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Abstract
We tried to control the distribution of the demagnetizing field inside magnetoimpedance elements 
fabricated using thin-film to gain higher sensitivity. Elements with quasi-ellipsoidal shape were 
adopted to modify the demagnetizing field distribution, because it is well known that the 
demagnetizing field is expected to be uniform in an ellipsoid. The larger impedance change and higher 
sensitivity were obtained in the ellipsoidal elements compared to those of the conventional rectangular 
elements. The observed results were analyzed by the calculations on the basis of the distribution of the 
demagnetizing field and the impedance profile without demagnetizing effect. The calculations well 
explained the experimental results: the improvement of sensitivity and the performance for the 
ellipsoidal elements is attributed to the uniform distribution of demagnetizing field. The experimental 
results demonstrate a potential and the calculation results contribute to optimum design, for a 
miniaturization of magnetoimpedance element in order to keep the higher sensitivity. 
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1 Introduction 
Magnetoimpedance (MI) element utilizes rapid changes in an initial permeability when an external 

magnetic field is applied and also significant skin effect related to the permeability changes [Mohri, K. 
(1992)]. A MI element is typically designed to be applied with a small AC magnetic field parallel to 
the easy axis through high frequency current and to detect an external magnetic field parallel to the 
longitudinal direction of the element. Many fundamental researches have been extensively conducted 
on ribbons [Buznikov, N. (2004), Kraus, L. (2005)], wires [Chen, D. X. (1998), Vazquez, M. (1998), 
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parallel to the width direction of the elements). The reasons why we used 100 MHz are that the skin 
effect becomes significant, and also the inductive effect is strongly remains around the frequency in 
the case of several μm thick. The photograph of the measurement is shown in Fig. 1 (c). The incident 
power to the elements was −20 dBm. A DC magnetic field was applied along the longitudinal 
direction of the elements by a Helmholtz coil during the impedance measurements and the domain 
observations. 

3 Results  
Figure 2 shows the changes in the absolute value of the impedance Z against the external DC 

magnetic field for both ellipsoid and rectangle with different width. The applied DC field changes 
from –20 Oe (–1.6 kA/m) to 20 Oe (1.6 kA/m). All the elements show the profile as follows: the 
impedance is minimum at H = 0 and takes two obvious peaks, which are typical MI profiles. The field 
intensity where the impedance becomes maximum, Hp, is about 8 – 10 Oe (0.64 – 0.8 kA/m), which is 
close to the anisotropy field Hk of the films. For example, the impedance is 39.3 Ω at H = 0, and it 
increases with increasing applied field, followed by taking 64.2 Ω at H = 8.6 Oe (0.69 kA/m) for the 
ellipsoidal element with 20-μm-wide. The characteristics obtained from the impedance profiles are 
summarized in Table 1. The value of ΔZ is defined as Zm – Z0, where Zm is the maximum of the 
impedance, and Z0 is the impedance at H = 0.  The value of dZ/dH represents the maximum tangential 
slope of the impedance against magnetic field. The values of ΔZ, the impedance change ratio ΔZ/Z0, 
and dZ/dH for the ellipsoidal shape are larger than those for the rectangular shape in the same width. 
The obtained results can be explained qualitatively as follows: on the rectangular element, the 
demagnetizing field near the edge increases rapidly compared to the center parts, and the changing 
ratio of the demagnetizing field, is maxima at the end of the element, decreases toward center part and 
becomes constant. This distribution deteriorates rapid impedance changes, consequently the sensitivity 

     
(a) 20 μm width (b) 50 μm width (c) 80 μm width 

Figure 2: Impedance change against external magnetic field.

