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A b s t r a c t - - I n  this note, we generalize the recent result on L 1 well-posedness theory for strictly 
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1. I N T R O D U C T I O N  

Consider the following quasilinear system of conservation laws: 

Ou Of(u) 
+ - - - 0  

Ot Ox 

with initial  da ta  

(1.1) 

u(0, x) = u0(x), (1.2) 

where u = ( u l , . . . ,  Un) T is the unknown vector-valued function, f : ~ n  ~ Rn is a given smooth 

vector-valued function. When  (1.1) is a strictly hyperbolic n x n system of conservation laws, and 

each characteristic field is either linearly degenerate or genuinely nonlinear,  i n [1], Bressan, Crasta 

and Piccoli prove tha t  there exist a domain D C L 1 , containing all functions with sufficiently 

small total  variation and a uniformly Lipschitz continuous semigroup S : D x [0, oc) ~ D with 

the following properties: every trajectory t ~ u(t, .) = Stuo of the semigroup is a weak, entropy- 

admissible solution of the initial value problem. For a given domain D, the semigroup S with the 
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above properties and local BV structure is unique (cf. [2]). These results yield the uniqueness, 
continuous dependence, and global stability of weak, entropy-admissible solutions of the Cauchy 
problem for (1.1) with small initial data. Liu and Yang in [3] and Bressan, Liu and Yang in [4] 
explicitly define a functional • = ~(u, v), equivalent to the L 1 distance between u and v, which 
is nonincreasing, i.e., 

• (u(t), v(t)) - ~(u(s), v(s)) _< O(~). (t - s), for all t > s >_ 0, 

for every pair of c-approximate solutions u, v with small total variation, generated by the Glimm's 
scheme or wave front tracking algorithm. The small parameter ~ here could be the errors in 
the wave speeds, the maximum size of rarefaction shock fronts, and the total strength of all 
nonphysical waves in u and in v, which tends to zero when the grid size of the scheme approaches 
zero. By the above estimate, they prove that the approximations converge to a unique limit 
solution, which depends Lipschitz continuously on the initial data, in the L 1 norm. This also 
implies the existence of the unique standard Riemann semigroup generated by a n x n system of 
conservation laws (eft [1,2]). 

In these approaches, one needs to assume that system is strictly hyperbolic, i.e., Vf(u)  has n 
distinct real eigenvalues. However, some physical systems are not strictly hyperbolic and pos- 
sess nonsimple eigenvalues (see [5,6]). Important examples occur in nonlinear elasticity, plasma 
physics, and magnetohydrodynamics. The study of which includes the system for the general 
motion of an elastic string (cf. [6,7]), the quasilinear hyperbolic system of conservation laws with 
rotational degeneracy (cf. [5,8]), the system of magnetohydrodynamics, and the system for re- 
active flows (cf. [5,9,10]), etc. These examples have nonsimple eigenvalues. Off a closed set S 
of codimension one or two (merely two, because these systems have symmetric matrices), these 
eigenvalues have constant multiplicity. The aim of this note is to generalize the result on L 1 
stability theory above for the initial value problem for (1.1) to the nonstrictly hyperbolic system 
of conservation laws with characteristics with constant multiplicity. Since our main result, The- 
orem 2.2, holds locally in the phase space, it can be applied to the above systems around every 
point in the complement (an open set) of S. 

2. M A I N  R E S U L T  

The following are our main assumptions on system (1.1). 

(H1) System (1.1) is hyperbolic, i.e., for any u in the domain ~t under consideration, the ma- 
trix Vf(u)  has n real eigenvalues: ~i(u) (i = 1, . . .  ,n) and there is a complete set of 
left (respectively, right) eigenvectors { / l (u) , . . . , ln(u)}  (respectively, { r l (u) , . . .  ,rn(u)}). 
Without loss of generality, we suppose that 

l~(u)rj(u) =- 5~j, i , j  = 1 . . . .  ,n, (2.1) 

where 5ij stands for the Kronecker's symbol. 
(H2) Any eigenvalue of Vf(u)  has a constant multiplicity. Without loss of generality, we assume 

that 

,~l('tt) < " ' "  < )~m(U) < )~m+l(U)  ~ ' ' ' ~ - ~ -  ,~m+p(~t) ~ ~(~t) < ,~m+p+l (U)  < ' ' '  < An(I t ) ,  (2 .2)  

w h e r e l _ < m < n - l a n d l _ < p _ < n .  
In particular, when p = 1, the system is strictly hyperbolic; while, when p > 1, (1.1) is 

a nonstrictly hyperbolic system with the eigenvalue with constant multiplicity p. 
(H3) Any simple eigenvalue Ai(u) is either linearly degenerate (ld) or genuinely nonlinear (gn) 

V)~i(u)r~(u) =- 0 (ld), V)~i(u)r~(u) ¢ 0 (gn), (2.3) 

where r~(u) is the right eigenvector corresponding to A~(u). 
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We first consider the Riemann problem for system (1.1) with the following initial data: 

fi+, x > 0, 
(2.4) 

U =  l i - ,  X < 0 ,  

where ~± are constant vectors. The  following theorem is well known. 

