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Abstract

In this article, we give two new algorithms to ,nd the polynomial and rational function
solutions of a given holonomic system associated to a set of linear di-erential operators in the
Weyl algebra D = k〈x1; : : : ; xn; @1; : : : ; @n〉, where k is a computable sub,eld of the complex
numbers. Both algorithms are based on the theory of D-modules – the ,rst algorithm obtains
degree bounds on the solutions through Gr4obner deformations and b-functions while the second
algorithm evaluates the dimension of the solutions through duality and restriction. c© 2001
Elsevier Science B.V. All rights reserved.

MSC: 35C05; 14Q99; 33F10; 35N10

1. Introduction

Polynomial and rational solutions for linear ordinary di-erential equations can be
obtained by algorithmic methods. For instance, the maple package DEtools provides
e?cient functions polysols and ratsols to ,nd polynomial and rational solutions
for a given linear ordinary di-erential equation with rational function coe?cients.

A natural analogue of the notion of linear ordinary di-erential equation in the several
variables case is the notion of holonomic system. A holonomic system is a system of
linear partial di-erential equations whose characteristic variety is middle dimensional.

Chyzak [4] gave an algorithm to ,nd the rational solutions of holonomic systems
by using elimination in the ring of di-erential operators with rational function coe?-
cients combined with Abramov’s algorithm for rational solutions of ordinary di-erential

∗ Corresponding author.
E-mail addresses: oaku@twcu.ac.jp (T. Oaku), takayama@math.kobe-u.ac.jp (N. Takayama),
htsai@math.berkeley.edu (H. Tsai).

0022-4049/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0022 -4049(00)00153 -5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82691413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


200 T. Oaku et al. / Journal of Pure and Applied Algebra 164 (2001) 199–220

equations with parameters. To the authors, solving holonomic systems is analogous to
solving systems of algebraic equations of zero-dimensional ideals. Under this analogy,
the method of Chyzak corresponds to the elimination method for solving systems of
algebraic equations.

The aim of this paper is to give two new algorithms based on the theory of
D-modules to ,nd polynomial and rational solutions for a given holonomic system
associated to a set of linear di-erential operators in the Weyl algebra

D = k〈x1; : : : ; xn; @1; : : : ; @n〉;

where k is a sub,eld of C.
Polynomial and rational solutions can be obtained, if they exist, by using an ex-

haustive search. For instance, when f = 0 is the singular locus of a holonomic system
M = D=I , any rational solution has the form g=fr . If we have upper bounds for the
degree of the polynomial g and for r, then we can construct all rational solutions by
solving linear equations satis,ed by the coe?cients of g. Alternatively, if we know the
dimension of rational solutions, then we can obtain all rational solutions by increasing
the degree of g and r. Hence, the problem reduces to ,nding e-ective bounds for these
numbers.

In Sections 2 and 3, we give algorithms for upper bounds on the degree of g and
on r. The main techniques we use are Gr4obner deformations in D as introduced in the
book [11] and the b-function for D=I and f.

In Section 4, we give an algorithm to evaluate the dimension of polynomial and
rational solutions. Our method is an analog in D of a question studied by Singer
[12], who gave an algorithm to compute HomR(M;N ) for left R:=k(x1)〈@1〉-modules
M and N and studied its relation to factorizations of ordinary di-erential operators.
The theory of D-modules translates our problem on polynomial and rational solu-
tions to constructions in the ring of di-erential operators D. For example, the k-vector
space

HomD(D=I; k[x]) � H−n(� ⊗L
D D(D=I))

is the space of the polynomial solutions of the left ideal I . Here, � is the module
of the top dimensional di-erential forms and D is the dualizing functor. See, e.g., the
book of Bj4ork [3] on this translation. We evaluate the dimension of the right-hand
side by recent developments of computational algebra such as construction of free res-
olutions in the ring D and restrictions of D-modules [8,9,14,17]. Our approach also
allows us to evaluate the dimension of solutions to a holonomic system inside any holo-
nomic module. For instance, we can ,nd the dimension of the delta function solutions
to I .

Throughout the paper, we refer to the book [11] for fundamental facts on the
algorithmic treatment of D. Also, the algorithms which appear in the paper have been
implemented in either kan [13] or Macaulay 2 [5].
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2. Polynomial solutions by Gr�obner deformations

How can we obtain all polynomial solutions for ordinary di-erential equations? One
method is to compute the indicial polynomial at in,nity, ,nd an upper bound on the
degrees of polynomial solutions, and determine the coe?cients of polynomials. The
analogous method works for holonomic systems by using Gr4obner deformations.

A D-module M , where D is the nth Weyl algebra, is said to be holonomic if
its characteristic variety has dimension n. For the reader’s convenience, we recall
the de,nition of characteristic variety for a cyclic D-module D=I . Given an element
‘ =

∑
�∈Nn f�(x)@� ∈ D, the initial term of ‘ with respect to the order ,ltration

is the subsum in(0; e)(‘) =
∑

{�∈Nn: f�(x)�=0; |�| maximum} f�(x)�� in the polynomial ring
k[x1; : : : ; xn; �1; : : : ; �n]. The characteristic variety of D=I is the zero locus of the initial
ideal in(0; e)(I) = {in(0; e)(‘): ‘ ∈ I}⊂ k[x; �]. We abuse notation and say that an ideal
I ⊂D is holonomic if its quotient module D=I is holonomic. The holonomic D-modules
form a full subcategory and satisfy many nice properties which we shall use.

Let us now recall the notion of Gr4obner deformation. For ‘ ∈ D and the weight
vector w ∈ Rn, we denote by in(−w;w)(‘) the initial form of ‘ with respect to the
weight (−w; w). Explicitly, if ‘ =

∑
�;�∈Nn c��x�@�, then

in(−w;w)(‘):=
∑

{�;�∈Nn: c�� �=0;−w·�+w·� maximum}
c��x�@�

(see, e.g., [11, Section 1:1] for more details). The following proposition now follows
from the de,nition of in(−w;w).

