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We find in this paper the equimeasurable hulls and kernels of some function
classes on a locally compact abelian group. These classes consist of all functions for
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1. INTRODUCTION

The purpose of this paper is to study connections between the equi-
measurability relation on function classes on a locally compact abelian
(LCA) group G and the integrability properties of the Fourier transform

F:(L'+ L*)(G)— (Cy+ L?>)(I),

where I denotes the dual group of G. We will be dealing with the following
two problems which go back to Hardy and Littlewood.

(A) For a given 1 < p< oo, characterize those functions f on G for
which at least one function g having |g| equimeasurable with |f| satisfies
Fge L(I).

(B) For a given 1< p< oo, characterize those functions f on G for
which all functions g having |g| equimeasurable with | f| satisfy Fge L?(I").

These problems are called the equimeasurable hull and equimeasurable
kernel problems, respectively.

Problems A and B were originally studied for the circle group 7 and the
group of integers Z by Hardy and Littlewood [ HL1, HL2] (see also [Z],
Ch. 11). In the case G=Z, some modifications should be made in the
formulation of the problems (see the definition of classes 4”7 and 4, ,
below). Hardy and Littlewood solved Problem A in the case 1 < p <2 and
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Problem B in the case 2 < p < oo for the groups 7 and Z. The results of
Hardy and Littlewood have been extended by Hunt [ Hu] who studied the
Lorentz space case for the group G=R". The first result concerning
Problems A and B for general LCA groups is due to Hewitt and Ross
[HR2]. They solved Problems A and B in the cases considered by Hardy
and Littlewood for all infinite discrete abelian groups. Later, Lin [Li]
treated the Hardy-Littlewood cases in Problems A and B for a general
LCA group and studied an easier problem of rearranging the Fourier
transform. He solved this problem for “almost all” LCA groups (see [Li]
for the explanation of what “almost all” means in this setting). The typical
solution to Problems A and B in the cases mentioned above is given by the
Lorentz space L(p', p) where p~ '+ (p') "' =1.

Problem A for the group T and p > 2 was originally considered by the
author [G1], [G2], and [ G5] who proved that the equimeasurable hull
in this case coincides with the space L'(T). The same result holds for the
Fourier coefficients with respect to any orthonormal system on a Lebesgue
measure space (see [ G2]). Problem B for 7 and 1 < p <2 (and also for the
Fourier coefficients with respect to a general orthonormal system) was
solved by Cereteli [ C1] (see also [ G2] where stronger results are given).
The solution in Cereteli’s case coincides with the set of all constant
functions.

The equimeasurable and rearrangements-invariant hulls and kernels of
non-invariant function classes have been studied by various authors.
Cereteli in [ C3, C4] gave a characterization of the hulls and kernels of the
Hardy space Re(H') and some related spaces. Later, B. Davis [D1] also
obtained a description of the rearrangement-invariant hull of Re(H"'). The
results of Cereteli and Davis were generalized and extended by Kalton
[K1, K2, K3]. The following theorem was proved by the author [ G2]:
any function from the rearrangement-invariant hull of Re(H') can be
rearranged in such a way that both the Fourier series and the conjugate
series of the resulting rearrangement converge in L'(7). A description of
the equimeasurable hull of the space BMO is due to Bennett, DeVore, and
Sharpley [ BDVS], [ BS] (see also Bonami [ B]). B. Davis [ D2] obtained
a characterization of the equimeasurable hull of function class consisting of
all functions for which the ergodic maximal function is integrable (see some
related results in [ V1], [ V2], and [E]).

In this paper, we obtain a complete description of the equimeasurable
hulls and kernels in the Lorentz space case for any infinite LCA group (see
Theorems 1-4 below). This includes all known results which were men-
tioned above. We consider not only the original equimeasurability relation
of Hardy and Littlewood, but also some other equivalence relations for
functions on a LCA group and solve the hull and kernel problems for these
relations with very few exceptions where the problems remain open.
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2. MAIN RESULTS ON REARRANGEMENT-INVARIANT
HULLS AND KERNELS

Throughout the paper, G will denote an infinite locally compact
Hausdorff abelian group and I” will stand for the dual group of G. The
Fourier transform F: LY(G) — Cy(I') is defined by

Ff()= | fx)(—x. ) dx

for all y e I'. The restriction of the Fourier transform F to (L' n L?)(G) is
an isometry with respect to the L*norms onto a dense subspace of L*(I").
Therefore, the Fourier transform may be extended to an isometry
F: L*(G)— L*I') (Plancherel’s Theorem, see [HR1, R]). The inverse
operator F~': L}(I') » L*(G) can be obtained in the similar way from the
inverse Fourier transform F~': L'(I") — C,(G) defined by

Flgx)=] g()(x.)dy

r

for all xeG.

We will use an appropriate normalization of the Haar measures of G and
I for which the Fourier inversion formula holds (see [R], 1.1.3 and 1.5.3).
It will always be assumed with no loss of generality that for a compact
group G the Haar measure m satisfies ms(G) =1, while for a discrete
group G, m will always be the counting measure.

It is well known that the Haar measure of G has the following property.
Any two measurable sets E, and E, of equal finite measure have the same
metric structure mod 0. This means that there exist measurable sets
E, cE,, E, c E, and a measurable one-to-one transformation w: E, - E,
such that m(E,)=m(E,), m(E,) =m(E,), and both w and w ! are measure
preserving transformations.

We consider the Fourier transform and the inverse Fourier transform as
the linear operators F: (L'+ L?*)(G) —> (Cy+ L*)(I'), and F~': (L'+ L*)(I')
—(Cy+ L*)(G).

The Lorentz space L(p, ¢)(G) where 1 < p< oo and 1 <¢ < oo is defined
by the following

o 1/q
FeLpaX@ =1z, ={ [ rHor ot <o

for 1 <p<oo, 1 <g<oo. For ¢g= o0, we have

LF11% o =sup{t"2f (1)}
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In the definition above, the function f is complex and f* denotes the
monotonic rearrangement of |f| on (0, co). The function f* is the inverse
function to the distribution function

D(y, f)=m(xeG:|f(x)|=y), y=0.

It is known that the functional ||, is a quasi-norm on L(p, ¢)(G) and
there exists a norm |-[|, , on L(p, ¢)(G) equivalent to the quasi-norm
[-1I%, (see more facts concerning the Lorentz spaces in [Hu] and [SW]).

Suppose p and ¢ are given as above. In this paper, we will primarily be
concerned with the following function classes on G

AP UG)={fe(L'+L*)(G): Ffe L(p, q)(I")}
and

A4, (G)= {fe(L™+L*)(G): f=F g
for some ge L(p, g) n (L' + L*)(I)}.

The main reason why we introduce two different classes A7 9(G) and
A, [(G) is that for some groups and some values of p and ¢ only one of
these classes really captures the L(p, ¢)-integrability properties of the
Fourier transform while the other one trivially coincides with L*(G). For
example, if the group G is discrete, then 47 %(G)=L*G) for 1 <p<2,
1<g<oo, and if the group G is compact, then 4, (G)=L*G) for
2<p<oo, I<g<oo.

Next we introduce some equivalence relations on the space (L' + L*)(G)
and analyse how the classes A7 “(G) and A4, ,(G) behave with respect to
these relations.

DEerFINITION 1. Let f be a complex function in (L' + L%)(G). Then the
distribution of f is the following measure on the Borel g-algebra of the
complex plane C:

d(E, f)=m(xeG: f(x)€eE),
where E € B and m is the Haar measure of G.

It is not difficult to see that d(E, /) can be uniquely determined from the
following joint distribution functions

DT (yi, yas fl=m(xeG:(Re /)" (x) =y, (Im f)" (x) = y,),
D+_(y1’ y2>f):m(xeG:(Ref)+ (X)>y1>(1mf)_(x)>J’2)a
D™ (y1, ya fl=m(xeG:(Re [)~ (x) =y, (Im [)" (x) = y,),
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and
D™ (y1,y: f)=m(xeG:(Re f)” (x) =y, (Um f) ™ (x)=y,)

for y, >0 and y,>0. Here Re f and Im f denote the real and imaginary
parts of the function f. Also, for a real function f, we use the notation
fH(x)=max(f(x),0), f (x)=max(— f(x),0). For such a function, we
need only two distribution functions D*(y, f)=m(xeG: f*(x) > y) and
D (y, f)=m(xeG: f(x)=y) for y=0.

DerFINITION 2. Two functions f and g from the space (L' + L*)(G)
are called equimeasurable if DYt (y,, y,, f)=D""(y,, y1, g),
D+7(ylny29f):D+7(ylﬂy23g)a D7+(y1,y2,f)=D7+(y1,y2,g), and
D™ (y1,y2, /)=D" "(y1, yp, g) for all y, =20 and y, >0.

If the functions f and g are real, the equimeasurability of fand g reduces
to DY (y, f)=D*(y,g) and D (y, f)=D (y, g) for all y>0. For com-
plex functions fand g, the equimeasurability of | | and |g| is equivalent to

D(y, /)=D(y, g), y =0.
Let us define the following functions for any fe (L' + L*)(G),

_(flx) if Re f(x)>0, Im f(x)=0

Six)= { 0 otherwise
o () if Re f(x)<0, Im f(x)>0

flx) = { 0 otherwise
. flx) if Re f(x)<0, Im f(x)<0

=14 .
otherwise
and

o [ if Re f(x)=0, Im f(x)<0

Jalx) = { 0 otherwise.

At this point we introduce the following equivalence relations on

(L'+L”)(G):

fR,g<|f] and | g| are equimeasurable

fR,g < |f,| and | g, | are equimeasurable for all 1 <k <4

fR;g < fand g are equimeasurable
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and
JR.g < (Re f) Ry(Re g) and (Im ) Ry(Im g)

DEFINITION 3. We say that a function fe (L' + L*)(G) is a rearrange-
ment of a function ge (L' 4+ L*)(G) iff there exists a Haar measure pre-
serving invertible mod 0 transformation w: G — G such that f =gow.

Let us define one more equivalence relation on (L' + L*)(G):
fRsg < fis a rearrangement of g.

It can be shown that fRsg=fR;g=fR,g=fR,g and fR g=fR,g. On
the other hand, fR,g does not in general imply /R, g. Indeed, we may take
G=R', f =101+ X[0.17> and g =yx(o.17+ix1.27- It is clear that fR,g.
However, f and g are not R,-equivalent because |f|= ﬁ Xro.17 and
|g| = xro0.27- The equivalence relation R, is in some sense intermediate
between R, and R;. We use it when it is difficult to work with the more
complicated relations R; and R;.

A subset B of (L' + L*)(G) is called R,-invariant if (f e B) & (gR, f) =
geB.

DeFINITION 4. For 1<i<5, the R,-invariant hull (4), of a set
Ac(L'+ L*)(G) is the intersection of all R;-invariant sets containing A.

DEerFINITION 5. For 1<i<5, the R;-invariant kernel (A4); of a set
Ac(L'+ L”7)(G) is the union of all R,-invariant sets contained in A.

The hull of A4 coincides with the smallest invariant set containing A,
while the kernel of A4 is the largest invariant set contained in A. The
problem of describing the invariant hulls and kernels of sets with respect to
a given equivalence relation on a larger set was posed and originally
studied by Cereteli [ C2, C4, C5].

The objective of this paper is to characterize the R;-invariant hulls and
kernels of the classes 4”7 and A4, ,. First we rewrite some of the known
results mentioned in the introduction, using the language of invariant hulls
and kernels.

