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Al~stract--The problem of routing and flow control in a computer communication network is formulated 
as a mixed integer nonlinear programming problem. The Lagrangian relaxation method is used to 
decompose the problem into subproblems that are relatively easier to solve than the original problem. 
An algorithm is then developed which can obtain an optimal solution to the problem. 

1. I N T R O D U C T I O N  

Computer communication networks have developed out of the need to interconnect computer 
systems in order to share resources [1]. However, there are several problems that arise when 
computer systems are interconnected. These problems relate to network control, particularly 
routing and flow control. The routing problem is concerned with how to forward messages 
units, called packets, from one node to another through the network, for each origin-destination 
(OD) pair. For each OD pair, routes are usually chosen to minimize some cost function. The 
most commonly used cost function is delay. The flow control problem is concerned with regulating 
the amount of traffic entering and transiting the network so as not to overload the network. 
The result of poor routing and flow control is network congestion which in the worst case can 
lead to deadlock. It has been noted that the routing problem and the flow control problem are 
inter-related [2, 3]. Therefore, it has been found necessary to formulate a joint routing and flow 
control policy. 

A computer network can comprise from a few to hundreds of nodes. Therefore, the task of 
choosing a route or routes for each pair of communicating nodes and regulating traffic on these 
routes can be a tedious one. There are two approaches to solving this problem: in one case, a central 
node is in charge of doing all computations to determine the appropriate amount of traffic to be 
admitted at each source node, and the path (or paths) over which this traffic may be routed; in 
the other case, distributed control is used. Here, each source node performs the necessary 
computation to determine its input traffic rate and the path (or paths) over which the traffic may 
be routed. 

There are several advantages to using distributed control rather than centralized control. These 
include the fact that in the centralized scheme the central node represents a single point of failure. 
Its failure causes the network to break down. However, a network with centralized control is more 
likely to provide an optimal solution to the routing and flow control problem since the controller 
has a perfect knowledge of the state of the network. In a network with distributed control, each 
node makes its decisions on the basis of partial knowledge of the state of the network. Neighboring 
nodes periodically exchange information on their knowledge of the network state. And with this 
new information, each node updates its table of the status of the network and makes new routing 
and flow control decisions. 

There is one complication to the routing and flow control problem in some networks. In these 
networks, all traffic between each OD pair is required to be routed over one path. This is called 
virtual circuit switching. As we mentioned earlier, the usual criterion for route selection is minimum 
delay. That is, the paths are chosen to minimize the total average delay in the network. The delay 
on each path is the sum of the delays on the links on the path. Since the delay on each link is some 
nonlinear function of the traffic on that link, the routing and flow control problem becomes a mixed 
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integer non-linear programming problem when virtual circuit switching is practiced. This class of 
problems can be efficiently solved by the Lagrangian relaxation method [4-6]. The application of 
the Lagrangian relaxation method to the solution of the routing and flow control problem in virtual 
circuit-switched computer networks is the subject of this paper. 

This paper is organized as follows. In Section 2 we present a formulation of the problem. 
In Section 2 the Lagrangian relaxation method is used to decompose the problem into two 
subproblems. An algorithm for solving the problem is presented in Section 4. 

2. FORMULATION OF THE PROBLEM 

The following notation will be used in the remainder of the paper: 

L = the set of links in the network 
l = a typical link 

W = the set of OD pairs in the network 
w = a typical OD pair 

P~, = the set of paths available to OD pair w 
p = a typical path 

f.p = the traffic on path p belonging to OD pair w 
F, = the total traffic on link 1 
r~ = the rate at which the OD pair w can transmit 
Ct = the capacity of link l. 

Since the traffic on each path must be non-negative, we must have that 

f~p>~O, Vp~P~,  V w ~ W .  

Also, the relationship between F~ and f~p is the following: 

F,= E £ fw,6,,. 
w p E P  w 

where ~jp is defined by 

(1) 

(2) 

1, i f / e p ,  

6~p= 0, otherwise. 