Proposition 2.1. Suppose that f(x1; : : : ; xn) is a polynomial solution of a left ideal
I ⊂D. Take w ∈ Zn and expand the function f(tw1x1; : : : ; twnxn) as a Laurent poly-
nomial in t as

fw(x)tp + O(tp+1):

Then for any ‘ ∈ I; we have

in(−w;w)(‘) • fw = 0:

The initial ideal in(−w;w)(I) is the ideal of D spanned as a k-vector space by the
initial forms in(−w;w)(‘) for all elements ‘ ∈ I . It is sometimes called the Gr4obner
deformation of I with respect to (−w; w).

Theorem 2.2 (Assi et al. [2]). There exist only <nitely many Gr>obner deformations
of I.

The Newton polytope of a polynomial solution f is de,ned as the convex hull of
the exponent vectors of f. For generic w, the polynomial fw of Proposition 2.1 is a
monomial cxa and the point a is a vertex of the Newton polytope of f.
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Let R=k(x1; : : : ; xn)〈@1; : : : ; @n〉 and �i =xi@i. Since w is generic and I is holonomic,
the indicial ideal

]in(−w;w)(I):=R · in(−w;w)(I) ∩ k[�1; : : : ; �n];

is an Artinian commutative ideal (see e.g. [11, Section 2:3] for a proof), and a ∈ Zn

belongs to its zero set. Thus, we can construct a polytope that contains the Newton
polytopes of the polynomial solutions by taking the convex hull of all the non-negative
integral roots of all possible indicial ideals with respect to generic weight vectors w.

It is not necessary to ,nd all Gr4obner deformations to obtain polynomial solutions.
Let b(s) be the generator of in(−w;w)(I) ∩ k[s], s =

∑n
i=1 wi�i. The polynomial b(s) is

called the b-function of I with respect to (−w; w). When I is holonomic, the b-function
is non-zero for any weight vector w (here w need not be generic). The next proposition
follows from the de,nition of b(s).

Proposition 2.3. Let w be a strictly negative weight vector; i.e. wi ¡ 0 for all i.
Consider the b-function b(s) of I with respect to (−w; w) and let −k1 be the smallest
integer root of b(s) = 0. The polynomial solutions of I have the form∑

pi≥0; p·w≤k1

cpxp: (1)

Algorithm 2.4. (Finding the polynomial solutions by a Gr4obner deformation)
INPUT: a holonomic left ideal I .
OUTPUT: the polynomial solutions of I .

1. Take a strictly negative weight vector w, compute the Gr4obner deformation in(−w;w)

(I), and compute the smallest non-positive integer root −k1 of the b-function with
respect to (−w; w). See, e.g. [11, Algorithm 5:15] for these procedures.

2. If we do not have such a root, then there is no polynomial solution other than 0.
3. If there is a minimal integer root, then determine the coe?cients cp of (1) by solving

linear equations for the coe?cients.

Example 2.5. The following system of di-erential equations in two variables is called
the Appell di-erential equation F1(a; b; b′; c) [1]:

�x(�x + �y + c − 1)− x(�x + �y + a)(�x + b);

�y(�x + �y + c − 1)− y(�x + �y + a)(�y + b′);

(x − y)@x@y − b′@x + b@y;

where a; b; b′; c are complex parameters. Let us demonstrate how Algorithm 2:4 works
for the system of parameter values (a; b; b′; c)=(2;−3;−2; 5). First, we choose a strictly
negative weight vector w = (−1;−2) and compute the b-function b(s); s =−�x − 2�y,
which is the generator of the principal ideal in(−w;w)(I) ∩Q[− �x − 2�y]. We can use
the V-homogenization or the homogenized Weyl algebra to get the generator (see, e.g.
[11, Section 1:2]). Second, we need to ,nd the integer roots of the b-function b(s)=0.
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In our example, these are

−7; 0; 4:

From Proposition 2.1, the highest (−w)-degree monomial cxpyq in a polynomial solu-
tion gives rise to an integer solution w1p + w2q =−p− 2q of the b-function. Hence,
the polynomial solutions are of the form

f =
∑

p;q≥0;p+2q≤7

cpqxpyq:

Finally, we determine the coe?cients cpq by applying the di-erential operators to f
and putting the results to 0. In our example, we have only one polynomial solution

(− 1
21y

2 + 1
7y − 4

35 )x3 + ( 3
14y

2 − 24
35y + 3

5 )x2

+ (− 12
35y

2 + 6
5y − 6

5 )x + 1
5y

2 − 4
5y + 1:

The rank of a left ideal I ⊂D is by de,nition the dimension of R=R · I as a vector
space over k(x1; : : : ; xn), where as before R=k(x1; : : : ; xn)〈@1; : : : ; @n〉. Ideals which have
,nite rank are closely related to holonomic ideals by work of Kashiwara – namely,
an ideal I ⊂D has ,nite rank if and only if its Weyl closure, which is the ideal
Cl(I):=R·I∩D, is holonomic (see e.g. [11, Section 1:4]). We can thus adapt Algorithm
2:4 to compute the polynomial solutions of ,nite rank ideals. The only potential problem
is that the b-function, which we recall is the monic generator of in(−w;w)(I)∩k[s] might
be zero, where s =

∑
i wi�i. Instead, we should therefore replace the b-function by the

monic generator of

]in(−w;w)(I) ∩ k[s] = Cl(in(−w;w)(I)) ∩ k[s];

which is guaranteed to be non-zero. For generic weight vectors w, the indicial ideal may
be computed e?ciently by methods of [11, Section 2:3]. For the reader’s convenience,
let us summarize the steps of the ,nite rank algorithm. We use the notation [�]� =∏n

i=1

∏bi−1
j=1 (�i − j) for � ∈ Nn.

Algorithm 2.6. (Polynomial solutions of a ,nite rank ideal)
INPUT: a ,nite rank left ideal I .
OUTPUT: the polynomial solutions of I .

1. Take a strictly negative weight vector w, and compute the Gr4obner deformation
in(−w;w)(I). If w is generic, then a set of (−w; w)-homogeneous generators {Li}ri=1

for in(−w;w)(I) may be written as Li = x�(i)pi(�)@�(i), and under this representation
the indicial ideal is generated by the set {[�]�(i)p(�−�(i))}ri=1. If w is not generic,
pick a di-erent w.

