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Crystal Structure of the Hepatitis C Virus
NS3 Protease Domain Complexed with a Synthetic
NS4A Cofactor Peptide

J.L. Kim,* K. A. Morgenstern,* C. Lin,* T. Fox,* genome indicated a relationship to the flaviviruses and
M.D. Dwyer,* J.A. Landro,* S.P. Chambers,* pestiviruses (Miller and Purcell, 1990; Choo et al., 1991),
W. Markland,* C.A. Lepre,* E.T. O’Malley,* and HCVwas assigned a new genus in the family Flavivir-
S.L. Harbeson,* C.M. Rice,† M.A. Murcko,* idae (Francki et al., 1991). More recently it has become
P.R. Caron,* and J.A. Thomson* clear that there are multiple HCV genotypes (Bukh et al.,
*Vertex Pharmaceuticals Incorporated 1993; Simmonds, 1994) that all share the same essential
130 Waverly Street features. The HCV genome is about 9.4 kb in length and
Cambridge, Massachusetts 02139-4242 consists of a highly conserved 59 untranslated region
†Department of Molecular Microbiology followed by a single open reading frame that encodes
Washington University School of Medicine a polyprotein of 3010 to 3033 amino acids (Kato et al.,
St. Louis, Missouri 63110-1093 1990; Choo et al., 1991; Takamizawa et al., 1991). All

known HCV polyprotein sequences share at least 71%
identity. Thestructural proteins (envelope and core com-

Summary ponents) are clustered in the N-terminal portion of the
polyprotein, followed by the nonstructural (NS) proteins,

An estimated 1% of the global human population is which represent the essential catalytic machinery for
infected by hepatitis C viruses (HCVs), and there are viral replication (Hijikata et al., 1991; Bartenschlager et
no broadly effective treatments for the debilitatingpro- al., 1993; Grakoui et al., 1993a, 1993c; Tomei et al.,
gression of chronic hepatitis C. A serine protease lo- 1993). The polyprotein architecture is shown in Figure
cated within the HCV NS3 protein processes the viral 1, together with a summary of the proteolytic processing
polyprotein at four specific sites and is considered events that generate the mature viral proteins.
essential for replication. Thus, it emerges as an attrac- In vivo processing of the HCV structural proteins is
tive target for drug design. We report here the 2.5 Å probably facilitated by host cell signal peptidases asso-
resolution X-ray crystal structure of the NS3 protease ciated with the lumen of the endoplasmic reticulum (Hiji-
domain complexed with a synthetic NS4A activator kata et al., 1991; Lin et al., 1994a; Mizushima et al.,
peptide. The protease has a chymotrypsin-like fold 1994). In contrast, processing of the nonstructural pro-
and features a tetrahedrally coordinated metal ion dis- teins seems to be orchestrated by two viral gene prod-
tal to the active site. The NS4A peptide intercalates ucts. The NS2/NS3 junction is cleaved by a zinc-depen-
within a b sheet of the enzyme core. dent protease associated with NS2 and the N-terminus

of NS3 (Grakoui et al., 1993b; Hijikata et al., 1993a).
Introduction The remaining four cleavages (at the NS3/NS4A, NS4A/

NS4B, NS4B/NS5A, and NS5A/NS5B sites) are mediated
Infection by hepatitis C viruses (HCVs) is a compelling by a separate serine protease that resides in the
human medical problem. The virus was formally identi- N-terminal one-third of NS3 (Bartenschlager et al., 1993;
fied by molecular cloning and sequencing around 1989 Eckart et al., 1993; Grakoui et al., 1993a, 1993b, 1993c;
(Alter et al., 1989; Choo et al., 1989; Kuo et al., 1989). Hijikata et al., 1993a, 1993b; Tomei et al., 1993; Manabe
HCV has now emerged as the causative agent for most et al., 1994). Questions remain concerning the functions
cases of non-A, non-B hepatitis, with an estimated hu- of NS4B and NS5A, but the roles of the other nonstructu-
man seroprevalence of 1% globally (Purcell, 1994; Van ral proteins are becoming clearer. NS5B appears to be
der Poel, 1994). Four million individuals may be infected

the viral RNA polymerase (Takamizawa et al., 1991; Beh-
in the United States alone (Alter and Mast, 1994). Upon

rens et al., 1996) and the C-terminal two-thirds of NS3
first exposure to HCV, approximately 20% of infected

an NTP-dependent helicase (Miller and Purcell, 1990;individuals develop acute clinical hepatitis while others
Suzich et al., 1993; Jin and Peterson, 1995; Kanai et al.,appear to resolve the infection spontaneously. However,
1995; Kim et al., 1995). NS4Ais a 54-residue amphipathicin most instances the virus establishes a chronic infec-
peptide, with a hydrophobic N-terminus and a hydro-tion that persists for decades (Iwarson, 1994). This usu-
philic C-terminus (Failla et al., 1994). It appears to serveally results in recurrent and progressively worsening
multiple functions: acting as a cofactor for the NS3 pro-liver inflammation, often leading to more severe disease
tease and possibly assisting in the membrane-localiza-states such as cirrhosis and hepatocellular carcinoma
tion of NS3 and other viral replicase components (Lin(Saito et al., 1990; Kew, 1994). The prospects for effec-
et al., 1995; Tanji et al., 1995a; Shimizu et al., 1996).tive anti-HCV vaccines remain uncertain and the only

Great efforts have been made to characterize theestablished therapy for HCV disease is interferon treat-
mechanisms by which the NS3 serine protease domainment. However, interferons have significant side effects
processes the downstream gene products. To summa-(Renault and Hoofnagle, 1989; Janssen et al., 1994) and
rize, the NS3/NS4A cleavage appears to occur in cis,induce long term remission in only a fraction (z25%)
whereas the NS4A/NS4B, NS4B/NS5A and NS5A/NS5Bof cases (Weiland, 1994). For these reasons, there is
processing events probably occur in trans. NS4A seemsconsiderable interest in developing more effective anti-
critical to this scheme of events, enhancing the proteo-HCV therapies.