Since virtual circuit switching is used, we have the following constraints: 

fw, xp = rw, Vw e W, (3) 
P~ P~ 

x, = l, vw ~ w, (4) 
pe Pw 

xp=0,1,  Vp ~ Pw, Vw ~ W. (5) 

The delay on each link is usually a function of the total traffic on that link. If we assume that 
messages arrive at each node in a Poisson manner and that the transmission times of messages are 
exponentially distributed, then by the independence assumption [7] the traffic on each link can be 
modeled as an M/M/ I  queue. It is well-known that for such a queue the delay becomes unbounded 
as the total traffic, Ft, approaches the link capacity. Therefore, we define the delay function, Dl(Ft), 
for each link I v L to be a convex increasing and twice differentiable function of Ft. A typical 
expression for Dr(F3 is given by Ref. [7]: 

F, 
Dt( Ft) = C---L-~/ (6) 

Flow control is effected by varying the input rate r. at each source in accordance with the state 
of the network [3]. Specifically. when the network is lightly loaded each source will be permitted 
to increase its input rate; and when the network becomes heavily loaded, each source will be forced 
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tO reduce its transmission rate. This goal is achieved by defining for each OD pair w a flow control 
function B,(r,) to be a convex non-increasing and twice differentiable function of the input rate 
rw. It is assumed that there is some maximum rate rm, at which any source can transmit. A typical 
expression for B,,(r,.) is given by Ref. [8]: 

Bw(r~) = K(1/rw - 1/r=a~), (7) 

where K is some positive normalizing constant. And the constraint on r~ is 

0 < r~ ~< rmax. (8) 

We now state the routing and flow problem as the following mixed integer non-linear programming 
problem: 

Minimize 

J = E D~F,)+ E S.(r.). (P) 
I ~ L  w ~ W  

subject to conditions (1)-(5), (8). 

3. LAGRANGIAN RELAXATION OF THE PROBLEM 

The Lagrangian relaxation method is a computationally efficient method for solving problems 
which have a set of complicating constraints [4-6]. In this method, the complicating constraints 
are taken up into the objective function by means of the Lagrangian multipliers. The relaxed 
problem is usually easier to solve than the original problem, and its solution provides a lower bound 
on the solution to the original problem. 

Let 2 = {2/} be a set of non-negative multipliers. Then relaxing the problem (P) relative to 
constraint (3) we obtain the following problem: 

Minimize 

J, = J + ~w,~w(r , -  ~ fwpXpl , (P1) 
k P ~ P w  ) 

subject to conditions (1), (2), (4), (5), (8). 

The relaxed problem (PI) can be partitioned into two subproblems as follows: 

Minimize 

subject to fw, >/0 

Minimize 

s,, = E o , (F , ) -  Z Z ~fw.x,, (Sl) 
I ~ L  w e W p 6 P  w 

w G W p ~ P  w 

Z = l ,  Vw~W, 
P~ Pw 

xp = O.l, Vp~Pw,  V w e  W. 

J~' = E {Bw(rw) + ;t,~rw}, ($2) 
w r W  

subject to 0 < rw ~< rmax. 

The following theorems establish the necessary and sufficient conditions for minimizing Jn and 
Ju  for given values of 2. 

C.A.M.W.A. 16/lOq i--F 
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Theorem 1 

For given feasible values of xp, the necessary and sufficient conditions on the flowsf~,p to minimize 
subproblem (SI) subject to conditions (1), (2), (4) and (5) are 

~, D~(F,)6tp_ 2wXp~=O, i f f~p>0 ,  (9) 
t~L (>~0, if f~p = 0. 

Theorem 2 

The necessary and sufficient conditions on the input rates r* to minimize subproblem ($2) subject 
to condition (8) are 

, f=O,  i fO<r*<rma x, 
B w(rw) + 2w ~ ~<0, if rma~. (10) 

The proofs of these theorems can be found in any standard text on optimization, such as 
Ref. [9], and so is omitted here. Let/~ • P ,  be a path that achieves the minimum 

Za = max 2~f~p. 
pE Pw 

Then the xp which solve suhproblem (S1) are obtained as follows: 

1, i f p = f l ,  ( l l )  
xp= O, i f p # f l .  

The optimality conditions (10) suggest that 2w is a distance metric. Therefore, if we define At as 
the length of link 1, where 

A/= D; (F~), (12) 

then one possible way to choose the initial value of ;t~ is 

2°~ = rain ~ A°ftp. (13) 
paPw l 

The solution to the relaxed problem (PI), which is the sum of the solutions to the subproblems 
(SI) and ($2), is a function of 2. As stated earlier, this solution provides a lower bound on 
the solution to the original problem (P). Therefore, a good method of choosing 2 is to find 
the one that provides the greatest lower bound. Thus, 2 is the optimal solution to the dual 
problem [5] 

Q = max J1(2). (D) 

The dual problem is usually solved by means of the subgradient optimization method [10, 11]. The 
subgradient ~/k at the kth iteration is defined as follows: 

n ~  , rw-- ~ k k = fwpx v. (14) 
pe Pw 

The subgradient optimization generates the solutions {2 k} by the following rule [5]: 

k k-l 0 ,k- l l  k = 1 , 2 ,  (15) 2~=max[0,2w + k-l"t~ J . . . . .  

