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Abstract

We present generalizations of the spin Sutherland systems obtained earlier by Blom and Langmann and 
by Polychronakos in two different ways: from SU(n) Yang–Mills theory on the cylinder and by constraining 
geodesic motion on the N -fold direct product of SU(n) with itself, for any N > 1. Our systems are in corre-
spondence with the Dynkin diagram automorphisms of arbitrary connected and simply connected compact 
simple Lie groups. We give a finite-dimensional as well as an infinite-dimensional derivation and shed light 
on the mechanism whereby they lead to the same classical integrable systems. The infinite-dimensional ap-
proach, based on twisted current algebras (alias Yang–Mills with twisted boundary conditions), was inspired 
by the derivation of the spinless Sutherland model due to Gorsky and Nekrasov. The finite-dimensional 
method relies on Hamiltonian reduction under twisted conjugations of N -fold direct product groups, linking 
the quantum mechanics of the reduced systems to representation theory similarly as was explored previously 
in the N = 1 case.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The Calogero–Moser–Sutherland type many-body systems [1–3] and their generalizations 
continuously attract attention since they are ubiquitous in physical applications and are related 
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to intriguing mathematical structures. See, for instance, the reviews [4–7]. A powerful approach 
to these integrable systems consists in viewing them as Hamiltonian reductions of higher dimen-
sional free systems. This method first came to light in the papers [8,9]. In particular, Kazhdan, 
Kostant and Sternberg [9] obtained the classical Sutherland Hamiltonian

H(q,p) = 1

2

n∑
k=1

p2
k +

∑
i �=j

ν2

sin2(qi − qj )
(1.1)

by reducing the kinetic energy of the geodesic motion on the group SU(n) using the symmetry 
defined by the conjugation action of SU(n) on itself. Their reduction required fixing the Noether 
charges of the symmetry in a very special manner. Later it turned out that more general choices 
lead to extensions of the Sutherland system by ‘spin’ degrees of freedom that belong to reduc-
tions of coadjoint orbits of SU(n) by the action of the maximal toral subgroup. Spin Sutherland 
systems of this kind appear for every simple Lie group [5,10–12]. Moreover, not only the choice 
of the constraints, alias the value of the momentum map, but also the underlying symmetry can be 
generalized in several ways. For example, we obtained spin Sutherland systems by reducing the 
free motion on simple compact Lie groups utilizing twisted conjugations [13]. These reductions 
were analyzed [14] at the quantum mechanical level, too, which yields a bridge from harmonic 
analysis to integrable systems.

The derivation of the Calogero and Sutherland systems given in [9] represents a paradigm 
for the reduction approach to integrable systems. This framework has since been expanded by 
the introduction of several new parent systems as master integrable systems. We mention only 
the influential work of Gorsky and Nekrasov [15,16], where the Sutherland Hamiltonian was 
re-derived from a free Hamiltonian on an infinite-dimensional phase space built on su(n)-valued 
currents on the circle. As discussed also in [5,17], this connects the Sutherland system to SU(n)

Yang–Mills theory on the cylinder.
Our present work was motivated mainly by questions stemming from the papers of Blom 

and Langmann [18,19] and Polychronakos [20], where a family of generalized spin Sutherland 
systems was derived by means of two different methods. In these systems the particle positions 
are coupled to spin variables living on N arbitrary coadjoint orbits of SU(n), and the Hamilto-
nian also involves N arbitrary scalar parameters, for any integers n > 1 and N > 1. Blom and 
Langmann obtained their systems from SU(n) Yang–Mills theory on the cylinder, placing non-
dynamical ‘color charges’ at N arbitrary locations on the circle. Thus their derivation fits in the 
Gorsky–Nekrasov framework. On the other hand, Polychronakos proceeded by constraining the 
geodesic motion on the N -fold direct product of SU(n) with itself, using N arbitrary scale factors 
in the definition of the bi-invariant Riemannian metric. Although it was not stressed in [20], this 
amounts to Hamiltonian symmetry reduction with respect to twisted conjugations on the direct 
product group, defined with the aid of the cyclic permutation of the N -factors. Based on direct 
comparison of the Hamiltonians, both Blom–Langmann [19] and Polychronakos [20] pointed 
out that their respective systems coincide, but they did not provide any conceptual explanation of 
this remarkable fact. It is natural to ask for a better understanding of the mechanism behind this 
coincidence.

In this paper we describe two derivations of group theoretic generalizations of the systems 
of [18,20] and shed light on the mechanism whereby these two derivations lead to the same 
outcome. The first approach relies on symplectic reduction of geodesic motion on the N -fold di-
rect product G ×· · ·×G for any compact simple Lie group G. The underlying symmetry is built 
from twisted conjugations involving the cyclic permutation of the N factors and, for simply laced 
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groups, also a Dynkin diagram automorphism of G. For N = 1 these are the reductions analyzed 
in [13,14]. The second method utilizes a free Hamiltonian on the cotangent bundle of an infinite-
dimensional configuration space consisting of Lie algebra valued (quasi-)periodic currents. The 
reduction is based on the natural action of the corresponding (twisted) loop group, where the 
twisting can be non-trivial in the simply laced cases. This second derivation fits in the framework 
of Gorsky–Nekrasov [15,16,5] and Blom–Langmann [18,19]. In the infinite-dimensional reduc-
tion a partial gauge fixing associated with a finite-dimensional gauge slice will be exhibited that 
will be explicitly mapped into a gauge slice of a corresponding partial gauge fixing that arises 
in the finite-dimensional reduction. The mapping between these gauge slices will be seen to be 
a bijection that engenders an isomorphism of the respective reduced systems. When G = SU(n)

equipped with the identity diagram automorphism, then the reduced systems are precisely those 
found in [18,20].

The organization of the paper is as follows. Section 2 is devoted to group theoretic prelimi-
naries regarding the relevant twisted conjugations of the direct product groups. No new results 
are claimed in this section, even though we could not find references for the statements of the 
two technical lemmas that we prove. Section 3 contains the analysis of the finite-dimensional 
Hamiltonian reduction under twisted conjugations. The structure of the reduced system is given 
by Proposition 3, which represents our first new result. The formula of the reduced free Hamil-
tonian displayed by Eq. (3.23) is spelled out in detail in Subsection 3.2 in the case of the identity 
diagram automorphism for any group G. Proposition 4 implies that this reproduces the spin 
Sutherland systems of [18,20] for G = SU(n). In Section 4 we present an alternative derivation 
in the general case based on (twisted) current algebras. Our second result is that we here ex-
plain the equivalence of the reduced systems that result from the finite-dimensional and from the 
infinite-dimensional derivations. We conclude in Section 5 by outlining the quantum mechanical 
analogue of the finite-dimensional classical Hamiltonian reduction of Section 3. There is also
Appendix A, where a useful technical result is described.

2. Twisted conjugations and the monodromy matrix

In this section we collect the group theoretic results that will be needed later.
Let G be a connected and simply-connected compact simple Lie group. Choose an automor-

phism γ of G that corresponds to a diagram automorphism, denoted by γ ′, of the Lie algebra G
of G with respect to the Cartan subalgebra T < G. If G is not simply laced then γ is the identity 
automorphism, otherwise it can have order 1, 2 or 3; the latter occurs only for G = Spin(8). The 
group G acts on itself by the twisted conjugations Cγ

η that for each η ∈ G operate as

Cγ
η :G → G, g �→ γ (η)gη−1. (2.1)

The space of the corresponding G-orbits can be identified [21] with the space of the orbits of the 
so-called twisted Weyl group acting on the fixed point set Tγ of γ in the maximal torus T < G

associated to T . For non-trivial γ , the G-orbits in question are termed twisted conjugacy classes. 
The maximal (also called principal) orbits with respect to the Cγ action fill a dense open subset 
G′ ⊂ G, and the space of these orbits can be parametrized by the interior of a convex polytope, 
Ť γ ⊂ T γ . This means that every Cγ orbit of G in G′ passes through a unique element of the 
form eμ for some μ ∈ Ť γ . Moreover, the isotropy subgroup of these elements equals Tγ , that 
is, if μ ∈ Ť γ then Cγ

