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In this paper we investigate the asymptotic behavior of solutions to the initial boundary value problem
for a one-dimensional mixture of thermoviscoelastic solids. Our main result is to establish the exponen-
tial stability of the corresponding semigroup and the lack of exponential stability of the corresponding
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1. Introduction

Thermoviscoelastic mixtures of solids is a subject which has
deserved much attention in recent years. The first works on the
continuum theory of mixture were the contribution by Truesdell
and Toupin (1960), Green and Naghdi (1965, 1968) or Bowen
and Wiese (1969). Presentations of these theories can be found
in the articles Atkin and Craine. (1976), Bedford and Drumheller
(1983) or the books by Bowen (1976), Rajagopal and Tao (1995).

The theory of viscoelastic mixtures has been investigated by
several authors (see, e.g., lesan and Quintanilla, 2002; Iesan and
Quintanilla, 2007; lesan and Nappa, 2008 and references therein).
In (lesan and Quintanilla, 2007; lesan and Nappa, 2008), the
authors derive the basic equations of a nonlinear theory of heat
conducting viscoelastic mixtures in Lagrangian description. They
assume that the constituents have a common temperature and that
every thermodynamical process which takes place in the mixture
satisfies the Clausius-Duhem inequality. In this paper we want to
emphasize the study of the decay of solutions to the case of a
one-dimensional beam composed by a mixture of two thermovi-
scoelastic solids and we want to know when we can expect expo-
nential stability for our system. The model considered has been
treated by lesan and Quintanilla (2007), lesan and Nappa (2008)
and Alves et al. (2009b). In what follows, we briefly describe this
model.
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We consider a mixture of two interacting continua that occu-
pies the interval (0,L). The displacements of typical particles at
time t are u and w, where u = u(x,t),w = w(y, t),x,y € (0,L). We
assume that the particles under consideration occupy the same po-
sition at time t = 0, such that x =y (see, e.g., Bedford and Stern,
1972). The temperature deviation(difference to a fixed constant
reference temperature) in each point x and the time t is given by
0 = 0(x,t). We denote by p, and p, the mass densities of the two
constituents at time t = 0. T, S the partial stresses associated with
the constituents, P the internal diffusive force, © the entropy den-
sity, Q the heat flux vector and Ty is the absolute temperature in
the reference configuration. In the absence of body forces and heat
sources the system of equations which governs the linear theory
consists of the equations of motion

p1u[[:Tx*P7 ptht:Sx+P7
the energy equation
pTOQI = QX7

where p = p, + p,, and the constitutive equations. From the one-
dimensional linear theory established in (lesan and Quintanilla,
2007), it results that in the absence of porosity, the constitutive
equations are the following

T = ay1Uy + A1aWx + biiliye + biaWye — by 0,

S = Ay + AWy + baitiy + bWy — b0,

P=o(u—w) + o (ue — we) + a0y,

PO = byuy + bywy + €0,

Q = K0y + K7 (ur —wy),
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where c, o, K, Ky, o, B;, aj, by (i,j = 1,2) are constitutive coefficients.
The Clausius-Duhem inequality reduces to

biix? + (biz + bo1 )Xy + baoy? + 12> + (o + K1 T )zt + KTy 2 > 0,

for all x,y,z and ¢. This inequality and the above constitutive equa-
tions can be found also in (Iesan and Nappa, 2008). If we assume
that by, = by; and o, + K; Tgl =0 and substitute the constitutive
equations into the motion equations and the energy equation, we
obtain the system of field equations

Pl — Qe — G12Wyx — D11l — D1aWie + ot(u — w)
+ 0y (ut - Wt) + ﬁ]ox =0,
PaWi — Aralxx — A22Wix — D1oler — DoaWier — (U — W) (1)
— 0o (U — Wr) + B0 =0,
COr — KOxx + PrlUyt + PoWye = 0,
with 0 < x <Lt > 0,K =KT,", f; = by + 03, and f, = —b, + 0. We
assume that p;,p,,c,k, and o are positive constants, «; > 0 and

B2 + 2 # 0. The matrix A = (ay) is symmetric and positive definite
and B = (by) # 0 is symmetric and nonnegative definite, that is,

an >0, apay —d, >0,

bi =0, byiby —bi, = 0.

We study the system (1) with the following initial conditions:
u(.,0)=up, u(.,0)=uy, w(.,0)=wp,

we(.,0)=wy, 6(.,0) =0, (2)

and the boundary conditions:
u(0,t) =u(L,t) =w(0,t) = w(L,t) = 0,(0,t) = 04(L,t) =0 in (0,00).
3)

Our purpose in this work is to investigate the stability of the
solutions to system (1)-(3). The asymptotic behavior as t — oo of
solutions to the equations of linear thermoelasticity has been stud-
ied by many authors. We refer to the book of Liu and Zheng (1999)
for a general survey on these topics.

We recall that very few contributions have been addressed to
study the time behavior of the solutions of nonclassical elastic theo-
ries. In this direction we mention the works (Quintanilla, 2005; Quin-
tanilla, 2005; Martinez and Quintanilla, 1995; Alves et al., 2009a). In
(Quintanilla, 2005), the author deal with the theory of elastic mix-
tures. He proved the exponential decay of solutions of the equations
of motion of a mixture of two linear isotropic one-dimensional elastic
materials when the diffusive force is a function which depends on the
point and can be localized. The paper (Quintanilla, 2005) deal with the
theory of mixtures of viscoelastic solids. The author states the linear
equations of the thermomechanical deformations and studies several
suitable conditions to guarantee the exponential stability of solutions.
Onthe other hand, the exponential stability for the case of the thermo-
elastic mixtures (when B=0,a; =0 in (1)) has been studied at
(Martinez and Quintanilla, 1995; Alves et al., 2009a). In (Martinez
and Quintanilla, 1995), the authors prove (generically) the asymptotic
stability. In (Alves et al., 2009a), the authors prove that the semigroup
associated is exponentially stable if and only if

B2 (B1P2011 + B201012)7 B1(B201022 + B102012) (4)

and

nm? ~ O‘((/Hﬁ% — PaB) + BiBa(py — 0,))
B Ba(pra11 — a2p7) — alz(ﬂ%Pz - ﬂ%pﬂ
holds for all n € N.
We note that we can not expect that this system always decaysina

exponential way. For instance, in case when B; + f, =0, p,(a;
+a12) = p1(@12 + ax) and by + by, = b1z + by =0 we can obtain

()

solutions of the form u = w and 0 = 0. These solutions are undamped
and do not decay to zero. These are very particular cases, but we will
see that there are some other cases where the solutions decay, but the
decay is not so fast to be controlled by an exponential.

