Available online at www.sciencedirect.com

brought to you by T CORE provided by Elsevier - Publisher Connector

Topology and its Applications

Topology and its Applications 153 (2006) 2971-2975

www.elsevier.com/locate/topol

O_2 -convergence in posets

Zhao Bin*, Li Juan

Department of Mathematics, Shaanxi Normal University, Xi'an 710062, Shaanxi, PR China

Received 13 April 2005; accepted 13 January 2006

Abstract

In this paper, o_2 -convergence in posets is further studied. Some properties of o_2 -convergence are obtained. Especially, a sufficient condition and a necessary condition for o_2 -convergence to be topological are given respectively. © 2006 Elsevier B.V. All rights reserved.

MSC: 06A11; 06B35; 54H10; 54C35

Keywords: o-convergence; o_2 -convergence; α -double continuous poset; α^* -double continuous poset

Let *P* be a poset. The Birkhoff–Frink–McShane definition of *o*-convergence in *P* is defined as follows (see [1,2,5]): A net $(x_i)_{i \in I}$ in *P* is said to *o*-converge to $y \in P$ if there exist subsets *D* and *F* of *P* such that

- (1) D is up-directed and F is down-directed,
- (2) $y = \sup D = \inf F$, and

(3) for each $a \in D$ and $b \in F$, there exists $k \in I$ such that $a \leq x_i \leq b$ holds for all $i \geq k$.

As is pointed out in [7], in general, *o*-convergence is not topological. In [8], a sufficient condition for *o*-convergence to be topological is given. The o_2 -convergence is studied in [4,6]. In fact, the o_2 -convergence is a generalization of *o*-convergence, and o_2 -convergence is also not topological generally. In this paper, we give a sufficient condition and a necessary condition for o_2 -convergence to be topological respectively. In addition, we obtain some properties of o_2 -convergence.

Definition 1. (See [4,6].) Let *P* be a poset, a net $(x_i)_{i \in I}$ in *P* is said to o_2 -converge to $y \in P$ if there exist subsets *M* and *N* of *P* such that

(1) $y = \sup M = \inf N$,

(2) for each $a \in M$ and $b \in N$, there exists $k \in I$ such that $a \leq x_i \leq b$ holds for all $i \geq k$.

* Corresponding author.

E-mail address: zhaobin@snnu.edu.cn (B. Zhao).

^{0166-8641/\$ –} see front matter @ 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2006.01.004

Definition 2. Let *P* be a complete lattice. A net $(x_i)_{i \in I}$ in *P* is said to o_2 -converge to $y \in P$ if $y = \liminf x_i = \limsup x_i$, where $\liminf x_i = \sup_i \inf_{j \ge i} x_j$ and $\limsup x_i = \inf_i \sup_{j \ge i} x_j$.

Remark 3. (1) In a complete lattice the alternative definitions of o_2 -convergence in the cases of a complete lattice and a poset agree.

(2) The o_2 -convergent point of a net $(x_i)_{i \in I}$ in a poset, if it exists, is unique.

Proof. Suppose an o_2 -convergent point of $(x_i)_{i \in I}$ exists. Let $A = \{y \in P : y \text{ is an eventual lower bound of } (x_i)_{i \in I}\}$ and $B = \{z \in P : z \text{ is an eventual upper bound of } (x_i)_{i \in I}\}$. Suppose that x_1, x_2 are o_2 -convergent points of the net $(x_i)_{i \in I}$, then there exist subsets M_1, M_2 of A and subsets N_1, N_2 of B, satisfying the conditions of Definition 1. For each $y \in A$ and $z \in B$, we have $y \leq z$. Thus $\sup M_i \leq \sup A \leq \inf B \leq \inf N_i$ (i = 1, 2), whence $\sup M_i = \sup A = \inf B = \inf N_i = x_i$ (i = 1, 2). Since for given net $(x_i)_{i \in I}$, A and B are uniquely decided, $\sup A$ and $\inf B$ are unique too. Thus $x_1 = x_2$. Hence the o_2 -convergent point of a net $(x_i)_{i \in I}$ is unique. \Box

(3) Any constant net (x_i)_{i∈I} in a poset P with value x o₂-converges to x.
(4) [6] If (x_i)_{i∈I} o-converges to x, then it o₂-converges to x.
The converse is not necessarily true.