2. Compute the monic generator B(s) of the intersection ]in(−w;w)(I) ∩ k[s] where s =∑
i wi�i, and compute the smallest non-positive integer root −k1 of B(s) with respect

to (−w; w).
3. Follow steps 2 and 3 from Algorithm 2:4.
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3. Rational solutions by Gr�obner deformations

The singular locus of a D-ideal I is the Zariski closure of the projection of the
characteristic variety of I minus the zero section from the cotangent bundle to the
coordinate base space. In other words, it is the zero set

Sing(I) = V (〈in(0; e)(I) : (�1; : : : ; �n)∞〉 ∩ k[x1; : : : ; xn]):

We note that 〈in(0; e)(I): (�1; : : : ; �n)∞〉 ∩ k[x1; : : : ; xn] can be computed by a single
Gr4obner basis computation in the Weyl algebra, followed by saturation and intersection
computations in a commutative polynomial ring (see e.g. [11, Section 1:4]).

Any rational solution to I has its poles contained inside the singular locus. Thus for
our purposes, let f(x) de,ne the codimension 1 component of Sing(I). Then we may
limit our search for rational solutions to k[x][1=f].

We will present a method to obtain an upper bound of the order of the poles along
f = 0 for each rational solution. For this purpose we use the notion of the b-function
for f and a section u of a holonomic system, which was introduced by Kashiwara
[7]: Let D be the sheaf of algebraic di-erential operators on X =Cn. For a holonomic
D-module M = D=DI and a polynomial f, consider the tensor product

N = O[f−1; s]fs ⊗OX M: (2)

This N has a structure of a left D-module via the Leibniz rule. Let u be a section of
M. Then the b-function for f and u (or for fsu) at p ∈ Cn is the minimum degree
monic polynomial 0 
= b(s) ∈ C[s] such that

b(s)fs ⊗ u ∈ D[s](fs+1 ⊗ u) (3)

holds in N at p (i.e., as a germ of N at p). This b-function depends on the point
p. As a function of p, there is a strati,cation of Cn for which the b-function does
not change on each stratum (see e.g. [8] for an algorithmic proof of this fact). In
de,nitions (2) and (3) for b-function, if we replace O by the polynomial ring k[x], D
by the Weyl algebra D, and M by a holonomic D-module M = D=I , then we obtain
the global b-function for f and u. It is the least common multiple of b-functions at
every point.

Theorem 3.1. Let u be the residue class of 1 in D=DI; and let b(s) be the b-function
for f and u at a point p ∈ Cn where f(p) = 0. Assume that I admits an analytic
solution of the form gfr around p; where r ∈ C; g is a holomorphic function on a
neighborhood of p; and g(p) 
= 0. Then s + r + 1 divides b(s).

Proof. Let Dan and Oan be, respectively, the sheaf of analytic di-erential operators
and the sheaf of holomorphic functions on Cn. We may de,ne the analytic b-function
by replacing O by Oan, D by Dan, and M by a Dan-module Man in de,nitions (2)
and (3). Since the b-function is an analytic invariant and the analytic and the algebraic
b-functions coincide (see e.g. [8, Section 8]), we may work in the analytic category.
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We do this to consider solutions gfr where g is holomorphic at p. If we only wish
to consider solutions gfr where g is a polynomial, then we may work in the algebraic
category.

In general, given a map of left Dan-modules * :Man
1 → Man

2 and a section u of
Man

1 , the b-function for fsu at a point p is divisible by the b-function for fs*(u) at
p. We apply this basic fact to the following map ’. Let J an be the annihilating ideal of
gfr in Dan. Since J an ⊇ I an:=DanI and g(p) 
= 0, we have a left Dan-homomorphism

’ :Dan=I an → Dangfr = Danfr ,→ Oan[f−1]fr;

which sends u to gfr . This map extends to a left Dan[s]-homomorphism

1⊗ ’ :Oan[f−1; s]fs ⊗Oan Dan=I an

→ Oan[f−1; s]fs ⊗Oan Oan[f−1]fr = Oan[f−1; s]fs+r ;

which sends fs ⊗ u to gfs+r . By the de,nition of b(s), there exists a germ P(s) of
D[s] at p such that

(P(s)f − b(s))(fs ⊗ u) = 0:

Since 1⊗ ’ is a left Dan-homomorphism, applying it to the above equation gives the
equation (P(s)f − b(s))(gfs+r) = 0, or in other words,

g−1P(s)gfs+r+1 = b(s)fs+r :

Thus, we see that the Bernstein–Sato polynomial bf(s) of f at p divides b(s − r).
Note that s + 1 divides bf(s) since f(p) = 0 (cf. [6]). In conclusion, we have proved
that s + 1 divides b(s− r). This completes the proof.

By virtue of the above theorem, we can obtain upper bounds by computing the
b-function for fsu at a smooth point of each irreducible component of the singular
locus of I . From now on, let us also take f ∈ k[x] to be a square-free polynomial
de,ning the codimension one component of the singular locus, and let f = f1 · · ·fm

be its irreducible decomposition in k[x].

Theorem 3.2. Let bi(s) be the b-function for fs
i u at a generic point of fi =0. Denote

by ri the maximum integer root of bi(s) = 0. Then any rational solution (if any) to I
can be written in the form gf−r1−1

1 · · ·f−rm−1
m with a polynomial g ∈ C[x]. If some

bi(s) has no integral root; then there exist no rational solutions to I other than zero.

Proof. An arbitrary rational solution to M is written in the form gf−01
1 · · ·f−0m

m with
integers 01; : : : ; 0m and g ∈ C[x]. Since the space of the rational solutions with coe?-
cients in C is spanned by those with coe?cients in k, we may assume g ∈ k[x], and
f and g are relatively prime in k[x]. Let p be a generic point of fi = 0. We may
assume that fi is smooth at p, g(p) 
= 0, and fj(p) 
= 0 for j 
= i. It follows from
Theorem 3.1 that bi(0i − 1) = 0. This implies 0i ≤ ri + 1.
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Since b-functions divide the global b-function, an upper bound can also be obtained
from the global b-function.

Corollary 3.3. Let bi(s) be the global b-function for fs
i u; and denote by ri the maxi-

mum integer root of bi(s)=0. Then any rational solution (if any) to I can be written
in the form gf−r1−1

1 · · ·f−rm−1
m with a polynomial g ∈ C[x].

