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A unified constitutive modeling approach is highly desirable to characterize a wide range of engineering
materials subjected simultaneously to the effect of a number of factors such as elastic, plastic and creep
deformations, stress path, volume change, microcracking leading to fracture, failure and softening,
stiffening, and mechanical and environmental forces. There are hardly available such unified models. The
disturbed state concept (DSC) is considered to be a unified approach and is able to provide material
characterization for almost all of the above factors. This paper presents a description of the DSC, and
statements for determination of parameters based on triaxial, multiaxial and interface tests. Statements
of DSC and validation at the specimen level and at the boundary value problem levels are also presented.
An extensive list of publications by the author and others is provided at the end. The DSC is considered to
be a unique and versatile procedure for modeling behaviors of engineering materials and interfaces.

© 2016 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

Validations

licenses/by-nc-nd/4.0/).

1. Introduction

Accurate solutions to engineering problems using conventional
or advanced methods are dependent significantly on the responses
of materials that compose the engineering systems. Hence consti-
tutive modeling of materials such as soils, rocks, concrete, interfaces
between structures and soils, and joints in rocks, plays a vital role in
reliable solutions to geomechanical problems. A number of
constitutive models, from simple to the advanced, have been pro-
posed and available. Most of them account for specific character-
istics of the material behavior. However, as stated before, a
deforming material may experience simultaneously many charac-
teristics such as elastic, plastic and creep strains, loading (stress)
paths, volume change, microcracking leading to failure, strain
softening or degradation, liquefaction and healing or strengthening.

Hence, there is a need for unified models that account for such
characteristics simultaneously. This review paper presents a unique
approach called the disturbed state concept (DSC) that includes a
number of available constitutive models for solids and interfaces as
special cases, and provides a unified model that allows the above
factors simultaneously. The DSC includes models for the behavior of
the continuum part of material for which the hierarchical single
surface (HISS) plasticity model can be often used for the contin-
uum; hence, the model covered here is called DSC/HISS.
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Descriptions of various constitutive models and the DSC/HISS are
presented in various publications, e.g. Desai (2001).

Computer methods (e.g. Desai and Abel, 1972; Desai, 1979; Desai
and Zaman, 2014) with appropriate constitutive models for
behavior of geologic materials and interfaces have opened a new
era for accurate and economic analysis and design for problems in
geomechanics and geotechnical engineering. Such procedures ac-
count for many significant factors such as initial or in situ stress or
strain; elastic, irreversible (plastic) and creep deformations; vol-
ume change under shear and its initiation during loading; isotropic
and anisotropic hardening; stress (load) path dependence; inherent
and induced discontinuities; microstructural modifications leading
to fracture and instabilities like failure and liquefaction; degrada-
tion or softening; static, repetitive and cyclic (dynamic) loading;
forces like loads, temperature, moisture (fluid) and chemical ef-
fects; anisotropy, nonhomogeneities, and strengthening or healing,.

The reviews of available models based on elasticity, plasticity,
elastoviscoplasticity, damage, fracture, and micromechanics are
presented in Desai (2001, 2015a,b); they present details of DSC/
HISS for a number of disciplines in engineering. A brief description
of the DSC model and applications is given below together with
relevant publications.

2. The disturbed state concept (DSC)

The DSC is a general and simple approach that can accommo-
date most of the forgoing factors including discontinuities that
influence the material behavior, and provide a hierarchical
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framework that can include many of the available models as special
cases. One of the attributes of the DSC is that its mathematical
framework for solids can be specialized for interfaces and joints,
thereby providing consistency in using the same model for both
solids and interfaces (Desai, 2001).

In the DSC, a deforming material element is considered to be
composed of two or more components. Usually, for a dry solid, two
components are assumed, i.e. a continuum part called the relative
intact (RI) which is defined by using a theory from continuum
mechanics, and the disturbed part, called the fully adjusted (FA),
which is defined based on the approximation of the ultimate
asymptotic response of the material (Fig. 1).