Early analyses of the HCV single-positive strand RNA lytic efficiency at all of the sites. Many deletion mapping
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refined model consists of residues 2–180 of NS3 (resi-
dues 1028–1206 of the HCV polyprotein) and residues
21–39 of NS4A (residues 1678–1696 of the polyprotein)
in the first complex (complex A), NS3 residues 29–180
(1055–1206) and NS4A residues 21–36 in the secondFigure 1. HCV Polyprotein Processing
complex (complex B), 2 zinc atoms, and 130 water mole-The locations of the HCV structural and nonstructural proteins are
cules. The N-terminal 28 residues of tNS3 (excludingmarked on a diagram of the 3011 amino acid polyprotein. Cleavages
the N-terminal T7 tag) are disordered in complex B andbetween the structural proteins by cellular peptidases are marked

by asterisks. Cleavage between NS2 and NS3 is mediated by the have not been modeled. The current R value is 21.6%
NS2/NS3 protease. The NS3 protease is resposible for cleavages (free R value 5 26.1%) for data between 6.0 and 2.5 Å
between NS3 and NS4A, NS4A and NS4B, NS4B and NS5A, and with | F | > 1.0s | F |. Representative electron density for
NS5A and NS5B.

the refined model is shown in Figure 2. Atomic tempera-
ture factors for the two complexes are closely matched
(average B 5 29.2 Å2 and 29.8 Å2, respectively), andand mutagenesis experiments have been performed re-
neither complex contains nonglycine main-chain torsioncently to probe the regions of NS3 and NS4A that inter-
angle values located in unfavorable regions of a Rama-act. However, to date, there is no direct structural infor-
chandran plot. Apart from the disordered N-terminus inmation about either component.
complex B, the two tNS3:NS4A complexes in the asym-Here we present the X-ray crystal structure, at 2.5 Å
metric unit are very similar, with a root-mean-squareresolution, of a recombinant truncated HCV NS3 prote-
deviation (rmsd) of 0.6 Å for 159 equivalent Ca positionsase domain (tNS3) complexed with a synthetic peptide
(polyprotein residues 1057–1205 from NS3 and residuesthat encompasses the essential NS3-binding region of
22–31 of NS4A). The similarity is even greater within theNS4A (Lin et al., 1995). We believe that the information
core of the complex, increasing our confidence that thisprovided by this structure will have far-reaching conse-
structure is representative of the protease domain ofquences for the global effort to develop more effective
the full-length NS3 protein.HCV therapies.

Results and Discussion Structure of tNS3
The three-dimensional structure of the tNS3:NS4A com-
plex reveals that the HCV NS3 serine protease domainStructure Determination and Analysis

The structure of the truncated NS3 protease do- adopts a chymotrypsin-like fold. The complex consists
of two structural domains, each containing a twisted bmain:NS4A peptide (tNS3:NS4A) complex was deter-

mined at 2.7 Å resolution by multiple isomorphous re- sheet incorporating a “Greek key” motif (Figure 3). The
C-terminal domain (residues 1120–1206) contains theplacement and is presently refined at 2.5 Å resolution

(Table 1). The rhombohedral crystals used in this study conventional six-stranded b barrel, common to nearly
all members of the chymotrypsin family, followed by a(space group R32; a 5 b 5 225.0 Å, c 5 75.5 Å) contain

two tNS3:NS4A complexes per asymmetric unit. The structurally conserved a helix. The core of this barrel is

Table 1. Data Collection and Refinement Statistics

Data set Native HgCl2(1) HgCl2(2) HgFuran PCMBS K2PtCl4(1) K2PtCl4(2) UO2OAc2

Resolution (Å) 2.5 2.9 2.8 3.0 2.8 3.0 3.0 2.7
Unique reflections 24,236 15,624 17,410 14,032 16,951 13,822 15,630 18,611
Redundancy 2.9 2.5 2.6 2.8 2.1 1.7 1.9 1.8
Completeness (%) 96 96 97 95 94 94 96 93
Rsym (%) 5.7 8.9 7.3 9.2 7.7 5.8 5.8 5.7

MIR analysis:
Resolution (Å) 3.1 3.1 3.3 3.1 3.2 3.6 3.6 3.6
Riso (%) 13.3 6.9 12.2 8.6 8.6 12.0 9.1
Number of sites 5 4 5 3 4 4 3
Phasing power 2.34 1.67 2.36 1.39 1.45 1.33 0.82
Rcullis 0.52 0.60 0.54 0.61 0.60 0.62 0.67
Mean overall figure of merit 0.62

Refinement Statistics:
Resolution (Å) 3.93 3.28 2.92 2.68 2.50 Total
R factor (%) 17.9 20.0 22.9 26.9 32.1 21.6
Rfree

a (%) 23.2 24.8 26.8 31.4 35.5 26.1
Reflections (F.1.0sF) 4,195 4,131 3,978 3,805 3,597 21,635
Nonhydrogen atoms 2,815
rms bond lengths (Å) 0.007
rms bond angles (8) 1.48

