWK and SB media. Optimum pollen germination was achieved with
BWK medium. In the absence of the media (BWK medium and SB
medium), low concentrations of SW (1:1000 and 1:2000) significantly
increased germination in all three species (Table 1). Gibberellic acid
(10−4 and 10−5 M) also produced significantly higher germination
compared to the water control (Table 1). In the presence of both
media, low concentrations of SW (1:1000 and 1:2000) significantly
increased germination in C. gardenii and S. multiflorus (Fig. 2A and C).
Karrikinolide (10−6 M) showed significantly greater pollen germination



Fig. 1. Pollen viability of Clivia gardenii, Cyrtanthus mackenii and Scadoxus multiflorus as
determined by three fluorescent staining methods (n = 16).
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in all three species compared to the controls in the absence of media
(Table 1) and produced significantly higher germination in C. gardenii
when incubatedwith bothmedia (Fig. 2A). Trimethylbutenolide showed
significantly higher pollen germination percentages for S. multiflorus and
C. gardenii compared to their respective controls in the absence of media
(Table 1) but had no significant effect on germination of any species
when combined with BWK or SB medium (Fig. 2).
Fig. 2. The effect of different concentrations of smoke-water (SW), karrikinolide (KAR1)
and trimethylbutenolide (TMB) on pollen germination of three Amaryllidaceae species
applied in combination with two sucrose media. Symbols (±SE) of each species and
medium with a different letter are significantly different according to Duncan's multiple
range test (P b 0.05) (n = 24).
3.3. In vitro pollen tube elongation

In the absence of media, low concentrations of SW (1:1000 and
1:2000) significantly increased pollen tube length compared to the
other treatments in all three species (Table 1). Gibberellic acid (10−4

and 10−5 M) produced significantly longer pollen tubes compared to
the water control in C. mackenii (Table 1). Smoke-water (1:1000 and
1:2000) used in combination with BWK and SB produced significantly
longer pollen tubes compared to their respective controls in all three
species (Fig. 3). In one instance, KAR1 (10−6 M) significantly increased
C. gardenii pollen tube length compared to the other treatments in the
absence of media (Table 1) and produced significantly longer pollen
tubes in S. multiflorus in the presence of both media (Fig. 3E and F).
Trimethylbutenolide produced significantly longer pollen tubes in S.
multiflorus compared to the control in the absence of media (Table 1).
This compound also produced significantly longer pollen tubes in C.
mackenii and S. multiflorus when combined with both media (Fig. 3C, D,
E and F).
Table 1
The effect of gibberellic acid (GA3), smoke-water (SW), karrikinolide (KAR1) and trimethylbutenolide (TMB) on pollen germination (n = 24) and pollen tube length (n = 60) of three
Amaryllidaceae species in the absence of media.

Treatments Species

Clivia gardenii Cyrtanthus mackenii Scadoxus multiflorus

Germination (%) Tube length (μm) Germination (%) Tube length (μm) Germination (%) Tube length (μm)

Water (control) 24.1 ± 2.5 fg 29.5 ± 1.6 e 7.5 ± 2.2 d 49.5 ± 4.8 c 26.0 ± 6.4 e 90.7 ± 13.6 de
GA3 (10−4 M) 59.9 ± 5.1 bc 45.7 ± 4.2 de 30.1 ± 2.0 b 101.3 ± 8.9 b 82.8 ± 1.2 ab 58.0 ± 4.6 e
GA3 (10−5 M) 57.4 ± 3.5 c 55.0 ± 2.5 d 25.8 ± 1.5 b 105.3 ± 8.9 b 75.2 ± 2.2 ab 60.7 ± 5.0 e
SW (1:500 v:v) 59.8 ± 2.1 bc 42.1 ± 2.3 de 21.1 ± 1.2 bc 78.5 ± 9.6 bc 36.1 ± 3.6 de 213.5 ± 7.1 a
SW (1:1000 v:v) 70.3 ± 1.8 ab 170.5 ± 9.5 b 40.6 ± 3.7 a 166.3 ± 16.7 a 84.2 ± 2.5 a 188.7 ± 35.9 ab
SW (1:2000 v:v) 71.6 ± 4.7 a 111.6 ± 4.5 c 40.6 ± 6.9 a 172.8 ± 17.2 a 78.8 ± 1.3 ab 222.2 ± 7.6 a
KAR1 (10−6 M) 50.6 ± 3.1 cd 241.6 ± 10.8 a 25.6 ± 2.5 b 67.2 ± 7.8 c 69.3 ± 3.0 cd 128.7 ± 8.5 cd
KAR1 (10−7 M) 32.7 ± 4.9 ef 43.7 ± 6.6 de 10.5 ± 3.6 cd 46.4 ± 6.1 c 66.4 ± 6.1 abc 141.8 ± 5.2 c
KAR1 (10−8 M) 17.3 ± 1.6 g 29.9 ± 3.1 e 10.9 ± 1.2 cd 62.2 ± 8.3 c 67.2 ± 1.7 abc 75.5 ± 6.3 e
TMB (10−3 M) 44.4 ± 3.5 de 28.4 ± 2.1 e 8.4 ± 1.5 d 56.2 ± 5.3 c 72.8 ± 1.4 abc 153 ± 21.4 bc

image of Fig.�1


Fig. 3. The effect of different concentrations of smoke-water (SW), karrikinolide (KAR1) and trimethylbutenolide (TMB) on pollen tube length of three Amaryllidaceae species. Bars (±SE)
of each species and medium with different letters are significantly different according to Duncan's multiple range test (P b 0.05). Dark symbols on the bars indicate mean pollen tube
length without media (n = 60).
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4. Discussion