Our main result is to establish conditions to guarantee the expo-
nential stability of the semigroup associated with (1)-(3).Foro; > 0,
the semigroup associated is exponentially stable if and only if

byi# — b1z or byp# —bipy or p# — f, (6)
or
P2 (@11 + a12)#p,(a22 + ai2). (7)

Moreover, for oy = 0, the semigroup associated is exponentially sta-
ble if and only if

{(b11,b12),(B1,B2)} or {(b12,b22),(B1,$,)} islinearly independent,
8)
or (4) and (5) hold.

We want to emphasize that in a certain way, due to papers
(Quintanilla, 2005; Alves et al., 2009a), the conditions (4), (5) and
(7) are expected to guarantee the exponentially stable of the semi-
group. However, we do not know any paper that indicates the same
for conditions (6) and (8).

This paper is organized as follows: Section 2, outlines briefly the
notation and the well-posedness of the system is established. In Sec-
tion 3, we show the exponential stability of the corresponding semi-
group. In Section 4 we show the lack of stability exponential of the
semigroup provided o = 0, (b11, b12), (b12,b22) and (B, B,) are col-
linear and (4) does not hold; or o; > 0,b11 = byy = —b12,p, = — B3
and (7) does not hold. Finally, in Section 5, we give some numerical
examples to show the asymptotic behavior of the solution.

Our main tool is the theorem given by Gearhart (1978), Huang
(1985), Pruss (1984) as well as the spectral arguments.

Finally, throughout this paper C is a generic constant, not neces-
sarily the same at each occasion (it will change from line to line),
which depends in an increasing way on the indicated quantities.

2. Existence and uniqueness of the solutions

In this section we study the setting of the semigroup and we
establish the well-posedness of the system. To study the initial
boundary value problem by the semigroup theory, we introduce
new variables

u=v and w,=mn, Vt>O0. 9)
Replacing (9) in (1) we have

ut = 1/,

We =1,

1 ol
Ve =—(anu+ aW+ b v+ bian)y — — (U — W)
pl pl

-2 -y - Lo,
P P4 (10)
1
Ny = — (12l + GuW + b1 v + boat),, + i(u -w)
P2 P2
% Ba
+ X (w—n) -L20,
e -
by b K
Or = ="V ="l O

Then, the initial boundary value problem (1)-(3) is reduced to the
following abstract initial value problem for a first-order evolution
equation

d

gV ==Ut), U©0)=Uy,

vt >0 (11)
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where U(t) = (u,w, u;,w;,0)", Up = (to, Wo, 11, W1, 0p)" and

]
T ° = &=

v

n
_ %(anu-i-a]zw-&-bnV+b127])xx—%(U—W)—Z—:(”—’ﬂ—ﬁ—le . (12)

P

% g
i(a12u+a22w+b12 V+bat),, o (u—w) +:T12(U*"I) *Lf(}x
by by 150,

We define [*(0,L) = {0 € [*(0,L) : [, 6dx = 0} the Hilbert space with
the usual inner product and norm of L?(0,L) and consider

A# = Hy(0,L) x Hy(0,L) x L*(0,L) x L*(0,L) x L*(0,L)
equipped with the inner product given by

<(u,w, v,1,0),0r(U, W, D, ﬁ,5)>

L _ _ _ _ L
:/ (anuxﬁx + G12(Ux Wy + Wylly) +azzwx\7vx)dx+<x/ (u—w)
0 0
L L L —
x (U — w)dx + p, / vudx + p, / nndx + c/ 06dx.
JO 0 0

and the norm induced || - || ,. We can show that the norm || - ||, is
equivalent to usual norm of . We also consider the Hilbert space
V={peH0.L)NL20L): ¢, Hy0.L)} with norm [, =

Il (pxx”l}(o_l_)-

Instead of dealing with (10) we will consider (11) with the oper-
ator <7 : 9(o/) C # — A, with domain

G(t) = {U: (w,w,v,1,0)€ # : v, €HY(0,L), aju
+a12W+b11 U+b]27] EHZ(O,L),G]2u+a22W+b12 U+b22rl EHZ(O,L), Oe V}

dense in 7.
Firstly, we show that the operator .# generates a Co-semigroup
of contractions on the space 7.

Proposition 2.1. The operator .«/ generates a Cy-semigroup S.,(t) of
contractions on the space #.

Proof:. We will show that v is a dissipative operator and
0 € p(=/), the resolvent set of .«z. Then our conclusion will follow
using the well known the Lumer-Phillips theorem. We observe that
ifU=(u,w,v,n,0) € 2(</) then

L L oL
(«U,U), =an / Vil dx + aq; / VWdx + o / vudx
Jo Jo Jo
L L L
— cx/ dex+a12/ N, UxdX + Az, / 1, Widx
0 0 JO
L L L
— a/ nudx + oc/ nwdx — / [a11Uy + A12Wyx + b1q vk
0 0 0
L L
+ b]zi/lx]vxdx — / [)'1 (}XT_/dX — / [alzux + AWy
0 0
L L
+ b2 Uy + baon, J7xdx — / B,0x1dx — oc/ uvdx
JO 0

L L L oL
+oc/ w?dx+oc/ uﬁdx—oc/ wﬁdx—/ (B vx
Jo 0 Jo 0

L
+ Bl — Kby )0dX — 0ty / lv — n*dx.
0

Taking the real part we obtain

Re(</U,U), = —K|0xlZ210) = D11l xlliz 01y = ba2 Il o)
_2b12Re/OL X — o || = 1720 - (13)

Case . by; > 0 implies by, = bfz/bn. Then in (13) we have

Re(/U,U), = — K||9><H§2(0.L> - b% b11vx + blZ”foz(O‘L)

*“IHU*WHé(o,L) <0. (14)

Thus the operator .« is dissipative.
Case Il. b;; = 0 implies by, = 0. Then in (13) we have

2 2 2
Re(=/U,U) , = — k[|0xlli20) — D2 1Mulli20r) — 21117 = 71l i201) < O-

Thus .«7 is also dissipative.

