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Abstract

In this paper, o2-convergence in posets is further studied. Some properties of o2-convergence are obtained. Especially, a sufficient
condition and a necessary condition for o2-convergence to be topological are given respectively.
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Let P be a poset. The Birkhoff–Frink–McShane definition of o-convergence in P is defined as follows (see [1,2,5]):
A net (xi)i∈I in P is said to o-converge to y ∈ P if there exist subsets D and F of P such that

(1) D is up-directed and F is down-directed,
(2) y = supD = infF , and
(3) for each a ∈ D and b ∈ F , there exists k ∈ I such that a � xi � b holds for all i � k.

As is pointed out in [7], in general, o-convergence is not topological. In [8], a sufficient condition for o-convergence
to be topological is given. The o2-convergence is studied in [4,6]. In fact, the o2-convergence is a generalization of
o-convergence, and o2-convergence is also not topological generally. In this paper, we give a sufficient condition and
a necessary condition for o2-convergence to be topological respectively. In addition, we obtain some properties of
o2-convergence.

Definition 1. (See [4,6].) Let P be a poset, a net (xi)i∈I in P is said to o2-converge to y ∈ P if there exist subsets M

and N of P such that

(1) y = supM = infN ,
(2) for each a ∈ M and b ∈ N , there exists k ∈ I such that a � xi � b holds for all i � k.
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Definition 2. Let P be a complete lattice. A net (xi)i∈I in P is said to o2-converge to y ∈ P if y = lim infxi =
lim supxi , where lim infxi = supi infj�i xj and lim supxi = infi supj�i xj .

Remark 3. (1) In a complete lattice the alternative definitions of o2-convergence in the cases of a complete lattice and
a poset agree.

(2) The o2-convergent point of a net (xi)i∈I in a poset, if it exists, is unique.

Proof. Suppose an o2-convergent point of (xi)i∈I exists. Let A = {y ∈ P : y is an eventual lower bound of (xi)i∈I }
and B = {z ∈ P : z is an eventual upper bound of (xi)i∈I }. Suppose that x1, x2 are o2-convergent points of the net
(xi)i∈I , then there exist subsets M1, M2 of A and subsets N1, N2 of B , satisfying the conditions of Definition 1. For
each y ∈ A and z ∈ B , we have y � z. Thus supMi � supA � infB � infNi (i = 1,2), whence supMi = supA =
infB = infNi = xi (i = 1,2). Since for given net (xi)i∈I , A and B are uniquely decided, supA and infB are unique
too. Thus x1 = x2. Hence the o2-convergent point of a net (xi)i∈I is unique. �

(3) Any constant net (xi)i∈I in a poset P with value x o2-converges to x.
(4) [6] If (xi)i∈I o-converges to x, then it o2-converges to x.
The converse is not necessarily true.
Let P = {d1, d2, . . .} ∪ {c} ∪ {a1, a2, . . .} ∪ {b1, b2, . . .}, the order � on P is defined as follows:

(i) ai � c, bi � c, c � di for all i = 1,2,3, . . .;
(ii) if k � i, then ak � bi .

By definition, if i �= j , then ai and aj are incomparable, bi and bj are incomparable and di and dj are incomparable.
Let M = {b1, b2, . . .} and N = {d1, d2, . . .}, then supM = infN = c. Since for each bi ∈ M , dj ∈ N , bi � an � dj

hold whenever n � i, the net (ai)i∈N o2-converges to c. However the net does not o-converge to c.
(5) Let D and F be directed and filtered subsets of a poset P respectively, in addition, supD and infF exist, then

the net (xd)d∈D with xd = d and the net (ya)a∈Fop with ya = a o2-converge to supD and infF respectively.
(6) In a lattice o2-convergence is equivalent to o-convergence.

Definition 4. Let P be a poset. let x, y, z ∈ P , define x �α y if for every net (xi)i∈I in P which o2-converges to
y ∈ P , xi � x holds eventually; z �α y if for every net (xi)i∈I in P which o2-converges to y ∈ P , xi � z holds
eventually.

It follows from Definition 4 that x �α y �⇒ x � y and z �α y �⇒ z � y.