THEOREM 2.1. Under Hypotheses  H1-H3, i[ 1~2 + - g -  [ is sufficiently small, then R/•mann prob- 
lem (1.1),(2.4) has a unique small ampli tude similarity solution. This solution is composed of  
the n - p + 2  constant states, denoted by fi~ (i = O, 1 , . . . , m , m + p , . . . , n ) ,  and n - p +  1 
small ampli tude elementary waves (shocks or centered rarefaction ,waves corresponding to gen- 
uinely nonlinear characteristic fields, contact discontinuities corresponding to linearly degener- 
ate characteristic fields). Moreover, there exist uniquely small parameters ~ (i = 1 , . . . ,  n) 
and fii (i = O, 1 , . . . ,  m, m + p, . . . , n) close to ~ -  such that 

~0 = ~ - ,  ~ = ~+, (2.5) 

~i = gi ( 5 i - l , e i ) ,  (i = 1,. , m , m + p + l , . . . , n )  (2.6) 

and 
fi,~+~ = g (~m, ~,~+1 . . - ,  era+p), (2.7) 

where gi g are smooth  functions with respect to e~ ( i E {1 , . . . ,  n}) and satisfy 

Og ~ 
( u - , 0 ) =  u - ,  ( i = l , . . . , , % m + p + l , . . . , n ) ,  (2.8) 

Og 
- -  • Ker ( A ( u ) I -  Vf(u ) ) ,  (j = m + 1 , . . . , m  +p ) ,  (2.9) 
Oej 

Og ( u - , 0 ,  ,0) = r j ( u - )  ( j = m + l , . .  r e + p ) .  (2.10) 0 -U ' ' ' 

REMARK 2.1. It follows from [11,12] tha t  the eigenvalue A(u) with constant multiplicity p (> 1) 
must be linearly degenerate, i.e., 

W ( u ) r j ( u )  - 0 ,  (j  = m + l, . . . m + p), 

where r j (u)  (j  = m + 1 , . . .  , m  + p) are the right eigenvectors corresponding to A(u); the vector- 
space bundle Ker ( A ( u ) I -  Vf(u ) )  spanned by {rm+l(U), . . .  ,rm+p(u)} is complete integrable, 
hence, for any u -  • El, there exist a neighborhood A/ (u- )  C El of u -  and n - p independent 
smooth functions ~l(U), . . . ,  ~m(U), ~m+p+l(U) , . . . ,  ~V,~(U) such that  

V ~ ( u ) r j ( u ) - O ,  ( i = l , . . . , m , m + p + l , . . . , n ; j = m + l , . . . , m + p ) ,  Vu • AY(u- ) ,  

Vgi  ( u - ) = / i  ( u - )  , ( i = l , . . . , m , m + p + l , . . . , n ) ,  

where li(u) is the left eigenvector corresponding to hi(u). Moreover, ~i(u) = ~ ( u - )  (i = 
1 , . . .  ,m,  m + p + 1 , . . .  ,n)  determine a p-dimensional connected smooth manifold, E ( u - ) ,  in 
A/ (u- )  such tha t  for any u • E ( u - ) ,  ( u - , u )  forms a contact discontinuity with speed s, 

s = = ( u - ) .  

REMARK 2.2. Theorem 2.1 was first proved by Lax for strictly hyperbolic systems of conservation 
laws, i.e., ~Yf(u) has n distinct real eigenvalues (cf. [13]). For nonstrictly hyperbolic systems of 
conservation laws with characteristics with constant multiplicity, Theorem 2.1 can be found in [5], 
in which this kind of systems is also said to be "strictly hyperbolic" (see [5, pp. 124-126]). 

Now we turn  to consider the initial value problem for general n x n system of conservation 
laws (1.1). When system (1.1) is strictly hyperbolic, Liu and f a n g  [3] and Bressan et al. [4] 
gave a well-posedness theory for the initial value problem for (1.1). We can generalize the result 
to the nonstrictly hyperbolic system of conservation laws when characteristics have constant 
multiplicity. 
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THEOREM 2.2. WELL-POSEDNESS THEOREM. Under Hypotheses H1-H3, suppose furthermore 

that the total variation of  the initial d a t a  uo (x), vo (x) of  the solutions is sufficiently small, and  that 

uo(x) - co(x) E LI(R) .  Then/'or the  exac t  weak solutions u(t, x) and  v(t, x) of  (1.1) constructed 

by G1imm's scheme or wave front tracking method~ there  exists a positive constant C independent 

of  time t such that 

II~(t ,x)  - v ( t , x ) l l L ,  < C I l ~ ( s , x )  - v ( s , ~ ) l t L 1 ,  

for any s and t with 0 < s < t < oo. 

PROOF. T h e o r e m  2.2 can be  proved  in a m a n n e r  s imilar  to  [3,4]. T h e  def in i t ion  of  the  nonlin-  

ear L 1 func t iona l  is t he  same as in [3,4]. T h e  nonincreas ingness  of  th is  func t iona l  comes f rom 

the  uniqueness  of  t he  solut ion to t he  R i e m a n n  problem.  Not ice  t h a t  t he  Qd c o m p o n e n t  in t he  

funct ional  is no t  def ined be tween  the  families w i t h  t he  same  charac te r i s t ic  speed,  and this  is not  

needed.  P lease  refer to  [3,4], for t he  de ta i led  def ini t ion of t h e  funct ional .  We o m i t  t he  detai ls  

here. | 

T h e o r e m  2.2 i m m e d i a t e l y  implies  t he  following. 

COROLLARY 2.1. UNIQUENESS OF WEAK SOLUTION CONSTRUCTED BY GLIMM'S SCHEME OR 

WAVE FRONT TRACKING METHOD. For any given initial d a t a  with sufficiently smal l  to ta l  varia- 

tion, the whole sequence of the  approximate solutions constructed by Glimm's scheme  or  wave 

front tracking method converge to a unique weak solution of  (1.1) as the  mesh size tends to zero. 
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