Ok is a positive step size which is given by 

Ok - ~ k [ 0 .  - - ll.k {12 J'(:tk)] , (16) 

where ~ is an upper bound on Jr, tl tt is the Euclidean norm, and 0 < Uk ~< 2. The fundamental 
theoretical result on the convergence of the subgradient method is that Jt-"Q if 0:-*0 and 
l~.00:-,oo[ll] .  Finally, the sequence ~k is usually determined by setting ~ -  2, and halving ~k 
whenever J~(2) fails to increase in some fixed number of iterations [6]. 
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4. THE ALGORITHM FOR SOLVING THE PROBLEM 

The technique used to solve the routing and flow control problem consists of  using the guidelines 
provided by the optimality conditions (9)-(11) to make incremental adjustments to the flows fwp 
and input rates r,, and setting the values o f x  r That is, the adjustments and path selection are made 
in a manner that moves the solution toward the optimal value. Thus, after obtaining 2~ via the 
subgradient optimization algorithm, we use the information provided by conditions (9) and (10) 
to compute fk.p and k respectively, and obtain xp rw, k by condition (11). the detailed algorithm is as 
follows. 

A. Initialization. For each w e IV. 
0 _ and choose any path f l e  Pw so that x~ = 1, and xp 1. Set r w - r ~ x  0 = 0 f o r p # f l .  

2. Set fop = rw,° and 

F° = E Z f° ,6 'r  
w p e p  w 

0 _ _  ~..,- min ~ A°6,, 
P~Pw I 

where A l is given by condition (12). 
4. Define J0 = 0 and ~ = M, where M is a large number. 

B. Iteration k. k ~ 1. 
5. Compute the multipliers as follows: 

k _ max[0, k- I k -  I lr/w ], V w e  2w-  2~ +0k_ W, 

where q.. is given by condition (14), and 0k by condition (16). 
6. Compute the "path lengths" as follows: 

E = A~, = E Ark-'6,,. 
p e  PL,, I 

7. Let n ~ Pw be the path that achieves the following minimum: 
• k - I  k - I  mm 2w fwp • 

P~ Pw 

Then s e t x  k = l  a n d x ~ = 0  f o r p ~ .  
8. Make incremental adjustments to the routing and flow control variables fwp and r~ as 

follows: 

f ~  = m a x [ 0 , f ~ '  - 6(A k - 2~)] 

k m i n [ ~ ,  r~ax] r w ~  

f~p=O, if p # ~ ,  

where ~i is a positive scale factor, and fl ~ P~ is the optimal path in iteration k - 1. 
9. Obtain J~(2 k) using the above results. 

10. If  j~(2k) > J0, then set J0 = j~Qk). 
11. k k If U~p = {f~p, rw, x~} is feasible in the original problem (P), then compute jk. (Note that 

because the objective function of  problem (P) is convex, the equality constraint (3) can 
be replaced by the less-than-or-equal-to inequality without loss of  generality.) 

12. If jk < ~,  then set ~ = jk. 
13. If ~ - J0 ~< e, stop; where E is some predefined positive number. 
14. If J~ - J~-  ~ < A, set ~, to ~k/2. A is another predefined positive number. 
15. Obtain the subgradient ~/k by condition (14). 
16. Update Ok by condition (16). 
17. S e t k t o k + l  and go to step 5. 

Generally for very small step size, 6, the algorithm is guaranteed to converge, but the rate of  
convergence is small. For large values of  6, the rate of  convergence increases but with the increased 

3. Set 
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danger of  no convergence. Computa t iona l  results obtained in Refs [12-15] indicate that  when 3,* 
is chosen in the manner  described above, the algori thm always converges. Therefore,  the choice 
o f  t~ will determine the per formance  o f  the algorithm. We are currently testing this a lgori thm on  
some pro to type  networks.  

5. S U M M A R Y  

We have presented the compute r  communica t ion  network control  problem as a viable candidate  
for the application o f  the Lagrangian  relaxation method.  We have developed an algori thm for  
solving this problem via the Lagrangian  relaxation method,  We are currently investigating the 
per formance  of  the algorithm, and the results o f  the investigation will be reported later. 

It must  be ment ioned that  the dual problem (D) may  not  always be solved optimally; thus, a 
duality gap may  exist. However ,  in several problems where the Lagrangian  relaxation method  has 
been used, the solutions have been reported to be opt imal  [12-15]. Therefore,  we believe that the 
algori thm we have developed will generate an opt imal  solution to problem (P), 
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