η (eμ) = eμ holds if and only if η ∈ T
γ . The closure of Ť γ is often called 

‘Weyl alcove’, since it is a fundamental domain of the (twisted) affine Weyl group acting on T γ . 
Its explicit form can be found for example in [22] (see also [14]).
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Now pick a positive integer, N , and consider the direct product

−→
G :=

N times︷ ︸︸ ︷
G × · · · × G. (2.2)

Adopting an admittedly unusual (but convenient) notation, the elements of 
−→
G will be encoded as 

N -component ‘vectors’

−→g = g1 ⊕ · · · ⊕ gN, gk ∈ G, ∀k = 1, . . . ,N. (2.3)

The group operation is of course given by componentwise multiplication. We denote the Lie 
algebra of 

−→
G as

−→G =
N times︷ ︸︸ ︷

G ⊕ · · · ⊕ G (2.4)

with elements

−→
X = X1 ⊕ · · · ⊕ XN, Xk ∈ G, ∀k = 1, . . . ,N. (2.5)

By combining γ ∈ Aut(G) with the cyclic permutation automorphism of 
−→
G we introduce 

� ∈ Aut(
−→
G) by

�(η1 ⊕ η2 ⊕ · · · ⊕ ηN) := γ (ηN) ⊕ η1 ⊕ · · · ⊕ ηN−1 (2.6)

and let �′ denote the corresponding automorphism of 
−→G. We then define an action of 

−→
G on itself 

by the �-twisted conjugations C�−→η that for each −→η ∈ −→
G operate on 

−→
G as follows:

C�−→η(
−→g) := �(−→η)−→g −→η−1 = γ (ηN)g1η

−1
1 ⊕ η1g2η

−1
2 ⊕ · · · ⊕ ηN−1gNη−1

N . (2.7)

The �-twisted conjugations on 
−→
G and the γ -twisted conjugations on G are related by the 

‘monodromy map’ M: 
−→
G → G given by

M(−→g) := g1g2 · · ·gN . (2.8)

It is easy to check the equivariance property

M(C�−→η(
−→g)) = Cγ

ηN
(M(−→g)). (2.9)

This implies immediately that if −→g and −→g ′ lie on the same orbit with respect to the C� action 
of

−→
G, then their ‘monodromy matrices’ lie on the same orbit of G under the Cγ action. The next 

lemma states that the converse is also true.

Lemma 1. The elements −→g and −→g ′ lie on the same orbit of
−→
G under �-twisted conjugations if 

and only if M( −→g) and M( −→g ′) lie on the same G-orbit under γ -twisted conjugations. Further-
more, the corresponding isotropy subgroups of −→g in 

−→
G and M( −→g) in G are isomorphic.

Proof. Suppose that −→g, −→g ′ ∈ −→
G verify M( −→g ′) = Cγ

ηN
(M( −→g)) for some ηN ∈ G. After fixing such 

an element ηN , the requirement −→g ′ = C�−→η( 
−→g), which can be spelled out as

g′
1 = γ (ηN)g1η

−1
1 , g′

2 = η1g2η
−1
2 , . . . , g′

N−1 = ηN−2gN−1η
−1
N−1, g′

N = ηN−1gNη−1
N ,

(2.10)
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permits us to uniquely determine η1, . . . , ηN−1. In fact, we simply solve the last (N − 1) of 
these equations for ηN−1, . . . , η1, and then the first equation is already guaranteed by M( −→g ′) =
Cγ

ηN
(M( −→g)). The same calculation for −→g ′ = −→g shows that M( −→g) = Cγ

ηN
(M( −→g)) if and only if 

−→g = C�−→η( 
−→g) with

ηN−1 = gNηNg−1
N , ηN−2 = (gN−1gN)ηN(gN−1gN)−1, . . . ,

η1 = (g2 · · ·gN)ηN(g2 · · ·gN)−1, (2.11)

which explicitly establishes the isomorphism claimed by the lemma. �
To continue, fix positive numbers λk (k = 1, . . . , N ) and define an invariant scalar product 

on
−→G by

〈−→X,
−→
Y 〉 −→

λ :=
N∑

k=1

λk〈Xk,Yk〉, (2.12)

where 〈 , 〉 is a multiple of the Killing form of G, i.e., 〈X, Y 〉 = −C tr(adX ◦ adY ) with a constant 
C > 0. For later convenience, we assume that

N∑
k=1

1

λk

= 1. (2.13)

Let �′ T be the transpose of �′ with respect to this scalar product. The defining property

〈−→X,�′(−→
Y )〉 −→

λ = 〈�′T (
−→
X),

−→
Y 〉 −→

λ, ∀−→
X,

−→
Y ∈ −→G, (2.14)

entails that

�′T : X1 ⊕ · · · ⊕ XN−1 ⊕ XN �→ λ2

λ1
X2 ⊕ · · · ⊕ λN

λN−1
XN ⊕ λ1

λN

(γ ′)−1(X1), (2.15)

where we used that γ ′ preserves the Killing form of G.
We now introduce two Abelian subalgebras K and Q of 

−→G, which are isomorphic to T γ :

K := T γ

diag = {−→X|X1 = X2 = · · · = XN ∈ T γ }, (2.16)

Q := {−→q |qk = q

λk

, q ∈ T γ (∀k = 1, . . .N)}. (2.17)

We also define

Q̌ := {−→q |qk = q

λk

, q ∈ Ť γ (∀k = 1, . . .N)}. (2.18)

It is straightforward to verify that

Q⊆ Ker(�′ T − e−ad −→q ) and Im(�′ T − e−ad −→q ) ⊆K⊥, ∀q ∈ T γ , (2.19)

where ‘perp’ refers to orthogonal complement with respect to the scalar product (2.12). The 
following strengthening of these properties will be crucial in our considerations.



L. Fehér, B.G. Pusztai / Nuclear Physics B 893 (2015) 236–256 241
Lemma 2. For any q ∈ Ť γ , parametrizing −→q as in (2.18), we have

Ker(�′ T − e−ad −→q ) =Q and Im(�′ T − e−ad −→q ) =K⊥. (2.20)

Consequently, the map

Z(q) := (�′ T − e−ad −→q )
∣∣
Q⊥ :Q⊥ →K⊥ (2.21)

is a linear bijection for any q ∈ Ť γ .

Proof. On account of the first relation in (2.19) and standard linear algebraic facts, using also 
that dim(Q) = dim(K), it is sufficient to prove that

Ker(�′ − ead −→q ) =K, ∀q ∈ Ť γ . (2.22)

Suppose that 
−→
X ∈ −→G belongs to this kernel, which means that

�′(−→
X) = ead −→q (

−→
X). (2.23)

By taking exponential in the group 
−→
G, we conclude that

�(et
−−→
X) = et�′( −−→

X) = e
−→qet

−−→
Xe−−→q, ∀t ∈R. (2.24)

This in turn means that et
−−→
X belongs to the C� isotropy group of e

−→q .
To finish the proof, note that M(e

−→q) = eq holds for all q ∈ T γ . Therefore we see from (the 
proof of) Lemma 1 that if q ∈ Ť γ , then the isotropy subgroup of e

−→q with respect to the C� action 
is precisely the connected subgroup K of 

−→
G associated with the Lie algebra K (alias the diagonal 

embedding of Tγ into 
−→
G).