Many studies have reported on the growth requirements and viabil-
ity of pollen of certain groups of plant species (Abdelgadir et al., 2012;
Bolat and Pirlak, 1999; Brewbaker and Kwack, 1963; Franklin-Tong,
1999; Khatun and Flowers, 1995; Kumari et al., 2009; Lyra et al., 2011;
Sato et al., 1998; Tuinstra and Wedel, 2000; Wang et al., 2004).
Addicott (1943) showed that certain vitamins and growth substances
have the potential to increase pollen germination and elongation
under in vitro conditions. The addition of growth regulators such as
auxins, brassinosteroids, cytokinins and gibberellic acid stimulate pol-
len germination and pollen tube growth in several species (Bamzai
and Randhawa, 1967; Hewitt et al., 1985; Singh et al., 2002; Smith,
1942; Voyiatzis and Paraskevopoulou-Paroussi, 2000). These studies
indicated that pollen growth can be manipulated in in vitro systems
and that plant growth regulators play a role in the normal germination
and growth of pollen.
This is the first report on the use of SW and smoke-derived
compounds to promote pollen germination and pollen tube growth. In
the absence of sucrose containing media, low concentrations of SW
(1:1000 and 1:2000) significantly increased pollen germination and
pollen tube elongation in all three species, respectively (Table 1).
These results were significantly different to the GA3 treatments. This is
an important result since these solutions contained no added sucrose,
calcium (Ca) and boron which are known to be prerequisites for
successful in vitro pollen germination and pollen tube elongation
(Brewbaker and Kwack, 1963). This indicates that SW has the ability
to stimulate pollen germination and pollen tube growth even when
the precise medium requirements are not met. If SW stimulates pollen
growth in a wide variety of species then it could be a useful tool in
breeding studies.

Maximal pollen germination and pollen tube lengths were found
when the pollen grains were treated with low concentrations of SW in
the presence of BWK medium. Although the BWK medium supplied

image of Fig.�3
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the necessary sucrose and Ca, SW (1:1000) still resulted in significantly
higher pollen germination percentages (Fig. 2) and longer pollen tubes
in all three studied species (Fig. 3). This result indicates that theremight
be other compounds present in SW that stimulate pollen growth. This
idea is supported by the SB + SW (1:2000) results (Fig. 3), which
showed that pollen tube length was doubled compared to the respec-
tive SB control in all three tested species. Considering that the SB medi-
um contained no added Ca, these results indicate that SWhas the ability
to alleviate the Ca requirement for germination and tube growth of
in vitro germinated pollen.

The seed germination stimulating effect documented for KAR1

(Chiwocha et al., 2009; Light et al., 2009) and the inhibitory effects of
TMB (Light et al., 2010) were not analogues to the effects when applied
to in vitro germinated pollen. Thus, comparedwith a promotory effect of
KAR1 on seed germination, this compound reduced pollen germination
for C. mackenii and S. multiflorus and only stimulated germination in
C. gardenii (Fig. 2). Similarly, TMB reduced pollen germination in
C. mackenii and S. multiflorus compared to the respective controls but
had no effect on C. gardenii pollen (Fig. 2). Nonetheless the inhibitory
activity of this compound on pollen germination was much less than
the effect it has on seed germination (Light et al., 2010). Although
KAR1 and TMB showed some promotory activity in terms of pollen
tube growth (Fig. 3), these treatments were not as consistent as the
SW treatments. Since there is no cell division during pollen tube elonga-
tion, SW could function in stimulating the mobilisation of the sucrose
rich reserves in the pollen grains. The inconsistent activities of KAR1

and TMB on pollen germination could be a consequence of their ability
to stimulate cell division rather than reserve mobilisation.

Flowers produced by the Amaryllidaceae family have great potential
for hybridization and commercialization (Niederwieser et al., 2002).
However, the main constraints are irregular flowering and difficulty in
manipulating flowering. Since low concentrations of SW (1:1000 and
1:2000) consistently showed significantly higher pollen germination
percentages and longer pollen tubes in this study, such treatments
have potential to increase the reproductive success of species in the
Amaryllidaceae. It is, however, also important to determine whether
SWhas a similar effect on species fromother plant families. The findings
of this study are crucial for investigating post-fire flowering of smoke-
responsive and non-responsive plant species.
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