We mention the corollary because as we shall see shortly, the algorithm to compute
global b-functions is simpler than the algorithm to compute b-functions. However,
the b-function o-ers ,ner information. For instance, the well-known example f =
x2 + y2 + z2 + w2 has Bernstein–Sato polynomial (s + 1)(s + 2) coming from the
functional equation, 1

4 (@2
x + @2

y + @2
z + @2

w) · fs+1 = (s + 1)(s + 2)fs. Now consider the
module M = D · f−1 and let u be the element f−1. The global b-function for fsu
is s(s + 1), and hence Corollary 3.3 implies that rational solutions of M all have the
form gf−1 or gf0, where g is a polynomial not divisible by f. On the other hand, the
Bernstein–Sato polynomial of f at any nonsingular point p of f=0 (i.e. except for the
origin) is s + 1. It follows that the b-function for fsu equals s at the generic point of
f= 0 and hence Theorem 3.2 implies that all rational solutions actually have the form
gf−1.

An algorithm to compute the b-function and the global b-function for fsu was ,rst
given in [8] based upon tensor product computation, which is slow and memory inten-
sive. Shortly thereafter, Walther introduced in [16] a more e?cient method to compute
the global b-function for fsu. Both methods give the global b-function exactly, un-
der the condition that I is f-saturated. Otherwise, we get a multiple of the global
b-function. Similarly, the method of [8] gives the b-function exactly if I is f-saturated
and additionally a certain primary decomposition in C[x] is known. If primary decom-
position is only available in k[x], we again get a multiple of the b-function.

Let us now describe an algorithm to compute the b-function for fsu at a generic
point of f = 0 by combining the method of [16] and the primary decomposition as
was used in [8].

Algorithm 3.4. (Computing an upper bound of the b-function at a generic point)
INPUT: a ,nite set G0 of generators of a holonomic D-ideal I and an irreducible

polynomial f ∈ k[x].
OUTPUT: b′(s) ∈ k[s], which is a multiple of the b-function b(s) for fsu at a generic

point of f = 0, where u is the residue class of 1 in D=I .

1. Introducing a new variable t, put #i = @i + (@f=@xi)@t . Let Ĩ be the left ideal of
Dn+1, the Weyl algebra on the variables x1; : : : ; xn; t, that is generated by

{P(x; #1; : : : ; #n) |P(x; @1; : : : ; @n) ∈ G0} ∪ {t − f(x)}:

2. Let G1 be a ,nite set of generators of the left ideal in(−1;0; :::;0;1;0; :::;0)(Ĩ) of Dn+1.
Here, −1 is the weight for t and 1 is the weight for @t .
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3. Rewrite each element P of G1 in the form

P = @4
t P

′(t@t ; x; @1; : : : ; @n) or P = t4P′(t@t ; x; @1; : : : ; @n)

with a non-negative integer 4, and de,ne  (P) by,

 (P):=t4@4
t P

′ = t@t : : : (t@t − 4 + 1)P′(t@t ; x; @1; : : : ; @n)

or  (P):=@4
t t

4P′ = (t@t + 1) : : : (t@t + 4)P′(t@t ; x; @1; : : : ; @n):

Put

G2:={ (P)(−s− 1; x; @1; : : : ; @n) |P ∈ G1}:
4. Compute the elimination ideal J :=k[s; x] ∩ D[s]G2. (The global b-function can be

obtained at this stage by computing the monic generator of the ideal J ∩ k[s].)
5. Compute a primary decomposition of J in k[s; x] as

J = Q1 ∩ · · · ∩ Q0:

6. For each i = 1; : : : ; 0, compute Qix:=Qi ∩ k[x], which is a primary ideal of k[x].
7. Let b′(s) be the monic generator of the ideal⋂

{Qi ∩ k[s] |
√

Qix ⊂ k[x]f}
of k[s]. (Note that

√
Qix ⊂ k[x]f implies that

√
Qix equals k[x]f or {0}.)

Theorem 3.5. In the above algorithm; the polynomial b′(s) is precisely the b-function
for fsu at a generic point of f = 0 if I is f-saturated (i.e.; I : f∞ = I) and each
C[s; x]Qi remains primary in C[s; x]. Otherwise; the polynomial b′(s) is a multiple of
the b-function for fsu at a generic point of f = 0.

Proof. Using essentially the same method as the proof of Lemma 4:1 in [16], we can
prove that Ĩ is precisely the annihilator ideal for 7(t − f(x))⊗ u in

M̃ :=(Dn+17(t − f(x)))⊗C[x] D=I;

where 7(t−f(x)) denotes the residue class of (t−f(x))−1 in k[x; (t−f(x))−1]=k[x].
Let bt(s) be the indicial polynomial for 7(t − f(x))⊗ u along t = 0 at a point (0; p)
with f(p) = 0. Then by Theorem 6:14 of [8], the b-function b(s) for fsu at p divides
out, and if I is f-saturated, coincides with bt(−s− 1).

It follows from the de,nition that bt(−s−1) is a generator of the ideal Op[s]J ∩C[s]
of C[s], where Op denotes the stalk of O at p. If C[s; x]Qi are primary in C[s; x], b′(s)
generates the above ideal in view of Theorem 4:7 of [8] (cf. also Lemma 4:4 of [9]). In
general, although Qi is primary in k[s; x], the extension C[s; x]Qi is no longer primary
in C[s; x] and admits a primary decomposition

C[s; x]Qi = Qi1 ∩ · · · ∩ Qi4i :

In this case, b′(s) is the least common multiple of the generators of the ideals Op[s]Qij∩
C[s] for j = 1; : : : ; 4i, while bt(−s − 1) is the generator of Op[s]Qij ∩ C[s] for some
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j (such that p belongs to the zero set of Qij ∩ C[x] which is also the zero set of a
factor of f). This completes the proof.

Remark 3.6. In the notation in the above proof, the linear factors of b′(s) and those
of bt(−s − 1) coincide. In particular the set of integer roots of b′(s) = 0 is the same
as that of bt(−s − 1) = 0. In fact, this follows from the fact that the linear factors of
b′(s) in k[s] are invariant under the action of the Galois group of Rk over k.