The origin of the DSC constitutive modeling can be traced to the
papers by Desai (1974, 1976) on the subject of behavior of over-
consolidated soils and free surface flow in porous materials,
respectively. The DSC is based on rather a simple idea that the
behavior of a deforming material can be expressed in terms of the
behaviors of its components. Thus, the behavior of a dry material
can be defined in terms of the continuum (called relative intact —
R, i) and microstructurally organized, e.g. micro cracked part which
approaches, in the limit, to the fully adjusted (FA, c) state; the latter
can be essentially considered as collection of particles in failure. The
behavior of the FA part is unattainable (or unmanifested) in practice
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because it cannot be measured; therefore, a state, somewhere near
the residual or ultimate, can be chosen as approximate FA state
(Fig. 1). The space between the RI and FA denoted by (i) and (c),
respectively, can be called the domain of deformation, whose
observed or average behavior (can be called manifested) occurs
between the RI and FA states (Figs. 1 and 2). The deviation of the
observed state from the RI (or FA) states is called disturbance, and is
denoted by D. It represents the difference between the RI and
observed behavior or difference between the observed and FA
behavior, which can be considered as a parameter.

The observed material behavior is defined in terms of the
behavior of RI (continuum) and that of the fully adjusted parts. The
disturbance, D, acts as the coupling mechanism. The DSC thus
provides for the coupling between two parts of the material
behavior, rather than on the behavior of particle(s) at the micro
level. Thus, the emphasis is on the modeling of the collective
behavior of interacting mechanism in clusters of Rl and FA states,
rather than on the particle level processes, thereby yielding a ho-
listic model. These comments are similar to those in the self-
organized criticality concept (Bak and Tang, 1989), which is used
to simulate catastrophic events such as avalanches and earth-
quakes. In this context, the DSC assumes that as the loading
(deformation) progresses, the material in the continuum state
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(a) Rl and FA states during deformation.
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(b) Symbolic representation of DSC.

(c) Schematic of stress-strain behavior in DSC.

Fig. 1. Schematics of DSC. D, Df and D, denote initiation of fracture, failure and ultimate disturbance, respectively.
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(a) Elastic behavior: Static loading.

(b) Nonlinear behavior under static loading.

(c) Nonlinear behavior: Cyclic loading.

Fig. 2. Schematics of RI (i), FA (c) behavior, and disturbance (D).

tends continuously into the FA state through transformations in the
microstructure of the material. The definition of the DSC is not
based on the behavior at the microlevel (say, as in micro-
mechanics); rather it is based on the definition of the behavior of
the material clusters in the RI and FA states defined from the
measured behavior in those states (Fig. 2).

Behaviors of the RI and FA can be defined from laboratory or
field tests, and the observed behavior is expressed in terms of the
behaviors of the RI and FA parts. Assume that the material is
continuous in the beginning and remains so during deformation,
such a behavior is called that of the RI state, which contains no
disturbance. As stated before, the fully adjusted behavior is related
to that of the material in the FA state. Some of the ways to define RI
and FA responses are given below. Fig. 2a shows the continuum
response as linear elastic, which can be considered as the RI state.
However, the observed response can be nonlinear (elastic), due to
the factors such as existing cracks and cracking. The FA response
can be assumed to have a small finite strength. The disturbance can
be defined as the difference between linear elastic and nonlinear
elastic responses. Fig. 2b shows a strain softening response. Here
the RI response can be assumed to be nonlinear elastoplastic and
the FA response based on the critical state concept. Fig. 2¢ shows
cyclic response. Here the RI response can be adopted as the
extended response of the first cycle. The FA response can be
assumed to be asymptotic as the response becomes steady after a
number of cycles.

2.1. Relative intact (RI) state

Schematics of RI observed and FA behaviors in terms of various
measured quantities: stress vs. strain, volume or void ratio
response, nondestructive behavior (velocity), and effective stress
(or pore water pressure), are shown in Fig. 3a—d. Fig. 4 shows
schematic for disturbance vs. accumulated plastic strain ép or
number of cycles or time. In some cases, the RI behavior can be
assumed to be linear elastic defined by the initial slope. However,
such an assumption may not be valid if the material behavior is
nonlinear and is affected by factors such as coupled volume change
behavior, e.g. volume change under shear loading. Hence, very
often, conventional or continuous yield or HISS plasticity is adopted
as the RI response.