By combining the above, we have shown that (2.23) with q ∈ Ť γ implies that 
−→
X ∈K, i.e., the 

relation (2.22) is valid. �
Remark. For q ∈ Ť γ , consider the transpose of Z(q):

Z(q)T = (�′ − ead −→q )
∣∣
K⊥ :K⊥ → Q⊥. (2.25)

Translated into geometric terms, the equality Im(Z(q)T ) =Q⊥ says that

Te
−→q C�−−→

G(e
−→q) =Q⊥e

−→q . (2.26)

Here C�−−→
G(e

−→q) is the 
−→
G-orbit through e

−→q and on the right-hand-side we notationwise ‘pretend’ that 
we are dealing with a matrix Lie group. Therefore we have the direct sum decomposition

Te
−→q
−→
G = −→Ge

−→q =Qe
−→q ⊕Q⊥e

−→q = Te
−→q Q ⊕ Te

−→q C�−−→
G(e

−→q), ∀ −→q ∈ Q̌, (2.27)

where Q is the connected subgroup of 
−→
G with Lie algebra Q. This is an orthogonal decomposi-

tion with respect to the bi-invariant Riemannian metric on 
−→
G induced by the scalar product (2.12)

on 
−→G. It is also worth noting that the map Z(q) is equivariant under the actions of

K = T
γ

diag (2.28)

given by the corresponding restrictions of the adjoint action of 
−→
G on 

−→G.
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3. Hamiltonian reduction based on twisted conjugations

We are interested in reductions of the free particle moving on the group manifold 
−→
G equipped 

with the bi-invariant Riemannian metric belonging to the scalar product (2.12) on 
−→G. This metric 

is clearly invariant also under the twisted conjugations C�−→η (2.7). We shall characterize the reduc-
tions with respect to this symmetry using the standard framework of symplectic geometry [23].

3.1. General description for any γ ∈ Aut(G)

We begin by noting that the phase space of the geodesic motion is the cotangent bundle of 
−→
G. 

We adopt the identification T ∗−→
G � −→

G × −→G set up utilizing right-translations and taking 
−→G as the 

model of 
−→G∗ by the scalar product 〈 , 〉 −→

λ. We also choose a coadjoint orbit of 
−→
G,

−→O := O1 ⊕ · · · ⊕ON, (3.1)

where the Ok are coadjoint orbits of G. We then consider the extended phase space

P := T ∗−→
G × −→O � −→

G × −→G × −→O = {(−→g,
−→
J ,

−→
ξ )}. (3.2)

Like in Section 2, we have 
−→
J = J1 ⊕ · · · ⊕ JN and 

−→
ξ = ξ1 ⊕ · · · ⊕ ξN . The phase space P carries 

the symplectic form

� = d〈−→J ,d −→g −→g−1〉 −→
λ + ω with ω =

N∑
k=1

ωk, (3.3)

where ωk is the natural symplectic form of Ok . The orbital part ω implies the Poisson brackets

{〈−→ξ ,
−→
X〉 −→

λ, 〈−→ξ ,
−→
Y 〉 −→

λ} = 〈−→ξ , [−→X,
−→
Y ]〉 −→

λ, (3.4)

for any constants 
−→
X, 

−→
Y ∈ −→G. The other non-trivial Poisson brackets between the fundamental 

variables can be displayed as

{−→g, 〈−→J ,
−→
X〉 −→

λ} = −→
X −→g, {〈−→J ,

−→
X〉 −→

λ, 〈−→J ,
−→
Y 〉 −→

λ} = 〈−→J , [−→X,
−→
Y ]〉 −→

λ. (3.5)

Here, we have 
−→
X −→g = X1g1 ⊕ · · · ⊕ XNgN . The Hamiltonian H of the free particle, trivially 

extended to P , reads

H(−→g,
−→
J ,

−→
ξ ) = 1

2
〈−→J ,

−→
J 〉 −→

λ. (3.6)

The free flow generated by H through the initial value ( −→g, 
−→
J , 

−→
ξ ) is

(−→g(t),
−→
J (t),

−→
ξ (t)) = (et

−→
J −→g,

−→
J ,

−→
ξ ). (3.7)

The twisted conjugations C�−→η lift to the Hamiltonian action Ĉ� of 
−→
G on P :

Ĉ�−→η(
−→g,

−→
J ,

−→
ξ ) = (C�−→η(

−→g),Ad�( −→η)(
−→
J ),Ad −→η(

−→
ξ )). (3.8)

This action is generated by the equivariant momentum map 
: P → G given by


(−→g,
−→
J ,

−→
ξ ) = �′ T (

−→
J ) − Ad −→g−1(

−→
J ) + −→

ξ . (3.9)

Indeed, the Hamiltonian vector field of the function 
 −−→
X = 〈
, 

−→
X〉 −→

λ coincides with the infinites-
imal generator of the 

−→
G-action (3.8).
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According to the standard shifting trick [23], we can represent any reduction of the free motion 
with respect to the twisted conjugation symmetry as symplectic reduction of the Hamiltonian 
system (P, �, H) at the zero value of the momentum map; in association with some 

−→O. The 
resulting reduced Hamiltonian system lives on the space of 

−→
G-orbits

Pred = P
=0/
−→
G, (3.10)

which inherits a reduced symplectic structure, �red, and Hamiltonian, Hred, from � and H on P . 
To be more precise, one should note that Pred is not always a smooth manifold, but is in general 
a so-called stratified symplectic space, i.e., a disjoint union of symplectic manifolds of various 
dimensions [23]. The detailed structure depends on the choice of the orbit 

−→O. We here will not 
dwell on this issue, but shall instead focus on a dense open subset P ′ of the phase space P whose 
reduction can be characterized rather directly.

Remember that every element of 
−→
G can be transformed by twisted conjugation into a unique 

element of the form e
−→q , parametrized according to (2.18) by q from the closure of the generalized 

Weyl alcove Ť γ . From now on we restrict our attention to the subset P ′ consisting of triples 
( −→g, 

−→
J , 

−→
ξ ), where the twisted conjugates of −→g can be parametrized by elements q of the open 

alcove Ť γ . It is then clear that every 
−→
G-orbit in P ′


=0 intersects the subset S ⊂ P defined by

S := {(e−→q,
−→
J ,

−→
ξ ) | 
(e

−→q,
−→
J ,

−→
ξ ) = 0, q ∈ Ť γ }. (3.11)

Observe also from Lemma 1 that any 
−→
G-orbit in P ′


=0 intersects S in an orbit of the subgroup 
K <

−→
G displayed in (2.28). In other words, S is the ‘gauge slice’ of a partial gauge fixing of 

the 
−→
G-action on P ′


=0, for which the ‘residual gauge transformations’ belong precisely to the 
subgroup K . In this way we obtain the identification

P ′
red := P ′


=0/
−→
G � S/K. (3.12)

Consequently, the 
−→
G-invariant smooth functions on P ′


=0, which descend to smooth functions 
on P ′

red, are equivalent to the K-invariant smooth functions on S. The Poisson brackets of these 
functions can be determined with the aid of the restriction of the symplectic form � to S.

In order to make the above concrete, we proceed to solve the restriction of the momentum 
map constraint on S. This amounts to the following requirement:

(�′ T − e−ad −→q )(
−→
J ) + −→

ξ = 0. (3.13)

To solve this equation we use the decompositions

K +K⊥ = −→G =Q+Q⊥ (3.14)

and write accordingly
−→
ξ = −→

ξK + −→
ξK⊥ and

−→
J = −→

JQ + −→
JQ⊥ . (3.15)

Here, recall the definitions of K and Q from Eqs. (2.16) and (2.17). Referring to Lemma 2, 
the K-component of the momentum map constraint (3.13) enforces that 

−→
ξK = 0, while its 

K⊥-component is completely solved by
−→
JQ⊥ = −Z(q)−1(

−→
ξK⊥) (3.16)

using the operator Z(q) defined in (2.21). The element q ∈ Ť γ can be chosen arbitrarily, and 
−→
JQ

is also a free variable, which we parametrize as
−→
JQ = −→p = p ⊕ p ⊕ · · · ⊕ p

, p ∈ T γ . (3.17)

λ1 λ2 λN
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Since the variables q, p and 
−→
ξK⊥ uniquely label the points of S, we obtain the identification of 

manifolds

S � Ť γ × T γ × (
−→O ∩K⊥) = {(q,p,

−→
ξK⊥)}. (3.18)

According to the general principles of Hamiltonian reduction, the reduced system on P ′
red is 

determined by the pull-backs of the symplectic form � and the Hamiltonian H to S. Let us 
denote these pull-backs by �S and HS . In terms of the model (3.18) we obtain