Let $P = \{d_1, d_2, \ldots\} \cup \{c\} \cup \{a_1, a_2, \ldots\} \cup \{b_1, b_2, \ldots\}$, the order \leq on P is defined as follows:

- (i) $a_i \leq c, b_i \leq c, c \leq d_i$ for all i = 1, 2, 3, ...;
- (ii) if $k \ge i$, then $a_k \ge b_i$.

By definition, if $i \neq j$, then a_i and a_j are incomparable, b_i and b_j are incomparable and d_i and d_j are incomparable. Let $M = \{b_1, b_2, ...\}$ and $N = \{d_1, d_2, ...\}$, then $\sup M = \inf N = c$. Since for each $b_i \in M$, $d_j \in N$, $b_i \leq a_n \leq d_j$ hold whenever $n \geq i$, the net $(a_i)_{i \in N}$ o_2 -converges to c. However the net does not o-converge to c.

(5) Let *D* and *F* be directed and filtered subsets of a poset *P* respectively, in addition, sup *D* and inf *F* exist, then the net $(x_d)_{d \in D}$ with $x_d = d$ and the net $(y_a)_{a \in F^{op}}$ with $y_a = a \ o_2$ -converge to sup *D* and inf *F* respectively.

(6) In a lattice o_2 -convergence is equivalent to o-convergence.

Definition 4. Let *P* be a poset. let $x, y, z \in P$, define $x \ll_{\alpha} y$ if for every net $(x_i)_{i \in I}$ in *P* which o_2 -converges to $y \in P$, $x_i \ge x$ holds eventually; $z \bowtie_{\alpha} y$ if for every net $(x_i)_{i \in I}$ in *P* which o_2 -converges to $y \in P$, $x_i \le z$ holds eventually.

It follows from Definition 4 that $x \ll_{\alpha} y \Longrightarrow x \leqslant y$ and $z \triangleright_{\alpha} y \Longrightarrow z \geqslant y$.

Definition 5. A poset *P* is called an α -double continuous poset if $a = \sup\{x \in P : x \ll_{\alpha} a\} = \inf\{y \in P : y \rhd_{\alpha} a\}$ for every $a \in P$.

Example 6. (1) Every finite lattice is α -double continuous.

(2) Every chain is α -double continuous.

Definition 7. For $x, y, z \in P$, a poset, define $x \ll_{\alpha^*} y$ if for every $net(x_i)_{i \in I}$ in P which o_2 -converges to some $w \in P$ with $y \leq w$, we have $x \leq x_i$ eventually. We define the order dual relation $z \triangleright_{\alpha^*} y$ if $z \ll_{\alpha^*} y$ in P^{op} , where P^{op} denotes P endowed with the reverse order.

Definition 8. A poset *P* is called an α^* -double continuous poset if $a = \sup\{x \in P : x \ll_{\alpha^*} a\} = \inf\{y \in P : y \triangleright_{\alpha^*} a\}$ for every $a \in P$.

Condition (*). Let *P* be a poset and $x, y, z \in P$ with $x \ll_{\alpha} y \leq z$, then $x \ll_{\alpha} z$. Let $w, s, t \in P$ with $s \rhd_{\alpha} t \geq w$, then $s \rhd_{\alpha} w$.

It is easy to see that if $y \leq x \Longrightarrow y \ll_{\alpha} x$ for any $x, y \in P$ and $z \ge w \Longrightarrow z \rhd_{\alpha} w$ for any $z, w \in P$, then P satisfies condition (*).

Example 9. (1) Let $P_1 = \{\top\} \cup \{b, c\} \cup \{a_1, a_2, a_3, \ldots\}$. The order \leq on P_1 is defined as follows: $b \leq c \leq \top$; $a_i \leq \top$ for all $i \in N$; $a_i \leq a_j$, whenever $i \leq j$, for all $i, j \in N$.