2.2. Fully adjusted (FA) state

As a simple approach, it can be assumed that the material in the
FA state has no strength, just like in the classical damage model
(Kachanov, 1986). This assumption ignores interaction between RI
and FA states, may lead to local models, and may cause

computational difficulties. The second assumption is to consider
that the material in the FA state can carry hydrostatic stress like a
constrained liquid, in which case the bulk modulus (K) can be used
to define the FA state. The FA material can be considered as of
liquid—solid like in the critical state (Roscoe et al., 1958; Desai,
2001), when after continuous yield, the material approaches a
state at which there is no change in volume or density or void ratio
under increasing shear stress. The equations for the strength of the
material in the critical state (FA) are given below:

Vap = i
e¢ = ef — Aln(J{/3pa)

where superscript “c” denotes the critical state, Jop is the second
invariant of the deviatoric stress tensor, m is the slope of the critical
state line (Fig. 5), J; is the first invariant of the stress tensor, e is the
void ratio, e is the initial void ratio, 1 is the slope of the consoli-
dation line (Fig. 5), and p, is the atmospheric pressure constant. A
description of the DSC for FA state of such partially saturated ma-
terials is given in Desai (2001).

(1a)

(1b)

2.3. Disturbance

As stated before, disturbance defines the coupling between the
RI and FA states, and is represented by the deviation (disturbance)
of the observed behavior from the RI or FA state. It can be deter-
mined based on the stress-strain behavior (Fig. 3a), void ratio vs.
strain (Fig. 3b), nondestructive behavior for P- and S-wave veloc-
ities (Fig. 3¢), fluid (pore) water pressure or effective stress (o) vs.
time or number of cycles (Fig. 3d). Fig. 4 shows the schematic of the
disturbance (D) as function of £p or number of cycles (N) or time (t).

The disturbance can be defined in two ways, i.e. (1) from mea-
surements (Fig. 3) as stated before, and (2) by mathematical
expression in terms of internal variables such as &p.

2.3.1. Disturbance from measurements
From measurements, for example, we have:

A . .

D, = R (stress — strain behavior) (2a)
Vi ya . :

D, = Vive (nondestructive velocity) (2b)

where ¢? is the measured stress; V¥ is the measured nondestructive
velocity; and i and c represent RI and FA responses, respectively.
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Fig. 3. Various test behaviors to define disturbance.

2.3.2. Mathematical expression for D

Disturbance, D, can be expressed using the (Weibull) function in
terms of internal variable such as accumulated (deviatoric) plastic
strains (¢p) or plastic work:

D = Dy [1 - exp(—AEZD)] 3)

where A, Z and D, are the parameters. The value of D, is obtained
from the ultimate FA state (Fig. 2). Egs. (2a) and (2b) are used to find
the disturbance (Fig. 3) at various points on the response curves,
which are substituted in Eq. (3) to find the parameters. Note that
the expression in Eq. (3) is similar to that used in various areas such

as biology to simulate birth to death, or growth and decay, and in
engineering to define damage in classical damage mechanics, and
disturbance in the DSC. However, the concept of disturbance is
much different from damage; the former defines deviation of
observed response from the RI (or FA) state, in the material treated
as a mixture of interacting components, while the latter represents
physical damage or cracks.

2.4. DSC equations

Once the RI and FA states and disturbance are defined, the in-
cremental DSC equations based on equilibrium of a material
element can be derived as (Desai, 2001):
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where ¢ and ¢ denote the stress and strain tensors, respectively;
Gijit is the constitutive tensor; and dD is the increment or rate of
Eqgs. (4a) and (4b) that represents DSC equation from which con-
ventional continuum (elasticity, plasticity, creep, etc.) models can
be derived as special cases by setting D = 0, as
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in which the observed and RI behaviors are the same, and the
constitutive tensor can be based on the appropriate continuum
model. If D0, Eq. (4) accounts for microstructural modifications in
the material leading to fracture and instabilities like failure and
liquefaction (in saturated materials, D, in Fig. 4).

A major advantage of the DSC approach is that it is hierarchical
and unified. Hence, one can extract available models as special
cases from Eq. (4). When the RI behavior is modeled by using the
HISS plasticity, various conventional and continuous yield plasticity
models can also be derived as specialization of the HISS model
(Desai, 2001).

2.5. Hierarchical single surface (HISS) plasticity

The need for a unified and general plasticity model that can
account for the factors mentioned before was the driving force for
the development of the HISS plasticity model (Desai, 1980, 2001;
Desai et al., 1986a); it is based on the continuum assumption,
hence, it cannot account for discontinuities.