�S = d〈p,dq〉 + ω −−→O∩K⊥ . (3.19)

Here ω −−→O∩K⊥ is the contribution of the orbital form ω from (3.3). The first term is the natural 
symplectic form of the cotangent bundle

T ∗Ť γ � Ť γ × T γ = {(q,p)}. (3.20)

Since the residual gauge transformations by K = T
γ

diag act only on 
−→
ξK⊥ , the reduced phase space 

can be decomposed according to

P ′
red � T ∗Ť γ × (

−→O ∩K⊥)/K. (3.21)

This is a symplectic identification in the following sense. The natural action of the group K <
−→
G

on 
−→O is generated by the momentum map 

−→
ξ �→ −→

ξK, and

−→Ored = (
−→O ∩K⊥)/K (3.22)

is the reduced orbit obtained by setting this momentum map to zero. We denote the (in general 
stratified) symplectic structure inherited by 

−→Ored as ωred. This is carried by the second factor in 
the Cartesian product (3.21). Regarding the reduced Hamiltonian of the free motion, we already 
mentioned that it is determined by HS . By means of the model (3.18), HS takes the form

HS = 1

2
〈p,p〉 + 1

2
〈Z(q)−1(

−→
ξK⊥),Z(q)−1(

−→
ξK⊥)〉 −→

λ. (3.23)

The first term is the kinetic energy of the free motion on Ť γ with respect to the flat metric, while 
the second (also K-invariant) term describes the interaction of the spatial degrees of freedom 
q, p with the orbital variables given by the K-orbits in (3.22). The outcome of the foregoing 
discussion can be summarized as follows.

Proposition 3. A model of the open subset of the reduced phase space (3.10) associated with 
generic monodromy matrices M( −→g), parametrized by q ∈ Ť γ , is provided by T ∗Ť γ ×−→Ored. Here 
T ∗Ť γ carries its Darboux form and 

−→Ored (3.22) is equipped with its own (stratified) symplectic 
structure arising by reduction via the K-action. The reduced free Hamiltonian on this subset 
P ′

red = S/K is encoded by the K-invariant function HS (3.23).

We finish this subsection with a few comments. First, we remark that the Poisson bracket, 
{ , }red, that is induced on the smooth functions on P ′

red is encoded by

{〈q,X〉, 〈p,Y 〉}red = 〈X,Y 〉, ∀X,Y ∈ T γ , (3.24)

together with the restriction of the Poisson brackets of the K-invariant functions on 
−→O to 

−→O∩K⊥, 
which can be determined by means of the Lie–Poisson brackets (3.4).
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Second, we recall that the N = 1 special case of our classical Hamiltonian reduction was pre-
viously studied in [13] and the corresponding quantum Hamiltonian reduction was investigated 
in [14]. As will be discussed in Section 5, the quantum Hamiltonian reduction can be described 
similarly in the general case. To facilitate the comparison with these earlier works, we now recast 
the inverse of Z(q) (2.21) in the form

Z(q)−1 = −ead −→q ◦ (U(q)T )−1, (3.25)

where the linear operator U(q) :K⊥ → Q⊥ reads

U(q) =
(

id −→G − e−ad −→q ◦ �′)∣∣
K⊥ . (3.26)

Since ead −→q preserves the scalar product on 
−→G, and inversion and taking transpose commute, we 

can rewrite the Hamiltonian HS (3.23) as

HS = 1

2
〈p,p〉 + 1

2
〈−→ξK⊥ , (U(q)T U(q))−1(

−→
ξK⊥)〉 −→

λ. (3.27)

For N = 1, when Q = K, it was shown in [13] that the extension of U(q)−1 by zero on Q is a 
solution of the modified classical dynamical Yang–Baxter equation. There it was important that 
the automorphism γ ′ preserves the scalar product on the underlying Lie algebra. This holds for 
our �′ if and only if λ1 = λ2 = . . . = λN . It would be interesting to know if U(q) is still related 
to a classical dynamical r-matrix for any N with arbitrary parameters 

−→
λ.

Third, it is proper to mention here that Hochgerner [12] studied reductions of cotangent bun-
dles under the assumption that a single isotropy type occurs for the underlying group action on 
the configuration space. Our Proposition 3 can be obtained as a special case of his results. Since 
this would necessitate going into several technicalities, we have preferred to give a simple direct 
derivation.

Finally, note that the reduced system governed by the Hamiltonian (3.27) is exactly solvable 
since its solutions can be obtained by the projection method applied to the free flow (3.7), which 
involves only algebraic operations. There exist general arguments [5,11,24] that also indicate 
Liouville integrability on the full reduced phase space Pred. Indeed, one can easily construct 
many conserved quantities in involution as follows. For each fixed real parameter u �= 0, define 
the 

−→G-valued function φu on the unreduced phase space by

φu(
−→g,

−→
J ,

−→
ξ ) := −−→g−1−→

J −→g +
−→
ξ

u
. (3.28)

Taking a basis {V a} of 
−→G, the Poisson brackets of the components φa

u := 〈φu, V a〉 −→
λ satisfy

{φa
u,φb

v } = f ab
c

(
u − 1

u − v
φc

u + v − 1

v − u
φc

v

)
(3.29)

for any u �= v, where [V a, V b] = f ab
c V c and summation over the index c is understood. It im-

mediately follows from (3.29) that for any two 
−→
G-invariant smooth functions h1 and h2 on 

−→G and 
for any parameters u and v we have

{h1 ◦ φu,h2 ◦ φv} = 0. (3.30)

This descends to a Poisson commuting family on the reduced phase space. As generators, it is 
useful to take invariant homogeneous polynomials hi and extract the coefficients of the powers 
of u−1 from hi ◦ φu. Because (3.30) holds for any u and v, the so obtained coefficient func-
tions are also in involution. The u-independent term coming from h( 

−→
X) = 1 〈−→X, 

−→
X〉 −→

λ gives the 
2
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main Hamiltonian after reduction, and it is natural to expect that the family just delineated is 
generically sufficient to ensure its Liouville integrability.

3.2. The examples associated with γ = id G

Our goal now is to provide an explicit formula for the reduced Hamiltonian HS (3.27) in the 
case of the identity automorphism γ of an arbitrary connected and simply-connected compact 
simple Lie group G. During the calculations it proves to be handy to realize the real Lie algebra 
G as a compact real form of its complexification GC. Since the complexification T C of T is 
a Cartan subalgebra of GC, the pair (GC, T C) uniquely determines a reduced root system �. 
Choose a polarization � = �+ ∪ �− and let  ⊂ �+ denote the corresponding set of simple 
roots, whose number is the rank of G, r . Also, for each root ϕ we select an appropriate root 
vector Xϕ . On the root vectors we may and shall impose the following two conditions:

(a) The root vectors are normalized by the conditions

κ(Xϕ,X−ϕ) = 1 (ϕ ∈ �+), (3.31)

where κ denotes a positive multiple of the Killing form of GC.
(b) The real Lie algebra G decomposes as

G = T ⊕ (⊕ϕ∈�+RYϕ

) ⊕ (⊕ϕ∈�+RZϕ

)
, (3.32)

where for each ϕ ∈ �+ we define

Yϕ = i
Xϕ + X−ϕ√

2
and Zϕ = Xϕ − X−ϕ√

2
. (3.33)

Take an arbitrary set of vectors {Tj }rj=1 ⊂ T satisfying κ(Tj , Tk) = −δj,k (1 ≤ j, k ≤ r). Clearly 
the family of vectors Tj (1 ≤ j ≤ r) and Yϕ , Zϕ (ϕ ∈ �+) gives an orthonormal basis in G with 
respect to the Ad-invariant Euclidean scalar product obtained by restricting the complex bilinear 
form 〈 , 〉 = −κ onto G. Obviously, this convention agrees with the one used in (2.12) and the 
definition of 〈 , 〉 −→

λ extends by linearity to the complexification of 
−→G.