Table 1: Experimental values of ΔZ, ΔZ/Z0, dZ/dH and Hp in the ellipsoidal and rectangular elements.
width shape ΔZ (Ω) ΔZ/Z0 (%) dZ/dH (Ω/Oe) Hp (Oe) 
20 μm ellipsoid 24.3 61.9 13.2 8.6 

rectangle 18.7 51.3 10.2 7.8 
50 μm ellipsoid 14.5 104.7 7.0 9.6 

rectangle 8.9 63.1 4.2 7.6 
80 μm ellipsoid 9.9 114.7 5.3 10.1 

rectangle 5.6 65.3 2.9 7.8 
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is modified. For ellipsoidal element, the demagnetizing field is expected to be uniform as compared 
with the rectangle, which is attributed to keeping higher sensitivity. More detailed and quantitative 
discussion will be done later. The values of ΔZ and dZ/dH increase with increasing width, which is 
because the sectional area of the element decreases. The value of Hp increases with increasing width, 
and Hp for the ellipsoid is larger than that for the rectangular element. 

4 Discussions 
Here, the impedance profiles, taking into account the distribution of the demagnetizing field in the 

elements, were calculated to analyze the observed experimental results. The calculation was done for 
both rectangular and ellipsoidal elements, and the dimensions for the calculations were the same as 
those of the experiments. At first we estimated the demagnetizing factor in the elements by the 
magnetic moment method (Qm, produced by Shift Lock Corporation). In the calculations, the 
longitudinal direction is defined as the x-axis and the center of the element is defined as the origin, x = 
0. The magnetic flux density in the x-direction was calculated when a uniform magnetic field is 
applied to the longitudinal direction. The distribution of the magnetic flux density gives the 
demagnetizing factor Nx along x-axis. In this work, it is assumed that the demagnetizing factor Nx

depends only on the configurations of the elements. The detailed calculation procedure appeared in 
[Kikuchi, H. (2015)]. Figure 3 plots the calculated demagnetizing factor Nx against the position x. The 
distribution for whole element is shown in Fig. 3 (a), and magnification of the sensing part (–0.5 x
(mm)  0.5 in this work) is shown in Fig. 3 (b). We can see that the distribution of demagnetizing 
factor near the edge (x = –0.85, 0.85 for 50 and 80 μm-width-element, x = –0.7, 0.7 for 20 μm-width-
element) rapidly increases on the rectangular elements (See Fig. 3 (a)). In the sensing part, the 
demagnetizing factor becomes relatively uniform in an ellipsoid compared to a rectangle, while the 
value of Nx for ellipsoid is larger than that for rectangle. The value of Nx depends on the position x; 
therefore, the demagnetizing field, Hdem (x) and the effective field in the element Heff (x) become a 
function of position x as follows (in cgs units): 

)()()()( exdemexeff xMxNHxHHxH x−=−=                                                                     (1) 

(a) whole element                                                              (b) enlarged sensing part 
Figure 3: Dependence of the calculated demagnetizing factor on the position of the elements. The solid lines 
are the results for rectangle element and the dot lines for ellipsoid. 
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where Hex is the applied uniform external field, Ms is the saturation magnetic flux density of the 
element, Hs is the demagnetizing field when the element is magnetically saturated. The magnetization 
curves for the calculation of M (x) are shown in Fig. 4. The magnetization curve that does not consider 
the effect of demagnetizing field is represented as the curve (a) in Fig. 4, because the external field is 
applied to the longitudinal direction, i.e. the hard axis of the elements. The magnetization is 
proportional to the applied field up to anisotropy field Hk and then saturates. Considering the 
demagnetizing effect, additional field Hs, which is represented in equation (3), is required to 
magnetically saturate the material; hence the magnetization curve becomes the curve (b) in Fig. 4. 
When Hex is altered, magnetization M (x) is obtained by equation (2), and thus, demagnetizing field 
Hdem (x) and effective field Heff (x) are obtained by equation (1).  

In the present work, the width of the element depends on the position x for the ellipsoidal elements. 
Thus, we introduce the impedance ratio like resistivity as follows: 

l

wt
HZHZ )()( =ρ                                                                                                                (4) 

where, w, t, and l are width, thickness, and length of the element, respectively, and Z (H) is the 
total impedance of the element and depends on the effective magnetic field.  

