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Testing the Fit of a Quantal Model of Neurotransmission
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ABSTRACT Many studies of synaptic transmission have assumed a parametric model to estimate the mean quantal content
and size or the effect upon them of manipulations such as the induction of long-term potentiation. Classical tests of fit usually
assume that model parameters have been selected independently of the data. Therefore, their use is problematic after
parameters have been estimated. We hypothesized that Monte Carlo (MC) simulations of a quantal model could provide a
table of parameter-independent critical values with which to test the fit after parameter estimation, emulating Lilliefors’s tests.
However, when we tested this hypothesis within a conventional quantal model, the empirical distributions of two conventional
goodness-of-fit statistics were affected by the values of the quantal parameters, falsifying the hypothesis. Notably, the tests’
critical values increased when the combined variances of the noise and quantal-size distributions were reduced, increasing
the distinctness of quantal peaks. Our results support two conclusions. First, tests that use a predetermined critical value to
assess the fit of a quantal model after parameter estimation may operate at a differing unknown level of significance for each

experiment. Second, a MC test enables a valid assessment of the fit of a quantal model after parameter estimation.

INTRODUCTION

Much recent interest in quantal analysis was aroused by its
use in studies of hippocampal long-term potentiation (re-
viewed in Stevens, 1993; Bekkers, 1994; Jack et al., 1994)
and other forms of synaptic plasticity. Recent applications
of quantal analysis to synaptic plasticity have extended from
frequency facilitation in lobster neuromuscular junction
(Worden et al., 1997) to long-term depression in rat neo-
cortex (Torii et al., 1997). Many of these studies have relied
on a parametric model, a practice that raises two questions.
First, the question of “model discrimination”: does a given
model fit the data significantly better than simpler alterna-
tives, and not significantly worse than more complex alter-
natives? Second, the question of “goodness of fit”: does a
given model fit the data as closely as expected, given that
the data deviate from model predictions only because of
sampling error? A model that has been selected by careful
discrimination among alternatives need not fit the data
closely enough to avoid rejection by a test of fit, as recently
noted in the quantal-analysis literature (Greenwood, 1995;
Stricker et al., 1996). The theory behind 1) model discrim-
ination and 2) testing goodness of fit is commonly treated in
textbooks (Stuart and Ord, 1991). Much recent computa-
tional work in quantal analysis falls in the first category of
model discrimination (Smith, 1993; Stricker et al., 1994,
1996; Greenwood, 1995) and has antecedents in other fields
(Wilks, 1938: Akaike, 1974; Horn, 1987; McLachlan,
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1987). The present study addresses the second issue of
testing goodness of fit.

Classically, a test of fit tests the hypothesis that the model
is “true” (correct in form and parameter values). If the
model has been fitted to the data and parameters have been
estimated, the hypothesis is only that the model is correct in
form. If information from the data has been included in the
model, the model is “data dependent,” and testing goodness
of fit is a complex problem. When parameters are estimated,
this data-dependency problem is called the “prior estimation
problem.” The problem of evaluating the fit of data-depen-
dent models has not been adequately addressed in the quan-
tal analysis literature. For example, the x* test after correc-
tion for prior estimation of parameters is highly dependent
the exact way in which the data are arranged in a histogram
(“binning”), unless advanced techniques are used (Nikullin
and Greenwood, 1996).

Therefore, we used the conventional Kolmogorov and
Cramer—von Mises test statistics, which are calculated with-
out binning the data. To assess goodness of fit after param-
eter estimation, these statistics must be compared to empir-
ical critical values, as the classical values apply only to
data-independent models. Examining these statistics in the
context of the original quantal model of transmission (Del
Castillo and Katz, 1954), Monte Carlo (MC) simulations,
and maximum likelihood estimation, we considered two
methods of obtaining empirical critical values. First, we
considered using MC-generated critical-value tables in em-
ulation of Lilliefors’s and Srinivasan’s tests for the normal,
uniform, and exponential distributions (Lilliefors, 1967,
1969; Srinivasan, 1970; Mason and Bell, 1986). Second, we
considered using MC simulations to obtain a unique critical
value for each data set (Press et al., 1992; Raastad and
Lipowski, 1996). This second procedure, which we call the
“MC test of fit,” involves more computation than the first
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approach, which would involve a one-time batch of simu-
lations to generate critical-value tables. Therefore, we in-
tended to compute tables of critical values for testing the fit
of quantal models, after verifying that consistent critical
values were obtained for a variety of simulated quantal
parameters. Instead, we found that these critical values
actually depended on the parameters in a quantal model.
This result undermines the idea of a critical-value table,
although we do report some rules of thumb. Moreover, our
results suggest that how closely a correctly formulated
quantal model fits a specific data set after estimation de-
pends on how distinctly quantal the data are. This hitherto
unreported effect may even confound the x test but causes
no problem in the MC test of fit, as its critical values are
specific to each data set.