Recalling the form of the Hamiltonian HS (3.27), first we wish to examine the action of the 
linear operator U(q)T U(q) (q ∈ Ť , an open Weyl alcove) on a convenient basis of K⊥. For this 
reason, for all V ∈ GC and 1 ≤ I ≤ N we define the vector 

−→
V I ∈ −→GC with components ( 

−→
V I )J =

δI
J V (1 ≤ J ≤ N). To clarify our notations, we remark that for 

−→
X (2.5) we have ( 

−→
X)I = XI . The 

family of vectors
−→
Tj

I (1 ≤ j ≤ r, 1 ≤ I ≤ N) and
−−→
Xϕ

I (ϕ ∈ �, 1 ≤ I ≤ N) (3.34)

gives a basis in the complex Lie algebra 
−→GC. Now we record that for each q ∈ T the action of the 

complexification of the linear operator

I(q) :=
(

id −→G − e−ad −→q ◦ �′)T ◦
(

id −→G − e−ad −→q ◦ �′) :
−→G → −→G (3.35)

on the basis (3.34) reads

I(q)
−→
Tj

J =
N∑ 1

λI

MI,J (0)
−→
Tj

I and I(q)
−−→
Xϕ

J =
N∑ 1

λI

MI,J (ϕ(q))
−−→
Xϕ

I , (3.36)

I=1 I=1
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where M(ix) is the N × N complex matrix with entries

MI,J (ix) = (λI + λI+1) δI,J − λI e
−ix/λI δI−1,J − λI+1e

ix/λI+1δI+1,J

(1 ≤ I, J ≤ N), (3.37)

depending on the real parameter x ∈R. Here and below, the capital indices are understood mod-
ulo N . The factor i occurs since ϕ(q) ∈ iR for each q ∈ T and ϕ ∈ �. It is also worth mentioning 
that the function R � x �→ M(ix) ∈ CN×N is 2π -periodic with symmetry properties

MJ,I (ix) = MI,J (−ix) = MI,J (ix). (3.38)

On account of the formula (3.27) and the relationship

(U(q)T U(q))−1 = (I(q)|K⊥)−1, (3.39)

we need control over the inverse of M(ix). One can verify that M(ix) is invertible if and only if 
x ∈ R \ 2πZ. Moreover, upon setting

bI =
I∑

k=1

1

λk

and bI,J = bI − bJ (1 ≤ I, J ≤ N), (3.40)

for all x ∈ R \ 2πZ the entries of the inverse matrix P(ix) = M(ix)−1 can be checked to be

PI,J (ix) = e−ibI,J x

(
1

4

1

sin2 (x/2)
+ i

bI,J

2
cot (x/2) − |bI,J |

2

)
(1 ≤ I, J ≤ N).

(3.41)

This matrix inversion was treated in detail in [20]. We note that ϕ(q) ∈ i(R \ 2πZ) holds for 
every q from the open Weyl alcove Ť and ϕ ∈ �.

Turning to the study of the degenerate matrix M(0), let us endow the linear space of the 
complex column vectors CN with the inner product

C
N ×C

N � (x,y) �→ x∗�y ∈C (3.42)

induced by the positive definite diagonal matrix

� = diag(λ1, . . . , λN). (3.43)

Thinking of the N × N complex matrices as linear operators acting from the left on the inner 
product space CN , from the formulae (3.37) and (3.41) we can easily deduce the following:

(i) The operator �−1M(0) is self-adjoint with respect to the inner product (3.42), the kernel 
N = ker(�−1M(0)) is spanned by the column vector n = [1, . . . , 1]∗, and the orthogonal 
complement N⊥ of N is an invariant subspace.

(ii) The restriction (�−1M(0))|N⊥ : N⊥ →N⊥ is invertible and for its inverse we have(
(�−1M(0))|N⊥

)−1 = (π⊥P ′�π⊥)|N⊥ , (3.44)

where the N × N matrix π⊥ denotes the orthogonal projection onto the subspace N⊥, 
whereas P ′ is the N × N matrix with entries

P ′
I,J = (bI,J )2 − |bI,J |

2
(1 ≤ I, J ≤ N). (3.45)
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The operator defined by (3.44) encodes the action of the inverse (3.39) on K⊥ ∩ −→T . It is reas-
suring to see that the outcome of the elementary algebraic manipulations is consistent with the 
statements in (2.19) and Lemma 2.

Finally, let us observe that due to the relations (3.39) and (3.36) we now fully control the 
linear operator (U(q)T U(q))−1. This implies the explicit formula of HS given below.

Proposition 4. For all N ≥ 1, at each point (q, p, 
−→
ξK⊥) ∈ Ť × T × −→Ored, the reduced Hamilto-

nian HS (3.27) associated with the trivial automorphism γ = idG takes the form

HS = 1

2
〈p,p〉 + 1

2

r∑
j=1

N∑
I,J=1

P ′
I,J 〈−→Tj

I ,
−→
ξK⊥〉 −→

λ〈−→Tj
J ,

−→
ξK⊥〉 −→

λ

− 1

2

∑
ϕ∈�

N∑
I,J=1

PI,J (ϕ(q))〈−−→Xϕ
I ,

−→
ξK⊥〉 −→

λ〈−−−−→X−ϕ
J ,

−→
ξK⊥〉 −→

λ (3.46)

with P and P ′ defined in (3.41) and (3.45), respectively.

The above Hamiltonian HS can be interpreted in terms of ‘particles’ with positions defined by 
the components of q that interact with each other as well as with the ‘spin variables’ represented 
by 

−→
ξ . It is a system of ‘Sutherland type’ since the interaction exhibits trigonometric dependence 

on the coordinates, which means that the ‘particles’ move on the circle. For G = su(r + 1), the 
explicit formula (3.46) reproduces precisely the integrable spin Sutherland Hamiltonian obtained 
previously by Blom and Langmann [18,19] and by Polychronakos [20] by means of different 
methods, and generalizes their system for arbitrary simple Lie algebras.

4. Alternative derivation from twisted current algebra

It is remarkable that certain many-body systems can be obtained by alternative reduction pro-
cedures starting from finite-dimensional as well as from infinite-dimensional ‘free systems’. The 
main ideas in this regard go back to Gorsky and Nekrasov [15,16], who first interpreted the 
standard trigonometric Sutherland system from an infinite-dimensional standpoint. Their deriva-
tion had been exposed in [5,25], too. In effect, it also formed the basis of the derivation of the 
G = su(r + 1) special case of HS (3.46) given by Blom and Langmann [18,19]. We thought it 
worthwhile to develop the Gorsky–Nekrasov method in our general case. Below we re-derive 
the same systems as those obtained in Section 3.1, but we will not be fully rigorous as we shall 
neglect topological details concerning the infinite-dimensional spaces involved.

We start with the infinite-dimensional phase space P̃ consisting of triples of G-valued func-
tions (A(x), E(x), ζ(x)) on the real line, subject to the following quasi-periodicity condition for 
C = A, E, ζ :

C(x + 1) = τ ′(C(x)) with τ := γ −1. (4.1)

We assume that ζ(x) is actually a generalized function of the form

ζ(x) =
∑
k∈Z

ζkδ(x − xk), (4.2)

where

0 < x1 < x2 < · · · < xN < 1 (4.3)
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and

xk+N = xk + 1, ζk+N = τ ′(ζk), ∀k ∈ Z. (4.4)

The normalization is such that 
∫ 1

0 δ(x − xk)dx = 1 for k = 1, . . . , N . Moreover, we assume that 
ζk belongs to an adjoint orbit O′

k of G in G, identified with G∗ via the scalar product 〈 , 〉. 
Regarding the quasi-periodic G-valued functions A and E, we suppose that they are smooth 
on each open interval (xk, xk+1), and they as well as their derivatives of all orders have finite 
one-sided limits at every point xk . For reasons that will become clear shortly, we permit both A, 
E and all their derivatives to have jumps at the distinguished points xk.