Definition 5. A poset P is called an α-double continuous poset if a = sup{x ∈ P : x �α a} = inf{y ∈ P : y �α a} for
every a ∈ P .

Example 6. (1) Every finite lattice is α-double continuous.
(2) Every chain is α-double continuous.

Definition 7. For x, y, z ∈ P , a poset, define x �α∗ y if for every net(xi)i∈I in P which o2-converges to some w ∈ P

with y � w, we have x � xi eventually. We define the order dual relation z �α∗ y if z �α∗ y in P op , where P op

denotes P endowed with the reverse order.

Definition 8. A poset P is called an α∗-double continuous poset if a = sup{x ∈ P : x �α∗ a} = inf{y ∈ P : y �α∗ a}
for every a ∈ P .

Condition (∗). Let P be a poset and x, y, z ∈ P with x �α y � z, then x �α z. Let w, s, t ∈ P with s �α t � w, then
s �α w.

It is easy to see that if y � x �⇒ y �α x for any x, y ∈ P and z � w �⇒ z�α w for any z,w ∈ P , then P satisfies
condition (∗).
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Example 9. (1) Let P1 = {	} ∪ {b, c} ∪ {a1, a2, a3, . . .}. The order � on P1 is defined as follows: b � c � 	; ai � 	
for all i ∈ N ; ai � aj , whenever i � j , for all i, j ∈ N .

By definition of �, for all i ∈ N , ai and c are incomparable, ai and b are incomparable. Suppose (xi)i∈I is a net
that o2-converges to b. Then there exist subsets M and N of P1 such that b = supM = infN and for each m ∈ M ,
n ∈ N , m � xi � n holds eventually. From b = supM , we have M = {b} or {b, c}, so we must have b ∈ M . For b ∈ M ,
b � xi holds eventually. Since c � b, c � xi holds eventually. Thus c �α b. It is easy to see that (ai)i∈N o2-converges
to 	, but for each i ∈ N , c � ai does not hold. So c �α 	 does not hold. Hence P1 does not satisfy condition (∗).

(2) Let P2 = {a1, a2, a2, . . .} ∪ {c} ∪ {b1, b2, b3, . . .}. The order � on P2 is defined as follows: ai � c � bj for all
i, j ∈ N .

In what follows, we will prove that y � x �⇒ y �α x for any x, y ∈ P2 and z � w �⇒ z �α w for any z,w ∈ P2.
Suppose (xi)i∈I is a net that o2-converges to c. Then there exist subsets M and N of P2 such that c = supM = infN
and for each m ∈ M , n ∈ N , m � xi � n holds eventually. From c = supM , we have (i) c ∈ M or (ii) M ⊆ {ai : i ∈ N}
and M is a nonsingle set. If (i) holds, then c � xi holds eventually, and if (ii) holds, then there exist ai , aj ∈ M , ai � xi

holds eventually and aj � xi holds eventually. Since ai ∨ aj = c, c � xi holds eventually. Since ai � c for all i ∈ N ,
ai � xi holds eventually. Hence ai �α c for all i ∈ N . Similarly we can prove ai �α bj for all i, j ∈ N , and ai �α ai

and ai �α c for all i ∈ N , and c �α c, c �α bj and bj �α bj for all j ∈ N . Similarly we can prove the case of �α .
Thus P2 satisfies condition (∗).

Remark 10. (1) If P is an α∗-double continuous poset, then for each a ∈ P , a = sup{x ∈ P : ∃z ∈ P, x �α∗ z �α∗
a} = inf{y ∈ P : ∃w ∈ P, y �α∗ w �α∗ a}. This is because a = sup{x ∈ P : x �α∗ a} and for each x �α∗ a, x =
sup{z ∈ P : z �α∗ x} and a = inf{y ∈ P : y �α∗ a} and for each y �α∗ a, y = inf{w ∈ P : w �α∗ y}.

(2) Let P be a poset, x, y, z ∈ P . If x �α∗ y, then x �α y. Similarly z �α∗ y implies z �α y. Thus an α∗-double
continuous poset implies that it is α-double continuous.

(3) An α-double continuous poset satisfying condition (∗) implies that it is α∗-double continuous.