On the other hand, we show that 0 € p(«/). In fact, given
F=(f,g h,p,q) € #, we must show that there exists a unique
U= (u,w,v,1n,0) in 2(</) such that «#U =F, that is,

v=f in Hy(O,L), (15)
n=g in Hy(0,L), (16)
(@nu+ aaw + b1 v+ bion),, — o(u —w) — oy (v — 1)

— B0y =p;h in [*0,L), (17)
(Cl]zu + axpw + b]zU + bzzf’])xx + O{(U — W) + OC](U - ’1)

— B0x = pop in 1*(0,L), (18)
— Bivx — Poll, + KO =cq in L7(0,L). (19)
Replacing (15) and (16) in (19) we have
KOw = ¢q + Brfx + B8y € L2(0,L). (20)

It is known that there is a unique 0 € V, satisfying (20). Moreover,
given the continuous and coercive sesquilinear form

L L L
A((u,w), (¢, ¥)) :an/ uxaxdx"!‘an/ UxedX-&-an/ Wy Dy
0 0 0

L oL
+az / W,Tidx + o / (11— w)(@ = P)dx,

for (u,w), (@, ) € Hy(0,L) x H5(0,L) and the functional % : Hj(0,L)
xH}(0,L) — C,

L L L
G ) = - /0 (b1 0+ bran), X — p, /0 hpdx - /0 0,pdx

L _ L L
—/ (b12v+b2211)xllxxdx—p2/ plpdx—ﬁz/ Oxpdx
0 Jo Jo

L
~a [ (w-m@ =

we have using the Lax-Milgram theorem that there exists a unique
vector function (u,w) in Hy(0,L) x H(0,L) such that

B(,w), (@, 9)) =%(@, ), V(@) € Hy(0,L) x Hy(0,L).
Thus

L
/ (@11Ux 4+ A12Wx + D11 U+ bian, ) Prdx
0

L L L L
+oc/ (ufw)@dx+ﬁ1/ 0X¢dx+oc1/(zzfi1)¢dx:fp1/ hodx,
0 JO JO JO
L
/(a12ux+a22Wx+b127jx+b2211x)$XdX
0
L

L _ L _ _ L _
foc/o (U*W)l//dx+ﬁ2-/0 0X|//dxfoc1/o (vfn)lj/dx:fpz/o pydx,
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Y,y € Hy(0,L). It follows that ayu+a;w+ by v+bipn and
12U + aW + b1 v + byyn belong to HY(0,L) N H*(0,L) and the Egs.
(17) and (18) are verified. Moreover, it is easy to show that
IU|l,, < C||F|l,, for a positive constantC. Therefore, we conclude
that 0 € p().

From the Proposition 2.1 we can state the following result (see
Pazy, 1983). O

Theorem 2.2. For any Uy, € # there exists a unique solution
U(t) = (. w, ue, we, 0) of (1)(3) satisfying

u,w e C([0,00[: Hj(0,L)) N C'([0,00: L*(0,L)),

0 € C([0,00[: L*(0,L)) NL*(]0,00[: H'(0,L)).
However, if Uy € 2(.«/) we have

u,w € C'([0,00[: Hy(0,1)) N C*([0,0[: L*(0, L)),
@ + W + by, 4 biywe € C([0, 00f: H*(0, L)),
42U + AW + baatty + bW, € C([0, oof: H(0, L)),
0 € C([0,00[: V) N C'([0, o0[: L*(0,L)).

3. Exponential stability

In this section the first result that we are going to present is
about the necessary and sufficient conditions of exponential stabil-
ity of a Co-semigroup on a Hilbert space. This result was obtained
by Gearhart (1978), and Huang (1985), independently (see also
Pruss, 1984).

Theorem 3.1. Let S(t) be a Co-semigroup of contractions of linear
operators on Hilbert space »# with infinitesimal generator 2. Then S(t)
is exponentially stable if and only if

(i) iR C p(#).
(if) limsupy ., || (if1 = )| 4y < o0

Lemma 3.2. Let .o/ be defined in (12). Assume that

(a) oy > 0 and
(a.1) condition (6) holds.
((12) b]] = bzz = 7b]2,ﬁ1 = 7/32 and (7) holds.

(b) o1 =0 and
(b.1) condition (8) holds.
(b.2) (b11,b12), (b12,b22) and(B;,B,) are collinear and (5)
holds.

Then the set iR = {i’ : A € R} is contained in p(</).

Proof. Following the arguments given in Liu and Zheng (1999), the
proof consists of the following steps:

Step 1. Since 0 € p(.«#), for any real number . with |17 '] <1,
the linear bounded operator il«#~! — I is invertible, there-
fore iil — o/ = o/(i’es™' —1) is invertible and its inverse
belongs to ¥(#), that is, ii€ p(«/). Moreover,
(il — «2)7"| is a continuous function of 4 in the interval
(e 7 e ).

Step 2. If sup{||(iid —#)""|: il < |/ "'} =M < oo, then for
l40] < [l«¢~"|"" and 4 € R such that |2 — 4| < M~!, we have
(% = 20)(i%l > —7)""|| < 1, therefore the operator

il — o = (isol — )1 +i(% — ho) (il — ) ")

is invertible with its inverse in (), that is, il € p(.«7). Since /g is

arbitrary we can conclude that {ii: || < | '] + M} C p()

and the function |(iAl —.«/)7'|| is continuous in the interval

e =M e M,

Step 3. Thus, it follows by item (ii) that if iR c p(A) is not true,
then there exists @ e R with |« "' < |w| such that
{ir: |4 < |o|} C p(«#) and sup{||(id — =2)7"| : |4] < |w|} =
oo. Therefore, there exists a sequence of real numbers
(4n) with 2, — o, |/n| < |w| and sequences of vector func-
tions  Un=(Un,Wn,Vn,0y,00)€Z(Z),Fn=fn.&n:Mn,Pn,qn) €A,
such that (i2,] — «/)U, = F, and ||U,||,, =1 and F, — 0 in
A when n — oo, that is,

inln — Uy =f, — 0 in Hy(0,L), (21)
DnWn — 1, =8, — 0 in Hy(0,L), (22)
i2nP1 Un — (@11Un + Q12Wy + b11 U0 + D121, 0

+0U{Un — Wa) + 01 (U — 1) + 10 = pyha — 0 in [*(0,L), (23)
120 P11, — (Q12Un + 22 Wn + D12 U + 2o, o0

— 0(Uy — Wn) — 01 (Vn = 1) + B20ne = PP, — 0 in LZ(O,L), (24)
12nCOn + By Unx + Polle — KOm = €q, — 0 in L2(0,L). (25)

We observe that
Re{(itn]l — o/)Upn,Up), -0 as n— oo. (26)

Suppose that by; > 0. Then, using the same idea as (15) we obtain

L L 1 L
K/ |9,,X|2dx+oc1/ Ivnfnn|2dx+—/ |b11 U+ b121,, [P dx — 0
JO JO b]‘l Jo

dS 1 — o0.