Rsym 5 S|I 2 kIl|/SI, where I 5 observed intensity, kIl 5 average intensity obtained from multiple observations of symmetry related reflections.
Riso 5 S||FPH-|FP||/S|FP|, where |FP| 5 protein structure factor amplitude, |FPH| 5 heavy-atom derivative structure factor amplitude.
Phasing power 5 rms (|FH|/E), where |FH| 5 heavy-atom structure factor amplitude and E 5 residual lack of closure.
a Free R value was calculated using 9% of the data.
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Figure 2. Electron Density Maps Around the Active Site of tNS3:NS4A

(A) Electron density map at 2.7 Å, calculated using density modified phases. The map is contoured at 1.2s and superimposed on the refined
coordinates constituting the active site.
(B) 2Fo-Fc electron density map at 2.5 Å, calculated using phases from the refined model. The map is contoured at 3.0s. Atoms are color
coded by element type: carbon in white, nitrogen in blue, and oxygen in red. Active site residues His-1083, Asp-1107, and Ser-1165 are
labeled, as well as Phe-1180, which defines part of the P1 substrate-binding pocket. A well-ordered water molecule occupies the oxyanion
hole.

packed with hydrophobic residues that emanate from 100 residues at its N-terminus, so it is unclear whether
this protein has any structural equivalents to NS4A, ball six strands of the b barrel. The N-terminal domain

(residues 1027–1119) contains eight b strands rather strand A0, or helix a0 of tNS3:NS4A (Figure 5).
than six, including one strand contributed by NS4A. This
array of b strands gives rise to a b sheet that superim- Interactions with NS4A

The NS4A peptide forms a b strand that lies betweenposes with most of the distorted barrel found in the
N-terminus of chymotrypsin. Active site residues His- strands A0 and A1 of tNS3 (Figure 3B). All but two of the

main-chain carbonyl and amide groups of residues Val-1083 and Asp-1107 reside in the N-terminal domain of
the tNS3 protease, whereas Ser-1165 is located in the 23 to Leu-31 of NS4A form hydrogen bonds with either

the N-terminal region of tNS3 or strand A1. This includesC-terminal domain. All three residues are situated in
a cleft separating the two domains. Additionally, the hydrogen bonds to the side chains of Arg-1037 and

Glu-1058. Several side chains from NS4A are buried inC-terminal domain contains a tetrahedrally coordinated
metal ion, modeled here as a zinc, located at one end hydrophobic pockets formed by tNS3 and contribute to

the hydrophobic core of the N-terminal domain (Figureof the b barrel. This zinc ion appears to play a structural
role in the enzyme by stabilizing the loops preceeding 6A). A total of 2400 Å2 of surface area is buried by the

interaction of NS4A with tNS3. Thus, NS4A should beb strands A2 and E2.
Structural comparisons between tNS3:NS4A and considered an integral structural component of the com-

plex and probably plays a significant role in stabilizingother serine proteases currently in the Protein Data Bank
(PDB) indicate that it shares the greatest similarity with tNS3.

A wealth of biochemical and mutational data existsthe Sindbis virus core protein (SCP) (Tong et al., 1993),
with an rmsd of 1.6 Å for 75 Ca residues that comprise characterizing the interaction of NS4A with the NS3 pro-

tease domain. Multiple experiments have demonstratedthe core and active site of each enzyme (Figure 4B). The
structural agreement is better in the C-terminal domain, that a central hydrophobic region of NS4A, encom-

passing residues Gly-21 to Lys-34, is sufficient for NS3where the six b strands from each enzyme superimpose
reasonably well. Similarly, the six b strands in the binding and protease activation. Indeed, a synthetic

peptide corresponding to this region substitutes forC-terminal domain of chymotrypsin closely match those
in tNS3 (Figure 4C). On the other hand, only b strands longer NS4A sequences in NS3 protease activation (Lin

et al., 1995). The structure of the tNS3:NS4A complexA1, B1, C1, and F1 in the N-terminal domain of tNS3:NS4A
superimpose with the equivalent strands in either SCP provides an explanation for these results. All of the con-

tacts observed in the complex occur in the region span-or chymotrypsin. The b strand formed by the NS4A pep-
tide is in the vicinity of strand D1 of chymotrypsin in their ning residues 21 to32 of NS4A. Interestingly, the require-

ment for only the central region of NS4A for full proteasestructural alignment, but this strand does not hydrogen-
bond to strand E1 as is found in the b barrel of chymo- activation hasbeen demonstrated for the full-length NS3

enzyme as well as the isolatedprotease domain (Shimizutrypsin. The reported structure of SCP is missing over
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Figure 3. Stereo Ribbon Diagrams of the tNS3:NS4A Complex

(A) View into the active site cleft of the enzyme. The N-terminal domain of the complex is on the left and the C-terminal domain on the right.
Secondary structural elements are labeled according to the convention used for chymotrypsin. Side-chains of active site residues His-1083,
Asp-1107, and Ser-1165, along with Zn21 ligands Cys-1123, Cys-1125, and Cys-1171 are displayed in ball-and-stick representation. Zn21 is
colored cyan and its H2O ligand red. The b strand formed by NS4A is shown in magenta.
(B) View from above the active site, approximately 908 from (A). This view is approximately down the axis of the C-terminal b barrel, with the
tetrahedrally coordinated Zn21 at the bottom. The location of the NS4A peptide within the fold of the enzyme is readily apparent. This figure
was generated using Ribbons (Carson, 1991).

et al., 1996), suggesting that the same interactions ob- are found in both. Despite this difference, the structure
of NS4A is nearly identical in complex A and B. Muta-served here occur in the full-length NS3:NS4A complex.