By using smooth G-valued quasi-periodic test functions V (x) and W(x), the non-vanishing 
Poisson brackets on P̃ are specified as{ 1∫

0

〈A(x),V (x)〉dx,

1∫
0

〈E(x),W(x)〉dx

}
=

1∫
0

〈V (x),W(x)〉dx (4.5)

and

{〈ζk,Vk〉, 〈ζk,Wk〉} = 〈ζk, [Vk,Wk]〉, (4.6)

where Vk := V (xk), Wk := W(xk). The corresponding symplectic form �̃ on P̃ reads

�̃ = dθ̃ + ω′ with ω′ =
N∑

k=1

ω′
k, (4.7)

where ω′
k is the Kirillov–Kostant–Souriau form on the orbit O′

k and

θ̃ =
1∫

0

〈E(x), dA(x)〉dx. (4.8)

We equip the phase space P̃ with the free Hamiltonian

H̃ := 1

2

1∫
0

〈E(x),E(x)〉dx (4.9)

and a Hamiltonian action of a suitable twisted loop group, G̃. Namely, an element g ∈ G̃, which 
is a G-valued function on the line subject to g(x + 1) = τ(g(x)), acts on the triple (A, E, ζ )

according to

A(x) �→ g(x)A(x)g−1(x) − g′(x)g−1(x), E(x) �→ g(x)E(x)g−1(x),

ζk �→ g(xk)ζkg
−1(xk). (4.10)

We suppose that g and all its derivatives are smooth on each open interval (xk, xk+1) and have 
finite one-sided limits similarly to A and E. An important difference is that g is required to 
be globally continuous on R (including at the points xk). These assumptions guarantee that the 
formulae in (4.10) yield a well-defined action of G̃ on P̃ .

The action (4.10) admits the equivariant momentum map


̃(x) := [A(x),E(x)] + E′(x) + ζ(x) (4.11)
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that takes its values in the distributional dual of the space of G-valued smooth quasi-periodic 
functions. In particular, the derivative of E(x) is understood in the distribution sense, i.e., the 
value 
̃[V ] of the functional 
̃ on the test function V is


̃[V ] =
1∫

0

(〈V (x), [A(x),E(x)]〉 − 〈V ′(x),E(x)〉)dx +
N∑

k=1

〈V (xk), ζk〉. (4.12)

By using this, one can verify that 
̃ generates the infinitesimal action according to

{A(x), 
̃[V ]} = [V (x),A(x)] − V ′(x),

{E(x), 
̃[V ]} = [V (x),E(x)],
{ζk, 
̃[V ]} = [V (xk), ζk]. (4.13)

The reduction of our concern is defined by imposing the momentum map constraint


̃ = 0 (4.14)

and then factorizing by G̃, as usual. An important fact used in the subsequent analysis is that 
for every A that appears in P̃ there exists an element g ∈ G̃ that transforms it into a constant 
function on R. The constant can be taken from the closure of the open ‘twisted Weyl alcove’ Ť γ

that parametrizes the twisted conjugacy classes in G given by the orbits of the Cγ -action (2.1). 
For convenience, we present a proof of this fact in Appendix A.

Similarly as we worked in Section 3, we restrict attention to the subset P̃ ′ consisting of such 
triples for which A(x) can be gauge transformed to a constant from the interior of the alcove, 
denoted as

χ ∈ Ť γ . (4.15)

Mimicking Section 3.1, we consider the ‘gauge slice’ S̃ of a partial gauge fixing in P̃ ′:

S̃ := { (A,E, ζ ) | 
̃ = 0, A(x) = χ ∈ Ť γ }. (4.16)

Clearly the momentum map constraint 
̃ = 0 requires that the function E(x) takes the form

E(x) = e−(x−xk)adχ E+
k for xk < x < xk+1, (4.17)

where the only objects so far undetermined are the constants

E+
k ∈ G. (4.18)

On account of the quasi-periodicity, we have E+
k+N = τ ′(E+

k ) and we also define

E−
k = e−(xk−xk−1)adχ E+

k−1, ∀k ∈ Z. (4.19)

Since the function E(x) has the jump (E+
k −E−

k ) at xk , we find that when applied to the elements 
of S̃ the constraint 
̃ = 0 translates into the following equations:

ζk + (E+
k − E−

k ) = 0, k = 1 . . . ,N. (4.20)

Now, our key observation is that the correspondence

q = χ,
1 = xk − xk−1, λkξk = ζk, λkJk = E+

k−1, k = 1, . . . ,N, (4.21)

λk
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allows to reformulate (4.20) as the following system of equations:

ξk + λk+1

λk

Jk+1 − e−adq/λk (Jk) = 0, k = 1 . . . ,N, (4.22)

where JN+1 = τ ′(J1) and λN+1 = λ1. The crux is that this system of equations is nothing but 
the componentwise form of the relation (3.13), which represents the momentum map constraint 

 = 0 applied on the gauge slice S in the finite-dimensional symplectic reduction of Section 3.1. 
Since the residual gauge transformations are in both cases given by the action of the group 
K (2.28), the relation (4.21) induces a one-to-one correspondence between the reduced phase 
spaces coming from the infinite-dimensional and finite-dimensional reductions:

P̃ ′
red = P̃ ′̃


=0/G̃ � S̃/K � S/K � P ′

=0/G � P ′

red. (4.23)

It can be readily checked that the reduced symplectic structures and also the reduced free Hamil-
tonians are converted into each other upon this correspondence. The latter statement follows 
immediately since on S̃ we have

1∫
0

〈E(x),E(x)〉dx =
N∑

k=1

(xk − xk−1)〈E+
k−1,E

+
k−1〉 =

N∑
k=1

λk〈Jk, Jk〉 = 〈−→J ,
−→
J 〉 −→

λ. (4.24)

As for the symplectic form, let us first notice that the mapping λkξk ↔ ζk converts the (unre-
duced) Poisson brackets in (3.4) into those in (4.6). In other words, (Ok, ωk) and (O′

k, ω
′
k)

represent the same coadjoint orbit of G in G∗, identified with G via the different scalar prod-
ucts λk〈 , 〉 and 〈 , 〉. Consequently, it is enough to focus on the 1-form θ̃ (4.8). Regarding this, 
we have

θ̃ |S̃ =
1∫

0

〈E(x), dq〉dx =
N∑

k=1

(xk − xk−1)〈E+
k−1, dq〉 = 〈−→J , d−→q 〉 −→

λ

= 〈−→JQ, d −→q 〉 −→
λ = 〈p,dq〉. (4.25)

The second equality holds since only the T -part of E(x) contributes, which is constant on 
each interval (xk−1, xk). We have taken into account the correspondence (4.21) together with 
Eqs. (3.15), (3.17) and (2.13). We conclude that the restriction of � on S is mapped into the re-
striction of �̃ on ̃S, which implies that the respective reduced symplectic structures are converted 
into each other, as claimed.

The infinite-dimensional phase space that we started with emerges from Yang–Mills theory in 
(1 + 1)-dimensions with quasi-periodic boundary condition and external non-dynamical charges 
located at the points xk . Indeed, A = A1 is the spatial component of the Yang–Mills potential 
Aμ (μ = 0, 1) in the gauge where A0 has been set to zero, and E is its canonical conjugate 
(the ‘color-electric’ field). Because of this interesting physical context [15,18,5,17] it would be 
desirable to place the above sketched derivation on completely rigorous mathematical ground. 
We plan to deal with this issue, together with the isomorphism of the full reduced phase spaces 
P
=0/G and P̃
̃=0/G̃, elsewhere.

To finish, note from (4.10) that A(x) transforms in the same way as (at fixed level) the el-
ements of the dual of a centrally extended twisted loop algebra based on G. In this section we 
followed the current algebraic derivation of the Sutherland system as presented in the book [25], 
but (unlike there) we did not assume that A(x) varies in the smooth dual. Although such frame-
work may appear advantageous for the symplectic reduction itself, it is problematic since the 
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flow of the ‘free Hamiltonian’ H̃ (4.9) starting at S̃ at t = 0 leaves the space of smooth fields 
A, because E must have jumps at the points xk . In fact, our assumptions on A, E and g were 
designed to ensure that the flow of the Hamiltonian H̃ ,

(A(x, t),E(x, t), ζ1(t), . . . , ζN(t)) = (A(x,0) + tE(x,0),E(x,0), ζ1(0), . . . , ζN (0)),

(4.26)

stays in the unreduced phase space P̃ on which H̃ is well-defined and enjoys G̃-symmetry.