The yield surface, F, in HISS associative plasticity is expressed as
(Fig. 6a):

- - -2 —
F=Jop—(—ofi +27)1- 650" = 0 (6)
where J,p = Jop/p? is the non-dimensional second invariant of the

deviatoric stress tensor; J; = (J; + 3R)/pa is the non-dimensional
first invariant of the total stress tensor; R is the term related to

In(J7 /3p,)
(c)
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Fig. 5. Stress—strain behavior of loose and dense materials, and critical state.
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the cohesive (or tensile) strength, ¢ (Fig. 6a); S = v27J3p/2/35; n
is the parameter related to the transition from compressive to
dilative volume change (Fig. 5); vy and § are the parameters asso-
ciated with the ultimate surface (Fig. 6a); and « is the hardening or
growth function, in a simple form, it is given by

o= ;Tl (7)

where a; and 77 are the hardening parameters, and ¢ is the accu-
mulated or trajectory of plastic strains, given by

E=&+é (8)

Here the accumulated volumetric plastic strain is given by

1
& = ﬁ |55 (9a)
and the accumulated deviatoric plastic strain is given by
g 1/2
o = [ (ddfacf) (80

where eg is the plastic volumetric strain, and dsg is the increment of

plastic shear strain. In the HISS model, the yield surface grows
continuously and approaches the ultimate yield (Fig. 6); it can
include, as special cases, other conventional and continuous yield
plasticity models (Desai, 2001).

For compression intensive materials (e.g. geologic, concrete,
powders), the model and the yield surfaces (Fig. 6) are relevant
for compressive yield only in the positive /J,p —J; space, in
which ¢ will be the compressive strength. Similarly, for tension
intensive materials (e.g. metals and alloys), the model and yield
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Fig. 7. HISS yield surfaces for compressive and tensile yielding.

surfaces are relevant for tensile yield only in the positive \/Jop —
J1 space, in which ¢ would denote the tensile strength. In both
cases, the extension of yield surfaces in the negative Ji-axis is
not relevant; they are usually shown for convenience of plotting.
Sometimes, the extended yield surfaces in the negative Ji-axis
have been used with an ad hoc model for materials experiencing
tensile conditions, which may not be realistic. As discussed
below (HISS-CT model), for example, when a material experi-
ences tensile stress (during deformation), it would be realistic to
use the model (e.g. HISS) defined on the basis of tensile tests,
and vice versa.

2.6. HISS for compression and tension (HISS-CT)

For some problems, the material can be subjected to both
compressive and tensile stress conditions. To develop and use the
same model for both conditions is difficult, and perhaps not
possible. However, the same model like HISS can be formulated for
both conditions by obtaining parameters from separate compres-
sion and tension (extension) tests. Details are given in Desai (2007,
2009) and Akhaveissy and Desai (2013).

The HISS plasticity model allows for continuous yielding, vol-
ume change (dilation) before the peak, stress path dependent
strength, effect of both volumetric and deviatoric strains on the
yield behavior, and it does not contain any discontinuities in the
yield surface. The HISS surface (Eq. (6)) represents a unified plastic
yield surface, and most of the previous conventional and contin-
uous yield surfaces can be derived from it as special cases (Desai,
2001). Also, the HISS model can be used for nonassociative and
anisotropic hardening responses, etc. The idea of the single yield
surface has been also used by Lade and coworkers (e.g. Lade and
Kim, 1988), based on prior open yield surfaces (Matsuoka and
Nakai, 1974).



C.S. Desai / Journal of Rock Mechanics and Geotechnical Engineering 8 (2016) 277—293 283

2.7. Creep behavior

Many materials exhibit creep behavior, increasing de-
formations under constant stress or stress relaxation under
constant strain (displacement). A number of models have been
proposed for various types of creep behavior, e.g. viscoelastic
(ve), viscoelasticplastic (vep) and viscoelastic-viscoplastic (vevp);
they are also based on the assumption of continuum material. A
generalized creep model has been proposed under the DSC
(Desai, 2001). It is called multicomponent DSC (MDSC) which
includes ve, vep and vevp versions as special cases. Details of the
creep models are given in Desai and Zheng (1987) and Desai
(2001).