The interactions of NS4A with tNS3 can be divided tional analyses within the central region of NS4A have
identified several residues that are critical for complexinto two components: those with the N-terminal 30 resi-

dues of tNS3 and those with the core of tNS3.The former formation with NS3 and protease activation (Bar-
tenschlager et al., 1995; Lin et al., 1995; Shimizu et al.,are found in only one of the two tNS3:NS4A complexes

in the asymmetric unit, whereas the latter interactions 1996). A strong correlation exists between the amount
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Figure 4. Structural Conservation between HCV Protease and Chymotrypsin-Fold Proteases

The structure of HCV tNS3 monomer A (yellow) was superposed on monomer B in (A), Sindbis virus capsid protease (PDB entry 2SNV) in (B),
and chymotrypsin (PDB entry 5CHA) in (C). The orientation of the molecules is similar to that in Figure 2A. The side chains of the catalytic
triads are also shown.



Cell
348

Figure 5. Structure-Based Sequence Align-
ment of HCV tNS3, Sindbis capsid, and Chy-
motrypsin

Residues in bold have a Ca rmsd of less than
2 Å in the overlay of all three structures. The
catalytic triad residues are denoted by aster-
isks. Ligands to the zinc ion in HCV are under-
lined. The secondary structure elements are
marked above the alignment and are labeled
consistent with chymotrypsin notation. NS4A
is located in the approximate location of
strand D1 in chymotrypsin.

of buried surface area of a given NS4A residue in the NS4A promotes the membrane association of NS3 and
stabilizes it from degradation by cellular proteases (Hiji-complex and the severity of the effect of mutating that

residue on NS3 protease activation and complex stabil- kata et al., 1993b). In addition, NS4A has been found to
stimulate the phosphorylation of NS5A, which is alsoity (Figure 6B). Those NS4A residues that are buried in

the core of tNS3, Val-23, Ile-25, Ile-29, and Leu-31, are believed to be membrane-associated (Tanji et al.,
1995b). Hydrophobicity analysis of the 54 amino acidmost sensitive to mutation. The only exception is Gly-27,

whose mutation to serine has a severe effect (Shimizu et NS4A protein suggests that the N-terminus may associ-
ate with membranes (Failla et al., 1994; Bartenschlageral., 1996) despite its small buried surface area. Analysis

of the structure indicates that this absolutely conserved et al., 1995; Tanji et al., 1995a). More detailed analyses
using multiple sequence alignments (Rost et al., 1995)glycine is situated such that mutations would result in

steric clashes with the backbone of NS3 residue 1035. support the hydrophobicity plots and predict that the
N-terminal 20 residues of NS4A form a transmembrane
helix. The NS3 protease activation region immediatelyThe Role of NS4A

The activation of the NS3 protease by NS4A may be a follows this, suggesting that NS4A holds the NS3 prote-
ase domain very close to the membrane and may serveresult of NS4A incorporation into the N-terminal domain

b sheet, which is extended by up to two strands in the as a molecular tether that anchors the HCV replication
machinery complex together at the cellular membrane.complex. This could lead to alterations in the active site

by providing a more rigid and precise framework for
residues that form the “prime-side” substrate-binding tNS3 N-Terminal Region

As shown in Figure 4A, the two molecules of tNS3 inchannel. In addition, activation via direct interactions of
NS4A with the prime-side residues of the substrate are the asymmetric unit are very similar, with a Ca rmsd of

0.6 Å for residues 1057–1206 and a side-chain rmsd ofpossible, although these would occur more than 10 Å
away from the cleavage site. This is in contrast to the 1.4 Å over this same range. They differ mainly at the

N-terminuswith one moleculehaving well-defined struc-mechanism of activation in chymotrypsin, where proteo-
lytic processing of the polypeptide chain leads to the ture extending to residue 1028 and the other only to

residue 1055. In spite of this difference, both complexescreation of a new N-terminus that interacts with “non-
prime-side” of the substrate-binding channel. This re- contain NS4A in essentially the same position, with a

Ca rmsd of 0.8 Å for residues 21–31. NS4A becomessults in the formation of a cavity that can accommodate
the P1 residue of the substrate (see Appel, 1986, for part of the N-terminal domain b sheet and is located in

approximately the same location as strand D1 in SCPreview). The tNS3 protease has an inherently open con-
formation in the analogous region. Other serine prote- and chymotrypsin. In complex A, the N-terminus of NS3

forms a b strand (A0), an a helix (a0), and an extendedases such as a lytic protease and subtilisin require a
propeptide, which can function in trans, to obtain full chain leading into strand A1. This region is stabilized by

main-chain hydrogen bonds between residues 1030–activity (Li et al., 1995). These propeptides are believed
to act as molecular chaperones by acting as competitive 1034 and NS4A, along with hydrophobic interactions

between a0 and Val-24 and Val-26 of NS4A. Additionally,active site inhibitors around which the enzyme folds.
Experiments both in vivo and in vitro indicate that a salt bridge between residues flanking a0 (Arg-1037

(B) Surface area of NS4A in contact with NS3. The surface area of each residue of NS4A buried by tNS3 is plotted. The solid line represents
contacts found in monomer B in which the N-terminal 28 residues of NS3 are disordered. The dotted line depicts contacts in monomer A and
thus includes contacts with the NS3 N-terminus. Replacement of residues Val-23, Ile-25, Gly-27, Arg-28, Ile-29, and Ile-31 by alanine, serine,
or aspartate cripples NS4A (Bartenschlager et al., 1995; Lin et al, 1995; Shimizu et al., 1996). In contrast, replacement of more exposed
residues Gly-21, Ser-22, Val-24, Val-26, Val-30, Ser-32, or Gly-33 has minimal effect.
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Figure 6. NS4A-tNS3 Interactions

(A) Residues within the essential region of NS4A (thick bonds) makeextensive hydrophobic contacts with tNS3. Val-23 is buried in a hydrophobic
pocket formed by side-chain atoms of Val-1062, Thr-1064, Ala-1085, Arg-1088 (Cg), Ile-1090, and Trp-1111. Ile-29 is located in a hydrophobic
pocket formed by Ala-1031, Ala-1033, Val-1059, Ile-1061, Leu-1070, Val-1133, Ala-1137, and NS4A side-chain Leu-31. Ile-25 and Leu-31 also
make extensive hydrophobic contacts with the core of tNS3, while Ser-22, Val-24, Val-26, Arg-28, and Val-30 interact with residues Ile-1029
to Thr-1045 in the N-terminal region of tNS3. NS4A also forms numerous main-chain hydrogen bonds with strands A0 and A1. This figure was
generated using Ribbons (Carson, 1991).