5. Conclusion

In this paper we presented two derivations of novel spin Sutherland systems that in special 
cases were studied earlier [18–20], and described the mechanism whereby the two derivations 
always yield the same result. The main virtues of the infinite-dimensional derivation are its con-
nection to Yang–Mills theory and that it can be extended for obtaining elliptic generalizations, 
similarly to the derivation of the standard elliptic Calogero system from the current algebra on 
the torus [27,5,17]. The finite-dimensional derivation has different advantages. For example, it 
permits the construction of classical solutions by a purely algebraic projection algorithm. Its 
main advantage is that, as we outline next, the corresponding quantum-Hamiltonian reduction is 
also in the range of well-understood group-theoretic methods.

The quantum mechanical analogue of the unreduced classical system (P, �, H) is defined by 
the Hamilton operator

Ĥ = −1

2
� −−→

G ⊗ idV −→ν , (5.1)

where � −−→
G is the Laplace–Beltrami operator associated with the Riemannian metric on 

−→
G that 

corresponds to the invariant scalar product 〈 , 〉 −→
λ. Now this operator acts on (its usual domain in) 

the Hilbert space L2( 
−→
G, dμ −−→

G) ⊗ V −→ν . The measure dμ −−→
G comes from the metric and the vector 

space V −→ν carries a highest weight representation ρ −→ν of the direct product group 
−→
G. This repre-

sentation is the ‘exterior tensor product’ of representations of the N -factors, which are quantum 
counterparts of the constituent orbits Ok of 

−→O (3.1), i.e.,

V −→ν = Vν1 � · · ·� VνN
. (5.2)

Any group element −→η ∈ −→
G is represented by a unitary operator U −→η on the Hilbert space, 

operating on a V −→ν -valued function F according to

F �→ U −→ηF = ρ −→ν(
−→η) ◦ F ◦ C�−→η−1 . (5.3)

The reduced Hilbert space is provided by the subspace of 
−→
G-singlets,(

L2(
−→
G,dμ −−→

G) ⊗ V −→ν
)−−→
G
. (5.4)

This is mapped to itself by Ĥ , and the corresponding restriction defines the reduced quantum 
Hamiltonian. By arguments similar to those in [14], it is not difficult to show that the reduced 
quantum Hamiltonian is unitarily equivalent to the operator Ĥred given in (5.6) below that acts 
on (a suitable dense domain inside) the Hilbert space

L2(Ť γ , dμ ˇ γ ) ⊗ V K−→ν , (5.5)
T
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where V K−→ν ⊂ V −→ν is formed by the vectors fixed by the subgroup K (2.28) and the measure on 
Ť γ is defined by the Euclidean scalar product 〈 , 〉. To describe the operator Ĥred, consider dual 
bases Ta and T b of K⊥ (〈Ta, T b〉 −→

λ = δb
a ) and introduce Ia,b(q) = 〈T a, I(q)T b〉 −→

λ using I(q) in 
(3.35). Then one obtains

Ĥred = −1

2

∑
i

∂2

∂q2
i

+ 1

2

∑
a,b

Ia,b(q)ρ −→ν(Ta)ρ −→ν(Tb) + Cγ,
−→
λ

G,N , (5.6)

where the qi are coordinates on T γ with respect to an orthonormal basis and Cγ,
−→
λ

G,N is a constant. 
Observe that apart from this constant (which arises from a similarity transformation [14]), the 
outcome of the quantum Hamiltonian reduction is obtained from the classical Hamiltonian (3.23)
via the naive quantization of the kinetic energy and the replacement of 〈Ta, 

−→
ξ 〉 −→

λ by ρ −→ν(Ta) to-
gether with restriction to the K-invariant subspace of V K−→ν annihilated by the quantum analogues 
of the classical constraints enforcing 

−→
ξK = 0. The constant was calculated1 in [14] for N = 1

and any γ , and now we also calculated it for the systems detailed in Section 3.2, i.e., for γ = idG

and arbitrary N . It turned out that the constant is actually independent of N and of 
−→
λ and it reads 

Cid,
−→
λ

G,N = − 1
2κ(δ, δ) with the ‘Weyl vector’ δ = 1

2

∑
α∈�+ α.

Finally, let us sketch how representation theory can be used to determine, in principle, the 
spectrum of the reduced Hamiltonian Ĥred. The clue is that the spectrum of � −−→

G is known from 
the Peter–Weyl theorem. The theorem says that the representation of 

−→
G × −→

G on L2( 
−→
G, dμ −−→

G)

that comes from left- and right-multiplications decomposes as

L2(
−→
G,dμ −−→

G) = ⊕ −−→
� (V −−−→

�∗ � V −−→
�) , (5.7)

where all ‘components’ �k run over the dominant integral weights of G and 
−−→
�∗ is composed 

from the highest weights �∗
k , denoting the highest weight of the contragredient of the represen-

tation V�k
. The Laplace–Beltrami operator is constant on each subspace V −−−→

�∗ � V −−→
�, taking the 

value

C
−→
λ

2 (
−→
�) = −

N∑
k=1

λ−1
k κ(�k + 2δ,�k). (5.8)

It is easy to see from this that the space of singlets in L2( 
−→
G, dμ −−→

G) ⊗ V −→ν with respect to the 
representation (5.3) of 

−→
G can be presented as an infinite orthogonal direct sum of the finite-

dimensional spaces

(V�∗
2
⊗ V�1 ⊗ Vν1)

G � · · ·� (V�∗
N

⊗ V�N−1 ⊗ VνN−1)
G � (V�∗

1◦γ ′ ⊗ V�N
⊗ VνN

)G.

(5.9)

The sum is over those vectors 
−→
� for which the spaces of the G-singlets in all the N 3-fold tensor 

products in (5.9) are non-trivial. The composition of �∗
1 with γ ′ makes sense since γ ′ acts on the 

Cartan subalgebra on which the weights are defined. The non-trivial finite dimensional spaces of 
the form (5.9) are eigensubspaces of the original Hamiltonian Ĥ , with eigenvalue − 1

2C
−→
λ

2 ( 
−→
�). It 

is an archetypical Clebsch–Gordan problem to determine these spaces. This infinite collection of 
finite-dimensional linear algebraic problems is equivalent to the problem of diagonalization for 
the generalized spin Sutherland Hamiltonian Ĥred (5.6).

1 A notational difference is that in [13,14] the normalized Killing form κ was denoted by 〈 , 〉.
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Appendix A. Appendix on gauge transformations

The argument presented below is adapted from the description of the coadjoint orbits of the 
twisted affine Lie algebras [26,21], which generalizes earlier results on the untwisted case.

Take a G-valued function A on the real line R that satisfies the assumptions detailed in Sec-
tion 4. In particular, it is quasi-periodic in the sense that A(x +1) = τ ′(A(x)), where τ ′ and τ are 
automorphisms of G and G induced from an automorphism of the Dynkin diagram. (The trivial 
automorphism is of course a special case.) Then consider the following differential equation for 
a G-valued function yA,

y′
A(x) = yA(x)A(x), (A.1)

where at the distinguished points xk (see Section 4) this is understood in the sense of one-sided 
limits. We further impose the initial condition

yA(0) = e ∈ G (A.2)

and also require continuity of yA at all points xk . It is easily seen that there exists a unique ‘fun-
damental solution’ yA that meets these requirements. This boils down to well-known existence 
and uniqueness statements on each closed interval [xk, xk+1], and yA can be constructed by glu-
ing the solutions on each closed interval by continuity. The solution yA can be written explicitly 
as an ordered product-integral (‘Wilson line’). It follows that yA verifies the conditions used in 
our definition of the group G̃ in Section 4, except for the quasi-periodicity condition. Indeed, the 
quasi-periodicity of A and the uniqueness of yA imply the relation

yA(x + 1) = yA(1)τ (yA(x)), ∀x ∈R. (A.3)

Recall that there exist an element w ∈ G and a unique χ ∈ cl(Ť γ ) for which

eχ = Cγ
w(yA(1)). (A.4)

Here, cl(Ť γ ) is the closure of Ť γ introduced at the beginning of Section 2. The automorphisms 
γ and τ are inverses of each other (actually equal except possibly for G = Spin(8, R)). Picking 
w and χ , we now define the G-valued function gA on R by

gA(x) = e−xχγ (w)yA(x). (A.5)

It is trivial to check that gA satisfies the identity

gA(x)A(x)g−1
A (x) − g′

A(x)g−1
A (x) = χ, ∀x ∈ R, (A.6)

and is correctly quasi-periodic

gA(x + 1) = τ(gA(x)). (A.7)
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In conclusion, we have shown that any function A subject to our conditions defining the phase 
space P̃ can be gauge transformed into a constant χ from an arbitrarily chosen ‘twisted Weyl 
alcove’ by a gauge transformation defined by an element of the loop group G̃.