Remark 3.7. I is f-saturated if and only if the −1th cohomology group of the re-
striction of M̃ in the proof of Theorem 3.5 to t = 0 vanishes (see Theorem 6:4 and
Proposition 6:13 of [8]), which is computable by Algorithm 5:10 of [8] or by Algorithm
5:4 of [9].

Remark 3.8. The f-saturation of I , which is the ideal D[1=f]·I∩D, may be computed
by using the localization algorithm of [10] (if I is specializable along f) or by using
the less e?cient algorithm of [14] (if I is general). By replacing I with its f-saturation,
we may then compute the local b-function exactly. However, since saturation is often
an expensive algorithm, we avoid making this replacement in practice.

Once we have determined the integers r1; : : : ; rm of Theorem 3.2, we can use Gr4obner
deformations to obtain the rational solutions. Put ki=−ri−1. Then by virtue of Theorem
3.2, we have only to determine rational solutions of the form gfk1

1 : : : fkm
m for some

polynomial g. This amounts to computing polynomial solutions of some twisted ideal
I(k1 ;:::; km) of I .

Lemma 3.9. Let I ⊂D be a left ideal generated by {P1; : : : ; Pr}; let f = f1 : : : fm ∈
k[x]; and let {k1; : : : ; km}⊂C. For each generator Pi; let ai ∈ N be suBciently large
so that faiPi may be expressed as

faiPi = pi(x1; : : : ; xn; f@1; : : : ; f@n) ∈ k〈x1; : : : ; xn; f@1; : : : ; f@n〉:

Now consider the ideal

I(k1 ;:::; km):=D{pi(x1; : : : ; xn; L1; : : : ; Ln)}mi=1;

where

Li = f@i +
m∑

j=1

kj
f
fj

@fj

@xi
: (4)

Then the space V of polynomial solutions of I(k1 ;:::; km) is isomorphic to the space W
of solutions of I inside the C[x]-module C[x]fk1

1 : : : fkm
m by the map V → W sending

g �→ gfk1
1 : : : fkm

m . Moreover; rank(I) = rank(I(k1 ;:::; km)).
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Proof. Consider how f@i acts on an element gfk1
1 : : : fkm

m ∈ C[x]fk1
1 : : : fkm

m :

f@i • (gfk1
1 : : : fkm

m ) =


f

@g
@xi

+
m∑

j=1

kj
f
fj

@fj

@xi
g


fk1

1 : : : fkm
m :

In other words, f@i acts on the polynomial part g as the di-erential operator Li of (4),
and the part of the lemma on solutions follows.

Given a point p of I away from both the singular locus of I and the zero locus
of f, then the map V → W also extends to a map between the holomorphic solution
spaces of I(k1 ;:::; km) and I at p (here a branch of fk1

1 : : : fkm
m at p is chosen so that it

may be regarded as a holomorphic function at p). Since rank of an ideal is generically
equal to the dimension of the holomorphic solution space, the part of the lemma on
rank follows. This can also be shown algebraically by observing that

in(0; e)(p(x1; : : : ; xn; f@1; : : : ; f@n)) = in(0; e)(p(x1; : : : ; xn; L1; : : : ; Ln)):

We also remark that the de,nition of I(k1 ;:::; km) is ambiguous but can be made well-
de,ned by applying the Weyl closure operation.

Algorithm 3.10. (Computing the rational solutions of a holonomic ideal)
INPUT: generators of a holonomic D-ideal I .
OUTPUT: A basis of the rational solutions h ∈ k(x) of I • h = 0.

1. Compute a polynomial f in 〈in(0; e)(I): (�1; : : : ; �n)∞〉 ∩ k[x1; : : : ; xn].
2. Compute the irreducible decomposition f = f1 · · ·fm in k[x] (optional step).
3. For each i = 1; : : : ; m, compute the output b′(s) of Algorithm 3:4 with I and fi as

input. Let ri be the maximum integer root of b′(s) = 0 and put ki =−ri− 1. If b′(s)
has no integral root for some i, then there exists no rational solution other than
zero.

4. Compute the twisted ideal I(k1 ;:::; km) of Lemma 3.9.
5. Compute a basis {g1; : : : ; gk} of the polynomial solutions of I(k1 ;:::; km) using Algorithm

2:4 or Algorithm 2:6.
6. Output: {g1f

k1
1 · · ·fkm

m ; : : : ; gkf
k1
1 · · ·fkm

m }, a basis of the rational solutions of I .

Example 3.11. Let I be the left ideal generated by

L1 = �x(�x + �y)− x(�x + �y + 3)(�x − 1)

and

L2 = �y(�x + �y)− y(�x + �y + 3)(�y + 1):

The Appell function F1(3;−1; 1; 1; x; y) is a solution of this system. The singular locus
of I is xy(x−y)(1−x)(1−y)=0. We can compute the local indicial polynomial of u,
the modulo class of 1 in D2=I , along x = 0 directly by the algorithm of [8, Section 4]:
It is s(s− 1) on {(0; y) |y 
= 0}, and s(s− 1)2 at (0; 0). In the same way, the indicial
polynomial of u along y=0 is s(s+1) on {(x; 0) | x 
= 0}, and s(s+1)(s−1) at (0; 0).
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Now let us compute the b-function for (1 − y)su. The local indicial polynomial of
7(t + y − 1) ⊗ u along t = 0 is s(s + 3) at any point of t = 0. Hence, the b-function
for (1 − y)su divides (s + 1)(s − 2). In the same way, the local indicial polynomial
of 7(t + x − 1)⊗ u along t = 0 is s(s + 1) at any point of t = 0. Finally, the indicial
polynomial of 7(t − x + y) ⊗ u is s(s − 1) on {(x; x) | x 
= 0}, and s(s − 1)(s − 2) at
(0; 0).