In our notation, the results of Hardy and Littlewood can be formulated
as follows. For 1 < p <2,

(A7) (T)=L(p", pUT) (1)

where 1/p+1/p' =1.
For2<p< oo,

(4”7) (T)=L(p', p)(T). (2)
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For 1<p<2,

(A, )1 (Z)=L(p', p)2). 3)
For2<p<w

(4, )1 (Z)=L(p', p)2). 4)

The author’s results from [G1] and [ G2] are the following:
(A7 7),(T)=LNT) (5)

for the real spaces 477, 1 <i<5, and 2 < p < o0, and also

(ﬂA) (T)=L\(T),

p>2 i

while Cereteli’s result from [C1] can be formulated as

(A7 7); (T)={ f: f = const} (6)

for the real spaces 4”7, 1 <p <2 and 1 <i<5. Let us also mention the
following result

(41.1);(G)=L*G) (7)

for any infinite discrete abelian group G and 1 <i<5. This result with an
additional restriction on the group G has been obtained in [H]. The
restriction has been removed in [HR1], V. 2, p. 437.

It is clear that (4>?),(G)=(4%7);(G)=(4,,);(G)=(4,,);(G)=
L*(G) for all groups G and 1 <i<5. Moreover, it follows from the defini-
tions that for a discrete abelian group G we have

(A7), (G) = L*(G), (8)
(47);(G)=L*(G) )

forall 1 <i<5, 1<p<?2, and 1 <g¢< oo. Similarly, for a compact abelian
group G, we have

(4, 4):(G)=LXG), (10)
(4,.4):(G)=L*(G) (11)

forall 1 <i<5,2<p<oo,and 1 <g< 0.
The next theorems provide a description of the rearrangement-invariant
and equimeasurable hulls and kernels of the sets 47 (G) and 4, ,(G).
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THEOREM 1. (i) Let G be a LCA group. Then
(A7), (G)=L(p', 9)(G) n (L' + L*)(G) (12)

for l<p<2, 1<qg<oo,andi=1,2,4.

(i1) Let G be a LCA group. Then
(A7 1);(G)=(L"+ L?)(G) (13)

for2<p<oo, 1<g< o0, and 1 <i<5.
Part (i) of Theorem 1 holds trivially in the discrete case for all 1 <i<5.
This has already been mentioned above (see (8)). I do not know whether
(12) in Theorem 1 holds for i=3, 5 in the non-discrete case. For example,

I do not know whether (A7 7?)s(T)=L(p', p) for 1 < p<2. Theorem 1
contains (1) and (5) as special cases.

THEOREM 2. (i) Let G be a LCA group. Then

(4, 4):(G)=L(p", 9)(G) (14)

forl<p<2, 1<qg<o0,andi=1,2, 4.
(1) Let G be a LCA group. Then

(4,.): (G)=L*G) (15)
for2<p<oo, 1<g<oo, and 1 <i<5.

Part (ii) of Theorem 2 for a compact group G has already been men-
tioned above (see (10)). I do not know whether (14) in Theorem 2 holds
for i=3,5. Part (i) of Theorem 2 contains (3) and some results of Hewitt
and Ross [HR2] as special cases.

THEOREM 3. (i) Let G be a non-compact non-discrete LCA group. Then
(47);(G) =10} (16)

for l<p<2, 1<g< o, and 1 <i<5.
(1) Let G be a compact abelian group. Then

(479),(G) = { f: f = const)} (17)

for l<p<?2, 1<g<o0, and 1 <i<5.
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(1) Let G be an infinite discrete LCA group. Then
(47);(G)=L*G) (18)

for 1<p<2, 1<g< o0, and 1 <i<5.
(iv) Let G be an infinite LCA group. Then
(47 );(G)=L(p', 4)(G) (19)
for2<p<oo, 1<g<o0,andi=1,2,4.
Theorem 3 contains (2), (6), and also (9). I do not know if Part (iv) of
Theorem 3 holds for i=3, 5. However, if we restrict ourselves to the real

class A7 9(G) consisting of all real functions from the class 47 9(G) then
formula (19) holds with i =3, 5. (See Remark 3 below).

THEOREM 4. (i) Let G be a non-compact non-discrete LCA group. Then

(4,.4):(G)={0} (20)
for l<p<2, 1<g<oo,and 1 <i<5.
(1) Let G be a compact abelian group. Then
(Ap,q)i(G)z{f:fzconSt} (21)
for l<p<2, 1<g<o0, and 1 <i<5.
(1) Let G be a discrete abelian group. Then
(4,.,):(G)=L*G) (22)
for l<p<2, 1<g<oo,and 1 <i<5.
(iv) Let G be an infinite LCA group. Then
(4,.):(G)=L(p', 9)(G) " L*G) (23)
for2<p<oo, 1<g<oo,andi=1,2,4.

Theorem 4 contains (4), (9), and some results of Hewitt and Ross
[HR2] as special cases. I do not know if Part (iv) of Theorem 4 holds for
i=3,5.

The results of Hunt [ Hu] are special cases of part (i) of Theorem 2 and
part (iv) of Theorem 3. Note that Theorems 1-4 contain stronger results
than those of Lin [Li].
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Let us introduce the following notation: For fe (47 9),(G),

1[1_)< q(f) = inff HFgHL(p. q)()-

g:gR;

Forfe (Ap,q)[ (G)a

I, ,.(f)= inf 12211 2. gyr)-

2: (gRif) & (F~lh=g)

For fe(4”7),(G),

SPA(f)= sup [IFgll1(p gr)-

g gRif
Forfe (Ap,q)[ (G)a

S, ()= sup 121 2. gy -

2 (gRi) & (F~h=g)

These quantities arise in the norm estimates in Theorem 1-4 (see Remark 4
in the end of the paper.)

3. PRELIMINARIES

In the sequel, we will need some known results concerning Lorentz
spaces.

THEOREM 5 (Multiplication theorem). Suppose numbers p, py, p1» 4, 4o,
and q, are given satisfying 1<p, po, py<©, 1<q, qo, ¢; <0, l/p=
po+1/p,, and 1/qg=1/q,+ 1/q,. Then there exists a constant ¢ >0 such
that

18l <€ 1f 1y g 1805, 0,
for any functions f € L(p,, q,) and g€ L(p,, q,). The constant ¢ depends only
onp, po, Pi» 4> 4o- and qi-

THEOREM 6 (Convolution theorem). Suppose numbers p, po, Pi, 4, o>
and q, are given satisfying 1<p, p,, p1<o, 1<q, qo, ¢<0,
Ip=1/po+1/p,—1, and 1/q=1/q,+ 1/q,. Then there exists a constant
¢>0 such that

1% &l < 1S 1y gy 18],

for any functions f € L(p,, qo) and g€ L(p,, q,). The constant ¢ depends only
on p, o> P1s 4s 4o, and q, .
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Theorems 5 and 6 can be found in [Hu].
The next theorem concerns the behavior of the Fourier transform in the
Lorentz spaces.

THEOREM 7. Let G be a LCA group. Then

HFfHL (p',qg)(I) <C HfHL L (G
forl<p<2, 1<g<oo,and lp=1/p' =1.

Theorem 7 follows from the Plancherel Theorem, the boundedness of the
Fourier transform from L'(G) to L™ (I"), and the interpolation theorem for
the Lorentz spaces (see [ St, SW]).

Let G be a LCA group and f'be a non-negative measurable function such
that its level sets E(y, f)={xeG: f(x) =y}, y>0 satisfy mE(y, f) < o0,
y>0. The family E(y, f ) is monotonically decreasing and left-continuous.

(This means (.., E(z, f)=E(y, f).)

DEerFINITION 6. Let G be a non-discrete LCA group. Suppose a number
r is given such that 0 <r<mG. An r-pyramid on G is a family {E,},
0 <t <r of measurable subsets of G such that

l. E, cE, fort <t,<r
2. mE,=tfor0<r<r.

Note that our definition of a pyramid is similar to the definition of
resolutions of elements of a Boolean algebra (see [ Lu]) or u-resolutions of
measurable sets (see [CR]).

DerFNITION 7. Let G be any discrete abelian group. Suppose an integer
s is given such that 0 <s<oo. An s-pyramid on G is a family {E,},
0 <n<s of subsets of G such that

l. E,cE, for0<n <n,<s.

ni

2. mE,=nfor 0<n<s.

DEerFINITION 8. Suppose an r-pyramid P is given. We call the set E, the
top of the pyramid P. The set E, is called the base of P. In this discrete
case, the set E, is called the top of an s-pyramid P and the set E, is called
its base. We denote the top of P by 7T(P) and the base of P by B(P).

If xe T(P), then we may consider a new pyramid P[x]={E,[x]} =
{E,—x}. The new pyramid satisfies 0 € 7( P[ x]) where 0 denotes the iden-
tity in G. In the discrete case, the top T(P) consists of one element a and

Pla]l={E,[al} ={E,—a}.
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Building pyramids on groups is important for our purposes because
they equip us with a general notion of monotonicity. More exactly, if an
r-pyramid P={E,} is given and f is a non-negative function such that its
level sets have finite measure and m(f>0)=r, then we can rearrange f
along P in the following way. Our goal is to construct a function g>=0
equimeasurable with f and such that E(y, g)e P for all y > 0. It is easy to
see that

=] iy ) dy:

The corresponding rearrangement is given by

8= i (x) dy

where A(y)=Ep, . We call g the monotonic rearrangement of f along
the pyramid P. The integral formulas for both f and g should be under-
stood in the pointwise sense. In order to use the interpolation theory, we
need representations involving vector valued functions.

Assuming fe L(p, ¢)(G) with 1<p<oo, 1<g<oo, we see that the
mapping y — x4, is Pettis integrable in L(p, ¢)(G) and

g=(P) —L XAy dy.

Here (P) —S denotes the Pettis integral (see all the necessary definitions in
[DU]). If in addition fe (L' + L?*)(G), then

Fg=(P)=| " Fru v (24)

Formula (24) justifies the idea of constructing special pyramids P = {E,}
0 <t <r satisfying an additional condition

HFXE,‘|LA"'(F)<C(mEt)1/p=Ct1/p (25)

forany 0 <t<r, 2< p< oo, and 1 < ¢ < co. This will be done in Section 4.
By Theorem 7, inequality (25) holds for 1 < p <2.

In the sequel, we will often need to separate non-intersecting pyramids.
Two pyramids P, ={E]} with 0<7<r, and P,={E;} with 0<7<r, are
called non-intersecting if m(E, n E})=0. The pyramids P, and P, can be
separated if the characteristic functions of their bases are Fourier multi-
pliers in L(p, g)(I") for all 1 <p<2 and 1 <g< o0,
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DerFINITION 9. A function he L*(G) is called a Fourier multiplier in
L(p, q)(I') provided for any function f such that f = Fg with g e L(p, q)(F),
one has hf =Fe with ee L(p, q)(I"). Moreover, the estimate |e||
cligll,, , should hold with some positive constant ¢ independent of g.

pq\

The set of multipliers in L(p, ¢)(I") will be denoted M(L(p, ¢)(I")). The
norm of the operator g — e is called the multiplier norm of /4 (see more
information on Fourier multipliers on groups in [ L, HR1]).