Let L be the class consisting of all the pairs ((xi)i∈I , x)) of a net (xi)i∈I and an element x in a poset P with (xi)i∈I

o2-converging to x. The class L is called topological if there is a topology τ on P such that ((xi)i∈I , x) ∈ L if and
only if the net (xi)i∈I converges to x with respect to the topology τ . By Kelley [3], L is topological if and only if it
satisfies the following four conditions:

(CONSTANTS) If (xi)i∈I is a constant net with xi = x for each i ∈ I , then ((xi)i∈I , x) ∈ L.
(SUBNETS) If ((xi)i∈I , x) ∈ L and (yj )j∈J is a subnet of (xi)i∈I , then ((yj )j∈J , x) ∈ L.
(DIVERGENCE) If ((xi)i∈I , x) is not in L, then there exists a subnet (yj )j∈J of (xi)i∈I which has no subnet (zk)k∈K

so that ((zk)k∈K,x) belongs to L.
(ITERATED LIMITS) If ((xi)i∈I , x) ∈ L and if ((xi,j )j∈Ji

, xi) ∈ L for all i ∈ I , then ((xi,f (i))(i,f )∈I×M,x) ∈ L,
where M = ∏

i∈I Ji is a product of directed sets.

Lemma 11. Let P be a poset, x, y, z ∈ P , then x �α y, z �α y if and only if for every net (xi)i∈I in P which
o2-converges to y, x � xi � z holds eventually.

Proof. Suppose x �α y, z �α y and (xi)i∈I o2-converges to y. Then x � xi holds eventually and xi � z holds
eventually. Thus there exist i1, i2 ∈ I such that x � xi hold for all i � i1 and xi � z hold for all i � i2. Take i0 ∈ I

with i0 � i1, i2, then x � xi � z hold for all i � i0. It follows that x � xi � z holds eventually. Thus the necessity has
been proved. �

The sufficience is easily proved.

Proposition 12. If P is a poset such that the class L satisfies the axiom (ITERATED LIMITS), then P is α-double
continuous.

Proof. For any a ∈ P , consider the collection {(xi,j )j∈Ji
: i ∈ I } of nets (xi,j )j∈Ji

that o2-converges to a. Let (xi)i∈I

be constant net with xi = a for each i ∈ I . So for each i ∈ I , (xi,j )j∈Ji
o2-converges to xi . Thus by assumption the net
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(xi,f (i))(i,f )∈I×M o2-converges to a, where M = ∏
i∈I Ji and I is equipped with the largest pseudo order that k � i

hold for any k, i ∈ I . Thus there are subsets A, B of P such that a = supA = infB and y � xi,f (i) � z holds eventually
for any y ∈ A and z ∈ B . For y ∈ A and z ∈ B , there exists (i0, f0) ∈ I × M such that when (i, f ) ∈ I × M and
(i, f ) � (i0, f0), y � xi,f (i) � z holds. Take i1 ∈ I , by the largest pseudo order on I , we have i1 � i0, let j0 = f0(i1).
If j � j0, define hj ∈ M such that hj (i1) = j for i = i1 and hj (i) = f0(i) for i �= i1. Obviously hj � f0 holds for each
j � j0, thus (i1, hj ) � (i0, f0). So y � xi1,hj (i1) = xi1,j � z holds for all j � j0. Since i1 are arbitrary, y �α a, z�α a

hold. It follows that A ⊆ {x ∈ P : x �α a} and B ⊆ {w ∈ P : w �α a}. Thus a = supA � sup{x ∈ P : x �α a} � a

and a = infB � inf{w ∈ P : w �α a} � a, which implies a = sup{x ∈ P : x �α a} = inf{w ∈ P : w �α a}. Hence P

is α-double continuous. �
Theorem 13. For any poset P , if o2-convergence is topological, then P is α-double continuous.

Lemma 14. For any poset P , the class L satisfied the axioms (CONSTANTS) and (SUBNETS).