Models based on theories of elasticity, plasticity and creep as-
sume that the material is initially continuous and remains contin-
uous during deformation. However, it is realized that many
materials contain discontinuities (microcracks, dislocations, etc.),
initially and during loading. During deformations, they coalesce
and grow, and separate, resulting in microcracks and fractures, with
consequent failure. Since the stress at a point implies continuity of
the material, theories of continuum mechanics may not be valid for
such discontinuous materials.

2.8. Discontinuous materials

There are a number of models available to consider disconti-
nuities in a deforming material. Chief among those are
considered to be fracture mechanics, damage mechanics, micro-
mechanics, microcrack interaction, gradient and Cosserat the-
ories (Miihlhaus, 1995). Most of them combine the effect of
discontinuities and microcracks, with the continuum behavior.
Descriptions of these models are presented in Miihlhaus (1995),
Desai (2001, 2015a,b).

n(on)

t i s(2)

(a) 2D thin layer element.
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77 777777

(c) Interface zone with Rl and FA parts.

e
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X
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3. Parameters
The basic DSC model contains the following parameters.
(1) Relative intact (RI)

Elasticity: Young’'s modulus, E, and Poisson’s ratio, v (or shear
modulus, G, and bulk modulus, K), and Plasticity: (a) von Mises:
tensile yield/cohesion, ¢, or (b) Mohr-Coulomb: cohesion, ¢ and
angle of internal friction, ¢, or (c) HISS plasticity: ultimate yield, y
and f; phase change (transition from compaction to dilation), n;
continuous yielding, a; and 77; and cohesive strength intercept, ¢

(R).
(2) Fully adjusted (FA)
For the critical state, the parameters are shown in Eq. (1).
(3) Disturbance

The parameter D, can be obtained from Fig. 1; often a value near
unity can be used. Parameters A and Z are obtained by first deter-
mining various values of D from the test data by using Eqs. (2a) and
(2b), and then plotting logarithmic form of Eq. (3).

Most of the above parameters in the DSC have physical mean-
ings, i.e. almost all are related to specific states in the material
response, e.g. elastic modulus to the unloading slope of stress-
strain behavior, § to the ultimate state, and n to the transition
from compactive to dilative volume change (Fig. 5). Their number is
equal to or lower than that of previously available model of com-
parable capabilities. They can be determined from standard labo-
ratory tests such as uniaxial, shear, triaxial and/or multiaxial. The
procedures for the determination of the parameters are provided in

n(on)

l

7 S(n)
—

(b) 3D thin layer element.

(d) Deformation modes in 2D element.

Fig. 8. Schematics of 2D and 3D interface elements and DSC.
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various publications (e.g. Desai, 2001). Details of the softening and
stiffening behaviors are given in various publications (Desai, 1974,
2001; Desai et al., 1998; Shao and Desai, 2000).

4. Interfaces and joints

Behavior at interfaces between two (different) materials and
joints plays a significant role in the overall response of an engi-
neering system (Desai et al., 1986b; Samtani et al., 1996; Fakharian
and Evgin, 2000). One of the main advantages of the DSC is that its
mathematical framework for solids can be applied also for in-
terfaces (see Fig. 7).

4.1. Relative intact (RI) response

Schematics of two- (2D) and three-dimensional (3D) interfaces,
disturbed states, and deformation modes are shown in Fig. 8. A 2D
interface is considered in Fig. 8a. In the same way as was assumed
in the solid material, an element for the (thin) interface is consid-
ered to be composed of RI and FA states (Fig. 8c). The RI behavior in
the interface can be simulated by various models such as nonlinear
elastic and plastic (conventional or continuous yield). Here, the
HISS plasticity model is adopted for the RI part, as the specialized
form of Eq. (6) for solids. It can be calibrated from laboratory tests in

"NF,(ax=0)

Nonlinear

\Phase change (critical)
~Im

Fig. 10. HISS yield surfaces for interfaces and joints.

terms of shear stress, 7 vs. relative shear (horizontal) displacement,
uy, and relative normal (vertical) displacement v; vs. u; (Fig. 9a and
b), respectively.