In order to use (24) and (25) for our purposes, we will need some defini-
tions and results from interpolation theory. The reader is referred to [ BL]
for basic facts on the interpolation of linear operators. The symbol
A=(A,, A,) denotes a Banach couple, X(A) denotes the space 4, + 4,,
while A(A) is the space 4, N A,. The real interpolation spaces generated
by the K-method are denoted by 4, ,. In the sequel, we use an estimate for
the Pettis integral in the interpolation spaces 4, , for a vector-valued func-
tion A: (0, c0) — A(A) obtained in [ G3] and [ G4]. We call the mapping
J totally scalarly measurable in X(A4) if the family of functionals ye X(A)*
for which the functions 4,(x)=7y(4(x)), x>0 are Lebesgue measurable,
separates points on X(A).

Assume the mapping /A satisfies [|A(?)] 4, < @,(2), [|A(2)]] 4, < @05(2), £>0.

DermNiTION 10.  We say that the couple (w,, w,) is admissible if there
exist numbers M, t and a function y defined on (0, M) such that
0<M< oo, 0<t<l1, the function y is positive and non-decreasing on
(0, M), and the following properties hold: w,(¢) =w,(t)* y(t) for 0 <t <M
and w,(1) =w,(t)=0 for t > M

For every Lebesgue measurable set E= (0, 00), I<Sp<o and 0<O<1,
denote

IE(ga p’ wy, wz)

_{{SE[wl(t)l”wz(t)“]"tpldl}”” if 0<0<1, 1<p<w
lsup,cp {0, (0)!  wy(0) 1} if 0<0<1, p=ow

DErFINITION 11.  We call a Banach couple A =(A4,, A,) admissible if at
least one of the following conditions holds: (i) One of the spaces 4,, 4, is
reflexive. (ii) One of the spaces 4,, 4, is separable. (iii) One of the spaces
Ay, » 1s reflexive. (iv) One of the spaces Ay, » 18 separable.

The following theorem gives an estimate for the Pettis integral in the
interpolation spaces provided estimates for the function are known.
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THEOREM 8 (See [G3], [G4]). Let A be an admissible Banach couple
and 1:(0, o) — A(A) be a totally scalarly measurable mapping in X(A).
Assume the above mentioned estimates hold for A where the pair (0, @,) is
admissible. Assume also that I1,+(0, p, ®,, w,) < oo for some 0 <60<1 and
1 < p<co. Then the mapping A is Pettis integrable in A, » and the estimate

<CIE(Q’ P: Wy, w2)

Ao, p

a, ,,—L A1) dt

holds for any Lebesgue measurable set E. The constant ¢ depends only
on 0, p, T, and y where T and y are the constants arising in the admissibility
condition for (w,, w,).

The next two theorems from [ G3], [ G4] explain what happens in the
extreme cases p=1 and p = 0.

THEOREM 9. Suppose all conditions of Theorem 8 hold, except maybe the
admissibility condition for (w,, w,). Assume also that Ir+(0, 1, ®,, w,) <o

for some 0<O0<1. Then A is Pettis integrable in X(A), X(A)—
{pA(t)dte A, ,, and

<CIE(Q’ 1’ Wy, COZ)

Ao, 1

Z(Z)—f A1) dt

E

for any Lebesgue measurable set Ec (0, o0). The constant c¢ depends only
on 0.

THEOREM 10. Suppose all conditions of Theorem 8 hold and
Iz+(0, 00, w,, w,) < o0 for some 0<O<1. Then A is Pettis integrable in

S(A), Z(A)— [ M) die A, ., and

< CIE(H’ 0, Wy, wZ)
/T()_%

HZ(A) —[E A1) dt

for any Lebesgue measurable set E< (0, o0). The constant ¢ depends only
on 0, t, and y.

The next corollary is useful when one needs to interpolate in the Lorentz
spaces knowing the boundedness of a linear operator only on some family
of characteristic functions.

Suppose A is an admissible Banach couple continuously embedded into
a Hausdorff locally convex linear topological space X. Let (S, 2, u) be a
measure space. Assume a linear operator 7 to be bounded from
L(p;, 1)+ L(p,, 1) into X where p, and p, are given and 1< p, < p, < c0.
Under these conditions, the following assertion is true.
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CoroLLARY 1 (See [G3], [G4]). Suppose a family D of measurable
sets is given such that

[Ty ell.4 < Cl(ﬂE)l/p‘a
and

1Tyl 4y < o(E) 7

for all E€ D and some 1 < p, < p,<oo. Then

1T W, < € LS 1 g, )

for any function =0 for which E(t, f)e D for all t>0. Here 1/g=1/p, +
1/p,, 0<O<1, 1< p< oo, and the constant c¢ depends only on 0, p,, p,, ¢;,
and c,.

We next state some structure theorems for LCA groups.

THeEOREM 11 (See [EHR]). Any infinite abelian group contains a sub-
group isomorphic to one of the following groups: Z, Z(r™), P¥_yZ(r,), or
Z(r)%.

In Theorem 11, Z is the group of integers, Z(r*) is the dual group of the
group A(r) of r-adic integers, Z(p) is the cyclic group of order p, P*
denotes the weak direct product of groups, and Z(r)¥ is the weak direct
product of a countable set of copies of Z(r). The definitions of these groups
can be found in [HR1].

THEOREM 12 (See [HR1], [R]). Every LCA group has an open sub-
group G, which is the direct sum of a compact group H and a Euclidean
space R" with n>=0.

Let G be a LCA group and H be a closed subgroup. Denote by G/H the
quotient group of G modulo H. Let mg, m,, and ch/H denote the Haar
measures of the indicated groups. Then for any feL'(G) the integral
jH (x+ y)dmg(y) exists for almost all xe G and depends only on the

equivalence class ¢ in G/H containing x. Moreover, the following formula
holds

J fdma=]  dmau(@| fex+r)dmyr) (26)

(see [R], p. 54).
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Let I" denote the dual group of G and H° denote the annihilator of H.
Then the dual group of H is I/H°. Denote by t the canonical
homomorphism z: I'— I'/H°. The following theorem was proved by de
Leecuw [dL] and Saeki [S] (see also [L]).

THEOREM 13. If he L*(I'/H®), h=hot, and 1 < p<2, then
he M(L?(H)) < he M(L?(G)).

It follows from formula (26) that if G is a discrete abelian group, H is
an infinite subgroup and H’ is a subset of H, then

X € M(LY(T/H®)) =y € M(L"(I)). (27)
Suppose G is a compact abelian group and [ is its dual group.

DEFINITION 12. A set Q<[ is called a A(p)-set, 1 < p < oo, if there is
a constant ¢ such that

HfHLP(G) <c HfHL'(G)
for all fe LY(G) with supp(Ff) < O.

We have chosen this definition of the A(p)-sets because it is most
appropriate for our purposes (see [R], [HR1], and [ LR ] for more details
concerning A( p)-sets.) In the sequel, we will need the following property of
A(p)-sets: for p > 2, Definition 12 is equivalent to the existence of a constant
¢ such that

Hf”LP(G) <c HfHLZ(G) (28)

for all fe L*(G) with supp(Ff) < Q (see [LR], p. 54).
We need the following theorem (see [R, HR1] where a stronger result
concerning Sidon sets is given).

TuEOREM 14. Every infinite set QI contains an infinite subset O
which is a A(p)-set for all 1 < p < 0.

4. PYRAMIDS ON LOCALLY COMPACT GROUPS AND PROOFS
OF MAIN RESULTS IN THE HARDY-LITTLEWOOD CASES

Proofs given in this section are developed by means of several lemmas.
In them, we construct special non-intersecting pyramids on a LCA
group G. There is nothing magic in the number of pyramids (four) in
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Lemmas 1-3. We need this number of pyramids in order to be able to deal
with the equivalence relation R,.

Lemma 1. Let G be a discrete abelian group. Then there exist four non-
intersecting oo-pyramids P;={E'!} on G and positive constants ¢, ¢, and y
independent of n such that the following are satisfied.

1. Forl<n<oo, 1<i<4,and2<p< o0,
HF)(E{, [ L) S en''?
2. Forl<p<2and 1<i<4,
X B(P)) e M(L"(I)).
3. Forall xeE'[m;], 1<n<oo, and 1 <i<4,
m{x—E,[m;]} 0 {E,[m]u(—E,[m])}>yn.
LEMMA 2. Let G be a compact abelian group. Suppose numbers r;>0
with 1 <i<4 are given such that r\+r,+ry+rys=1. Then there exist four

i

non-intersecting r-pyramids P,={E'} on G and a positive constant ¢ inde-
pendent of t such that

. ForO<t<r, 1<i<4,and2<p< o0,
. 1
[Fx gill ooy < ct .

Moreover, for some numbers r; as above, there exist positive constants ¢’ and
y such that the following two conditions hold together with condition 1:

2. Foralll<p<2and1<i<4,
Xspy € M(LP(I)).
3. There exists x; € T[ P;] such that
m{x—E[x]} n{EL[x;,]JU(—E.L[x;])} =t
Sor all xe El[x;],0<t<r,/c', and 1 <i<4.

LEMMA 3. Let G be a locally compact non-compact non-discrete abelian
group. Then there exist four non-intersecting co-pyramids P;={E'} on G
and positive constants ¢, ¢', and vy independent of t such that the following are
satisfied:

. ForO0<t<oo, 1<i<4, and 2<p< o0,

”FXE; I Leor < ct'r,
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2. Forl<p<2and 1<i<4,
Xy € M((LP(I)).
3. There exists x; € T(P;) such that
m{x—E[x]} n{E.[x;,]JU(—E.L[x;])} =t
Sor all xe El[x,;], 0<t< o0, and 1 <i<4.

We will use part one of Lemmas 1-3 when we need to construct
rearrangements with well behaved level sets. Part 2 allows us to separate
the positive and negative parts of the real and complex parts of a function,
while part 3 will be helpful in dealing with convolutions.

Remark 1. For some groups G, we will get Lemma 1 with the following
condition which is stronger than that in part 3: There exists an integral
constant ¢ >0 independent of »n such that

x—E,[m]cE,[m]u(—E,[m])

for all xe E/[m;], 1 <n<ny/c, and 1<i<4. Similarly, for some non-dis-
crete groups G, we get the following strengthening of part 3 of Lemmas
2-3: There exist x; € T(P,) and a constant ¢ > 0 independent of n such that

x—Ex]c{E[x]u(=E,[x])}
for all xe El[x;], 0<t<r;/c, and 1 <i<4.

Proof of Lemma 1. 1t is sufficient to prove Lemma 1 for the special
groups listed in Theorem 11. This follows from (26), (27), and Theorem 11.

G=Z. We construct pyramids P,={E’}, 1 <i<4 on Z in the follow-
ing way. Their bases coincide with the set of even positive integers, the set
of odd positive integers, the set of even negative integers, and the set of odd
negative integers, respectively. As to the sets E', they are simply the sets
of first n elements of the corresponding bases. The interval-like structure of
the sets E! allows us to prove part 1 of Lemma 1. The argument here is
based on the following inequality which is not difficult to check:

1y

Part 2 of Lemma 1 follows from the elementary properties of the Fourier
multipliers and from the fact that the characteristic functions of finite sub-
sets of Z and the characteristic function of the set {ne Z:n>0} belong to

n—1

i 1/p
Y ¥ dx <cn''’.
k=0
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M(L?(T)) (the previous assertion follows from the boundedness of the
conjugate function in the space L”(T) for 1 < p < o). Finally, one easily
checks that the property in Remark 1 holds with ¢ =2.