By definition of \leq , for all $i \in N$, a_i and c are incomparable, a_i and b are incomparable. Suppose $(x_i)_{i \in I}$ is a net that o_2 -converges to b. Then there exist subsets M and N of P_1 such that $b = \sup M = \inf N$ and for each $m \in M$, $n \in N$, $m \leq x_i \leq n$ holds eventually. From $b = \sup M$, we have $M = \{b\}$ or $\{b, c\}$, so we must have $b \in M$. For $b \in M$, $b \leq x_i$ holds eventually. Since $c \leq b$, $c \leq x_i$ holds eventually. Thus $c \ll_{\alpha} b$. It is easy to see that $(a_i)_{i \in N} o_2$ -converges to \top , but for each $i \in N$, $c \leq a_i$ does not hold. So $c \ll_{\alpha} \top$ does not hold. Hence P_1 does not satisfy condition (*).

(2) Let $P_2 = \{a_1, a_2, a_2, ...\} \cup \{c\} \cup \{b_1, b_2, b_3, ...\}$. The order \leq on P_2 is defined as follows: $a_i \leq c \leq b_j$ for all $i, j \in N$.

In what follows, we will prove that $y \leq x \implies y \ll_{\alpha} x$ for any $x, y \in P_2$ and $z \geq w \implies z \rhd_{\alpha} w$ for any $z, w \in P_2$. Suppose $(x_i)_{i \in I}$ is a net that o_2 -converges to c. Then there exist subsets M and N of P_2 such that $c = \sup M = \inf N$ and for each $m \in M$, $n \in N$, $m \leq x_i \leq n$ holds eventually. From $c = \sup M$, we have (i) $c \in M$ or (ii) $M \subseteq \{a_i: i \in N\}$ and M is a nonsingle set. If (i) holds, then $c \leq x_i$ holds eventually, and if (ii) holds, then there exist $a_i, a_j \in M, a_i \leq x_i$ holds eventually and $a_j \leq x_i$ holds eventually. Since $a_i \lor a_j = c$, $c \leq x_i$ holds eventually. Since $a_i \leq c$ for all $i \in N$, $a_i \leq x_i$ holds eventually. Hence $a_i \ll_{\alpha} c$ for all $i \in N$. Similarly we can prove $a_i \ll_{\alpha} b_j$ for all $i, j \in N$, and $a_i \ll_{\alpha} a_i$ and $a_i \ll_{\alpha} c$ for all $i \in N$, and $c \ll_{\alpha} c$, $c \ll_{\alpha} b_j$ and $b_j \ll_{\alpha} b_j$ for all $j \in N$. Similarly we can prove the case of \succ_{α} . Thus P_2 satisfies condition (*).

Remark 10. (1) If *P* is an α^* -double continuous poset, then for each $a \in P$, $a = \sup\{x \in P: \exists z \in P, x \ll_{\alpha^*} z \ll_{\alpha^*} a\}$ $a\} = \inf\{y \in P: \exists w \in P, y \rhd_{\alpha^*} w \rhd_{\alpha^*} a\}$. This is because $a = \sup\{x \in P: x \ll_{\alpha^*} a\}$ and for each $x \ll_{\alpha^*} a, x = \sup\{z \in P: z \ll_{\alpha^*} x\}$ and $a = \inf\{y \in P: y \rhd_{\alpha^*} a\}$ and for each $y \rhd_{\alpha^*} a, y = \inf\{w \in P: w \rhd_{\alpha^*} y\}$.

(2) Let *P* be a poset, $x, y, z \in P$. If $x \ll_{\alpha^*} y$, then $x \ll_{\alpha} y$. Similarly $z \triangleright_{\alpha^*} y$ implies $z \triangleright_{\alpha} y$. Thus an α^* -double continuous poset implies that it is α -double continuous.

(3) An α -double continuous poset satisfying condition (*) implies that it is α^* -double continuous.

Let \mathcal{L} be the class consisting of all the pairs $((x_i)_{i \in I}, x))$ of a net $(x_i)_{i \in I}$ and an element x in a poset P with $(x_i)_{i \in I}$ o_2 -converging to x. The class \mathcal{L} is called topological if there is a topology τ on P such that $((x_i)_{i \in I}, x) \in \mathcal{L}$ if and only if the net $(x_i)_{i \in I}$ converges to x with respect to the topology τ . By Kelley [3], \mathcal{L} is topological if and only if it satisfies the following four conditions:

(CONSTANTS) If $(x_i)_{i \in I}$ is a constant net with $x_i = x$ for each $i \in I$, then $((x_i)_{i \in I}, x) \in \mathcal{L}$. (SUBNETS) If $((x_i)_{i \in I}, x) \in \mathcal{L}$ and $(y_j)_{j \in J}$ is a subnet of $(x_i)_{i \in I}$, then $((y_j)_{j \in J}, x) \in \mathcal{L}$. (DIVERGENCE) If $((x_i)_{i \in I}, x)$ is not in \mathcal{L} then there exists a subnet $(y_i)_{i \in I}$ of $(x_i)_{i \in J}$ which

(DIVERGENCE) If $((x_i)_{i \in I}, x)$ is not in \mathcal{L} , then there exists a subnet $(y_j)_{j \in J}$ of $(x_i)_{i \in I}$ which has no subnet $(z_k)_{k \in K}$ so that $((z_k)_{k \in K}, x)$ belongs to \mathcal{L} .

(ITERATED LIMITS) If $((x_i)_{i \in I}, x) \in \mathcal{L}$ and if $((x_{i,j})_{j \in J_i}, x_i) \in \mathcal{L}$ for all $i \in I$, then $((x_{i,f(i)})_{(i,f) \in I \times M}, x) \in \mathcal{L}$, where $M = \prod_{i \in I} J_i$ is a product of directed sets.

Lemma 11. Let P be a poset, $x, y, z \in P$, then $x \ll_{\alpha} y, z \rhd_{\alpha} y$ if and only if for every net $(x_i)_{i \in I}$ in P which o_2 -converges to $y, x \leq x_i \leq z$ holds eventually.

Proof. Suppose $x \ll_{\alpha} y$, $z \succ_{\alpha} y$ and $(x_i)_{i \in I}$ o_2 -converges to y. Then $x \leqslant x_i$ holds eventually and $x_i \leqslant z$ holds eventually. Thus there exist $i_1, i_2 \in I$ such that $x \leqslant x_i$ hold for all $i \ge i_1$ and $x_i \leqslant z$ hold for all $i \ge i_2$. Take $i_0 \in I$ with $i_0 \ge i_1, i_2$, then $x \leqslant x_i \leqslant z$ hold for all $i \ge i_0$. It follows that $x \leqslant x_i \leqslant z$ holds eventually. Thus the necessity has been proved. \Box

The sufficience is easily proved.

Proposition 12. If P is a poset such that the class \mathcal{L} satisfies the axiom (ITERATED LIMITS), then P is α -double continuous.

Proof. For any $a \in P$, consider the collection $\{(x_{i,j})_{j \in J_i} : i \in I\}$ of nets $(x_{i,j})_{j \in J_i}$ that o_2 -converges to a. Let $(x_i)_{i \in I}$ be constant net with $x_i = a$ for each $i \in I$. So for each $i \in I$, $(x_{i,j})_{j \in J_i}$ o_2 -converges to x_i . Thus by assumption the net

 $(x_{i,f(i)})_{(i,f)\in I\times M}$ o_2 -converges to a, where $M = \prod_{i\in I} J_i$ and I is equipped with the largest pseudo order that $k \leq i$ hold for any $k, i \in I$. Thus there are subsets A, B of P such that $a = \sup A = \inf B$ and $y \leq x_{i,f(i)} \leq z$ holds eventually for any $y \in A$ and $z \in B$. For $y \in A$ and $z \in B$, there exists $(i_0, f_0) \in I \times M$ such that when $(i, f) \in I \times M$ and $(i, f) \geq (i_0, f_0), y \leq x_{i,f(i)} \leq z$ holds. Take $i_1 \in I$, by the largest pseudo order on I, we have $i_1 \geq i_0$, let $j_0 = f_0(i_1)$. If $j \geq j_0$, define $h_j \in M$ such that $h_j(i_1) = j$ for $i = i_1$ and $h_j(i) = f_0(i)$ for $i \neq i_1$. Obviously $h_j \geq f_0$ holds for each $j \geq j_0$, thus $(i_1, h_j) \geq (i_0, f_0)$. So $y \leq x_{i_1,h_j(i_1)} = x_{i_1,j} \leq z$ holds for all $j \geq j_0$. Since i_1 are arbitrary, $y \ll_{\alpha} a, z \rhd_{\alpha} a$ hold. It follows that $A \subseteq \{x \in P : x \ll_{\alpha} a\}$ and $B \subseteq \{w \in P : w \rhd_{\alpha} a\}$. Thus $a = \sup A \leq \sup\{x \in P : x \ll_{\alpha} a\} \leq a$ and $a = \inf B \geq \inf\{w \in P : w \triangleright_{\alpha} a\} \geq a$, which implies $a = \sup\{x \in P : x \ll_{\alpha} a\} = \inf\{w \in P : w \triangleright_{\alpha} a\}$. Hence Pis α -double continuous. \Box