MATERIALS AND METHODS
The Poisson model of quantal transmission

This conventional model assumes that packets of transmitter are released
with an equal and small probability from a large number of sites by a stable
(“stationary”) process that is independent of the electrical response ampli-
tude of each quantum (“quantal size”). The mean number of quanta in an
event is termed the quantal content (m). As the response to a packet of
transmitter may show some variability (Bekkers et al., 1990; Clements et
al., 1992; Faber et al., 1992; Kruk et al., 1997, but see Edwards et al., 1990;
Liao et al., 1992; Kullmann, 1993), the quantal size was described in terms
of its mean (¢q) and coefficient of variation (CV,). Other conventional
assumptions included linear summation of quanta, independent additive
noise with zero mean, and mutually independent responses (reviewed in
Stevens, 1993). For simplicity, we assumed that the distributions of noise
and quantal size were Gaussian. We defined the signal-to-noise ratio (Q/N)
as g over the noise standard deviation. In simulations of the Poisson release
model, the number of quanta (k) was limited to defined such that the
probability P(k > k,.,) < 0.001.

max>

ax

Monte Carlo simulations

Batch simulations were controlled by a custom-written program (in Preci-
sion-Visuals Wave language) and C library functions. Many independent
identically distributed sets of 200 simulated response amplitudes were
generated. In the simulation studies we explored a range of values of m,
CV, and Q/N, while restricting the sample size to an experimentally
motivated worst-case figure of 200 for two reasons. First, parameter values
are likely to change over long experiments or with short inter-stimulus
intervals. Second, some plasticity factors might diffuse out of the cell into
the pipette after a period of whole-cell recording. For example, before the
tetanus in careful experiments on mossy-fiber long-term potentiation
(LTP), 200—400 responses were typically collected at 0.2—0.25 Hz, and as
few as 200 responses in a stable epoch were selected for analysis (Xiang et
al., 1994).

Maximum likelihood estimation

Given sufficient data, ML estimation is usually an optimal method in the
sense that parameter estimates are unbiased and approach optimal precision
(Rao, 1970; Stuart and Ord, 1991). What constitutes sufficient data is a
matter of noise and sample size, and it depends on the nature and com-
plexity of the data-generating mechanism. For a particular choice of
parameters, the probability density is calculated for each response ampli-
tude. These densities are multiplied to obtain the likelihood of the data. The
ML estimate is the set of parameter values that maximize the likelihood. To
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analyze data that may adhere to classical quantal models, we wrote a
program that differs from others that use the expectation maximization
algorithm (Dempster et al., 1977; Kullmann, 1989; Stricker et al., 1994), in
that it maximizes the explicitly calculated likelihood (see also Smith,
1993). This program was written in FORTRAN77 and uses IMSL library
functions.

Testing goodness of fit
Problems with the )Z test in quantal analysis

The basic y* test assumes that the model and the bin boundaries are
data-independent. When model parameters have been estimated, the de-
grees of freedom of the test are commonly corrected by subtracting the
number of estimated parameters. However, this correction is only valid if
parameters have been estimated from bin occupancies, an inefficient
method of estimation (Stuart and Ord, 1991; Nikullin and Greenwood,
1996). Furthermore, binning of data sets that are limited in sample size by
the need for stationarity (Brown et al., 1976; Malinow, 1991) may lead to
low expected bin occupancy and test results that depend on binning
choices. Thus, use of the ) test is typically problematic in quantal analysis.
We developed a MC test of fit, using Kolmogorov—Smirnov (KS) and
Cramer—von Mises (CvM) statistics to avoid such problems.

Kolmogorov-Smirnov and Cramer-von Mises tests

The KS and CvM statistics quantify the deviation between model and data
in usefully different ways, as explained below (Stephens, 1974). These
statistics compare the theoretical cumulative distribution function (cdf) for
the model to the empirical or “observed” cdf of the data. The KS statistic
is approximately the square root of #» multiplied by the maximum deviation
between the observed and theoretical cdf (Birnbaum, 1952; Press et al.,
1992). In contrast, the CvM statistic measures the average squared devia-
tion between these cdfs (von Mises, 1964). The CvM and KS statistics
complement each other in that the CvM statistic is more sensitive to the
tails of the cdfs. Also, our experience has been that the KS test’s sensitivity
to one large deviation makes it sensitive to quantal discrepancies from a
unimodal model after ML estimation on quantal data (data not shown),
despite its reported insensitivity to such discrepancies in the absence of
prior estimation (Stratford et al., 1997). We used MC methods to approx-
imate unknown post-estimation critical values for these statistics.