It follows by the Poincaré inequality that 0, — 0 in H'(0,L) and
b11 9 + bian, — 0 in Hy(0,L). Since (Uy) ey, (Wn)nen, are bounded se-
quences in Hy(0, L), by the compactness of the embedding of H' (0, L)
in [*(0,L), there are subsequences, still denoted by (u),., and
(Wn)pen» Such that u, — u and w, — w in L*(0,L). Using (21) and
(22) we deduce that v, — v and 5, — # in L*(0,L).

Integrating (25) from O to x we deduce

1By vn + ﬁz’/ln”]_z(o,l_) —0 as n-— oo (28)
(a)—(a.1). From (27) and (28) we conclude that v =# =0 and by
(21) and (22) we have u = w = 0. On the other hand, it follows by
(23) and (24) that the sequences

(@11Un + A12Wy + by vn 4+ b1oWy),y  and
(@12Up + AWy + b1 vy + bowy), (29)

converge to zero in Hy(0,L). Therefore, by (27) we obtain that
aj Uy + a;pw, — 0 and agpuy, + apw, — 0 in H})(O,L). Since (ay) is
positive definite, it follows that u, — 0,w, — 0 in H(l)(O,L). Thus
we have a contradiction and the result follows. If by; =0 then
by, > 0 and we can use similar manipulations.

(a)—(a.2). It results by (27) that v=pn and then u=w.
Consequently, from (23) and (24) we obtain that the sequences
given in (29) converge in H}(0,L). Using again (27) we obtain that
(A11Un + A12Wn) peny and (A12Un + G22Wh) o CONVErge in HE,(O, L). We
can conclude that u, —u, wy, —w, and v, — v and 5, — 7 in
HY(0,L). It results by (23) and (24) that

2, G011 T 012

ap +a
—wu Uy=0 and —w?u— 2772

1 2

Uy = 0.

By hypothesis (7) we conclude that u = 0 and hencew = v =5 =0.
The result follows.
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(b)—(b.1). Suppose that {(b11, b12),(B1,8>)} is linearly indepen-
dent. Hence (27) yields

1
KHOanfz(o,L)+b—ngnvnx+bu'1nxllfz(o,L> -0 as n—oo.  (30)

Using (28) and (30), we conclude that v, — 0 and ,, — 0 in L*(0,L).
As in (a.1), it follows that u, — 0,w, — 0in H}(0,L). Thus we have a
contradiction. If {(b12,b22), (B;, B,)} is linearly independent the pro-
cedure is similar.

(b)—(b.2). Suppose by1b127#0. By (30) we conclude again that
Up—uwy—w,on—v and n,—n in H)O,L) and
by1vx + b2, = 0. Therefore v+ 11 =0 and pju+ fow=0. It
results by (23) and (24) that

— W?PyUl — (A1l + A12Wae) + (U — W) = 0,
- wzpzw - (a12uxx + a22Wxx) - O((u - W) =0.

Since w = — g—;u, it results that

— (B2@11 — B1a12) U = (1B 0% — (1 + B2))U
— (B1822 — Pol12) U = (P2 1% — (B + Bo))U.

By hypothesis (5), we conclude that u = 0 and hencew = v =1 =0.

Now, we suppose that b;; > 0and by = by; = 0.Then 8, = Oand
by (30) we get that v, — 0in H)(0,L) and by (21), u, — 0in H}(0, L).
By (22)-(24) it results that the sequences (auUy + a12Wy + b11vn)
and (ajpun + az;wy) converge in H},(O,L), and therefore (w;,) con-
verge to w in H})(O,L). Taking the inner product of (23) with
@ € Cy’(0,L) we obtain

L L L
i2nP4 / Un@dX + a1 / Uy PxdX + A12 / Wiy @xdx + b1y
JOo Jo JOo
L L L L
X / U PxdX + 0 / u, pdx — o / w,@dx + 4 / Onx pdx
0 0 0 0

L
:p1/ hnadxs
0

Taking n — oo in the above equations we get

L L
au/ WyPadx — oc/ wgdx =0, Ve e CX(0,L). (31)
0 0

By hypothesis (5) and using (31) we obtain w=0 and # = 0.

If by; =0, then B; = b1y =0 and by, > 0. Using (26) we have
that 1, — 0 in H}(0,L) and by (22), w, — 0 in H}(0,L). We can use
the same procedure as before to get u = v = 0. Thus we have a
contradiction and the proof of the lemma is complete. O

Theorem 3.3. Let ./ be defined in (12). Assume that

(a) oy > 0 and
(a.1) condition (6) holds.
(02) biy =by = —b12,/§1 =—p, and (7) holds.

(b) o; =0 and
(b.1) condition (8) holds.
(b.2) (b11,b12), (b12,ba2)and(By, B,) are collinear and (4) and
(5) hold.

Then S.,(t) is exponentially stable, that is, there exist positive
constants M and p such that

15 (O)ll o) < M €Xp(—pit).
Proof. By Theorem 3.1 and Lemma 3.2, we must prove that (ii) is true.

Given € RandF = (f,g,h,p,q) € #,letusU = (u,w, v,1,0) € Z(.A)
be the unique solution of (il — .«/)U = F, that is,

iu—v=f in Hy0,L), (32)
ilw—n=g in H)O,L), (33)
I2p1V — (A11U + A12W + b11 U + b1ah),,

+ou—w)+ o (v—1)+ B0 =ph in [*0,L), (34)
20,1 — (AU + AW + b1 v + baaty)

—o(u—w) — o (v— 1)+ By0x = pp in L*(0,L), (35)
i2C0 + By vy + Pol, — KO = cq in L*(0,L). (36)

Note that if by; > 0 (the other case is similarly analyzed)

. 1
Re((iil — «£)U,U) , = K[| 0ullf2 o) + ™ D112 + braflIf2 o) + 0412
- 77Hf2(0,L) = Re(F,U) .