G=Pi NZ(p,), p,=2. The dual group G in this case is ['=
P,.nZ(p,). The pyramid P, on G is constructed as follows. The set E}
contains just one element {0,0,...}. The set E; is equal to E| U
{0,0,1,0,...}. Then we add {0, 0, 2,0, ...} to the set E} and get E}. After
that we add the following elements one by one: {0, 0, 3, 0, ...}, ... {0, 0,
rs—1,0,...},{0,0,0,1,0,..},{0,0,1, 1,0, ...}, ... {0, 0, p;—1, 1, 0,
vty .{0,0,0,2,0,...},...{0,0, ps—1,2,0,...}, ... {0,0, ps—1, p,—1,
0, ...}, etc. As to the pyramids P,, P5, and P,, they are taken to be some
shifted copies of P,. The only difference between them and P, is in the
values of their first two components. The pyramid P, has n, =0, n,=1,
while P, has n, =1, n,=0 and P, has n, =1, n,=1.

We prove Lemma 1 for P,. It is clear that this will imply the same for
P,, P;, and P,. Part 1 of Lemma 1 for P, can be checked as follows.
For any cyclic group Z(r) and any subset E of Z(r) satisfying E=
{0,1,2, .., j— 1} with 1< j<r, one gets

r—1

= Y |Fxg(m)|”
m=0
LS 2miml 1., 12t |sin(zmj/r)|”
o S { } S;]p T3 L sin(zm/r)|?
m=01/=0 m=1
1 ., 2 2 Jsin(zmj/r)|” N _, 2 2 1
Lyl S N3G 1
r v 2, Isin(mm/r)] r v =y |sin(zm/r)|

with some integer N which will be chosen later. It follows that

N c 2w N r\2 Uy
1< - < — qP I
Gt Lo <reed) ]

with ¢> 0 depending only on p. Now we choose N=[c'?r/j] and get

1<V, (29)

Also, for the set E= {0} x {0} x Z(p3) x --- x Z(p;) x {0} x {0} x --- with
k>3 we have

D3Pk if g3=---=¢,=0

Fre(q)=Fre((q1, 92, ...) = {0 otherwise (30)

Now part 1 of Lemma 1 follows from (29) and (30).
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The base B(P,) of the pyramid P, is given by B(P,)={0} x {0} x
P¥_ 5 Z(p,). Since the function y g p,, is equal to the Fourier transform of
the function Lz(p)) X X zipy * Il.>3p.d,0n P, yZ(p,) where

1 if ¢g,=0

5n<qn>={0 P

we obtain

X B(P) eM(L?(P,.nZ(p,))).
This establishes part 2 of Lemma 1.

Finally, the property in Remark 1 with ¢=1 follows easily from the
definitions.

G=Z(r*). For a prime number r, the elements of the group Z(r®)
have the following form:

= eZm’(//r") (31 )

with 0 </<r" and n>1. We say that the order of ¢ is equal to m if ¢ is
representable in the form (31) with n =m but not with any n <m.

The first pyramid P, on G is constructed as follows. We start with
E,={1} and get the next several sets E, by adding successively the points
of order one until they are exhausted. Then we continue in the same man-
ner with the points of order 5; after that we proceed with the points of
order 9 etc. The pyramid P, is built similarly using the points of order 2,
6, 10, etc. The pyramid P, contains the points of order 3, 7, 11, etc., and
finally, the pyramid P, contains the points of order 4, 8, 12, etc.

Consider the following set

i k
Ei ,={e™":0<m<n<r}.

Using (29), we get

RV
{1 1

-5y

r

n
Z eZm’(rn/r/‘)(xo+x| Ao xRl

p’}l/ﬂ’

X0 s Xk—1=0 Im=0
1r"71 n . PN 1/p'
:{rk Z Z e(mes)/(r) } <C1]nl/p. (32)
s=0 ls=0

Note that we have I'=4,.
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Each set E! belonging to the pyramid P, can be represented as
E!=E, UE, where

_ s(n)
En: U H1+4k (33)

k=0

and the set E, consists of several initial elements of order t=1+
4(s(n)+1) of the group Z(r*). In (33), the symbol H; denotes the com-
plete set of elements of order ;.

Using (32) and the formula H,=E, . \E,_, ,-1_,, we get

| Fx i\l 1o,y < ' < e(mH ). (34)

It follows from (33) and (34) that

s(m) s(n)
HFXE”HLP’(A,.) < Z “Ff){H|+4k‘|L”'{A,.) <c Z rHr
k=0 k=0

<CV(4(»\‘(")+1))/P<Cp’r(mE_n)l/P. (35)

Let us denote by j the number of elements in the set E,. Then we have
Ean,’d\E,,l’g, where the set E. , consists of all elements of Z(r*) of
order <7 preceding the last element of £, in the order inherited from T
and the set E._, , has similar structure with 7 —1 instead of 7. Denote by
d(k) the number of elements of Z(r*) of order k with k <z, preceding the
last element of E, in the order of T. Then j=k(t)=rk(t—1)>...>
r*~k(1). It follows that

mE, ;< emkE,. (36)
Therefore, by (32) and (36),

HFXEW [ Loy S ”FXE,, p [ v 4,y T HFXE,., Le [ LP(4,)

< C(MET, d + mEr— 1, e) Ve < C(MET, d) e < C(MEn) 1/[7.

Finally, using (35) and the previous inequality, we get part 1 of Lemma 1
for the group Z(r=).

In order to prove part 2 of Lemma 1 in the case G=Z(r>), we need
some results of Taibleson [T] concerning the Fourier multipliers for
L?(Q,) where Q, is the group of r-adic numbers. The group 4, is a com-
pact subgroup of Q,. Denote by H, its annihilator in Q, (the group Q, is
self-dual) and consider the standard homomorphism z: Q, - Q,/H,=
Z(r™). Taibleson proved that any bounded radial function % on Q, belongs
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to M(L?(Q,)) for 1<p<2 (see the definition of radial functions in
Taibleson’s book). It follows from Theorem 13 that if g is a bounded
function on Z(r*) for which gox is radial on ,, then ge M(L?(Z(r=))).
The base of the pyramids P, constructed above has the following form:

B[P1] = U H1+4k'

k=0

If g¢=yppy then the function georm is radial and hence ygzpq€
M(L?(Z(r*))). Similar reasoning applies to P, with 2 <i<4. This proves
part 2 of Lemma 1.

We now prove part 3 for Z(r*). Let E} be any set belonging to the
pyramid P,. Then E! can be represented E! = E, U E, as above. We need
the following fact: if j <k, then

H,+H, < H,. (37)

However, the sum of two elements of the same order may have a smaller
order. This is the reason why we get property 3 in Lemma 1 instead of the
stronger property in Remark 1.

We have

s(n) s(n)
m< U H1+4k>: z (Vk*”k_l)

k=0 k=0
s(n)+1 s(n)+1
>c ) (rkrkl):cm< U H1+4k>. (38)
k=0 k=0

Using inclusion (37) and the fact that m; =0 for the pyramid P,, we see
that if xe E) has order 1+4(s(n)+1), then x — H, , 4o © H, | 45 +1, fOr
0<k<s(n). Let ¢ be the constant in (38). Then, using (38), we obtain

m{(x—E,)nE]} >m{(x_H1+4s(n>) mHl+4(s<n)+1)} =mH | | 45n)

s(n) +1
=r1+4.r(n)_r4s(n)>y z (rk—rk_l)ZymE;.
k=0

Similar reasoning applies when the order of xeE! is less than
1 +4(s(n)+1). This shows that part 3 of Lemma 1 holds for the group
G=Z(r").

Since all the special groups have already been considered, the proof of
Lemma 1 is now complete.

Proof of Lemma 2. By Theorem 11, any compact group G has a closed
subgroup H such that the quotient group G/H is isomorphic to one of the
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following groups: T, P, Z(p,), or 4,. These groups are the circle group,
the infinite product of cyclic groups, and the group of r-adic integers,
respectively. The canonical homomorphism 7: G — G/H is Haar measure
preserving. Hence we can construct a pyramid on a group from one on a
quotient group by taking the inverse images with respect to the
homomorphism 7. Using formula (26) and the continuity of 7, we show
that parts 1 and 2 in Lemma 2 are conserved under 7. It is easy to see that
part 3 is also conserved. Hence, it is sufficient to prove Lemma 2 for the
special groups mentioned above.

G=T. Suppose the numbers r,, r,, r;, and r, are given such that
ri+r,+ry+ry=1. 1t is clear that we may consider the interval [0, 1]
instead of 7" and build the pyramids P, on [0, 1]. They will have four
closed essentially non-intersecting intervals I, satisfying ml;=r; as their
bases. The set E! belonging to the pyramid P; coincides with the closed
interval of measure ¢ having the same center as the interval B(P,). Part 1
of Lemma 2 for characteristic functions of intervals follows from
straightforward calculations. As the characteristic function of any interval
is in M(L?(Z)) (this follows from the results of Hirschman [Hi] on the
multipliers having bounded variation), we have an even stronger property
than that in part 2 of Lemma 2. Finally, it is easy to see that the property
in Remark 2 holds with ¢ =2. Therefore, Lemma 2 is true for the group 7.

G=P,.Z(p,). The Haar measures of the groups P, ,Z(p,) and T
are isomorphic. The standard measure preserving invertible mod 0 transfor-
mation w: P,-,Z(p,) — T is obtained as follows. First we subdivide the
circle T into p, closed essentially non intersecting subarcs of equal length
(we call this partition 7). Then we subdivide each of these subarcs into p,
closed subarcs of equal length (partition 7,) etc. After that we define
o(p)=w({q,}) with ge P,-,Z(p,) to be the unique point belonging to
the intersection of the arcs corresponding to the integers {g,} in the
partitions above. The explicit formula for w is

e}

w({qn}): g ﬁ

The next step is to build a 1-pyramid P, on G as follows. The pyramid
P will be the inverse image with respect to  of some 1-pyramid P={E,}
on the circle group T (we identify the subsets of 7and [0, 1] as usual). Set

s=y !

i—o Po"Di
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and define the sets E, as follows: E,=[0, /2] u[S—1/2,5] for 0<t<S
and E,=[0,¢] for S<t<1. Next we define the pyramid P, by
PG:{w_l(Et)}-

Denote 4,=[0, /2], 4,=[S—1¢/2, S] with 0 <t < S. Assume w(x)e 4,
and w(x’)e 4,. Then

X t
0< — <o,
Zpomp,» 2
and
S £<Z X <S
2% popi
It follows that
Pi— X; 4
1< <1l+=
Zpo P 2
and
l<w(x—x’)=2w<l+t.
Do P

This implies part 3 of Lemma 2 for the pyramid P in the case xew ~'4,.
If w(x) e 4, and w(x') € 4,, then the same reasoning allows us to estimate
o(x" — x) and get part 3 of Lemma 2 for xew ~'4,. We thus conclude that
Part 3 of Lemma 3 holds for P.