MC test of fit

In general, the MC test of fit tests the ability of the model formulation
(without predetermined parameters) to account for the data. More specif-
ically, this MC procedure tests whether the difference between the data and
the fitted (“data-derived”) model is consistent with the difference remain-
ing after the same model formulation has been fitted to simulated data from
the data-derived model (see Fig. 6). To apply the MC test of fit to data from
the hippocampal mossy-fiber synapse in rat brain slices (Greenwood,
1995), we typically used an empirical reference distribution from 400 or
500 simulations of the estimated ML model, with each simulation consist-
ing of 200 points. Fit statistics were obtained for each simulated data set
and its ML model. These fit statistics were placed in ascending order to get
an empirical cdf. As an estimate of the o« s critical value, the 95th
percentile sample in this empirical cdf was compared to the experimental
test statistic. For a batch of 500 simulation-derived fit statistics, the 25th
largest statistic was an estimate of the «, s critical value. As underesti-
mating this critical value would have artificially increased the test’s power,
we sometimes constructed a 95% confidence interval for the critical value
(Stuart and Ord, 1991) and used its upper bound in place of the estimated
critical value. Thus, the chance of underestimation was ~0.025.
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RESULTS
Classical tests of fit and prior estimation

An exposition of the prior estimation effect (Figs. 1 and 2)
will introduce the new results (shown in Figs. 3-5). To-
gether with the new results, this exposition may motivate
adoption of the MC test of fit (illustrated in Fig. 6). Fig. 1
shows histograms of 200 samples that were simulated using
a model with Poisson release and Gaussian quantal size
(m=1,qg=1,CV,=03,noise 0 = 0.2). In Fig. 1 4, this
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FIGURE 1 Prior estimation and significance level in a test of fit. 4 and

B illustrate the concept of significance level in a classical test of fit. A
model synapse with Poisson release and Gaussian quantal size was simu-
lated to produce the histograms of 200 response amplitudes that are shown
in 4 and B. The parameters were m = 1, g = 1, CV; = 0.3, and noise o =
0.2. The histogram in 4 was blindly selected, and the histogram in B was
selected because it deviated from the simulated model. The smooth density
function of the simulated model is shown with both histograms. The
quantal components are indicated by Gaussian curves and vertical dotted
lines. The closeness of fit of the simulated model was quantified with
Kolmogorov—Smirnov (KS) and Cramer—von Mises (CvM) statistics. The
fit to the blindly selected data set of 4 was not rejected (pxs = 0.89 and
Pewm = 0.68). Using classical critical values for a = 0.01, both tests
rejected the fit of the true model to the unusual data shown in B. B and C
show that estimating parameters before the application of a classical test
decreases the chance of incorrectly rejecting a correctly formulated model,
which generally implies a decrease in the power of the test to reject
incorrectly formulated models. The same histogram of simulated data is
shown in B and C, but in C the smooth density function of the best-fitting
model is shown instead of the simulated model’s density function. The
parameters of the best-fitting model were m = 1.15, ¢ = 1.05, and CV, =
0.253. The correct noise value was assumed (o = 0.2). As a consequence
of the prior estimation of parameters from the same data, the fit of this
model could not be rejected by the classical KS and CvM tests (pxg = 0.80
and peyy = 0.65).
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FIGURE 2 Prior estimation shifts the cumulative distribution of KS
statistics to the left of the classical distribution. The model that was
introduced in Fig. 1 (m = 1, ¢ = 1, CV, = 0.3, and noise o = 0.2) was
simulated to produce 400 sets of 200 response amplitudes. From each data
set we obtained the KS statistic for the ML model after estimation of m, g,
and CV,. The KS statistics were placed in ascending order, and their ranks
in the sequence were divided by 400 for plotting in an empirical cumulative
distribution (/eft curve). The classical distribution of KS statistics for the fit
of a correct independent model is indicated by the solid right curve. Dashed
lines (interrupted for clarity) mark the «, s critical values in the theoretical
and the empirical distributions. The dashed-dotted lines that bracket the
empirical critical value (0.89) represent a 95% confidence interval for the
critical value of the true KS distribution for this model after parameter
estimation. The prior estimation of three parameters in this model is thus
shown to shift the critical value from the classical value (~1.36) to a much
smaller value.