(Legend for Figure 6 continued on previous page)
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and Asp-1051) helps stabilize the fold of this region and (Ding et al., 1996). The pVIc peptide binds at the surface
of the AVP, quite distant from the active site, and formsdirect the polypeptide chain toward strand A1.

NS4A binding significantly inhibits cellular degrada- the sixth strand of a b sheet that comprises the core of
the enzyme. It has been proposed that the activation oftion of NS3 (Hijikata et al., 1993b; Tanji et al., 1995a), and

this may result from NS4A ordering the NS3 N-terminal AVP by pVIc is due to alterations in the conformation
of the active site, propagated by interactions of theregion. The interaction of NS4A peptide with the core

of NS3 buries 1650 Å2 of surface area while the interac- peptide with noncontiguous segments of the protease,
analogous to what we have proposed for tNS3 activationtion with the N-terminal region buries an additional 745

Å2. The removal of NS4A would cause disruption of the by NS4A.
Sequence analysis and mutagenesis experiments in-N-terminal domain b sheet and would likely result in

either disordering of the N-terminal region or repacking dicate that a chymotrypsin-like serine protease resides
within the NS3 N-terminal regions of other flavivirusesof this region against the core of tNS3, as they currently

share only 250 Å2 of buried surface area. The stabiliza- (Bazan and Fletterick, 1989). Homology modeling of
these proteases suggests that they have similar overalltion of the N-terminus of tNS3 by a cofactor may be

similar to the stabilization of the N-terminus of trypsin folds to that of the HCV NS3 protease (P. R. C., unpub-
lished data). However, flaviviruses require NS2B ratherby calcium, which binds to a loop between strands D1

and E1 (Gomez et al., 1977). than NS4A for protease activation (Chambers et al.,
1993; Falgout et al., 1993), and there is no sequenceDeletions of the N-terminus of NS3 have shown that

this region is important for complex formation with similarity between the HCV NS4A activation region and
NS2B. Therefore, elucidation of the activation mecha-NS4A. NS3 constructs beginning at the true N-terminus

(Ala-1027) can be activated and coimmunoprecipitated nisms of these viral proteases will require further bio-
chemical or structural characterization.with NS4A as shown by in vitro translation and cell cul-

ture experiments. NS3 N-terminal truncations of 7–15
residues (constructs beginning between amino acids

Zinc-Binding Site1034 and 1042) result in products that can still be acti-
The HCV NS3 protease structure has a metal ion tetrahe-vated by NS4A but appear less competent in complex
drally coordinated by Cys-1123, Cys-1125, Cys-1171,formation as judged by immunoprecipitation experi-
and through a water molecule to His-1175 (Figures 3ments (Bartenschlager et al., 1995; Failla et al., 1995;
and 7). This metal was originally modeled as zinc, basedKoch et al., 1996). These N-terminal residues of NS3
on comparisons of its surrounding architecture withencompass b strand A0, which packs onto NS4A, and
zinc-binding motifs found in the PDB. Preliminary resultsremoving these residues reduces the total amount of
obtained via atomic absorption spectroscopy confirmtNS3 surface area contact with NS4A by approximately
the presence of zinc in samples of tNS3:NS4A (detailsone-third. NS3 constructs that begin at residue 1048 or
will be published elsewhere; T. F., M. D. D., K. A. M.,1049 are appreciably less stable, and in most cases
J. A. T., unpublished data). The existence of this bindingcannot be activated by NS4A (Satoh et al., 1995; Tanji
site was previously predicted from sequence analysiset al., 1995a; Koch et al., 1996). In these proteins strand
and model building (P. R. C., unpublished data). TheA0 and helix a0 are missing. Of note is the deletion of
ligands to the zincare conserved among the known HCVSer-1046, which is buried against NS4A in the complex
and hepatitis G virus (HGV) NS3 sequences, but thereand has been shown by mutagenesis to be critical for
is no discernible evidence for metal-binding motifs in theNS4A activation (Koch et al., 1996). Replacement of this
analogous regions of other flavivirus proteases (P. R. C.,residue by a hydrophobic residue, such as valine, results
unpublished data). Individual mutations of any of thein a protease that can still be activated by NS4A,
HCV NS3 metal-coordinating cysteine residues to ala-whereas replacement with a glutamic acid residue elimi-
nine greatly reduces protease activity, whereas muta-nates the NS4A activation. This is in good agreement
tion of the histidine has much less effect (Hijikata et al.,with the structure. Proteases truncated at residue 1049
1993a; S. P. C. et al., unpublished data). This is consis-are also inherently unstable. This is likely due to the lack
tent with the indirect interaction of His-1175 with theof significant interactions of residues 1049–1055 with
zinc ion. An essential zinchas previously been describedeither tNS3 or NS4A peptide. Truncations to residue
for rhinovirus 2A protease (Sommergruber et al., 1994).1055 retain some residual activity, but are not activated
This protein is believed to also have a chymotrypsin-by NS4A (Failla et al., 1995).
like fold, although the nucleophilic residue is a cysteine
rather than a serine. Sequence alignments of rhinovirus
2A protease and the corresponding regions in otherPeptide Activation of Other Proteases