Though l and t are constant in the experiments, w depends on the position x for the ellipsoidal 
elements, i.e., it becomes w (x), while w is also constant for the rectangular elements. 

Consequently, total impedance can be expressed: 
{ }=

2

1
)(

)(1
)( eff

l

l

z dx
xw

xH

t
HZ

ρ
                                                                                                  (5) 

where l1 and l2 are the positions at the ends of the sensing parts of element. When the impedance 
ratio without demagnetizing field is given as ρZ (H), the impedance profiles of the elements 
considering the effect of the demagnetizing field can be calculated. The function ρZ (H) used in the 
calculation is given in Fig. 5. This profile is derived from our previous work [Kikuchi H. (2015)]. The 
parameters (l1, l2) are (–0.5, 0.5) for all the elements. 

Figure 4: Delineation of the magnetization curves 
using calculations for the impedance profile that take 
into account the distribution of the demagnetizing 
field. (a) curve without demagnetizing (b) curve with 
demagnetizing. 
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Figure 5: Impedance ratio ρz plotted against 
external magnetic field. 
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Figure 6 plots the calculated impedance changes against the applied magnetic field. The green 
solid line is the ideal impedance profile without demagnetizing effect, and the red and blue dots show 
the results calculated with considering the demagnetizing effect. The same parameters as the 
experiments were obtained from the calculated impedance profiles and those parameters are 
summarized in Table 2. Although it is not clear on the impedance profiles, almost ΔZ, ΔZ/Z0, dZ/dH
for ellipsoidal elements is larger than those for rectangular elements, which indicates that the 
ellipsoidal element is favorable to gain higher sensitivity and better performance. In the work, the 
sensing part is relatively far from the edge part, which is one of the reasons why the difference in 
sensitivity between the ellipsoid and rectangle is small. However, the calculated results show that the 
distribution of demagnetizing for ellipsoid is suppressed compared to the rectangle, which contributes 
to improve the sensitivity. On the contrary, though the distribution of demagnetizing field is improved 
on the ellipsoid, the strength of the demagnetizing field becomes large; this means the peak position 
shifts to higher field, which can be observed on both calculated and experimental results. We see that 
there is a qualitative good agreement between the experimental and the calculated results, while some 
quantitative differences exist between them. The differences may be mainly attributed to local 
variations of the magnetic properties including both angle and strength dispersions of anisotropy 
within the substrate in which all  the elements tested here were fabricated (26 mm square in the present 
work).   

The evidence of the distribution of demagnetizing field was confirmed by the domain observations 
with a Kerr - effect microscope. Figure 7 shows the images of domain observation for 80-μm-wide 
elements. We can see that 180° domain propagates in the rectangular element, whereas the multiple 
domains appear and disappear from or to single domain simultaneously everywhere in the ellipsoidal 
element; these behaviors are attributed to the distribution of the demagnetizing field. 

      
(a) 20 μm width (b) 50 μm width (c) 80 μm width 

Figure 6: Calculated impedance profile that takes into account the distribution of the demagnetizing field. 
“ideal” means impedance profile without demagnetizing field. Dots show the estimated value calculated by 
equation (5) and functions ρz(H) and w (x). 

Table 2: Calculated values of ΔZ, ΔZ/Z0, dZ/dH and Hp in the ellipsoidal and rectangular elements.
width shape ΔZ (Ω) ΔZ/Z0 (%) dZ/dH (Ω/Oe) Hp (Oe) 
20 μm ellipsoid 18.6 46.4 9.0 9.0 

rectangle 16.1 44.7 8.9 8.5 
50 μm ellipsoid 7.2 47.1 4.0 9.5 

rectangle 6.3 44.1 3.6 9.0 
80 μm ellipsoid 4.4 45.9 2.2 10.0 

rectangle 3.9 42.4 2.3 9.5 
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