model’s density function and its quantal components are
shown along with a blindly chosen histogram. The quantal
peaks become less distinct with increasing multiples of ¢
(dotted lines), as the quantal variance is compounded and
added to the noise variance. We quantified the goodness of
the true model’s fit with the Kolmogorov—Smirnov (KS)
and Cramer—von Mises (CvM) statistics, obtaining p-values
of 0.89 and 0.68 from the classical tables. In Fig. 1 B, the
true density is shown with a hand-picked deviant histogram
that has unusually few simulated failures of transmission.
Both tests rejected the true model (p < 0.01), illustrating
that the power to reject incorrect models comes with a
probability of incorrectly rejecting the true model (signifi-
cance level a = 0.01).

Fig. 1 C illustrates a typical situation in quantal analysis,
in which parameters are estimated in a model that is then
justified by statistical argument. In Fig. 1 C, the histogram
from Fig. 1 B is shown with the density of the standard
model after maximum likelihood (ML) estimation. We es-
timated m = 1.15, ¢ = 1.05, and CV = 0.253 from the data
and assumed the simulated noise variance. The agreement
between the estimated density and the first histogram peak
in Fig. 1 C shows that the estimation of m = 1.15 accounted
well for the simulated transmission failures. The classical
KS and CvM tests failed to reject this ML model (peyv =
0.65, pxs = 0.8), illustrating the fact that prior estimation
decreases the chance that a test will reject a correctly
formulated model, increasing the significance of any rejec-
tion. Thus, prior estimation requires some correction anal-
ogous to decreasing the degrees of freedom in a y* test. For
example, without such a correction an estimated model
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FIGURE 3 Ciritical values for the MC test of fit (at « = 0.05) were found to have a complex dependence on the parameters of a model synapse with
Poisson release and Gaussian quantal size. The magnitude of the «, o5 critical value reflects the amount of residual discrepancy between the data and the
model that will be exceeded by 5% of correctly formulated models after estimation. Empirical KS critical values that were obtained for models after
estimation were smaller than the classical value for the fit of data-independent models (~1.36). MC KS critical values were obtained and plotted for CV, =
0.05 (4) and CV, = 0.3 (B) over the domain of the other parameters (m: 1, 5; O/N: 1.25, 5, 20). For each synapse, 400 sets of 200 response amplitudes
were simulated. MC critical values were obtained from the KS fit statistics for the 400 best-fitting models. The average half-width of the 95% confidence
intervals for these critical values was 0.05. The critical values increased when O/N was increased from 1.25 to 5 in 4 (CV; = 0.05) and from 5 to 20 in
B (CV4 = 0.3). Thus, lower levels of combined variance from the noise and quantal-size distributions appeared to correlate with larger critical values after

parameter estimation (see also Fig. 4).

including simple binomial release may appear to fit data that
were simulated with nonstationary and/or nonuniform bino-
mial parameters (Brown et al., 1976). This example con-
cerns the “power” of a test of fit to reject a false model,
which depends on the details of the true and false models
and on the test’s significance level. The present work fo-
cuses on significance to obtain results with general impli-
cations regarding power.

Quantifying the effect of prior estimation

In the example in Fig. 1, B and C, prior estimation improved
the goodness of fit from p < 0.01 to p ~ 0.7, as measured
by the classical KS and CvM tests. Expanding on the same
example (m = 1, ¢ = 1, CV, = 0.3, noise o = 0.2), Fig. 2
shows the effect of prior estimation on a test-statistic dis-
tribution and its « o5 critical value. We performed ML
estimation on each of 400 data sets and calculated KS and
CvM statistics for each data set’s ML model. The curve on
the left in Fig. 2 shows the discrete cumulative distribution
of the KS statistics (dots, unresolvable at high density).
Plotted as a solid curve is an approximate classical distri-
bution of the KS statistic (Press et al., 1992), from which the
post-estimation distribution has been shifted to the left. The
vertical dotted-dashed line (interrupted for clarity) indicates
the empirical 95th percentile value (0.89), an estimate of the
post-estimation o) (s critical value. The bracketing dotted
lines (interrupted for clarity) indicate this value’s 95% con-
fidence interval, which does not include the classical « (s
critical value (~1.36, dashed line). In fact, none of the
post-estimation KS statistics exceed this value. Thus none
of the fits would be rejected by the classical test. Presum-
ably, the classical test would also lack power to reject

incorrectly formulated models. Largely similar results were
obtained for the CvM statistics (data not shown).