Therefore, we conclude that any rational solution to I , if it exists, can be written in
the form g(x; y)y−1(1 − x)−1(1 − y)−3 with a polynomial g. Now we may compute
the twisted ideal I(0;−1;0;−1;−3), where f1 =x; f2 =y; f3 =x−y; f4 =x−1; f5 =y−1,
and f is the product. Multiplying by f2, we get the expressions,

f2L1 = (x2 − x3)(f@x)2 + x
(

(1− 3x)f − (1− x)y
@f
@y
− (1− x)x

@f
@x

)
(f@x)

+ x(1− x)y(f@y)(f@x) + xyf(f@y) + 3xf2;

f2L2 = (y2 − y3)(f@y)2 + y
(

(1− 5y)f − (1− y)x
@f
@x
− (1− y)y

@f
@y

)
(f@y)

+y(1− y)x(f@x)(f@y)− yxf(f@x)− 3yf2;

and we set T1 and T2 to be the operators obtained from the substitution of Li into
f@i as de,ned by (4). We remark that the ideal I(0;−1;0;−1;−3) generated by T1 and T2

is neither holonomic nor specializable with respect to the weight vector (1; 1;−1;−1),
hence we use Algorithm 2:6 to get its polynomial solutions. Our Macaulay 2 script
,nds,

i1 : RatSols(I,{x,y,x-1,y-1,x-y} , {10,1} )

3 2

- x + y -x*y + 3*x*y - 3*x*y + 4*x - 3*y

o1 = {--------------------; --------------------------------------}
4 3 2 4 3 2

- y + 3y - 3y + y -y + 3*y - 3*y + y

Here, the second argument to the function RatSols is a list of factors of the singular
locus, and the third argument is a weight vector for the Gr4obner deformation in Al-
gorithm 2:6. After some simpli,cation, we ,nd that the rational function solutions are
x=y and (xy2 − 3xy + 3x − 1)=(y − 1)3.

Remark 3.12. As mentioned in the introduction, an algorithm to compute rational so-
lutions was given by Chyzak in [4], and furthermore, the components of his algorithm
have been implemented in Maple. For Example 3.11, the ,rst step of Chyzak’s algo-
rithm is to eliminate @x from I to produce the equation,

(xy4 − y5 − xy3 + y4)@3
y + (8xy3 − 9y4 − 3xy2 + 4y3)@2

y

+ (10xy2 − 18y3 + 2y2)@y − 6y2:
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This equation is then interpreted as an ordinary di-erential equation in the variable y
over the ,eld k(x), and its solutions can be computed by Abramov’s algorithm to be

Spank(x)

{ −y + x
y(y − 1)3 ;

1
y

}
:

Similarly, eliminating @y from I produces an ordinary di-erential equation in the vari-
able x over the ,eld k(y),

(x5 − x4y − x4 + x3y)@3
x + (5x4 − 4x3y − 2x3 + x2y)@2

x

and its solutions are

Spank(y){1; x}:
From these solutions, we get degree bounds and can conclude that a rational solution
to the entire system I can be expressed in the form (axy3 + by3 + cxy2 +dy2 + exy +
fy + gx + h)=y(y − 1)3. Solving for the coe?cients a; b; c; d; e; f; g; h then gives the
solutions we found earlier.

We remark that we have not made a comparison between the performance of Chyzak’s
algorithm and our algorithm. One reason is that the algorithms are implemented in dif-
ferent computer algebra systems (Maple versus Macaulay 2 or kan). Another reason is
that we do not have any complexity results for our algorithm. Both of these reasons
would make for good subjects for future work.

Remark 3.13. Based on Theorem 3.1 and Lemma 3.9, the Algorithm 3:10 can also
be adjusted to ,nd all solutions of an ideal I which have the form gfa1

1 · · ·fam
m for

g; f1; : : : ; fm ∈ k[x1; : : : ; xn] and a1; : : : ; am computable complex numbers.

4. Solutions by duality

For holonomic M and N , it is well known [7] that

ExtiD(M;N ) � Hn−i(� ⊗L
D (D(M)⊗L

k[x] N )); (5)

where �:=(D={x1; : : : ; xn} · D), and D(M) is the holonomic dual,

D(M):=Homk[x](�;ExtnD(M;D)):

The spaces ExtiD(M;N ) are ,nite-dimensional k-vector spaces and correspond to the
solutions of M in N when i=0. For example, if N=k[x], then we obtain the polynomial
solutions of M , whereas if N = D=D · {x1; : : : ; xn}, then we obtain the delta function
solutions of M with support at the origin.

In this section, we explain how (5) can be used to compute the dimensions of
ExtiD(M;N ). We ,rst discuss how to compute the holonomic dual, next discuss the
special cases N =C[x] and N =C[x][ 1

f ], and last discuss the general case of holonomic
N . A method to extend these algorithms to compute an explicit basis of HomD(M;N )
and ExtiD(M;N ) is the subject of the forthcoming paper [15].
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Notation. Let us explain the notation we will use to write maps of left or right
D-modules. As usual, maps between ,nitely generated modules will be represented
by matrices, but some care has to be given to the order in which elements are multi-
plied due to the noncommutativity of D.

Given an r×s matrix A=[aij] with entries in D, we get a map of free left D-modules,

Dr ·A→Ds [g1; : : : ; gr] �→ [g1; : : : ; gr] · A;

where Dr and Ds are regarded as modules of row vectors, and the map is matrix

multiplication. Under this convention, the composition of maps Dr ·A→ Ds and Ds ·B→ Dt

is the map Dr ·AB−→Dt where AB is usual matrix multiplication. In general, suppose
M and N are left D-modules with presentations Dr=M0 and Ds=N0. Then the matrix A

induces a left D-module map between M and N , denoted (Dr=M0) ·A→(Ds=N0), precisely
when g · A ∈ N0 for all row vectors g ∈ M0. Conversely, any map of left D-modules
between M and N can be represented by some matrix A in the manner above.

Now let us discuss maps of right D-modules. The r× s matrix A also de,nes a map
of right D-modules in the opposite direction,

(Ds)T A·→(Dr)T [h1; : : : ; hs]T �→ A · [h1; : : : ; hs]T;

where the superscript-T means to regard the free modules (Ds)T and (Dr)T as consisting
of column vectors. This map is equivalent to the map obtained by applying HomD(−; D)

to Dr ·A→Ds, thus (Ds)T may be regarded as the dual module HomD(Ds; D). We will
suppress the superscript-T when the context is clear. As before, the matrix A induces a
right D-module map between right D-modules N ′=(Ds)T=N ′

0 and M ′=(Dr)T=M ′
0 when

A·g ∈ M ′
0 for all column vectors g ∈ N ′

0. We denote the map by (Ds)T=N ′
0

A·→(Dr)T=M ′
0.