The activation of the HCV NS3 protease by a short pep- picornaviruses suggests that a zinc could be coordi-
nated by three cysteines and a histidine inapproximatelytide fragment of NS4A is reminiscent of the activation

mechanism of the human adenovirus-2 L3 23K protease the same locations as those seen in HCV NS3 protease.
Mutations of the corresponding zinc ligands proposed(AVP) by an 11 amino acid cofactor encoded by the

C-terminus of the pVI protein (pVIc) (Webster et al., in poliovirus 2A protease also reduce activity (Yu and
Lloyd, 1992).1993). In AVP, the peptide binds to form a 1:1 complex

and increases kcat by 350-fold (Mangel et al., 1996). The No clear evidence has been found for zinc-activation
of the HCV NS3 protease activity in vitro, and EDTAstructure of the AVP-pVIc complex demonstrated that

this 204 residue cysteine protease has a unique fold appears to be a very weak inhibitor of NS3 protease
activity (Lin and Rice, 1995), suggesting that the ion isthat is grossly similar to those of papain and subtilisin
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Figure 7. Stereoview of the Zinc Metal Binding Site

The Zn21 coordination displays near perfect tetrahedral geometry. Coordination to the sulphur and oxygen ligands is depicted with narrow
lines. Zn21-sulphur distances to Cys-1123, Cys-1125, and Cys-1171 are 2.29 Å, 2.34 Å, and 2.29 Å, respectively, and the Zn21-OH2 distance
is 2.37 Å. Atoms are color coded by element type: carbon in gray, nitrogen in blue, oxygen in red, sulphur in yellow, and zinc in cyan. This
figure was generated using Ribbons (Carson, 1991).

tightly bound and may require partial denaturation of catalytic triad is highly conserved, as are the positions of
the backbone amides of Gly-1163 and Ser-1165, whichthe protein for its removal. Similar observations have

also been reported for the rhinovirus 2A protease (Som- form the oxyanion hole. Further, the twisted strand en-
compassing residues 1181–1184 superimposes wellmergruber et al., 1994). Because it is located more than

20 Å away from the catalytic Ser-1165, the bound zinc with the corresponding residues in chymotrypsin (resi-
dues 214–217) and other enzymes of this family. Thision is presumed to perform a structural rather than a

catalytic role. One possible role of the zinc ion may be strand has been shown to make hydrogen bonds with
the P3 carbonyl and the P1 and P3 amides of peptidomi-to induce stability at the active site through b strand D2,

which separates the active site Ser-1165 and one of the metic serine protease inhibitors such as aldehydes and
trifluoromethylketones (Edwards and Bernstein, 1994).zinc ligands, Cys-1171. The zinc-binding site is also

located near the interface of the two domains in the From the standpoint of inhibitor design, however, there
are several important differences between the HCV NS3protease and may have an effect on the relative confor-

mations of these domains, which both contribute resi- serine protease and other members of the chymotrypsin
family. Comparisons with chymotrypsin and elastasedues forming the active site and substrate-binding

groove. indicate that the loop between strand E1 and thecatalytic
Asp-1107, which forms part of the peptide substrate-
binding channel, is shorter by six residues in NS3 prote-The NS3 Active Site

The catalytic machinery of the HCV NS3 serine protease ase. Wherever a shortened loop has been observed in
this region in other cellular serine proteases, such as aappears to be quite similar to that of other serine prote-

ases with chymotrypsin-like folds. The location of the lytic protease, it appears to be compensated for by an
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altered conformation of the loop between strands B2 and Conclusions
We have described the first atomic-resolution crystalC2 such that a well-defined substrate-binding channel is
structure of the HCV NS3 serine protease domain, com-maintained (Fujinaga et al., 1985). In HCV tNS3, however,
plexed with an NS4A activation peptide. The structurethe B2–C2 loop is 14–15 residues shorter than in chymo-
reveals a number of important features. First, the en-trypsin and a lytic protease, resulting in a relatively sol-
zyme has a chymotrypsin-like fold with structural simi-vent-exposed substrate-binding channel. Finally, in
larity to the protease encoded by the Sindbis capsidtrypsin and thrombin there is a third loop spanning resi-
protein. Second, the activation region of NS4A forms adues 60A–60G that is completely absent in HCV tNS3.
b strand that intercalates into the N-terminal domain bTogether, these loops have been shown to make crucial
sheet in the core of the enzyme. The extensiveness ofinteractions with the P2, P3, and P4moieties of inhibitors
the interactions between NS3 and NS4A suggests itof all other members of this enzyme family including
should be considered as an alternative site for the de-elastase, thrombin, trypsin, and factor Xa. The absence
sign of anti-HCV drugs. Third, a zinc-binding motif isof these longer loops in HCV tNS3, and the contact
observed, which appears to have a structural role, givenpoints they provide, is likely to make the design of low
its distance from the enzyme active site. Fourth, severalmolecular weight inhibitors quite challenging.
loops found in other chymotrypsin family proteases are
missing from HCV. These loops normally play a critical
role in defining the shapes of the non-prime-side sub-P1 Specificity Pocket
strate-binding pockets. In the HCV tNS3 protease, theCysteine is found at the P1 position in three of the four
absence of these loops renders the substrate-binding

known cleavage sites for HCV NS3 protease. The fourth
groove relatively featureless, and this constitutes a chal-

known P1 residue is threonine, which occurs at the NS3/
lenge for drug design efforts. It is therefore anticipated