Prior estimation calls for a model-specific
test of fit

If the parameters of the simulated model in Figs. 1 and 2 had
been estimated from experimental data, the empirical KS
critical value in Fig. 2 (left dotted-dashed line) could be
used to test the fit of this model. Not anticipating that the
effects of prior estimation would depend on model param-
eters, we hypothesized that an empirical critical value such
as this one would be appropriate to test the fit of the
standard model after m, ¢, and CV, had been estimated from
200 data points simulated with any set of parameters in the
standard model. To test this hypothesis, we conducted a
preliminary MC study. As the inherent variability of the
quantum is a controversial issue in the experimental realm
(Bekkers et al., 1990; Edwards et al., 1990; Liao et al.,
1992) and in the realm of biophysical modeling (Clements
et al., 1992; Faber et al., 1992; Kullmann, 1993; Kruk et al.,
1997), CV, was simulated to be 0.05 or 0.3, spanning much
of the range of CV/ that is contested in this literature. Under
each of these conditions, m was simulated to be 1 or 5, and
the quantal signal-to-noise ratio was Q/N = 1.25, 5, or 20.
For each combination of parameters, we obtained empirical
oy o5 critical values from 400 KS and CvM statistics.

The KS critical values are shown over the domain of the
simulation parameters in Fig. 3. Fig. 3, 4 and B, shows
results for CV, = 0.05 and 0.3, respectively. The classical
ay o5 critical value for the fit of data-independent models is
~1.36, well above the surface. For clarity, the MC uncer-
tainty in the critical-value estimates is not shown in Fig. 3.
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However, for the case in which CV, = 0.3, m = 1, /N =
5, this uncertainty is shown in Fig. 2 by the 95% confidence
interval (interrupted dotted lines). The average half-width
of these 95% confidence intervals for the critical values in
Fig. 3 is 0.05. Thus, the range of critical values in Fig. 3
undermines the hypothesis that these values would all be
MC estimates of one critical value. Instead, as Q/N in-
creases from 1.25, the critical values increase to a higher
level at /N = 5 in Fig. 3 4 (CV, = 0.05) and at O/N = 20
in Fig. 3 B (CV, = 0.3). Similar results were obtained with
the CvM statistic (data not shown). This dependence on O/N
and CV, suggests the new hypothesis that the variances of
the noise and quantal-size distributions have a cumulative
effect on the critical values after parameter estimation. We
next subjected this hypothesis to closer examination.

Closeness of fit depends on Q/N and CV,,

Fig. 4 4 shows KS critical values (for « = 0.05) that were
obtained from 11,200 simulations of the standard model
synapse at each of seven different levels of simulated re-
cording noise (Q/N = 1.25, 1.98, 3.15, 5, 7.94, 12.6, 20).
The other parameters were m = 1 and CV; = 0.3. Although
m also contributes to the variance that reduces the distinct-
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FIGURE 4 The KS critical value for the MC test of fit (at « = 0.05) was
found to have a sigmoidal dependence on Q/N (4) and decreasing CV,
increased the critical value, much as if O/N had increased (B). These results
mean that a greater discrepancy between the data and the model tended to
remain when the model was fit to data with more clearly resolved quantal
structure. (4) A model synapse with Poisson release and Gaussian quantal
size was simulated to produce 11,200 sets of 200 response amplitudes at
each of seven levels of simulated recording noise (O/N = 1.25, 1.98, 3.15,
5, 7.94, 12.6, 20). The other parameters were m = 1 and CV; = 0.3. For
each data set a KS statistic was obtained for the fit of the best-fitting model.
The a5 critical value from each distribution of KS statistics was plotted
against O/N. The error bars represent approximate 95% confidence inter-
vals. The end points of this curve are (Q/N, KS critical value) = (1.25,
0.82) and (20, 0.93), whereas the KS critical value for a data-independent
model is ~1.36. (B) Each critical value was obtained from 800 sets of 200
simulated response amplitudes. Critical values (squares) and error bars that
represent approximate 95% confidence intervals are shown for CV, = 0.05
and 0.3. For parameters (O/N = 3; m = 1) that correspond to a point near
the bottom of the region of maximum slope in 4, a decrease in CV from
0.3 to 0.05 (moving from right to left in B) had the expected effect of
increasing the « s critical value. Thus, lower levels of combined variance
from the noise and quantal-size distributions correlated with larger critical
values after parameter estimation.
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ness of quantal peaks, it was not varied because its special
role in our standard model could complicate the results (as
in Fig. 5). The error bars represent approximate 95% con-
fidence intervals for the expected reproducibility of each
critical-value estimate. Fig. 4 4 shows a sigmoidal depen-
dence of the KS critical value on Q/N. The critical value is
shown to be significantly larger for values of O/N = 3.15
than for values of O/N = 1.98. As a check of the practical
significance of these differences, we determined the effect
of using the critical value for /N = 1.25 to test the fit of
estimated ML models to the data that had been simulated
with O/N = 20. Test statistics from 13% (instead of 5%) of
these models exceeded this inappropriate critical value,
leading to 160% too many rejections. Largely similar results
were obtained for the CvM statistic (data not shown).