Proof. By Remark 3(3), the axiom (CONSTANTS) is satisfied.
Suppose ((xi)i∈I , x) ∈ L and M , N are subsets of P such that for each a ∈ M and b ∈ N , there exists k ∈ K such

that a � xi � b for all i � k and supM = infN = x. Let (yj )j∈J be any subnet of (xi)i∈I , then there exists f :J → I

such that for each j ∈ J , xf (j) = yj and for each i ∈ I , there exists j1 ∈ J such that f (j) � i for all j � j1. Take
a ∈ M , b ∈ N , then there exists i0 ∈ I such that a � xi � b for all i � i0. For i0, there exists j0 ∈ J such that f (j) � i0
for all j � j0. Thus a � xf (j) = yj � b for all j � j0. Therefore ((yj )j∈J , x) ∈ L. Hence the axiom (SUBNETS) is
satisfied. �

Let P be a poset. we say a set A ⊆ P is closed if for every net (xi)i∈I in A which o2-converges to some x, it
follows that x ∈ A.

Let F o2 be the class of all the closed sets of a poset P . From lemma 14, we can prove that F o2 is a topology of
closed sets. We call F o2 o2-topology on P .

Lemma 15. If P is an α∗-double continuous poset, y ∈ P , then the sets ⇑α∗y = {x ∈ P : y �α∗ x} and �α∗y = {z ∈
P : y �α∗ z} are open in the o2-topology.

Proof. We show that the complement of ⇑α∗y is closed. Let (xi)i∈I be a net in the complement o2-converging to x.
If x is not in the complement, that is, y �α∗ x, then there is an i0 ∈ I such that y � xi for i � i0. Now each xi is
not in ⇑α∗y, so there exists a net (xi,j )j∈Ji

o2-converging to xi such that y � xi,j for all j (actually the inequality
only holds cofinally, but passing to this cofinal subset,we get the desired net). By Remark 10(1), x = sup{y ∈ P : ∃z ∈
P, y �α∗ z �α∗ x} = inf{a ∈ P : ∃w ∈ P, a �α∗ w �α∗ x}. If y �α∗ z �α∗ x and a �α∗ w �α∗ x, from the fact that
(xi)i∈I o2-converges to x, we know there exists i

′
0 ∈ I such that z � xi � w for all i � i

′
0. Then y �α∗ z � xi and

a �α∗ w � xi hold for all i � i
′
0.

Again (xi,j )j∈Ji
o2-converges to xi , so for each i � i

′
0, there exists g(i) ∈ Ji such that if j ∈ Ji and j � g(i),

then y � xi,j � a. Define h ∈ ∏
i∈i Ji such that h(i) = g(i) if i � i

′
0 and h(i) is any element in Ji otherwise. Now if

(i, f ) ∈ I ×M and (i, j) � (i
′
0, h), where M = ∏

i∈i Ji , then y � xi,f (i) � a. So (xi,f (i))(i,f )∈I×M o2-converges to x.
Since y �α∗ x, (xi,f (i))(i,f )∈I×M must eventually be in ↑y. But this contradicts the fact they were all chosen outside
of ↑y. Hence x is in the complement of ⇑α∗y. So ⇑α∗y is open in the o2-topology. �

Dually, we can prove the case of �α∗y.

Theorem 16. If P is an α∗-double continuous poset, then o2-convergence is topological.

Proof. Let (xi)i∈I be a net in P which converges to x in the o2-topology. Since P is α∗-double continuous, x =
sup{y ∈ P : y �α∗ x} = inf{z ∈ P : z �α∗ x}. If y �α∗ x and z �α∗ x, then x ∈ ⇑α∗y and x ∈ �α∗z. By Lemma 15,
⇑α∗y and �α∗z are open in the o2-topology. So there exists i0 ∈ I such that xi ∈ ⇑α∗y ∩ �α∗z for all i � i0, that is,
y �α∗ xi and z �α∗ xi for all i � i0. So y � xi � z for all i � i0. Hence (xi)i∈I o2-converges to x.
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Suppose that (xi)i∈I is a net in P which o2-converges to x, U is an open set in the o2-topology which contains x.
If (xi)i∈I is not in U eventually, we can get a subnet (yj )j∈J of (xi)i∈I such that (yj )j∈J is in the complement of U .
From Lemma 14, (yj )j∈J o2-converges to x, so x is in the complement of U . This contradicts the fact that x is in U .
Hence (xi)i∈I converges to x in the o2-topology. �

Therefore o2-convergence is topological.

Corollary 17. For any poset P which satisfies condition (∗), o2-convergence is topological if and only if P is α-double
continuous.
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