Theorem 13. For any poset P, if o_2 -convergence is topological, then P is α -double continuous.

Lemma 14. For any poset P, the class \mathcal{L} satisfied the axioms (CONSTANTS) and (SUBNETS).

Proof. By Remark 3(3), the axiom (CONSTANTS) is satisfied.

Suppose $((x_i)_{i \in I}, x) \in \mathcal{L}$ and M, N are subsets of P such that for each $a \in M$ and $b \in N$, there exists $k \in K$ such that $a \leq x_i \leq b$ for all $i \geq k$ and sup $M = \inf N = x$. Let $(y_j)_{j \in J}$ be any subnet of $(x_i)_{i \in I}$, then there exists $f : J \to I$ such that for each $j \in J$, $x_{f(j)} = y_j$ and for each $i \in I$, there exists $j_1 \in J$ such that $f(j) \geq i$ for all $j \geq j_1$. Take $a \in M, b \in N$, then there exists $i_0 \in I$ such that $a \leq x_i \leq b$ for all $i \geq i_0$. For i_0 , there exists $j_0 \in J$ such that $f(j) \geq i_0$ for all $j \geq j_0$. Thus $a \leq x_{f(j)} = y_j \leq b$ for all $j \geq j_0$. Therefore $((y_j)_{j \in J}, x) \in \mathcal{L}$. Hence the axiom (SUBNETS) is satisfied. \Box

Let P be a poset. we say a set $A \subseteq P$ is closed if for every net $(x_i)_{i \in I}$ in A which o_2 -converges to some x, it follows that $x \in A$.

Let \mathcal{F}_{o_2} be the class of all the closed sets of a poset *P*. From lemma 14, we can prove that \mathcal{F}_{o_2} is a topology of closed sets. We call \mathcal{F}_{o_2} o₂-topology on *P*.

Lemma 15. If P is an α^* -double continuous poset, $y \in P$, then the sets $\uparrow_{\alpha^*} y = \{x \in P : y \ll_{\alpha^*} x\}$ and $\triangle_{\alpha^*} y = \{z \in P : y \triangleright_{\alpha^*} z\}$ are open in the o₂-topology.

Proof. We show that the complement of $\uparrow_{\alpha^*} y$ is closed. Let $(x_i)_{i \in I}$ be a net in the complement o_2 -converging to x. If x is not in the complement, that is, $y \ll_{\alpha^*} x$, then there is an $i_0 \in I$ such that $y \leqslant x_i$ for $i \ge i_0$. Now each x_i is not in $\uparrow_{\alpha^*} y$, so there exists a net $(x_{i,j})_{j \in J_i} o_2$ -converging to x_i such that $y \notin x_{i,j}$ for all j (actually the inequality only holds cofinally, but passing to this cofinal subset, we get the desired net). By Remark 10(1), $x = \sup\{y \in P: \exists z \in P, y \ll_{\alpha^*} z \ll_{\alpha^*} x\} = \inf\{a \in P: \exists w \in P, a \rhd_{\alpha^*} w \rhd_{\alpha^*} x\}$. If $y \ll_{\alpha^*} z \ll_{\alpha^*} x$ and $a \rhd_{\alpha^*} w \rhd_{\alpha^*} z$, from the fact that $(x_i)_{i \in I} o_2$ -converges to x, we know there exists $i'_0 \in I$ such that $z \leqslant x_i \leqslant w$ for all $i \ge i'_0$. Then $y \ll_{\alpha^*} z \leqslant x_i$ and $a \rhd_{\alpha^*} w \ge_{\alpha^*} x \leqslant_{\alpha^*} x_i$ hold for all $i \ge i'_0$.