Our next goal will be checking the inequality in part 1 of Lemma 2 for
the pyramid P. Since the sets constituting the pyramid P consist of at
most 2 closed arcs in 7, it is sufficient to prove that

1/p'
{Z IC;V(XI)I”} <c(m()'” (39)

where 2 < p < oo and the constant ¢ >0 is independent of 1. In (39), [ is
any subinterval of [0, 1], y, is its characteristic function, y € P}¥. (Z(p,),
and ¢, are the Fourier coefficients with respect to the orthogonal system

@={¢,} ={ycw '}. It is clear that part 1 of Lemma 2 for the pyramid
P follows from (39).
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In order to prove (39), we need the following condition to be true: if
y:{mosmlama mimoa Oa} (40)

for some n, m,>0, and 0 <m, < p, with 0<k<n, and if the interval 1
belongs to m; with j <n, then

f ¢, dt=0. (41)
1

Formula (41) can be proven in the following way. It is sufficient to con-
sider the case n= j+ 1. Since

y(x) = 2mi(moxo/py) + --- + (muxn/p,))

for x=(x;) e Pr~oZ(ps), we have

1 pn—1
€27zim,, k/pn — 0

J p () dt=¢c ———
I PoP1 " "Pn ;-0

This proves (41).
We have

el =] (0 di

where [ is any subinterval of [0,1] and p is given by (40). Denote
s=max{n: (py---p,) ' =m(I)}. We have

1 1
zm(l)>———:. (42)
Po " Ds Po " Ps+1
It follows that there exists an integer / such that 1 </< p,,, and

L mn>— (43)

—=>=m _

Po Pyl Po - -ps(1+1)

We obtain

Yleol”=% + X + Y =L+L+1 (44)

yell yeln yely yel3s
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where I'y =1}, v I, Ul ; with

Ir'y={yel:y=(my,..,mg0,0,..),0<m,<p,—1,0<i<s};
I'n,={yel:y=(mgy,..mgym, ,0,0,..),
0<m,<p,—1,0<i<s,0<m,, <l};
I'y={yel:y=(mgy,..mg,mg ,0,0,..),
0<m<p;i—1LO0<i<s, poyy—I<my <po— 1
Iy={yel:y=(mgy,..mg,m, ,,0,0,..),
0<m;<p,—1,0<i<s, [+1<m,, <p,,,—1+1};
Iy={yel:y=(mgy, .., m0,0,..),

0<m;<p;—1,0<i<k k>s+2,m,>0}.
From the inequality |c,(x;)| <m([) and from (43), we obtain
IV7 < c(po - pIm(1)7)17. (45)

Using (41), we get

ez = Ll ¢, di+ Lz &, dt (46)

for y =(my, ..., m,,0,0,...) and 1 <m, < p,—1, where 4, and 4, are some
subintervals of I such that m(4,), m(4,) <(po--pn_1) "

The intervals 4, and 4, consist of several intervals belonging to the
partition 7, and of the intervals 4} and 45 such that m(4)),
m(45) < (py ---p,) ~'. It follows from the previous inequality and (46) that

pn—1
Z ezﬂi/mn/ﬂn
J=s1

1

52
2l
Po " Pu

Jj=0

c 1
le, (x| < +
Po"Pn Po Pn

+

c c 1
< + - .
Po - Pn Do Pn Sln(nmn/pn)

Now using the inequality sin x = (2/7)x, 0 <x < 7/2, we get

c . 1 1
le,(x)| S ——————min <, > (47)
Do "Pun-1 m, p,—m,
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From (47), we obtain

i I’kz_l 1 1 1 3
I3 < Do Pr— ,min<, >
’ k=s+2 ° g 1,,,,k:1(P0"'Pk71)p my. Pr—my

& 1

<c 1
k=s+2 (Po "'pkfl)p !

1 1 1
p'1<c< p’fl_ p'l>’
(Po - Pr—1) (Po - Pr—1) (Po - Pr)

we get
L7 <e(po---posn)
Now (42) gives
IY7 <em(1)V7. (48)

Finally, (47) and (42) imply

Psr1—1+1 1 1 1 »yY1p
1/p' :
L7 <cipo--ps ), — min ,

myp1=1+1 (p()p\) m.\‘+l ps+lim.v+l

1 =z 1 /v
SC{M Z pr}
(p()p\) myy1=1+1 (mx+l)

1
<c -<em(I)'7. (49)
[po---pl+1)]"

Consequently, inequality (39) follows from (44), (45), (48), and (49).
This proves the inequality in part 1 of Lemma 2 for the pyramid Pg.
Moreover, inequality (39) implies part 1 of Lemma 2. Indeed, we can con-
struct four non-intersecting r,-pyramids P, on [0, 1] consisting of intervals
and take their inverse images with respect to w to be the pyramids P,.

The next step in the proof of Lemma 2 in the case G=P,-,Z(p,) is the
following. We will find numbers r; with »,+7r,+r5+r,=1 and build
ri-pyramids P; satisfying conditions 1, 2, and 3 in Lemma 2.

Set
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and consider a 1-pyramid P, = { W,} constructed exactly as above with the
group

H:Pn>2Z(pn) (50)

in place of the group G. Define four ri-pyramids P, on G as follows.
For 1<i<3, we set P,={E;} where E;=%;x W, and x,=(0, 1),
x,=(1,0), x;=(1,1). In addition, P,={E}} with E}=Ax W, - and
A=2Z(po) x Z(p)\{x1, X2, X3}

It is clear that the pyramids P,, P, and P; are obtained by shifting the
pyramid

P=1{E} ={(0,0)x W, 1}, (51)

while the pyramid P, can be represented as a disjoint finite union of such
shifts. Using this, we deduce the validity of parts 1 and 2 of Lemma 2 for
the pyramids P, from that for the pyramid P,. It is clear that part 3 of
Lemma 2 for the pyramid P, also holds. This immediately implies part 3
of Lemma 2 for P and for P,, P, and P, as well because part 3 of
Lemma 2 is preserved under shifts. For the pyramid P,, we use the fact
that it contains the pyramid P as a subpyramid and easily get part 3 of
Lemma 2 for it.
This completes the proof of Lemma 2 for the group G=P,-Z(p,).

G=4,. Since the group 4, is indistinguishable from the group
P,.oZ(p,) with p,=r both as a topological and metric space, the proof of
Lemma 2 for 4, follows the same lines as in the previous case. First we
build a 1-pyramid P, on 4, exactly as above with the only difference being
that now we set

pi—1
S= _—
ngl Do Di

The reason we have this difference with the previous case is the follow-
ing. If x=(x,)ed,, then —x=(py—x¢, p1—1—x1, ., p,—1—x,,...).
Now we can prove part 3 of Lemma 2 for P exactly as before. The proof
of part 1 is also similar. All we need here is to get (39) with I"'=Z(r*). If
ye Z(r*), then

2ni
y(x)=exp {rnil (mog+myr+ - +m,r")(xqg+x,r+ --- +x,,r”)} (52)

where x = (x;) € 4,, n is some integer, and 0 <m, <r for 0 <k <n. Now we
define an element of the group P¥.,Z(r) by formula (40). If we prove (41)
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for the functions ¢,=ycw ™', then the proof of part 1 for P, can be
completed exactly as in the previous case. If the interval I belongs to the
partition 7, ,, then for xew ~'(I) we have

2rimx,,r" 2nimx,, 27imyXx,,
Yx)=cexp{—— T r=cexp B A
r

where ¢ is a complex constant such that |¢|=1 and m=m,+ --- +1"m,,.
As my #0 and m,, #0, we obtain

ril exp {Znimox,,} —0.
r

xp=0

This proves (41) and establishes part 1 of Lemma 2 for the pyramid Pg.
Next we construct the pyramids P; and the r —>-pyramid P on 4, exactly
as in the case of the group P, . (Z(r) and obtain part 3 of Lemma 2 exactly
in the same way as before.
We will prove part 2 of Lemma 2 by showing that

X(o,O)xHeM(LP(Z(V%)))s (53)

where H=P,.,Z(r).
In order to prove (53), let us suppose ye Z(r®) is given by (52) and
m, #0. Then we have

1 _
I:FX(O,O)xH(V):rn+1 Z X(0,0)xH(x) V(x)-
X = (X0 ey Xppy 0+ )
If n>1, we get
- n1+] ril exp —27[1.’7’1(XX+1 —|—n;.s. —{—xnr"*x—l):o

r

Xs4 1o s Xp=0
where m=my+rm;+ --- +r"m,. Moreover, if n>1, then I=r"2 It
follows that

HFZxox all L(zee) S L.

This proves (53).
Next we prove part 1 of Lemma 2. It is sufficient to prove it for the
pyramid P defined in (51). We have

— 2nim
J=FXE,(V)=L X E(X) CXP{W(XO—F +xnr”)}dm0.
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If n<1, then J=0. If n> 1, then

1 =t 2nim
J== ) exp {r"“ (xo—i-xlr)}
0

re. _
X0, X1 =

2nim
[ty e { T Gt ) (54)

Let us denote xp=Xx,, X|\=X3,.., Hi=my+ ---+m, " % m=
m, " 4 m,r", ¥ =xo+x,r, and X' =x,+ --- +x,7" 2 It follows from
(54) that for m #0,

172! 2ri(i +m) X — 2mirix’

=2 Z exp{ n+1 }f /(Wn eXp " n—1 de(X’)
X0, X]

12! —2mi(fm +m) X .

:ﬁ Z eXp {V"H} FXW,,.Z(m)'

X0, X1

Therefore, |Fy g (y)| < |Fyw,.(7)| and part 1 of Lemma 2 follows from the
validity of part 1 of Lemma 2 for the pyramid P,,. This finishes the proof
of Lemma 2 for the group 4,.

Thus Lemma 2 holds for all special groups and therefore the proof of
Lemma 2 is now completed.

Proof of Lemma 3. By Theorem 12, there exists an open subgroup U of
the group G topologically isomorphic to R x K for some compact group K
and a non-negative integer a. First we consider the case a> 1. It is clear
that the group G/U is discrete. Denote by H the annihilator of U. Using
(26), we get for any ge (L' + L?)(U),

J, VB dy=[ dmy@) | VFe 401 dmaty)

J I/H

=], [ @) (55)

" [ )

JU g(y) &(y)dmy(y)

Therefore, it is sufficient to build for co-pyramids on the group R“x K
satisfying the conditions of Lemma 3. Then we easily prove Lemma 3 for
the group G. Indeed, part 1 of Lemma 3 for G follows from (55). Part 2 can
be obtained from (27), while part 3 is straightforward.
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Part 2 of Lemma 3 for the group R*x K in the case a>2 is slightly
easier than that for @ =1; hence we consider it first. We give the proof for
a=2. The case a > 2 is similar.

Consider the family of squares {C,=[0, \ﬂ]zz t>0} belonging to the
first quadrant Q, = {x=(x,, x,)eR*: x; >0, x,>0} of R’ The pyramid
P, in R*x K is defined by P,={C, xK}. Part 1 of Lemma 3 is easy to
check for this pyramid. In order to prove part 2, we use the fact that the
characteristic function of the first quadrant is a Fourier multiplier in
L?(R?). This follows from the boundedness of the Hilbert transform in
L?(R) for p>1. Part 3 is easy to check. Three more pyramids can be
obtained by using the same construction for the second, third, and fourth
quadrants, respectively. This completes the proof for a > 2.

Next we consider the case a =1. Let us define the following set

& 11
W=<kU [k—g,k+8DxK. (56)

(=0

This set will be the base of the pyramid P,. The pyramid itself is given by
E'=[—4% —1+1]xK for 0<t<%; El=([—-% 3]uls i+1—3)xK
for j<r<3, ete.

Part 3 of lemma 3 for the pyramid P, follows from the following obser-
vation. Suppose m/4 <t <(m+ 1)/4. Then

m—1 m—1
Et] B /}:Jo {k—é, k+:§} ” {M—é, M—%-i-f—% B kL—Jo heo L
If xel, with 0<k<m—1 and j is between 0 and m — 1, then there exists
a subset I, of I, such that m(I))=1% and x—T,cE! U(—E}). Similar
reasoning applies in the case x € I,,. This proves part 3 of Lemma 3 for the
pyramid P,.
We next define the set

- 1 1
r= U {k—g,k+8},

k=—w

and note that the following corollary from Hirschman’s theorem [ Hi] on
the Fourier multipliers of bounded variation holds: x; s 157 € M(L?(Z)).
By this corollary and Theorem 13,

xv € M(L"(R)). (57)

Now the boundedness of the Hilbert transform in L?(R) with p > 1, (56),
and (57) give yy € M(L?(R)). This implies part 2 of Lemma 3 for the
pyramid P,.
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In order to establish part 1, we make the following observation. The
inequality in part 1 of Lemma 3 holds for the family of all subintervals of
R. Hence, part 1 will be established if we prove the same inequality for the
family of sets

m 1 1
L,= k——k+3 = 0.
m kL_)0|: 89 +8:|a m

The proof of the above-mentioned inequality is left as an exercise for the
reader.