References

[1] F. Calogero, Solution of the one-dimensional N -body problem with quadratic and/or inversely quadratic pair poten-
tials, J. Math. Phys. 12 (1971) 419–436.

[2] B. Sutherland, Exact results for a quantum many body problem in one dimension, Phys. Rev. A 4 (1971) 2019–2021.
[3] J. Moser, Three integrable Hamiltonian systems connected with isospectral deformations, Adv. Math. 16 (1975) 

197–220.
[4] S.N.M. Ruijsenaars, Systems of Calogero–Moser type, in: Proceedings of the 1994 CRM–Banff Summer School 

‘Particles and Fields’, Springer, 1999, pp. 251–352.
[5] N. Nekrasov, Infinite-dimensional algebras, many-body systems and gauge theories, in: A.Yu. Morozov, M.A. Ol-

shanetsky (Eds.), Moscow Seminar in Mathematical Physics, in: AMS Transl. Ser. 2, Amer. Math. Soc., 1999, 
pp. 263–299.

[6] A.P. Polychronakos, Physics and mathematics of Calogero particles, J. Phys. A, Math. Gen. 39 (2006) 12793–12845, 
arXiv:hep-th/0607033.

[7] P. Etingof, Calogero-Moser Systems and Representation Theory, European Mathematical Society, 2007.
[8] M.A. Olshanetsky, A.M. Perelomov, Explicit solution of the Calogero model in the classical case and geodesic flows 

on symmetric spaces of zero curvature, Lett. Nuovo Cimento 16 (1976) 333–339.
[9] D. Kazhdan, B. Kostant, S. Sternberg, Hamiltonian group actions and dynamical systems of Calogero type, Com-

mun. Pure Appl. Math. XXXI (1978) 481–507.
[10] L.-C. Li, P. Xu, Integrable spin Calogero-Moser systems, Commun. Math. Phys. 231 (2002) 257–286, 

arXiv:math.QA/0105162.
[11] N. Reshetikhin, Degenerate integrability of spin Calogero–Moser systems and the duality with the spin Ruijsenaars 

systems, Lett. Math. Phys. 63 (2003) 55–71, arXiv:math.QA/0202245.
[12] S. Hochgerner, Singular cotangent bundle reduction and spin Calogero–Moser systems, Differ. Geom. Appl. 26 

(2008) 169–192, arXiv:math.SG/0411068.
[13] L. Fehér, B.G. Pusztai, Spin Calogero models obtained from dynamical r-matrices and geodesic motion, Nucl. Phys. 

B 734 (2006) 304–325, arXiv:math-ph/0507062.
[14] L. Fehér, B.G. Pusztai, Twisted spin Sutherland models from quantum Hamiltonian reduction, J. Phys. A, Math. 

Theor. 41 (2008) 194009, arXiv:0711.4015 [math-ph].
[15] A. Gorsky, N. Nekrasov, Hamiltonian systems of Calogero type and two dimensional Yang–Mills theory, Nucl. 

Phys. B 414 (1994) 213–238, arXiv:hep-th/9304047.
[16] A. Gorsky, N. Nekrasov, Relativistic Calogero–Moser model as gauged WZW theory, Nucl. Phys. B 436 (1995) 

582–608, arXiv:hep-th/9401017.
[17] E. Langmann, Gauge theory approach towards an explicit solution of the (classical) elliptic Calogero–Moser system, 

J. Nonlinear Math. Phys. 12 (Suppl. 1) (2005) 423–439.
[18] J. Blom, E. Langmann, Novel integrable spin-particle models from gauge theories on a cylinder, Phys. Lett. B 429 

(1998) 336–342, arXiv:solv-int/9804007.
[19] J. Blom, E. Langmann, Finding and solving Calogero–Moser type systems using Yang–Mills gauge theories, Nucl. 

Phys. B 563 (1999) 506–532, arXiv:math-ph/9909019.
[20] A.P. Polychronakos, Generalized Calogero–Sutherland systems from many-matrix models, Nucl. Phys. B 546 

(1999) 495–502, arXiv:hep-th/9806189.
[21] S. Mohrdieck, R. Wendt, Integral conjugacy classes of compact Lie groups, Manuscr. Math. 114 (2004) 531–547, 

arXiv:math.QA/0303118.
[22] V.G. Kac, Infinite Dimensional Lie Algebras, third ed., Cambridge, 1990.
[23] J.-P. Ortega, T.S. Ratiu, Momentum Maps and Hamiltonian Reduction, Birkhäuser, 2004.
[24] N.T. Zung, Torus actions and integrable systems, in: A.V. Bolsinov, A.T. Fomenko, A.A. Oshemkov (Eds.), 

Topological Methods in the Theory of Integrable Systems, Cambridge Scientific Publishers, 2006, pp. 289–328, 
arXiv:math.DS/0407455.

[25] B. Khesin, R. Wendt, The Geometry of Infinite-Dimensional Groups, Springer, 2009.

http://refhub.elsevier.com/S0550-3213(15)00049-8/bib43616Cs1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib43616Cs1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib537574s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib4D6F73s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib4D6F73s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib52756A52s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib52756A52s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib4E656B72s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib4E656B72s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib4E656B72s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib506F6C52s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib506F6C52s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib45746952s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib4F5043696Ds1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib4F5043696Ds1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib4B4B53s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib4B4B53s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib4C695875s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib4C695875s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib526573s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib526573s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib486F6368s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib486F6368s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib46504E75636Cs1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib46504E75636Cs1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib46504A5041s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib46504A5041s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib474E2D594Ds1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib474E2D594Ds1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib474Es1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib474Es1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib4C61s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib4C61s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib424C31s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib424C31s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib424C32s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib424C32s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib506F6Cs1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib506F6Cs1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib4D57s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib4D57s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib4B6163s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib4F52s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib5A75s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib5A75s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib5A75s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib4B686573s1


256 L. Fehér, B.G. Pusztai / Nuclear Physics B 893 (2015) 236–256
[26] R. Wendt, Weyl’s character formula for non-connected Lie groups and orbital theory for twisted affine Lie algebras, 
J. Funct. Anal. 180 (2001) 31–65, arXiv:math/9909059.

[27] A. Gorsky, N. Nekrasov, Elliptic Calogero–Moser system from two dimensional current algebra, arXiv:hep-
th/9401021.

http://refhub.elsevier.com/S0550-3213(15)00049-8/bib57s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib57s1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib474E2D656C6Cs1
http://refhub.elsevier.com/S0550-3213(15)00049-8/bib474E2D656C6Cs1

	Generalized spin Sutherland systems revisited
	1 Introduction
	2 Twisted conjugations and the monodromy matrix
	3 Hamiltonian reduction based on twisted conjugations
	3.1 General description for any γ∈Aut(G)
	3.2 The examples associated with γ= idG

	4 Alternative derivation from twisted current algebra
	5 Conclusion
	Acknowledgements
	Appendix A Appendix on gauge transformations
	References