The yield function specialized from Eq. (6) for 2D interface is
given by (Fig. 10):

F = 12+a02770g =0 (10)

where ¢y, is the normal stress, which can be modified as o, + R, R is
the intercept along ¢y, axis which is proportional to the adhesive
strength, co; n is the phase change parameter, which designates

Linear C1
c _ c
T 76‘10},
Critical state curves

AN

Nonlinear: 7° =¢, +¢,o\"*

(b) v¢ vs. on.

Fig. 11. FA behavior of interface/joint at critical state.
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transition from compressive to dilative response; q governs the
slope of the ultimate envelope (if the ultimate envelope is linear,
q = 2); and « is the growth or yield function given by

o ::T]z (11)

where hy and hy are the hardening parameters, and £ is the tra-
jectory of plastic relative horizontal (u;) and vertical (normal) (vy)
displacements, given by

£ = /(du?du,l?+dv$du?)1/2 . (12)

where the superscript “p” denotes plastic.

As in the case of solids, the interface can reach the critical state,
irrespective of the initial roughness and normal stress (oy,). At that
state, the relative normal displacement v, tends to a steady state
(Fig. 9b). The equation for the material at the critical state, proposed
by Archard (1957) is given by (Fig. 11a):

€ = ¢o + 109 (13a)

where (g is related to the adhesive strength and denotes the critical
value of € when gy, = 0, aE,Q is the normal stress at the critical state,
and cq and ¢, are parameters related to the critical state.
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The relation between the normal stress, ¢, and the relative
normal displacement at the critical state, v¢, was proposed by
Schneider (1976) (Fig. 11b):
ve = V0 exp(—Aay) (13b)
where 1 is a parameter and other quantities are shown in Fig. 11.

Egs. (11a) and (11b) for modeling interfaces/joints are similar to
Egs. (1a) and (1b) for solids.

4.2. Disturbance

Like in the case of solids, the disturbance for interfaces can be
obtained from measured quantities as shown in Fig. 12.

The DSC has been published in a number of papers and books,
only a few are cited here (Desai, 2001, 2015a, b); these works
include application of the DSC by the author and coworkers, and
other researchers for materials such as soils, structured soil, ma-
sonry, concrete, asphalt concrete, fully and partially saturated ma-
terials, rock and rockfills, pavement materials, metals, alloys,
ceramics, polymers and silicon, and interfaces and joints. It has
been used for applications beyond material behavior, e.g. devel-
oping expressions for earth pressures (Zhu et al., 2009), computa-
tion of pile capacity (Desai, 2013), and free surface fluid flow (Desai,
1976; Desai and Li, 1983).

A constitutive model including discontinuities should satisfy
properties such as mesh dependence and localization. The DSC has
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Fig. 12. Disturbance from various test data for interfaces.
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been analyzed for localization and mesh dependence and details
are presented in Desai (2001, 2015a,b), and Desai and Zhang (1998).

5. Validations and applications

The DSC and its special versions like HISS plasticity have been
used by the author, coworkers, and other researchers, to model a
wide range of materials such as geologic (sands, clays, rocks and
concrete), asphalt concrete, metals, alloys (e.g. leaded and unleaded
solders), polymers and silicon, and interfaces/joints; they are
covered in various publications, e.g. Desai (2001). It has been
implemented in computer (finite element, FE) methods for
nonlinear static and dynamic problems in structural- and geo-
mechanics, coupled flow through porous media and composites in
electronic packaging.

The DSC models are used successfully for a wide range of ma-
terials and interfaces. Here, specimen level validations are per-
formed for tests data from which the material parameters were
determined, and independent test data not used for finding pa-
rameters. The DSC models are implemented in nonlinear FE pro-
cedures for solution to static and dynamic problems in dry and
saturated materials. The FE procedures are used to perform
boundary value problem level validation in which the predictions
are compared with measurements in the field and/or simulated
problems in the laboratory. Details of such validations and appli-
cations are given in a number of publications. Examples of only
typical materials, particularly those containing complexities that
are difficult to model by conventional models, are presented in
various publications, in extensive publications provided later (see
Appendix).
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Appendix. DSC publications

The DSC has been used for a wide range of problems in Geo-
mechanics, geotechnical engineering and other disciplines of engi-
neering. A comprehensive list of publication related to geomechanics
and geotechnical engineering is presented in this Appendix.
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