We construct three more pyramids P,, P;, and P, exactly in the same
way by shifting P, by 1, 2, and 2, respectively. Since all the required
properties are unaffected by shifts, Lemma 3 holds for a = 1.

Next we consider the case when G contains an open compact subgroup K.
Let us denote H=G/K. The group H is discrete and hence there are four
co-pyramids Q,= {0’} with 1<i<4 on H satisfying the conditions of
Lemma 1. We may also construct a 1-pyramid W = { I/T/,} on K satisfying
the conditions of Lemma 2. These auxiliary pyramids will help us to con-
struct the co-pyramids P;={E’} on G. For example, the pyramid P, is
obtained as follows. It is easy to see that the pyramid Q, provides a
numeration for its base B(Q;) in H. Consider the coset x; + K of K corre-
sponding to the first element of B(Q,) in this numeration and define
E'=x,+ W, for 0 <t<1. Next we consider the coset x,+ K of K corre-
sponding to the second element of B(Q,) and set E! = E! U (x, + W,) for
1 <t<2. Now it is clear how to continue this construction by induction.

We have

B(P)= | (xc+K).

k=0

Since y o,y € M(L?(H)), we get ypp, € M(L?(G)), by Theorem 13. This
proves part 2 of Lemma 3 for the pyramid P,.

Denote by K° the annihilator of K. As H is discrete, K° is compact. For
0<t<1, we have by (26) and part 1 of Lemma 2 that

1/p' ) 1/p'
[ 1B dn )" ={] e [ 1Bt dne) |
r T/K° K°

1/p’
- {jm F (&) dmr/xo(if)}

<c,(mE})"". (58)
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Now consider a family of sets given by
j
A=) (x,+K), j=0. (59)
By (26) and part 1 of Lemma 1, we have
( 1/p' ( 1/p
[ Egon " ={] @) | 1Byl dmet)}
r /K K°

, 1p
{101 i) |
<e, i jzl (60)

Now part 1 of Lemma 3 follows from P, because any set E| consists of a
set of type (59) and a shift of a set £, for some 0 <y <1.

Finally, part 3 of Lemma 3 for P, can be obtained by combining the
following facts: part 3 of Lemma 3 for O0<t<ec~!, the inclusion
E!—E! =K for ¢ '<t<1, and part 3 of Lemma 1 for the pyramid Q,.

The pyramids P, with 2 <i<4 are constructed exactly in the same way
as the pyramid P, but from Q; instead of Q,. It is clear that the same
reasoning applies for P, with 2 <i<4.

This finishes the proof of Lemma 3.

Proof of (12), (14), (19), and (23). Using Theorem 7 and the Fourier
Inversion Theorem, we get the following inclusions for any LCA group G:

(A7) (G) = L(p', 9)(G) n (L' + L*)(G),

l<p<2,1<g<oo, 1<i<5, (61)
(4,,),(G)=L(p', q)(G),
l<p<2,1<g<o, 1<iL5, (62)

L(p', 9)(G) = (4" %), (G),

2<p<ow,1<g<on, 1<i<5, (63)
and

L(p', g)(G)nLXG) = (4, ,):(G), 2<p<o0, I<g<o, 1<i<5. (64)
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The reversed inclusions for the equivalence relations under consideration
(R; with i=1, 2, 4) can be obtained in the following way. In order to prove
the reversed inclusions for (61) and (62), we first construct pyramids
satisfying property 1 in Lemmas 1-3, then rearrange the functions from the
corresponding Lorentz spaces along the constructed pyramids, and finally
apply Corollary 1.

Let us illustrate this by proving

L(p', q)(G) = (4, ), (G) (65)

for a compact LCA group G, | <p<2, and 1 <g< 0.
Assume

feL(p', q)(G) (66)

and consider the functions f; in the definition of the equivalence relation
R,. Denote s;=m(xeG: |fj'(x)| >0) for 1 <j<4 and choose any non-
negative numbers r;such that r,>s; and ry +r, +r;+7r,=1. By Lemma 2,
there exist four r, -pyramlds P satlsfymg part 1 of Lemma 2. Let us
rearrange the functlon |.f; along the pyramid R; and denote the new func-
tion by /. Then the function

=fr=fi+ifr—ifx (67)
satisfies gR, f. Our next goal is to prove
ged, (G). (68)
Let us first prove
fied, (G) (69)

Denote h,(x)=min{n, f§(x)} for n>1. Using the Fourier Inversion
Theorem we get h,=F '/, where /, = Fh,. Now part 1 of Lemma 2 and
Corollary 1 give

Hl lm HLp q) (" <C Hh HL(p’,q)(G)‘

for n>m. Since (66) holds, the right side of the previous inequality tends
to 0 as n, m — co. Hence [, tends to some function e belonging to the space
L(p, ¢)(I). It is clear that /¥ = F~'e which proves (69). The same reason-
ing applies in the cases j=2, 3, 4. This gives (68). Therefore, inclusion (65)
is valid. Now (62) and (65) imply (14) in the case considered above. The
remaining cases are similar. This establishes (12) and (14).
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On the other hand, the proofs of the reversed inclusions for (63) and
(64) are more complicated. They need the full-scale Lemmas 1-3. We will
again consider the case of a compact group G, 2<p < o0, 1 <¢g< o0, and
i=2 and prove the inclusion

(479, (G) = L(p', 9)(G). (70)
Suppose f € (47 7), (G). Then for every function f such that fR, / we have

LET || . gy < 0 (71)

By Lemma 2, there exist four non-intersecting r;-pyramids P; satisfying
parts 1-3 of Lemma 2. Here r; are some numbers 1ndependent of fand such
that ri+r,+ry3+r,=1 Set s;=m(xeG:|f;(x)|>0) where f; denotes
functions arising in the deﬁnltlon of the equivalence relation R,. A natural
idea here would be to use the rearrangements of functions |f;| along the
pyramids P;. However, this is possible only if s; <r,. Therefore, some more
technical work is needed.

We consider the special case when s, >r,, s, <r,, s3<r;, s,<r, and
give the proof in this case. The remaining cases can be dealt with in the
same way.

First we rearrange the functions |f;], 2 < j<4 along the corresponding
pyramids P; and get the monotonic rearrangements f*, 2< j<4. As we
have already mentioned, we cannot rearrange | f,| along P, because s, >r,.
However, using the functions

&1 zx:|f'l|/"({x:\f1(X)|2a}9 hl,zx:|f‘l|x{x:|f1(x)|<oc}a 0(>0)

we can represent the function |f;| as follows

Ifil =g +h. (72)
Here we have
11l 2, aricr < € 1811 2, g6 (73)
and
=m(xeG:g,(x)>0). (74)

Now we can rearrange the function g, along the pyramid P, and get the
P,-monotonic rearrangement gi. As for the function #4,, we first consider
a function / equimeasurable with /, and supported in the set

A, VA5 U Ay
= (B(Po)\supp(f5)) © (B(P3)\supp(f¥)) O (B(Py)\supp(f§))-
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Then we denote /;=/hy ,,, 2<j<4. It is clear that the function
Sr=gt+ L+ L+l —fF+iff—iff (75)
satisfies
IRy [ (76)

By the multiplier property for the bases of the pyramids P; (see part 2 of
Lemma 2), we get

Hng“ HL(p,q)(r) <c HFf*HL(p,q)(r)s (77)
IFGF S+ D) 2o gy S € WEF* | o, gy (78)
IFC= S5+ L) 2o, oy <€ VE* Lip, vy (79)
and
HF(_lf‘Zk +Z4)HL(/),:])(F)<C HFf*HL(p, g)( 1) (80)

Now it follows from (73), (78)—(80), and Theorem 7 that for 2 < j<4 we
have

VE W L. vy < € NEf* | . gy + I i, gy
S NE ¥ Lip.gyry ¢ Wil Loy, g0
<c HFf*HL(p, o) T ¢ HhHL(p’, 9)(G)
<c HFf*HL(p,q)(r)‘f‘C ”gl* HL([;',q)(G)- (81)

Our next goal is to prove that

HgkaL(p', neSC HngkHL(p,q)(F) (82)

and

L/ N 2, aver < € WEFF Nl i, gy (83)

for 2 < j<4. Then (71), (72), (75), (76), (77), (80), (82), and (83) give

1A L. gyar <€ 18T Il L. gria) + Z Lf 71 L, g

2<j<4

<c|Fgf HL(;;, ot Z HFfj* HL(p, (1)

2<j<4

< NE ¥ 1ip. gy < 0. (84)
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Therefore fe L(p', ¢)(G) and

(Al Ly, (&) S Sup gl L(p. g)(I)* (85)

JRyg

This proves inclusion (70).
Inequalities (83) and (84) can be obtained from the following lemma.

LemMA 4. Let G be a compact group and P={E,} be some r-pyramid
on G with 0<r<1. Assume the pyramid P satisfies conditions 1 and 3 in
Lemma 2. Then for every 2 < p < o0, 1 < q < o0, and every P-monotonic non-
negative function ge (L' + L*)(G) one has

HFgHL(p, () < 0= HgHL(p’,q)(G) <

and

gl L, )6 S C I Fgl L(p, q)(I')

with ¢ >0 independent of g.

Remark 2. Similar assertion holds with minor adjustments for the
discrete groups and locally compact non-compact non-discrete groups.

Proof of Lemma 4. With no loss of generality we assume 0 (),-, E,.
Suppose g is a non-negative P-monotonic function on G satisfying

HFg”L(p,q)(r)<oo- (86)
With no loss of generality, we may restrict ourselves to the case
m(g=1t)=0 (87)

for every ¢ >0 (use Theorem 7 to prove this). Next fix a number s with
1 <s <2 such that it is so close to 2 that the number a defined by

1

—hn (88)
s p oo
satisfies o > 1.