Left–right correspondence and �: As is well known, a standard use for � is to
establish a correspondence between the categories of left and right D-modules. The
correspondence can be expressed through the adjoint operator =, which is the algebra
involution

= : D→ D; x�@� �→ (−@)�x�:

Namely, given a left D-module M � Dr=M0, the corresponding right D-module is
� ⊗k[x] M � Dr==(M0). Conversely, given a right D-module N � Ds=N0, the cor-
responding left D-module is Homk[x](�;N ) � Ds==(N0). Similarly, given a homo-
morphism of left D-modules * : (Dr=M0) → (Ds=N0) de,ned by right multiplication
by the r × s matrix A = [aij], the corresponding homomorphism of right D-modules
=(*) : (Dr==(M0)) → (Ds==(N0)) is de,ned by left multiplication by the s × r matrix
=(A):=[=(aij)]T.

Let us explain details of the above correspondence for the non-specialist. Given a left
D-module M , there is a corresponding right D-module � ⊗k[x] M where the structure
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is given by extending the actions,

(w ⊗ m)f = wf ⊗ m (w ⊗ m)� = w�⊗ m− w ⊗ �m

for f ∈ k[x] and � ∈ Der(k[x]). Given a presentation Dr=M0 for M with generators
denoted {ei}ri=1, then in � ⊗k[x] M we have

(1⊗ ei)x�@� = (1⊗ x�ei)@� = 1⊗ (−@)�x�ei = 1⊗ =(x�@�)ei:

It follows that �⊗k[x]M is generated by {1⊗ei}ri=1 and gets the presentation Dr
n==(M0).

Conversely, given a right D-module N , there is a corresponding left D-module
Homk[x](�;N ) where the structure is given by extending the action,

(f’)(w) = ’(w)f (�’)(w) = ’(w�)− ’(w)�

for ’ ∈ Homk[x](�;N ), w ∈ �, f ∈ k[x], and � ∈ Der(k[x]). A morphism ’ ∈
Homk[x](�;N ) can be identi,ed with its image ’(1) ∈ N . Since

(x�@�’)(1) = (x�(@�’))(1) = (@�’)(1)x� = ’(1)(−@)�x�

= ’(1)=(x�@�);

the morphism x�@�’ gets identi,ed with ’(1)=(x�@�). In particular, given a presentation
Ds=N0 of N , then Homk[x](�;N ) is generated as a left D-module by the morphisms
{’i}si=1 such that ’i(1) = ei. By the computation above, a relation

∑
i eigi = 0 in

N corresponds to a relation
∑

i =(gi)’i in Homk[x](�;N ) because (
∑

i =(gi)’i)(1) =∑
i ei=(=(gi))=

∑
i eigi: It follows that Homk[x](�;N ) is generated by {’i}si=1 and gets

the presentation

Homk[x](�;N ) � Ds
n==(N0): (6)

4.1. Holonomic dual

Let us discuss how D(M) can be computed.

Algorithm 4.1. (Computing the holonomic dual)
INPUT: Dr0 =D · {g1; : : : ; gr1}, a presentation of a holonomic left D-module M .
OUTPUT: The holonomic dual D(M).

1. Compute the ,rst n + 1 steps of any free resolution of M . Let the nth part of the

resolution be Dp ·P→ Dq ·Q→ Dr:
2. Dualize and apply the adjoint operator (recall if P = [pij], then =(P) = [=(pij)]T) to

get Dp ·=(P)←−Dq ·=(Q)←− Dr:
3. Return ker(·=(P))=Im(·=(Q)).

Proof. Let the ,rst n + 1 steps of a free resolution of M be denoted,

F• : Drn+1 ·P→ Drn ·Q→ Drn−1 → · · · → Dr0 → 0:
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Applying HomD(D;−) yields a complex of right D-modules,

HomD(D; F•) : (Drn+1)T P·←(Drn)T Q·←(Drn−1 )T ← · · · ← (Dr0 )T ← 0;

and by de,nition,

ExtnD(M;D) � ker(Drn+1
P·← Drn)

Im(Drn
Q·← Drn−1 )

:

Since D(M)=Homk[x](�;ExtnD(M;D)), it only remains to determine the e-ect of apply-

ing Homk[x](�;−). Using Eq. (6), if {L1; : : : ;Lk} are generators of K=ker(Drn+1
P·←Drn),

and
∑

i Ligi ∈ I = Im(Drn Q·←Drn−1 ) is a relation, then the corresponding relation∑
i =(gi)’i in Homk[x](�;ExtnD(M;D)) can be realized as the relation

∑
i =(Ligi) =

=(gi)=(Li) ∈ =(I). It follows that

D(M) � ker(Drn+1
·=(P)←−Drn)

Im(Drn
·=(Q)←−Drn−1 )

;

which is the output of step 3.

Example 4.2. The Appell di-erential equation F1(2;−3;−2; 5) of Example 2.5 has the

resolution 0→ D1 ·Q1→D2 ·Q0→D1 → 0; where

Q0 =
[

(�x − 3)@y − (�y − 2)@x

(y2 − y)(@x@y + @2
y)− 2(y + x)@x + 4y@y + 2@x − 8@y − 4

]T

;

Q1 =
[

(y2 − y)(@x@y + @2
y)− 2x@x + 6y@y + @x − 9@y

−(�x − 3)@y + (�y − 1)@x

]
:

The holonomic dual D(F1(2;−3;−2; 5)) is the cokernel of =(Q1) and is the Appell
di-erential equation F1(−1; 4; 2;−3).

4.2. Polynomial and rational solutions by duality

When N = k[x], the isomorphism (5) specializes to

ExtiD(M; k[x]) � Hn−i(� ⊗L
D D(M)): (7)

The right-hand side is equivalently the (n − i)th integration of D(M) to the origin.
An algorithm to compute integration is given in [9]. Using it, we can evaluate the
dimensions of ExtiD(M; k[x]) and in particular HomD(M; k[x]).

Algorithm 4.3. (Evaluating dimensions of polynomial solution spaces)
INPUT: a holonomic left D-module M .
OUTPUT: dimensions of ExtiD(M; k[x]).
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1. Compute the dual D(M) using Algorithm 4:1
2. Compute the integrations of D(M) to the origin using the algorithm in [9]. They

are ,nite dimensional vector spaces.
3. Return the dimensions.