Again $(x_{i,j})_{j \in J_i}$ o_2 -converges to x_i , so for each $i \ge i'_0$, there exists $g(i) \in J_i$ such that if $j \in J_i$ and $j \ge g(i)$, then $y \le x_{i,j} \le a$. Define $h \in \prod_{i \in I} J_i$ such that h(i) = g(i) if $i \ge i'_0$ and h(i) is any element in J_i otherwise. Now if $(i, f) \in I \times M$ and $(i, j) \ge (i'_0, h)$, where $M = \prod_{i \in i} J_i$, then $y \le x_{i,f(i)} \le a$. So $(x_{i,f(i)})_{(i,f) \in I \times M} o_2$ -converges to x. Since $y \ll_{\alpha^*} x$, $(x_{i,f(i)})_{(i,f) \in I \times M}$ must eventually be in $\uparrow y$. But this contradicts the fact they were all chosen outside of $\uparrow y$. Hence x is in the complement of $\Uparrow_{\alpha^*} y$. So $\Uparrow_{\alpha^*} y$ is open in the o_2 -topology. \Box

Dually, we can prove the case of $\triangle_{\alpha^*} y$.

Theorem 16. If *P* is an α^* -double continuous poset, then o_2 -convergence is topological.

Proof. Let $(x_i)_{i \in I}$ be a net in P which converges to x in the o_2 -topology. Since P is α^* -double continuous, $x = \sup\{y \in P: y \ll_{\alpha^*} x\} = \inf\{z \in P: z \rhd_{\alpha^*} x\}$. If $y \ll_{\alpha^*} x$ and $z \rhd_{\alpha^*} x$, then $x \in \bigwedge_{\alpha^*} y$ and $x \in \triangle_{\alpha^*} z$. By Lemma 15, $\bigwedge_{\alpha^*} y$ and $\triangle_{\alpha^*} z$ are open in the o_2 -topology. So there exists $i_0 \in I$ such that $x_i \in \bigwedge_{\alpha^*} y \cap \triangle_{\alpha^*} z$ for all $i \ge i_0$, that is, $y \ll_{\alpha^*} x_i$ and $z \rhd_{\alpha^*} x_i$ for all $i \ge i_0$. So $y \le x_i \le z$ for all $i \ge i_0$. Hence $(x_i)_{i \in I} o_2$ -converges to x.

Suppose that $(x_i)_{i \in I}$ is a net in P which o_2 -converges to x, U is an open set in the o_2 -topology which contains x. If $(x_i)_{i \in I}$ is not in U eventually, we can get a subnet $(y_j)_{j \in J}$ of $(x_i)_{i \in I}$ such that $(y_j)_{j \in J}$ is in the complement of U. From Lemma 14, $(y_j)_{j \in J}$ o_2 -converges to x, so x is in the complement of U. This contradicts the fact that x is in U. Hence $(x_i)_{i \in I}$ converges to x in the o_2 -topology. \Box

Therefore o_2 -convergence is topological.

Corollary 17. For any poset P which satisfies condition (*), o_2 -convergence is topological if and only if P is α -double continuous.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No.10471083) and the Teaching and Research Award for Outstanding Young Teachers in Higher Education Institutions of MOE, China. We thank the referee for his valuable comments for improvement.

References

[1] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ., vol. 25, American Mathematical Society, Providence, RI, 1940.

[2] O. Frink, Topology in lattices, Trans. Amer. Math. Soc. 51 (1942) 569-582.

- [3] J.L. Kelley, General Topology, Van Nostrand, New York, 1955.
- [4] J.C. Mathews, R.F. Anderson, A comparison of two modes of order convergence, Proc. Amer. Math. Soc. 18 (1) (1967) 100-104.

[5] E.J. McShane, Order-Preserving Maps and Integration Process, Ann. of Math. Stud., vol. 31, Princeton University Press, Princeton, NJ, 1953.
 [6] E.S. Wolk, On order-convergence, Proc. Amer. Math. Soc. 12 (3) (1961) 379–384.

[7] B. Zhao, D. Zhao, Lim-inf-convergence in partially ordered sets, J. Math. Anal. Appl. 309 (2005) 701-708.

[8] Y. Zhou, B. Zhao, Order-convergence and Lim-inf_M-convergence in posets, Preprint.