Thus

1

2 2 2

K[ 0xll2 0.y +E|‘bll Ux+bian 2o +ollv =1l o < IFlL U
(37)

Taking the inner product in L?(0,L) of (34) with u, (35) with w and
using (32) and (33) we obtain

(a1ay — a2,) /L 2 (a1ay — a2,) /L 2
—_— Uy|“dx + ——= 127 W, |“dx
2(122 0 | x‘ + 2Cl11 0 | x‘

L L L
<p / wPdx+ p, / nidx -+ || / 10, |uldx
L L L
+|ﬁ2\/0 |ex|\w\dx+ocl/0 |vfn||ufw\dx+p1/o |v]1f|dx
L L L
oy [ it [ o bl p, [ nigldx
L L
+p, / plIwidx + / 1br -+ b1 [ dx. (38)

We define ¢(x) = [;(B; v + Bon)(y)dy. Taking the inner product in
L*(0,L) of (36) with ¢ and integrating by parts we obtain
L L L L
iic/ Oadx—/ |/)’11/+[3217|2dx+1</ ex(ﬁlz/+ﬁ2n)dx=c/ qpdx.
Jo 0 Jo Jo
(39)
Consider ¢ e H*(0,L) solution of the problem &, = 0,¢&(0) =0,

&(L) = 0. It follows from (39) that

oL oL
—uCA fx(ﬁl”‘f'ﬁz”l)dx_/) |ﬁ1”+ﬁz'7|2dx
L L
+K/0 GX(ﬂlu+l32’1)dx:C/O qopdx. (40)

On the other hand, multiplying the Eq. (34) by ﬁ—'l (35) by ﬁ—i and add-
ing the result we obtain

(B0 + o) = fu(ﬁ—if%)w—w)fal(ﬁ—lfﬁ—z)wfn)

2 @2
- ("[031]+£i>9x+ﬁ1h+ﬂ2p

+%(anu + apw + b]] v+ b]z?])xx
1

+%(012U+022W+b12”+bZZn)XX' (41)
2

Substituting (41) in (40) and integrating by parts we obtain
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L
/\ﬁlv+ﬁ2m2dx:c/[ <ﬁ1an+ﬁ a12>u+0x<ﬁ1a12+&a22> }dx
JO

P2 P1 P2
B B ) <ﬁ1 Ba )]
+c 0y by +—=byy | U+ 0y b, +==b dx
/o[<p1”pz“ pr 2,2 )N

L

+K/ Ox(ﬁ1y+ﬁ211)dx—c/ qodx+cpy x | &hdx
0 0 0

+cp /chdx c ﬁl ﬁ_ﬁ /Liﬁdx
2Jo P1 Pz o "
L
—ca(ﬁ—&>/ & (U=w)dx
P P2/ Jo

BB fs =7
afl ) f s

Since that fo |&2dx < L2 fo |0]dx, by the inequalities of Poincaré and
Cauchy-Schwartz together with (37) we can verify that there is a
positive constant C such that

1812+ Bl 01 % < C(10xl2 0. 1UlLe + NUIL L ) (42)
In this point, we analyze the hypothesis (a.1) and (b.1).

(a)—(a.1). If by;# — by, it results by (37) that there exist a
positive constant C such that

2 2
HyHLZ(o,L) + ””HLZ(O,L) S CIUILANFI -

Last inequality together with the inequalities of Poincaré and Cau-
chy-Schwartz, (37) and (38) imply

\ull,, < CJF|,, fora positive constantC. (43)

If B, # — B,, it follows by (42) that there is a positive constant C such
that

19100 + 1Ml < (I|9 2o HUII//+HUH”HFII//> (44)

Combining of (37), (38) and (44) yields (43). If b,»# — by, the proce-
dure is similar.

(b)—(b.1). If (b11,b12) and (B, B,) are linearly independent, by
(37) and (42) we have that (44) holds. Therefore, we can obtain
(43). If (bq2,b22) and (B4, B,) are linearly independent the proce-
dure is similar.

(a)—(a.2). By (37) we have
K0l 01) + b1l = Millizony +01l12 = Alliz01y < CUUILAFlL
(45)
for a positive constant C. Hence by (32) and (33) we obtain
e = Wallf2 01y < CIUILNIFILes 121> 1, (46)

for a positive constant C. Taking the inner product of (41) with
By <‘%‘ — ?;)u + By (“‘2 - %2) w, using that ilu = v + f,iiw = 5 we get

S (22,
o I\P1 P2 P11 P2
el e 2
P1 P2/ Jo I\P1 P2 1 P2
L
+a(l+—>/ [u—w| (al—aﬁ)wr(@f@)w
P1 P2/ Jo P1 P2 1 P2
L
+a1<l+l>/ v —n (aﬁ—aﬁ)u+<@f@)w
P1 P2 P11 P2 P1 P2
ayp ag a2 dx
v-nll{—=——-=")v+==——]ndx
/‘ m(l Pz) (pl pz)n

a1 42 a2 04
+ v— — ——f+ [ =—-—=)g|dx
/0 | d (Pl Pz)f (pl p2>g‘

2

|x — 1, dx

dx

dx

L
+ B <l+l)/ 14| ((111 7(112>u+ <012+@) wldx
P P2 P11 P2 P11 P2

/|h pl (a“ a12>u+<@f@>wdx. (47)
P11 P2 1 P2

Using the Cauchy-Schwartz and Young inequalities we obtain

1(02G11 = P1G12)thx + (P3a12 = P1822)Wallz g
(o=l UL, + UL FIL, ) (48)
for |2] > 1 and C > 0. By (7), (46) and (48) we have

<C(1B12+ Bl o 1UILe + UL, L )
(49)

HUXHLZ oyt HWX”LZ oL)

for |2] > 1 and a positive constant C.
Taking the inner product in L2(0,L) of (34) with u, (35) with w
and using (32) and (33) we obtain