Let 7 be a positive function on G such that the function g, is
P-monotonic, t(x)=1 for xe G\B(P), and moreover the monotonic
rearrangement of 7y ) on (0, r) is given by

() =1, (89)
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Define a function 7 by 7(x) =1( —x). Then it is clear that
[zl L(x, 0)(G) = 170 £, w)(G) = C-
By Corollary 1, we have
”FT”L(cx’,oo)(l’): HFfHL(m',oo)(r)<C~ (90)
Using (88), (90), and Theorem 5, we get

[F(g = (z +f))HL(s, oS¢ HFgHL(p,q)(r)- (91)

Therefore by Theorem 7 applied to the inverse Fourier transform, we
obtain from (91),

lg = (t+ f)HL(s’, e SC HFgHL(p, g)(I)- (92)

For xe€ G, denote 4, = {g>g(x)}. Then we have the following estimate
(g*(t+17))(x) =L [t(x—y)+T(x—p)] &(y) dm(y)
>g(x) | [elx—p) 45— )] dn(y)

>g(x) [ [e(z)+2(2)] dm(z) (93)

The set A, belongs to the pyramid P. Therefore, A, = E, where t =mA ...
Let ¢ be the constant in part 3 of Lemma 2. Then if the number ¢ above
satisfies ¢ < ¢!, we have from (93) and part 3 of Lemma 2 that

(g* (T+7))(x)=g(x) J [7(z) +7(2)] dm(z).  (94)

(x = Ax) N (Eqr© (—Eer))

From (89), we get t(z)=(ct)”"* for zeE, and #(z)=(ct)”"* for
ze(—FE,.). Now (94) and part 3 of Lemma 2 give

(g* (t+7))(x) > cglx) ' (95)

for t=mA <c™ .
On the other hand, as 7(z) > ¢ and 7(z) > ¢ for ze G, we get from (93)

(g * (1 +7))(x) > cglx) 1 (96)
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for t>c¢~'. Finally, (95) in combination with (96) imply

(g * (z+17))(x) > g(x) m(g > g(x))" (97)

for all xeG.
Denote

H(x)=g(x)m(g=g(x)"™,  J(x)=m(g=>g(x))~ "

Then (92) and (97) give

HH”L(S’, nG)SC HFgHL(p, g)()- (98)

Since g(x) = H(x) J(x), we obtain from (88), (98), and Theorem 5 that

HgHL(p o) S € HJHL(cx 0)(G) HFg”L L q)(I)* (99)

Our next goal is to prove that
I Lo, o0 yi6) < 1. (100)

Using (87), we obtain for every s >0 and every xe G that m(g>g(x)) <
s=>g(x)>=g*(s) where g* denotes the monotonic rearrangement of g on
[0, 1]. Now using (87), we get

m{x:m(g=>g(x)) <s} <m{x:g(x)=g*(x)} =m{r: g*(t) = g*(s)} =s.

Therefore, D(s; J)=m{x:m(g>g(x)) <s *} <s % and J*(r) <t~ "*. This
gives (100). Now Lemma 4 follows from (99).

As we have already mentioned above, Lemma 4 proves (82) and (83).
Hence, inclusion (70) holds. This in combination with (69) proves (19) for
all compact groups G and i =2. The case of a non-compact group and i =2
is easier than that of a compact group. When we finish constructing four
oo-pyramids P; in Lemmas 1 or 3, we consider the function g given by (67).
Then we separate the functions f; using the multiplier property for the
bases of the pyramids given in part 2 of Lemmas 1 and 3. In the end, we
use lemmas similar to Lemma 4.

Now we consider the case i =4. Let us illustrate how to prove inclusion
(70) for i =4. Suppose f € (47 ?), (G) and (71) holds for every f with /R,f.
As Re(f)=1/2(f+ J), we have

| F(Re( f ‘|L(p,q)(r)<c HFfHL(p, @)(I)
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The class {Re(f): fR,f} coincides with the class {/: hR,Re(f)}. Hence,
we may apply the reasoning which was used in the case i =2 and conclude
that

HRe(f)HL(p', oG SC Sup HFfHL(p,q>(r)-
{S:/Raf}

Similar reasoning applies to Im(f). This gives (70) for i=4 in the case of
a compact group G. The remaining cases are similar.

Remark 3. Suppose f, ge(L'+ L*)(G) are real functions such that
fR,g. Then for every 1 <s< oo, 1 <¢< o0, and ¢ > 0 there exists a function
h satisfying AR f and

Ih— gHL(s, G SE

This can be shown using approximation by simple functions and the metric
equivalence of measurable sets of equal finite measure. After that we use the
validity of formula (19), Theorem 7, and the previous fact with s=p’ in
order to establish the case i=3,5 for formula (19) for the real classes
AP 9(G).

5. REARRANGEMENTS WITH UNIFORMLY SMALL FOURIER
TRANSFOR, A(p)-SETS, AND REMAINING PROOFS

It has already been mentioned above that formula (15) for a compact
group G and formula (18) for a discrete group G follow from definitions
and Plancherel’s theorem.

Proof of formulas (13) and (15) for a discrete group G. We prove for-
mula (13) for a discrete group G and i =5. The remaining cases are similar.
We use some ideas from the proof of Helgason’s result in [H] and [ HR1].
The inclusion (A7 %) (G) = (L' + L*)(G) = L*G) follows from definitions.
In order to prove the reversed inclusion, we assume f € L*(G) and denote
S={xeG: f(x)#0}. This set is at most countable. By Theorem 14, there
exists a countable set 4 = G which is a A(¢)-set for all 1 << oo. Let us first
consider the case when both sets S\4 and A\S are infinite. Then we may
construct a permutation z: G — G such that

Sca(A). (101)

The permutation 7z in (101) coincides with the identity mapping on the set
[G\(SuA)]u(SnA) and is a one-to-one mapping between A and S. It
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is clear that supp(fom)=A and hence, by (28) and the interpolation
theorem for the Lorentz spaces, we get

|‘F71(f‘0 7T)”L(p, q)(r)<cp,q |‘F71(f‘0 7T)HL2(1"):Cp,q H/.HLZ(G)'

Taking the conjugates, we complete the proof in the case under con-
sideration.

In the case when the set S\ is finite, we may take the identity mapping
on G as the permutation 7.

The case when the set A\S is finite and the set S\ is infinite is slightly
more complicated. In this case, the set 4 NS is infinite. First we find an
infinite set Q = 4 " S such that

HfXQHL(p',q)(G)< HfHLZ(G)' (102)

Then we construct a permutation z: G — G such that z is the identity map-
ping on the set G\(Qu (S\4)) and is a one-to-one mapping of O onto
S\4. Using the properties of A(t)-sets, inequality (102), Theorem 7, and
the inclusion S\Q = (A N S), we get

HFil(fOTC)HL(p,q)(r)
< HFﬁl[(fon)Xn’l(Q)]HL([J,{])(I")J’_ |‘F71[(fon)XS\n’l(Q)]HL(p,q)(F)

<c|fl LXG)"

Taking conjugates, we get the same result with F instead of F~'.
We have shown that

inf || F( f ”)HL(,;, oS¢ HfHL2<G)~
v

This completes the proof of (13) in the discrete case.

Next we sketch the proof of Helgason’s result (7) and also give a corre-
sponding norm estimate. Suppose f is such that for=F'g, for every
permutation 7: G— G and some g, € L'(I'). Let S and 4 be the sets from
the previous proof and consider the three cases involving cardinality of the
sets S\4 and A\S as above. Then reasoning as in the previous proof we
get Helgason’s theorem with the following norm estimate

”fHLZ(G) < csup HFgHL](F)' (103)

gRif

For example, if the sets S\4 and A\S are both infinite, we construct a
permutation 7 as above and get

£ 26 ¢ lgx| LXI)-
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This shows that (103) holds. In the third case of the previous proof, we use
the inequality

1% 0l 226y < sup llgx | 1) (104)

and the requirement for the left side of (104) to be finite instead of (102)
in the construction of the auxiliary set Q.
Using Helgason’s theorem, we easily get formula (22) in Theorem 4.
Now we formulate two lemmas which have independent interest. The
first of them is concerned with uniformly small Fourier transforms of
rearrangements.

LEMMA 5. Let G be a non-discrete LCA group. Suppose he L'(G),
geL™(G), and |;hdmg=0. Then for every ¢>0 there exists a Haar
measure preserving invertible mod 0 transformation w,: supp(h) — supp(h)
such that

1 (g(he @) oy <e. (105)

LemmA 6. Let2< p< oo and 1 < g < oo0. Assume also that all conditions
in Lemma 5 hold. Then the conclusion of Lemma 5 holds with the estimate

HF(g(hOwa))HL(p,q)(F)gg' (106)

instead of (105).
We get the following corollaries from (105) and (106):

COROLLARY 2. Assume G is a compact abelian group. Then for every
feLY(G) we have

inf | Fh| .= U fdmg|. (107)
hRs f G

COROLLARY 3. Assume G is a compact abelian group. Then for every
feLYG),2<p<o0, and 1 <g< o0, we have

inf [FR| 1 g = UG fdmg

hRs f

. (108)

We first show how to derive Lemma 6 from Lemma 5. Consider a
representation h=Y" h; such that h; € L*(G), [;h,dms;=0 for every

j=1
J =1, and the supports of /; are pairwise disjoint. It is not difficult to show
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that such a representation exists. Next take /; instead of the function / in
Lemma 5 and apply this lemma with ¢ =¢;. We get

HF(g(hj ° CU/)) [ o) S &)
for some w;: supp(h;) — supp(h;). Now define a transformation w: G — G as

follows. It comc1des with the identity transformation on G\(supp(h)) and
with the transformation w; on supp(h;). Then it is clear that

[ F(g(how)) HL(,; D) Z [ F(g( _. /'))HL(,;,q)(r)
j=1
<c Y |Fgh e, 1Fglh )=
j=1
<c ) th,\lz/” 17<2/m (109)
j=1

Since (109) holds with any numbers ¢;, we get Lemma 6 from (109).

Corollary 2 follows from Lemma 5 if we consider a function /=
f— fode and apply Lemma 5 to 7=/ and g=1. We also need an casy
inequality

IFRN i p. gy = fG hdmg

to finish the proof. Corollary 3 follows from Lemma 6 in a similar way.

Proof of Lemma 5. Using regularity of the Haar measure and
approximating the function 4 in L'(G) by simple functions, we may reduce
the lemma to the case when 4 is a simple compactly supported function

h(x)= Y i, (X). (110)

m=1

Here c,, are some non-zero complex numbers, the sets 4,, have compact
closure and do not intersect, and

jhdezo. (111)

We will assume in the rest of the proof that % is given by (110) and prove
Lemma 5 for such a function.
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Denote A={JY_, 4,,. Since the Haar measure of G is non-atomic, we
may construct a sequence 7,={E{, .., E/, j)} of measurable partitions of 4
such that 7;, ; is a refinement of n; and

lim 7,=lim max {mg(E])}=0. (112)

joow T jo o 1<ISI())

For each 1 < j< oo and 1 </<J(}j), fix a function

M
%= Y, Culr, (113)
m=1
where {E],, .., E{ ,,} is a fixed measurable partition of the set £ such that
; mg(A,,) ma(E])
E/ =G m) AT
oL = gt
It follows from (111) that
jaj’,dmﬁo. (114)

Consider a function class U on A4 defined in the following way. A func-
tion u is in U iff there exists an integer s and a finite sequence of integers
n; with 1</<J(n) such that s<n, < --- <ny, and

J(s)

u= Yy oy. (115)
k=1

In (115), the function o, coincides with the sum of functions of form (113)
corresponding to all elements of the partition 7z, which are subsets of the
set EY. It is clear that if u e U, then hRsu.

For every L'-function 7 on 4, denote by Pr;(t) the projection

J() 1
Pr.(7)= . Tdm > (&
A= 2 &R Qﬁ G )X

of 7 into the space of A-measurable L'-functions on 4 where A denotes the
o-algebra generated by the partitions 7; with 1 <j < co. It is known that

lim [|2(z) — Pri(t)ll p14y=0 (116)

J—

where 2 is the conditional expectation with respect to 4 and the con-
vergence in formula (116) is uniform with respect to any compact subset of
L'(A4) (see [DU]).
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Since the class U is countable, the Fourier transforms Fu of all functions
ue U are supported in a og-compact set B<=[l. Fix a representation
B=J_, B, where B, is a non-decreasing sequence of compact subsets of
I’ such that for every ¢>0 and ue U there is a number s such that
|Fu(y)| <e for all y e B\B,.