The region of maximum slope in Fig. 4 4 is near the O/N
value of 5, for which the critical value increases as one
looks from Fig. 3 4 (CV, = 0.3) to Fig. 3 B (CV, = 0.05).
To show a near-maximum effect of reducing CV, from 0.3
to 0.05 in Fig. 4 B, we obtained MC critical values for the
standard model with m = 1 and Q/N = 3 (near the bottom
of the maximum-slope region in Fig. 4 4). The KS critical
value was larger for CV; = 0.05 than for CV, = 0.3 (Fig. 4
B; error bars reflect ~95% confidence intervals). This result
is consistent with the effect of increasing O/N from a value
of 3 in Fig. 4 A. As one would expect from the critical-value
plateau at high values of O/N in Fig. 4 4, reducing CV, from
0.3 to 0.05 did not have a significant effect on the critical
values for m = 1 and O/N = 20 (data not shown). Thus,
lower cumulative levels of variance in the noise and quan-
tal-size distributions correlated with larger critical values
after parameter estimation. As the quantal variance is com-
pounded in multiquantal responses, we do not expect this
cumulative effect to be strictly additive, and the details will
depend on the distribution of quantal content. The general
point is that more distinct quantal peaks correlated with
larger critical values in this study. Similar results were
observed for the CvM statistic (data not shown).

An implication of these results emerges from comparison
of the range of KS critical values (0.82—-0.93) in Fig. 4 4 to
the Lilliefors oy, s KS critical values for a normal model
with an estimated variance of 1.333 (n > 100; Mason and
Bell, 1986) and an estimated mean and variance of 0.886
(n > 30; Lilliefors, 1967). For small O/N in Fig. 4 A4, the
prior estimation of three parameters (m, ¢, and CV,) reduced
the KS critical value from its classical value of ~1.36 to
values lower than the Lilliefors critical value for two esti-
mated parameters, as seems appropriate. When Q/N was
increased in the simulations, the post-estimation KS critical
value increased in excess of this Lilliefors critical value, as
if fewer than two parameters had been estimated. Although
the different models involved preclude strict comparison,
these observations suggest that distinct quantal structure
may limit the loss of effective degrees of freedom that is
caused by parameter estimation.
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FIGURE 5 The effects of m and Q/N on critical values for the MC test of fit. Critical values for the MC test of fit increased with increasing Q/N, over
a domain of m values that extended from 1 to 5. For low values of Q/N, the critical values also increased with increasing m. KS (4) and CvM (B) critical
values are plotted over the simulated domain of O/N and m. Each critical value was derived from 800 simulations of a set of 200 response amplitudes. The
parameters were m = 1, 1.3, 1.63, 2.04, 2.55, 3.19, 3.99, 5; O/N = 1.25, 1.98, 3.15, 5, 7.94, 12.6, 20; CV, = 0.3. The average half-widths of the 95%
confidence intervals for the KS and CvM critical values were 0.03 and 0.01, respectively, but the proximity of neighboring points in the surfaces suggests
that the effect of sampling error is often much smaller. Note that the CvM critical values have proportionately less uncertainty than the KS critical values.