NS4A site. This site is unique in that cis cleavage ap- that the generation of high-resolution structural informa-
pears to be preferred (Bartenschlager et al, 1993; Tomei tion for enzyme-inhibitor complexes may be crucial for
et al, 1993). Phe-1180 is located at the bottom of the the optimization of potent, drug-like NS3 protease inhib-
substrate P1 pocket (Figure 1). It is clearly in position itors. Finally, the information derived from the HCV tNS3
to make favorable van der Waals interactions with the protease structure may help in further understanding
P1 residue, and it is known that Cys–Phe interactions homologous viral proteases encoded by related patho-
are favorable (Burley and Petsko, 1988). Failla et al. genic flaviviruses such as the hepatitis G, dengue, and
(1996) have demonstrated that the double mutant yellow fever viruses.
Phe1180Thr and Ala1183Gly increased the size of the In vitro HCV replication systems, which would allow
S1 pocket, enabling the cleavage of substrate with a unambiguous confirmation of this protease as an essen-
bulkier Phe residue at P1. tial enzyme in viral replication, are not yet available.

Based on homology modeling studies, the residues However, it is known that mutations that inactivate ho-
that form the P1 specificity pockets of flavivirus NS3 mologous NS3 protease in yellow fever virus result in
proteases are quite different to those of the HCV NS3 the loss of infectivity (Chambers et al., 1990). Mutations

that eliminate NS3-dependent cleavage sites in yellowprotease (P. R. C., unpublished data). Specifically, a
fever virus also result in noninfectious clones (Nestoro-conserved aspartate is found six residues before the
wicz et al., 1994; Chambers et al., 1995). This, combinedcatalytic serine and would be expected to be located
with the observations that the polyproteins of all theat the bottom of the P1 pocket, exactly as in thrombin.
flaviviruses appear to be cleaved at approximately theThis suggests a preference for arginine or lysine, consis-
same location by their respective NS3 proteases, sug-tent with the observed in vivo cleavage specificities of
gests proteolytic processing at multiple sites is impor-flavivirus proteases (Chambers et al., 1989).
tant for HCV replication.

The structure we describe clarifies a multitude of ob-
servations derived from biochemical studies, modelingtNS3–NS4A Interaction Site: Alternate
predictions, mutational analyses, and inhibitor studies;Design Target
all suggesting that the NS3 protease had a simple chy-As discussed above, and as shown in Figure 6, the
motrypsin-like fold, yet displayed complex NS4A-

contact surface between tNS3 and NS4A is quite exten-
dependent activation behavior. The intimate interac-

sive and provides another possible site for the design
tions between NS4A and NS3 clearly define NS4A as an

of anti-HCV chemotherapeutic agents. Among 80 de-
integral part of the active enzyme structure and help to

posited NS4A sequences in GenBank, there are only explain its role in stabilizing NS3. This structure also
two NS4A residues in the tNS3-binding region that are allows investigations in the hepatitis C field to be redi-
100% conserved, Ile-25 and Gly-27. In addition, several rected toward more precise goals, focusing on the exact
other NS4A residues that make significant contact with mechanism of activation by NS4A, the role of the struc-
tNS3 (Val-23, Ile-29, and Leu-31) are always hydropho- tural zinc ion, the spatial relationships between the NS3
bic. Finally, the principal tNS3 residues that make con- protease and helicase domains, and the mechanisms
tact with the conserved residue Ile-25 of NS4A (Pro- by which NS3 might interact with other viral replicative
1114, Ile-1090, Val-1055, and Val-1062) are also highly components. It is anticipated that the availability of this
conserved among 28NS3 sequences in GenBank. These information will stimulate efforts to develop more effec-
data suggest that it may be possible to design relatively tive anti-HCV therapies, whether they target the NS3
small, predominantly hydrophobic molecules to com- protease or not, and may also provide benefit to related

medical problems.pete with NS4A binding and activation.
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Experimental Procedures The peptide was purified by preparative HPLC on a Waters Delta
Pak C18, 15 mm, 300 Å column (30 mm 3 300 mm) eluting with a
linear gradient of acetonitrile (15%–40%) in 0.1% aqueous trifluoro-Expression and Purification of tNS3
acetic acid over 35 min (flow rate of 22 ml/min). Peptide purity wasThe truncated NS3 serine protease domain (tNS3) was cloned from
confirmed by analytical HPLC. The sequence was confirmed bya cDNA of the hepatitis C virus H strain (Grakoui et al., 1993b).
direct N-terminal sequence analysis and matrix-assisted laser de-The first 181 amino acids of NS3 (residues 1027–1207 of the viral
sorption mass spectrometry (Kratos MALDI I), which showed thepolyprotein) have been shown to contain the serine protease domain
correct (M 1 H)1 and (M 1 Na)1 molecular ions.of NS3 that trans-processes all four downstream sites of the HCV

polyprotein (Lin et al., 1994b), so we expressed a (His)6-fusion pro-
Crystallization and Data Collectiontein based on this tNS3. The plasmid pET-BS(1)/HCV/T7-NS3181-
Crystals of the tNS3/4A complex were grown by hanging-dropvaporHis was derived from pTM3/HCV/1027–1207 (NS3181) (Lin et al.,
diffusion over a reservoir of 0.1 M MES, 1.8 M NaCl, 0.1 M sodium/1994b), by using polymerase chain reaction to introduce epitope
potassium phosphate, 10 mM b-mercaptoethanol (pH 6.5).The crys-tags and new restriction sites. A T7-tag (ASMTGGQQMG), from the
tals grew over the course of 2–3 weeks, to final dimensions of aboutN-terminus of the gene 10 protein of the T7 bacteriophage (Tsai et
0.1 3 0.1 3 0.25 mm. They belong to space group R32, with unital., 1992), was placed at the N-terminus of the tNS3 domain. Two
cell dimensions a 5 b 5 225.0 Å, and c 5 75.5 Å, and contain twolinker residues (GS) were placed at the tNS3 C-terminus, followed
tNS3/4A complexes per asymmetric unit.by the (His)6-tag. E. coli JM109(DE3) cells, freshly transformed with