The following formula follows from the definition of the conditional
expectation X

| Z(7m)dmg=| 7 dmg (117)

for every yeI' and We A. Since the compactness of B, in I” implies that
of the set {gj:y€ B,} in the space L'(A) (this follows from 1.2.6 in [R]),
we may apply (116) and (117) and get

lim sup sup =0 (118)

j—> o yeBr uelU

Fgu)(y)— [ [Pr(7)] udmg

for every ue U and k> 1.
Let > 0. It follows from (118) that there exists an increasing sequence
of integers {j.} such that

sup sup |F(gu)(y) — [ [Pr,(7¢)] udmg

yEBr ueU

<

N ™

We conclude from this inequality that it is sufficient to prove that for every
0>0

sup |F(u)(y)| <9 (119)
yeB
where
-~ B s [Pr;(yg)] udmg if yeB,
Flu)(y)= - .
[[Pry(g)Tudmg  if yeB\B, , k=2
Let 6> 0. Our goal is to find integers s, ny, ..., 14, such that the corre-

sponding function u, satisfies
1 (us) | ) < O (120)

We choose the integer s so that

T, °

< (121)
2 Hh”Lf(G) Hg”Lw(G)
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where /i is defined in (110). This can be done by (112). Then we define the
numbers {n,} by induction in the following way. We set n, = s. This deter-
mines the function «, in (115). Next we choose n,>n; such that
| F(a,)(7)] <6/2 for all 7€ B\B,,. In general, we choose n,, > n, so that

~ 0
[Flog + - +a)(n)] <35 (122)

for all ye B\B,,,, and 1 </<J(s)—1.
Now we define a function u€ U as in (115) and check that it satisfies

(120). Let ye B, \B,, for some 1 </<J(s) — 1. In order to prove (120), we
use the representation

-1 J(s)
U=u;+ur,+us= Y op+oa+ Y .
k=1 k=141

Then we use (122) to estimate HF(uI)HU;(B) and (121) to estimate
| E(u,) || L) Finally, it follows from the definitions that F(us)(y) =0 for all
y€B,, \B,. This allows is to prove (119) and this finish the proof of
Lemma 5.

Proof of formula (13) for a compact group G. Formula (108) implies
(13) with i=5 for a compact group G. The cases 1 <i<4 follow easily.

Proof of formulas (16), (17), (20), and (21). Let us prove formula (16)
with i=5. The proof of the rest of the formulas listed above is similar.

Suppose G is a non-compact non-discrete LCA group and a function
fe(L'"+ L*)(G) is given such that

IER| 1 p, gy0r) < 0 (123)

for some 1 <p<2, 1 <g< oo, and all & with AR f. Our goal is to prove
that this implies /' =0.

Assume f# 0. Then there exists a compact set K < G of positive measure
such that f is not an identically constant function on K. It follows that
there exist two non-intersecting sets K,, K, = K for which mg(K,)=
mg(K,) =0 and [ fdmg # |, fdms. Now we can find a small positive
number p such that

L fde;éL fdmg (124)

for any S; < K; with mg(K;\S;) <p and j=1, 2.
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Consider a sequence of functions 7,(x) =z (X) — &, xz,(X) such that the
sets £, and H, do not intersect, E,, U H,= K, and

Y me(H,) < p/2. (125)

The constants «, above were chosen in such a way that fG 7, dmg=0.
Applying Lemma 6 to h=1,, g= y,, and to a sequence ¢, tending to 0, we
see that there exists w,: K — K such that

HF(Xkl(TnOwn))”L(p,q)(l")Ssn (126)

for every n> 1.
We have 7,=tcw,=y,, —%,(p, Where M,=w,'(E,) and P,=
o, '(H,). Denote A=) P,. Then (125) gives

A)<p)2. (127)

Consider the sets K;=K,\4 and K,= K,\4. Using (127) and changing
one of the sets a little bit, we construct sets S, = K, and S, = K, such that
(124) holds and moreover mg(S;) =mg(S,).

Next we define a Haar measure preserving invertible transformation
w: G— G as follows. It coincides with the identity transformation on the
set G\(S, U S,) and has the property o(S,)=S,, o(S,)=S,.

It is known that the following generalization of the Parseval identity
holds (see [HRI1], p. 249). For every h, € L?(G), H,e L’(I') with
I<p<2,

j By ( de_j (FI,) b, dm,- (128)
Applying (128) with h, =y, T, and h, = Ff — F(fow), we get
|, =) axtadme=| Flu ) E R fow) dmy.  (129)

Denote the left side of (129) by I. We have 7,(x) =1 for xe S,. Therefore,
using (124) and the definition of w, we get

1=Lmde=L fde—L fdmg 0. (130)

On the other hand, (129), (123), (126) and Holder’s inequality for the
Lorentz spaces (see [ Hu]) give

|11 < HF(XKI %)HL(p', 7)) |Ff —F(f° CO)HLm a)(I) < Mg,
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for all n > 1. This inequality contradicts (130). Therefore, f =0. In the case
when the group G is compact, the conclusion is f = const. This completes
the proof of the formulas under consideration.

Proof of formula (15) for a non-compact, non-discrete group G. Let us
consider the case i =5. The remaining cases follow from this one. It follows
from definitions, that

(4, 4)s (G) = L*(G). (131)

In order to prove the reversed inclusion, we use the structure theorem
(Theorem 12). Assume G contains an open subgroup S topologically
isomorphic with R"@ H where H is a compact group and n>0. Let
f€L*G) and consider a representation

supp(f)=U a; (132)

where the sets A4; are pairwise disjoint and 0 <mg(A4;) <oo. Then we
can choose nonlntersectlng sets B; = § such that mg(B;) =ms(A4;) for all
j=1. If the sets supp(f) and B= U B, do not intersect, we can “define a
transformation w:G—G in the followmg way. It coincides with the identity
transformation on the set G\(supp(f)u B) and with some measure pre-
serving invertible transformation: w;: B; — supp(f) on B,. It follows that
supp(fow) <= S.

Suppose the sets supp( f) and B intersect. Then we use a similar but more
complicated reasoning involving auxiliary functions with small L(p’, ¢)(G)-
norm and Theorem 7 (see the beginning of Section 5) and use formula (26)
to show that we may restrict ourselves to the following two cases. One of
them is G = R" @ H with a compact group H and n > 1 while the other one
is the case when G contains a compact open subgroup K.

Assume first that G = R"@ H with n>1. The group Z” is topologically
isomorphic to a discrete subgroup K of R". By Theorem 14, there exists an
infinite set Q = K which is a A(¢)-set for all 1 <7< oo. Consider the cubes
Cr={y=1, ) ;<y;<l+1, 1<j<n} in R" such that [=

({4, .., 1,) € O where Q is as above and denote
B= ) (C,xH). (133)
leQ

Let e L*(G). We may restrict ourselves to the case supp(f) < B. Indeed,
if the set supp(f) does not intersect the set B defined in (133), then using
representation (132) and choosing the sets B; in B for which mg(B;) =
mg(A;), we may construct the transformation w: G — G as above and see
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that supp(fow)<= B. If the sets supp(f) and B intersect, we may use
auxiliary functions with small L(p’, ¢)(G)-norm and Theorem 7 as above
to conclude that with no loss of generality we may assume supp(f)< B
where B is given by (133). Now we only need to prove that every such
function satisfies

|FfHL(p,q)(r)<C HfHLZ(G)« (134)

In order to this, assume supp(f) = B holds. Denote 4,= C, x H where [e Q
and set g =3, o %% 4, With

oclle fdmg.

Then we have

L, (f—g) dmg=0

for every /e Q. Fix ¢, such that 3 &, < | 1l ;2. By Lemma 5, we may find
measure preserving invertible transformations w,;: 4, - 4, such that

HF[(wal_O(l)XA/]HL(/),(/)(F)ggl' (135)
Now we define a transformation w: G — G in the following way. It coin-
cides with the identity transformation outside B and with w; on A4,. Now
(135) gives

[E(fow—goo) rip, gy < IS 226)- (136)

Denote the dual group of H by H*. Then we have for {€ R” and d € H*,

Flgow)(&, 0)=Fg(& 0)= ), o Fy(x.0)

le Q

=Y e Fy (& 0)
le Q

=Y aleznilfj e*hi-deJ 3(y) dmy(y).
le Q Co H

Therefore,
Flgow)(&. )| = |sin nfl| ... |sin &, | S gy ¢
" |& &L s
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for 6 =0 and F(gow)(&, d) =0 otherwise. Thus we have for every > 1,
1/t
gl =4[ IFg-w)& 0l |

]S imgeone ko)

Cogezn
t 1/t
< {c, [ df} |
Co

Using the definition of A(z)-sets and the interpolation theorem for the
Lorentz spaces, we obtain

Z a1€27ri1~c
le Q

1/2
”F(gow)HL(p,q)(r)SC { Z |0(1|2} <c HfHLZ(G)-
le Q

Now we see from (136) and the previous inequality that the proof in this
case is completed.

Next we consider the case when the group G has a compact open sub-
group H. Then the quotient group G/H is discrete and thus contains a
countable set Q that is a A(¢)-set for all > 1 by Theorem 14. Denote by
7 the standard homomorphism of H onto G and set

B={J nfl(fj).
cjeQ

The set B is simply the union of all cosets belonging to Q. We may restrict
ourselves to the case /e L*(G) with supp(f)< B as in the previous proof.
For such a function f, we set g=3: .o %%~ With

ocjzj fdmg.
7= l(g)

Then we define a transformation w exactly as above and get (136). After
that we use formula (26) and obtain

Fgeo)() =] dnau(@70) | glx+8) px) dmpylx)

:L/Hdmg/ﬁ(f) & Y ocijxéj(ijf) 7(ox) dm ().

geQ
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It follows that if y belongs to the annihilator H° of H, then

Fgew)(y) = ) o7(&).

éjeQ

Also, we have F(gow)(y)=0 for y outside H°. Finally we get, using the
properties of the A(¢)-sets,

HF(ng)HL(p, () = HF(ng)HL(p, ) (H®)

12
<C{ Z |°‘j|2} <c | fllxe)-

gjeQ

Now the proof can be completed as in the previous case.

Finally, formula (13) for a non-compact non-discrete group G can be
obtained by combining the previous proof and the proof of formula (13)
for a compact group.

This ends the proof of Theorems 1-4.

Remark 4. This remark concerns norm estimates related to Theo-
rems 1-4. We have already mentioned some of them (see (85), (103), and
(107)). Let us formulate some more. We have the following estimate for all
functions fe (L' + L*)(G):

(& Hf”L(p', q)(G)<I,[-)’ “f)<c, HfHL(p', 9)(G)

for l<p<2, 1 <¢g<oo,andi=1,2,4. This inequality corresponds to part
(1) of Theorem 1. Part (ii) of Theorem 2 has the following estimate

¢y HfHL(p’,q)(G)SIp, q,i(f) <6, HfHL(p', 9)(G)

for l<p<2, 1<g<oo, and i=1, 2, 4. In the case of kernels, we have for
any fe (L' + L?)(G),

Cy H.f”Lz(G) <SPUf)<e, Hf”LZ(G)

for l<p<2, 1<g<oo, and 1<i<5. This corresponds to part (iii) of
Theorem 3. More precisely, if f'e(4”7),(G), then S 4(f) is finite and the
first inequality in the previous formula holds. A similar formula holds for
part (iii) of Theorem 4.



REARRANGEMENTS OF FUNCTIONS 113

Let us recall that the only case when we can give a precise formula and
not only an estimate is the case of a compact abelian group G, 2 < p < o0,
and 1 <i<5. Then we have

I7(f) =

| rdmg

(see Corollary 2).
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