Complex dependence of critical values on
m and Q/N

To examine how the critical values depended on m and Q/N,
we used CV, = 0.3 in simulations of a standard model
synapse in which m was varied among eight values (1, 1.3,
1.63, 2.04, 2.55, 3.19, 3.99, 5) and Q/N was varied among
seven values (1.25, 1.98, 3.15, 5, 7.94, 12.6, 20). For each
parameter combination, we obtained KS and CvM critical
values from 800 ML models fitted to simulated data sets
(200 points each). These critical values are plotted in Fig. 5,
A and B, respectively, showing that the critical values in-
creased with increasing Q/N for all simulated values of m.
Under noisy conditions and especially for O/N = 1.98,
increasing m also increased the critical values. Leaving
aside possibly model-specific details, Fig. 5 shows that the
dependence of the critical values on quantal parameters can
be unpredictable and complex. This result argues for the use
of a MC test instead of a critical-value table, when the fit of
a quantal model is tested after estimation. However, our
results do suggest some conservative, rule-of-thumb critical
values for rejection or acceptance of a fit, in that no estimate
of the a5 KS critical value fell above 0.95 or below 0.8
after estimation of m, g, and CV in our standard quantal
model (see Figs. 3-5). The corresponding values for the
CvM statistic were 0.16 and 0.1.

DISCUSSION

In quantal analysis, data from single experiments are often
used both to estimate a model’s parameters and to test its fit.
However, classical tests of fit (including the x?, KS, and
CVM tests) assume a data-independent model. In the x? test,
corrections for prior estimation are typically somewhat ar-
bitrary or require that the parameters be estimated from
binned data (Stuart and Ord, 1991; Nikullin and Green-
wood, 1996). Therefore, we examined the prior-estimation

problem in the context of KS and CvM statistics and a
simple quantal model (Del Castillo and Katz, 1954). In this
context, we found that the problem cannot have a solution
that employs a single MC-generated critical value after the
estimation of a specific group of parameters from a variety
of data—essentially a quantal version of Lilliefors’s and
Srinivasan’s tests for the uniform, normal, and exponential
distributions (Lilliefors, 1967 and 1969; Srinivasan, 1970;
Mason and Bell, 1986). Instead, we found that the appro-
priate critical values depended on model parameters, such as
the variance in quantal size and the noise variance, which
affect how distinctly the data are quantized. Although we
report rules of thumb for interpreting test statistics in spe-
cific circumstances, the MC test of fit is a general solution.

This report is the first published study of the application
of the MC test of fit to a quantal model. A similar MC
approach using the ML value as a goodness-of-fit statistic
was briefly described in a recent experimental study involv-
ing a nonquantal model (Raastad and Lipowski, 1996). In
contrast, the present computational study used KS and CvM
statistics because their distributions are known for data-
independent models, permitting our examination of the ef-
fects of prior estimation. The ML value lacks this advantage
and cannot easily be interpreted to test goodness of fit with
tables or rules of thumb, because it depends very strongly on
the data.

Advantages of the MC test of fit

The MC test of fit is an approach to the prior-estimation
problem that can be easily used with any estimation method
and any fit statistic that is calculated without binning the
data. In a MC test of a model’s fit to experimental data after
estimation, critical values are not obtained from a standard
distribution of reference statistics. Instead, as shown in Fig.
6, they are taken from a new distribution of statistics that
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Test
Statistic
for A & Model,

Percentile

FIGURE 6 Schematic outline of the Monte Carlo test of fit (within dashed rectangle) and a simpler flawed alternative (fully shaded elements on the left).
Elements unique to the MC test of fit are not shaded. Shared elements of the two tests are partly shaded. Arrows indicate information flow. Through
estimation, information flows down from the experimental data to the ML model. Through simulation, information flows down from the ML model to a
series of data sets that are independent of each other but have a special relation to the experimental data because they were generated from its ML model.
This special relation leads to a flaw in a published alternative to the MC test of fit (Atwood and Tse, 1988). In this other test, the N simulated data sets
are compared with the experimental data, using the KS test for two independent [sic] data sets, where “[sic]” marks the flaw. Returning to the flow of the
MC test of fit, estimation on the N simulated data sets generates N different ML models. The first set of rightward arrows indicates the pairwise comparison
of data sets with their ML models to generate the experimental test statistic (fop triangle) and the reference statistic distribution (bottom triangle), which
are brought together to evaluate the fit of the model to the experimental data (final arrows leading to diamond).

quantify the fit of models that have been fitted to sets of
simulated data. These data are generated by simulating the
model with parameters estimated from the experimental
data. When models have been fitted to the simulated data
sets, each “simulation-derived” parameter in these fitted
models is distributed about the corresponding parameter
that was estimated from the experimental data. These sim-
ulation-derived parameter distributions reflect the uncer-
tainty of the data-derived parameters and complement other
estimates of parameter uncertainty that involve more theory
(McLachlan, 1978; Smith et al., 1991) or resampling
(Stricker et al., 1994). Such estimates of parameter uncer-
tainty will be more meaningful when a model has passed the
MC test of fit.