L
|v[dx = a”/ [ty dx+—/ uf2dx + 412 / W, llydx

/ wiidx + =1 / O, tdx — / vfdx
0

—/ thXJrf/ (b11vx + bian, ) Uxdx
0 P1Jo

J0

L L
+ﬂ/ vud. 7%/ nudx (50)
P1Jo P1 Jo
and
boa a2 o
nl~dx = —= > uxwxdxf—/ uwdx + 42 / | dx
0

+—/ [w| dx+ﬂ2 / O wdx — / ngdx
7/ dequl/ (D120 + baat, )Wydx
0 P2 Jo
L L
_ﬂ/ ywdx+ﬂ/ nwdx (51)
P1 Jo P1 Jo
Combining of (45), (49), (50) and (51) yields that

HVHLZ o T ||’7HL2 o.L) (Hﬁl”‘f‘ Ba1ll 2 0.L) U1l + HU”y/HF”//)

(52)
for |4] > 1 and a positive constant C. It follows from the estimates
(45), (49) and (52) that
1GET = A)FIl, < CIIFIL,

when |/| > 1, for a positive constant C.
(b)—(b.2). By (37) we have

16:11i2 0.1, + 11812 + BatlulIf2 01y < CIIUILNIFIL- (53)

Hence by (32) and (33) we obtain
< QUL IF Ly »

1811t + ByWall P2 01 2 > 1, (54)

for a positive constant C. Taking the inner product of (41) with

(%an +£—§a12)u + (f,—:au +ﬁ—22a22>w, using that ilu=v+f, ilw=pn

and

(ﬁl bn +ﬁ2 blZ) B (%blz
B Ba

+L bzz)

P2

:y7 ﬁ]ﬁ2¢07
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we get

Bi B, ) (/31 Ba )
Play +22ap Juy+ (Zlan +22a
( 11 0, 12 0, 12 0, 2

(*an +*a12)ux + (&alz +—= b aZZ)Wx
2

P1 p
B /32/ ’( B2 )
— u—wi||—ay +—a u
P1 P2 | | ! &) ?

+ <7a]2 +*(122 dX+/ |,B17/+,327]|‘(fa11+£f2(112)7/

J» :
(et

)

»

dx

|l31 Ux

+ Bonldx + o —

n

dx+/ |ﬂlv+ﬁ2n|'<—an /—zau)f

P2
g
dx + /
(pl pz)

o)
Dan+2a, Ju
<P1 ! P2 ?

dx+/ |[51h+ﬁ2p|‘(—an+%a12>u
2

dx. (55)

+ (—a12+ ax |8

+ <f(1]2 +*(122
(ﬁl ap +§—2a22>w

P1 2

Substituting u — w = =& 1 -1 in (55), using the Cauchy-Schwartz
inequality and the estimate (53) we get

(028111 + Py folr2)thy + (0281812 + Py Bal22)Wall 01
1
C(nmv+ﬁzn|\Lz(o,L>HU||.,, UL, IFLL, +WHU\|§/>7 (56)

for |2] > 1 and C > 0. From (4), (54) and (56) we have

el 20y + [WallEzo (Hﬁ1 v+ Balllizop ULy + 101 IFll
2
I HUII.W), (57)
for |2] > 1 and C > 0. Therefore, by (50) and (51), with a; = 0, (53)
and (57) we obtain
HvHLz o + 1MllE 0 <||/51 v+ Ballllzopy 1UILe + U1 IFll 4
2
(58)

Combining of (53), (57) and (58) yields

1
U1 < C<||ﬁ1 v+ Bz o lUIL + Ul IFL +WHU||2;¢>

when |/| > 1, for a positive constant C. Finally, from (53) it follows

(1)1l <cie.

Thus
(021 = A) |, < C.|2] > max{1,C},

and the proof is complete. O

4. A lack of exponential stability

In this section to simplify the computation, without loss of gen-
erality, we assume L = . Moreover, we will suppose

Ba(B1P2G11 + Bop1G12) = B1(B201022 + B102012). (59)

First of all, note that ”—‘1 %‘—“ﬂ]—;) is always positive. In fact, the
hypothesis (59) implies that

&(@,@) ZIL(L,L)
pP1\B1 B P \B P/’
and taking, for example, g; > 0 and f, < 0, we have that ‘%‘ — ”/;—22 <0

implies %f% >0. It results that O0<a;; < %au and

0<ay < ﬁ—falz and therefore a;qa,; < a2,, but this is contradictory
to our hypotheses over (aj).

We observe that in order to prove the next theorem, due to The-
orem 3.1, it is sufficient to show that there exists a sequence of real
number (4,) with 4, — oo and a bounded sequence (F,) in # such
that

(4] — ) 'Fy||,, — 00, V— oc.

Theorem 4.1. Suppose that o«; = 0, (b11,b12), (b12,b22) and (By, )
are collinear and (59) holds. Then the semigroup S.(t) is not
exponentially stable.

Proof. We will restrict our attention to the cases f;8,#0 and
B + B,#0. Consider a, b real numbers such that ap, — bp; #0. For
each ne N, we take F, = (0,0, p;'asin(nx), p;'bsin(nx),0) € »#,
and denote by U, = (Uy, W, U, 1,,,0n) € Z(o7) the unique solution
of the resolvent equation

(M — /Uy =F,, J€R. (60)
Due to the boundary conditions, the solutions are of the form

u, = A, sin(nx), w, = B, sin(nx) and 0, = C, cos(nx) and we get the
system

=i, N, =IiiW,,
- p]izA +n(ay; + i2b11)Aq + n?(ary + i’by12)B,

+ o(An — By) — pynCa = a, (61)
— P, 2By + 1% (ay; + iAb12)A, + 1% (ay; + i4byy)B,

— (Aq — By) — onCp = b, (62)
cACy + AP nA, + /0B, — ikn?C, = 0. (63)

Multiplying (61) by % (62) by [}—2 subtracting the equations and
using (59) we obtain

_2 (Ban1 — ﬁ]an)nz) <p1 _Pap ) (1
( * P1B2 B4 B> e B4

a b

BB

Taking 4 =/, = ,/W%&n = on in (60) we get

A_Bn_ﬁz ﬁ]

e

=T
o(By + B1)

Substituting A, = B, + 7 into (61) and (63) we get
B _ ﬁlﬁZ C

" (Bi + By)anan +iB,o(b11 + big)n2 "