Statistics for data collection, heavy atom refinement, and crystal-the pET-BS(1)/HCV/T7-NS3181-His plasmid, were grown at 378C in
lographic refinement are given in Table 1. All heavy atom soakscomplex media supplement with 100 mg/ml ampicillin, in a 10 L
were done in hanging-drops over the same reservoir as used forfermentor (Braun). When the cell density reached an OD600 of 3–4
crystallization. Crystals were transferred to a stabilizing solution (50the temperature of the culture was rapidly reduced to 308C, and
mM MES, 2.0 M NaCl, 0.1 M sodium/potassium phosphate, 10 mMinduction was immediately initiated by the addition of 1 mM IPTG.
b-mercaptoethanol, and 20% glycerol [pH 6.2]) and then frozen inCells were harvested at 2 hr postinduction and flash frozen at 2708C
a dry nitrogen gas stream at 100 K (Molecular Structure Corp.,

prior to purification.
Houston, TX) for data collection. Data was acquired by oscillation

The tNS3 was purified from the soluble fraction of the recombinant photography on a Rigaku R-AXIS IIC phosphor imaging area detec-
E. coli lysates as follows, with all procedures being performed at tor mounted on a Rigaku RU200 rotating anode generator (MSC),
48C unless stated otherwise. Cell paste (75–100 g) was resuspended operating at 50 kV and 100 mA. Measured intensities were inte-
in 15 volumes of 50 mM HEPES, 0.3 M NaCl, 10% glycerol, 0.1% grated, scaled, and merged using the HKL software package (Z.
b-octyl glucoside, 2 mM b-mercaptoethanol (pH 8.0). Cells were Otwinowski and W. Minor).
ruptured using a microfluidizer and the homogenate was clarified
by centrifugation at 100,000 3 g for 30 min. The supernatant was Phasing, Model Building, and Refinement
brought to 50 mM HEPES, 20 mM imidazole, 0.3 M NaCl, 27.5% Heavy atom positions were located by inspection and confirmed
glycerol, 0.1% b-octyl-glucoside, 2 mM b-mercaptoethanol (pH 8.0) with difference Fourier syntheses. Heavy atom parameters were
and applied at 1.0 ml/min to a 7.0 ml Ni-Agarose affinity column, refined and phases computed to 3.1 Å using the program PHASES
equilibrated in the same buffer. After loading, the column was (Furey and Swaminathan, 1996). MIR phases were improved and
washed with 10–15 volumes of equilibration buffer and the bound extended to 2.7 Å by cycles of solvent flattening (Wang, 1985) com-
proteins were eluted with equilibration buffer containing 0.35 M bined with histogram matching (Zhang and Main, 1990) using the
imidazole. The protein was then size-fractionated on two columns in CCP4 crystallographic package (Collaborative ComputationProject,
series (each 2.6 cm 3 90 cm) packed with Pharmacia high resolution 1994). The resulting electron density map displayed nearly continu-
S100 resin and equilibrated with 25 mM HEPES, 0.3M NaCl, 10% ous density for the protein backbone as well as strong side chain
glycerol, 0.1% b-octylglucoside, 2 mM b-mercaptoethanol (pH 8.0). density. Approximately 80% of the model could be unambiguously
The tNS3 fractions, identified by SDS–PAGE, were pooled and con- built into thismap (QUANTA 4.1, Molecular Simulations), and a single
centrated to 1 mg/ml using a Amicon Centriprep-10, and stored at round of simulated annealing refinement in X-PLOR (Brunger, 1993)
2708C. The tNS3 was thawed slowly on ice and the NS4A peptide brought the R-factor to 29% and free R value to 33% (Brunger,
(dissolved in the size-exclusion chromatography buffer) was added 1992). The remainder of the model was built and refined in several
at a tNS3:NS4A-peptide molar ratio of 1:2. The sample was then steps, by first extending the resolution to 2.5 Å and then adding well-

ordered water molecules. A final round of positional and individualdiluted2.5-fold with 15 mMMES, 0.5 M NaCl,20 mM b-mercaptoeth-
temperature factor refinement brought the R-factor to 21.6% (freeanol (pH6.5) and concentrated to z2 ml (z2 mg/ml) by ultrafiltration.
R value 26.1%) for 26,652 reflections between 6.0 and 2.5Å (F>The sample was then diluted 2-fold with the pH 6.5 buffer and
1sF). The eventual model consisted of tNS3 residues 1028–1206concentrated again to z2 ml. This dilution process was repeated
and NS4A residues 21–39 in complex A, and tNS3 residues 1055–until it gave a >40-fold dilution of the original buffer constituents.
1206 and NS4A residues 21–36 for complex B, with 2 zinc atomsThe protein sample was then concentrated to 13.0 mg/ml and centri-
and 130 water molecules. A Ramachandran plot for the final modelfuged at z300,000 3 g for 20 min at 48C. Concentrations of the
contained 91% of the residues in the most favored regions and 0%pure tNS3 and tNS3/4A complex were determined by UV absorption
in disallowed or generously allowed regions. The rms deviationsspectroscopy, using a molar absorption coefficient (A280) of 17,700
from ideality were 0.007 Å for bond lengths and 1.478 for bondM21•cm21.
angles.
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