Concerns regarding the MC test of fit

Concerns may remain about possible pitfalls in the use of
the MC test of fit with quantal models. For example, the
model may be correctly formulated, but the parameter esti-
mates may be inaccurate, resulting in misleading simula-
tions. In this case, the MC critical values may be different
from those that would be obtained if the true parameters
could be simulated. Two steps can be taken to address this
concern. First, one can examine the scatter in the simula-
tion-derived parameter estimates, as an indication of the
likely accuracy of the estimates from the experimental data
under the null hypothesis that the model is correctly formu-
lated. Second, one can compare the magnitude of this scatter
to the corresponding range of MC critical values that arises
from the parameter dependence of the critical values. In a
related study of our standard model, we found that 95% of
parameter estimates typically fell within 10% of the true

values, close enough that the parameter dependence of the
MC critical values would be unlikely to cause errors
(Greenwood, 1995). In this study’s worst case, when CV,
was much smaller than O/N (CV, = 0.05, O/N = 1.25,m =
1 or 5), CV, was typically overestimated by a factor of 2—4.
However, comparison of the KS critical values for CV, =
0.05 and 0.3 in Fig. 3 suggests that even this overestimation
would not effect the critical values when Q/N = 1.25.
Nonetheless, parameter confidence limits will vary for dif-
ferent models (Stricker et al., 1994), as the parameter de-
pendence of MC critical values probably will. Therefore,
when the MC test of fit is applied to models that differ
radically from our standard model, parameter uncertainty
and critical-value sensitivity to parameters should be com-
pared for a reasonable range of parameter values. Concerns
regarding the random origin of the MC test’s critical values
were addressed in Materials and Methods (MC Test of Fit).

A simpler MC test of fit is flawed

We also considered a previously reported MC test of fit, in
which data sets were simulated from an estimated model
and compared to the experimental data with the KS test for
two data sets (Atwood and Tse, 1988). The KS test for two
data sets assumes, however, that the two sets are indepen-
dently sampled from the same model. The dependence of
the simulated model on the experimental data violated this
assumption, as shown in Fig. 6. A MC study confirmed that
the distribution of KS statistics that quantified the disparity
between the experimental and simulated data sets was
shifted to the left of the classical distribution (data not
shown), increasing the test’s actual significance level and
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reducing its power to reject a fit at the nominal significance
level.

Why tests of fit after estimation depend on
quantal parameters

In fitting quantal data, a closer fit may be obtained by
adjusting parameters such as o and CV that describe the
variance of continuously distributed variables. Distinct
quantal peaks in the distribution constrain such parameters
to small values, however, effectively reducing the number
of estimated parameters. In more general terms, the param-
eter dependence of fit-testing critical values after estimation
may arise in part from the extent to which variability from
the continuous random processes in the model can account
for variations that actually arose from the discrete random
component of the synaptic mechanism. Our results are con-
sistent with this view.

Other practical implications

Addressing an obvious point, our results confirmed that the
KS and CvM fit statistics were smaller after ML estimation
than would be expected for a data-independent model. It is
also obvious that the number of estimated parameters af-
fects how data-dependent a model is. However, it is less
obvious that a model’s data dependence varies with the
ML-versus-entropy weighting factor in the maximum en-
tropy noise deconvolution approach (Kullmann, 1992; Kull-
mann and Nicoll, 1992). In this context, it is worth noting
that a constant critical-value criterion does not amount to a
constant criterion for goodness of fit when the data depen-
dence of a model varies. To apply a constant criterion for
goodness of fit, the tolerance for discrepancy between data
and model must be reduced as the model’s data dependence
is increased.

Inspired by the tests of Lilliefors and Srinivasan, we
wanted to generate MC critical-value tables for a test of fit
involving less computation than the MC test of fit. How-
ever, the parameter dependence of the critical values after
estimation argues against such a test; its actual significance
would vary with the quantal parameters of differing syn-
apses. Nonetheless, our results suggested a rule of thumb for
testing the fit of ML-estimated models that resemble our
standard model. A CvM statistic that exceeded 0.16 would
warrent rejection of the fit in all cases that we examined,
whereas in none of these cases would a CvM statistic below
0.1 warrant rejection. The corresponding rule-of-thumb crit-
ical values for the KS statistic were 0.95 and 0.8. Such rules
of thumb notwithstanding, the MC test of fit is a valuable
step to include in model-based quantal analysis, providing
support for results obtained in the areas of model discrim-
ination, parameter estimation, and hypothesis testing.
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