N ap, — of,T — Thya1pn? — itoP,byn3
(By + Py)aan? +ify0(bi1 + biz)n®
and
B, — 1 (co—ikn) C..
Bi+ By oy +Bo)n

Thus,
C.—_ (B +Pa)(aBy — 0y T) —iTG> By (Byb11 — f1bia)n®

(co—ixn)[(By + B2)@12n+iPo0(b11 +bi2)n?] + G 1 B, (B + fo)n’

Since by; + b1,#0, then
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T0|Byb11 — Brbia| 0

lim|Cy| =—~——"— = =
"Lngcl nl K|b11+b12|

Therefore

- ITh4]
lim |B,| = #0,
B =5

and since

n’n
11m HanHLzon _llm—|B| = 00,

we conclude that
lim Uy}, = oo, (64)

Thus, the proof is complete. O

Remark 4.2. In case that g, or B, =0, it follows from (59) that
as» = 0. Suppose, for example, that g, = 0. It results by the hypoth-
esis of the Theorem 4.1 that by, = by; = 0. We can take in the proof
of this theorem a = 0,b = —1 and / = 4, = | /%2*% Then it follows
by (62) that A, = 1. Thus

,I.LH; ([l 20 ) = 00

and we have (64). When g, + 8, = 0, condition (59) implies that
P, (a11 + ar2) = p;(aiz + ay2). In this case, adding (61) and (62) we
get

(7/12 n a1 + a2
P1

We can take 2 =7y = /*¢2n? +a+b and obtain p,A, + p,By =
—1. We can use the same procedure as in the proof of the Theorem
4.1 to get (64).

n2> (p1An + poBy) = a+b.

Theorem 4.3. Suppose that oy >0 and by = by, = —byy; and
B1=—pB, and p,(ay + a2) = p;(az + ai2). Then the semigroup
S./(t) is not exponentially stable.

Proof:. For each n € N, we take F, = (0,0, p7! sin(nx), p;! sin(nx),
0) € #, and denote by U, € 2(</) the unique solution of the resol-
vent Eq. (60). The solutions are of the form u, = A, sin(nx),w,

= B, sin(nx) and 0, = C, cos(nx) and we get v, = iiuy, 1, = i/Wy,
— pl/le +n ((111 + l)ub]])A +n (a]z — l/lb]])

+ 0(An — By) +ioq A(An — By) — pnCp =1, (65)
— P, A%Bn + 12 (a1 — i2b11)Aq + 12 (a2 + iAby11)B,

— 0(Ay — Bn) —i0t4 A(An — By) + pnCp =1, (66)
c/Cp + 2pynA, — ApynB, — ikn*C, = 0. (67)
Adding (65) and (66) we get

app + app)n?
(-2 OB 0, 1 pBr) =2 (68)
1
We take / =/, = ,/% + 2. Hence in (68) we obtain
p1An+ p,Br=-1 or A,= LPZB") (69)

P1

Substituting (69) into (65) and (67) and performing straightforward
calculations we obtain

n*[(1+ p,By)(an + a12) — (@11 + i2bi1) — p,(an + izb11)B,
+ p1(@12 — 12b11)Bn] 4 20, p2Bn — (00 + 40t ) (1 + (P + 04)By)

L A1+ (py 4 p)Ba)
iKn? — cA

=P

Therefore

. 1

lim |B,| = #0,
n—00 P11+ P,

and we have (64). O

5. Numerical examples

The following numerical examples show the asymptotic behav-
ior of the solution of (10) due to the exponential stability when the
conditions (4) and (5)-(8) are verified, or the conditions (6) and (7)
are verified, and the lack of exponential stability, when they are not
verified.

5.1. Example 1. Amplitudes for sample sinusoidal initial condition

We consider here, a similar example of the previous section.
That is, we choose L = 7, and we suppose that the solutions are
of the formu, = A,(t) sin(nx), w, = B,(t) sin(nx), v, = An/(t) sin(nx),
wy, = Bp/(t) sin(nx), and 0, = C,(t) cos(nx). In this case, the ampli-
tudes (An, Bn, C,) verify the following system of ODEs:

p1Ay = —n*(a11Aq + a12By + b1 A, + b12By,)
— 0(An — Bn) — 01 (A}, — B},) + np, Cy,
pyBy = —n*(a12An + a22B, + b12A;, + b B))
+ 0(An — By) + 04 (A}, — B) + np,Cy,
cC,, = —np,A, — np,B, — n*kC,. (70)

Thus, we consider the system (70) with the parameter values
a1 =axp =1.0,a;,=00,and p; =p,=a=c=x=1.0.

Figs. 1 and 2 represent the evolution in time of the three ampli-
tudes Ay, By, and Cy, and the derivatives A, and B, (which are the
amplitudes of vand #, respectively), for n = 100. For the numerical
simulation, we use the Runge-Kutta-Fehlberg method RKF45, with
the standard solver ode45 () of matLaB. Fig. 1 corresponds to three
different simulations with o; = 0.0. The case (a) and (b) are simu-
lations for 0 <t <50 and the case (c) is a simulation for
0 < t<0.001.

The first picture (a), represents a lack of exponential stability
example when the hypothesis of Theorem 4.1 is verified:

(bi1,b12) = (1,-1), (b12,b22) = (=1,1) and (B, 5,)
=(1,-1), are collinear; and p,(f;p,a11 + f,01012)
= B1(B201022 + f10,012) = —1.

The second picture (b), represents an exponential stability example
when the hypothesis of Theorem 3.3 is verified:

{(b117b12)(ﬁ17/32)} = {(1~71)7(171)} and {(b127b22)(ﬁ17ﬁ2)}
={(-1,1),(1,1)},are linearly independent.

The third picture (c), represents again an exponential stable case
with

{(b11,b12)(B1,$2)} = {(1,0),(1,1)} and  {(b12,b2)(B1, )}
={(0,1),(1,1)},linearly independent.

We observe clearly in this picture (c), that the five amplitudes
An(t), Ba(t), A (t), B, (t) and Cy(t), tend to zero faster than the case
(b), as t — oo. The numerical reason of this behavior is because in
this case, which differs from case (b), the matrix B = (b;;) is symmet-
ric and positive definite. However both (b) and (c), are exponen-
tially stable.

In the case o; > 0, if we consider the same values of the param-

eter b; and B; used in the before example, although not shown here,
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Lack of exponential stability :(x1=0.0; —[32=[31=1.0; b11:—b12=1.0
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15 8,
7A’n
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Fig. 1. Example 1. Different evolution of the amplitudes for case o

it is obtained almost identical behavior to those of Fig. 1. The rea-
son is because the choice of this parameters values gives the expo-
nential stability, or the lack thereof, independent of the value of o;.
However, in Fig. 2, we see a case where the value of «; affects the
exponential stability of the solution.

In pictures (d), (e) and (f) of Fig. 2, we choose by = by =
b =1.0 and B, = B, = 1.0, that is sufficiently conditions for the
lack of exponential stability when «; = 0.0 (see picture (d)). On
the other hand, the same values b;; = by, = by, = ; =, =1.0,
ensure the exponential stability when o; > 0.0 (see pictures (e)
and (f)). Also we note for a numerical point of view, that the expo-
nential decay to zero is faster when «; > 0 is larger (compare pic-
tures (e) and (f)).

5.2. Example II. Asymptotic behavior for a small initial condition

Here, we numerically compute the solution of the system (10),
with L =1.0,T = 2.0, and the initial condition:

0 if 00<x<04,

Yix.0) = 10(x—0.4) if 0.4<x<05,
’ 10006 —x) if 0.5 <x<0.6,
0 if 0.6<x<1.0,

= 0.0: (a) lack of exponential stability (; = by; = b2,
(By = By = b11 = by = 1.0,b12 = —1.0); (c) exponential stability (f; = by; = by, =1.0,8, =

= 1.0, 8, = b1z = —1.0); (b) exponential stability

~1.0,b1, = 0.0).
0 if 00<x<04,
_J20x—-04) if 04<x<0.5,
N%0) =14 50(06—-x if 05<x<06 (71)
0 if 06<x<1.0,
and u(x,0) = w(x,0) = 0(x,0) = 0.0. We remark that the initial con-

dition defined in (71) are two peaks of height 1 and 2, respectively,
and support in (0.4; 0.6). Additionally, we consider the same param-
eter values of the Example I, ay; =ax =1.0,a;; =0.0, and
pr=p,=0=c=Kk=1.0.

In order to compare these numerical results with those of
Example I, and the previous Section 4, we assume that

ZA,( ) sin(k
= ch(t) cos(k — 1)mx
P

—mx, w(x,t)= in(t) sin(k — 1)mx
k=1
(72)

and therefore, we extend the initial conditions (71) by odd func-
tions, in the interval (—L,0). On the other hand, if we discretize
the space dimension (-L,L)=(-1,1) in 2N —1 subintervals
Ij = (jox, (j + 1)0x), with éx=1/(2N), and j=-N,...,N—1, and
we approximate the solution U(x, t) of the system (10) by piecewise
functions equal to Uj(t) in each subinterval, then we can take the
Discrete Fourier Transform of the solution:
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Fig. 2. Example . Different evolution of the amplitudes for case f; = , = by = b2, = b1> = 1.0: (d) lack of exponential stability (case «; = 0.0); (e) exponential stability (case

o1 = 1.0); (f) exponential stability (case o; = 5.0).

2N
Uk(t) =) Uj(t)e D0, (73)
=1

and we reconstruct the solution by the Inverse discrete Fourier
transform:
1 2N . )
Ui0) = 55 D U(ye™ oD, (74)
k=1

We note that if we define U(t) = (&;(t), w;(t),
then Ax(t) = —3(1;(t)), Bi(t) = —3(w;(1)),
following system of ODEs is verified:

U= vk, W,=1Hy,

P,V = —T*(k — 1)2(a41 Uy + 12 Wy, + b1y Dy + b1271)
— o(lly — Wie) — o1 (Vg — k) — ik — 1), O,

P2l = —T2(k = 1)? (@12l + QW + bio Dy + baa i) + ot(Thye — Wy.)
+ 00 (Dy — i) — Tk — 1)B,04,

c0), = —mi(k — 1), O — mi(k — 1), 7 — w2 (k — 1)° K0y (75)

We make simulations for N = 1024 using in this case the Stiff sol-
verodel5s () of maTiAB to compute each one of the 1024 system
of Eq. (75), and we reconstruct the solution by the Inverse discrete
Fourier transform (74).

Figs. 3 and 4 represent the evolution of the solutions
(u,w, v,1,0), with the same parameter b; and f; of Example I cases
(d), (e) and (f): b11 = bay = b1 = 1.0and B, = B, = 1.0. Fig. 3 shows
the lack of exponential stability with «; = 0.0, and Fig. 4 shows the
exponential stability with o; = 1.0. In both figures, u(x, t) is graph
at top left, w(x, t) at top right, v(x, t) at bottom left, #(x, t) at bottom
right, and 0(x, t) in the center.

Finally, in Fig. 5 it is represented the norm 2# of the numerical
solution of (10) for the 5 first cases of Example I ((a), (b), (c), (d) and
(e)). More precisely, we plot the function:

rHJ gh <<”f ® ‘h“f*‘“))z + (g (”)Z RO WO+ ((b(n—th(t)) ) .

14

We observe that in general, the cases of lack of exponential stability
the curves diverge when t — oo ((a) and (d)), and the curves tend to
zero in the exponential stable cases ((b), (c) and (e)).
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Fig. 3. Example II. Lack of exponential stability. Numerical solutions u, w, v,#, 6. Case oy = 0.0, 1 = 8, = b1y = by = b1, = 1.0.
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Example II. Exponential stability. Numerical solutions u,w, v, 1, 0. Case «; = 1.0, 8y = , = b1y = by = b1 = 1.0.
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Fig. 5. Example II. Evolution in time of t—|U(.t)||, for: (a) Lack of exponential stability o; =0.0,8; = b1y = by, =1.0,8, = b; = —1.0; (b) Exponential stability

o1 =0.0,8; = fy = b1y =byy =1.0,b1 = -1.0; (c) Exponential stability

o3 =00,y =byy =bp =1.0,6, =-1.0,b1 =0.0; (d)

Lack of exponential stability

o1 = 0.0, 8; = B = b1y = bay = byz = 1.0; (e) Exponential stability oy = 1.0, 8, = 8, = b11 = by = b1z = 1.0.
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