The dimensions of rational solution spaces can be evaluated in a similar way. When
N = k[x][1=f], the isomorphism (5) specializes to

ExtiD(M; k[x][1=f]) � Hn−i(� ⊗L
D D(M)[1=f]): (8)

The right-hand side is now equivalently the (n− i)th integration of D(M)[1=f] to the
origin. An algorithm to compute localization is given in [10]. Using it and the integra-
tion algorithm, we can evaluate the dimensions of ExtiD(M; k[x][1=f]) and
HomD(M; k[x][1=f]). To get the dimension of all rational solutions, take f to be
any polynomial vanishing on the singular locus.

We summarize how to compute the integration of a module N to the origin according
to [9] in a slightly more general way. The generalization sometimes gives a more
e?cient strategy than [9]. We need to recall some de,nitions. Given any strictly positive
w ∈ Zn

¿0, we get an integration ,ltration Fw of D de,ned by Fi
w(D) = Spank{x�@�|w ·

�−w ·� ≤ i}. More generally, for m ∈ Z r , we also get a shifted ,ltration Fw[m] of the
free module Dr de,ned by Fi

w[m](Dr) = Spank{x�@�ej|w · �−w · �−mj ≤ i}. We will
often write Dr[m] for the free module Dr equipped with the shifted ,ltration Fw[m]
when the context is clear. The ,ltrations Fw[m] induce ,ltrations on subquotients of Dr

in the natural way. Now we may sum up the steps of the integration algorithm. First,
compute a (w;−w)-strict free resolution G• of N of length n+1. This is a resolution of
N by free modules Drj [mj] with the property that the di-erentials preserve the ,ltration
and moreover induce a resolution on the associated graded level. Second, compute the
integration b-function of N with respect to (w;−w), and ,nd its minimal and maximal
integral roots k0 and k1. The integration b-function is the monic polynomial b(s) of least
degree satisfying b(

∑
i wi@ixi) · F0(N )⊂F−1(N ). Third, compute the cohomology of

the complex F−k0 (�⊗DG•)=F−k1−1(�⊗DG•), which is a complex of ,nite-dimensional
vector spaces. The dimensions of the cohomology groups are equal to the dimensions
of the integration modules of N .

Example 4.4. Let us evaluate the dimension of polynomial solutions to the Appell
di-erential equation M = F1(2;−3;−2; 5) of Example 2.5. Choose the weight vector
w=(1; 2). The resolution of Example 4.2, after dualizing, applying the adjoint operator,
and shifting,

0→ D1[0]
·=(Q0)−→ D2[− 1; 1]

·=(Q1)−→ D1[0]→ 0;

preserves ,ltrations but does not induce a resolution on the associated graded level.
On the other hand, if we adjust the resolution to

G• : 0→ D1[1]
·P0→D2[0; 1] ·P1→D1[0]→ 0;



216 T. Oaku et al. / Journal of Pure and Applied Algebra 164 (2001) 199–220

where

P0 =
[ −(�x + 5)@y + (�y + 2)@x

(x2 − x)(@2
x + @x@y) + 4x@x + 2(3x + 2y)@y + 4@x − 5@y − 2

]T

P1 =
[

(x2 − x)(@2
x + @x@y) + 2x@x + 4(x + y)@y + 5@x − 4@y − 4

(�x + 4)@y − (�y + 2)@x

]
;

then we do obtain a (w;−w)-strict resolution of D(M) = F1(−1; 4; 2;−3).
The integration b-function with respect to (w;−w) is (s+5)(s−2)(s−5), hence the

integration complex for D(M) is quasi-isomorphic to the truncated complex F5
w(�⊗D

G•)=F−6
w (� ⊗D G•), which is a complex of ,nite-dimensional vector spaces with

dimensions,

0→ Q16 ·P0→Q28 ·P1→Q12 → 0:

For instance, F5
w(�[0]) consists of the 12 monomials,

{1; x; y; x2; xy; y2; x3; x2y; xy2; x4; xy3; x5};
and so on. Note that =(P1) is a (w;−w)-Gr4obner basis of F1(2;−3;−2; 5) and hence
for this case, the duality method essentially coincides with the Gr4obner deformation
method of Section 2 at the level of HomD(M; k[x]). The above computations were
made in Macaulay 2, where we get the output,

i2 : PolyExt(M)

1

o2 = HashTable{0 =¿ QQ }
2

1 =¿ QQ

1

2 =¿ QQ

Here, the output i = ¿ QQj means that dim ExtiD(M; k[x]) = j.

Example 4.5. Let us now evaluate the dimension of rational solutions to
M =F1(2;−3;−2; 5). The singular locus is xy(x−y)(x−1)(y−1). We will search for
solutions in k[x; y][1=x] ,rst. From Example 4.2, D(M) has the presentation D==(Q1).
Let u be the section corresponding to the residue class of R1 in this presentation. Then
the localization D(M)[1=x] is generated by u ⊗ 1=x7 and gets the presentation D=J ,
where

J = D ·
{

(�x�y + �2
y + 8�y + 2�x + 12)− (�x + �y + 4)@y

(�x�y + 2�x + 7�y + 14)− (�x + 10)x@y

}
:

The natural localization map can be written as ’ : D==(Q1)→ D=J , where ’(1) = x7.
Choose the integration weight vector w = (1; 2). Then D(M)[ 1

x ] has a (w;−w)-strict
resolution

G• : 0→ D1[− 1]
·[v1 ;v2]−→ D2[0;−1]

·[u1 ;u2]T

−→ D1[0]→ 0;
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where

u1 =−x2@x@y + xy@x@y + 2x@x − 11x@y + 7y@y + 14;

u2 = x3@2
x + x3@x@y − x2@2

x − x2@x@y + 16x2@x + 11x2@y

+4xy@y − 9x@x − 11x@y + 52x − 7;

v1 = x3@2
x + x3@x@y − x2@2

x − x2@x@y + 16x2@x + 12x2@y

+4xy@y − 8x@x − 11x@y + 52x − 6;

v2 = x2@x@y − xy@x@y − 2x@x + 11x@y − 6y@y − 12:

The integration b-function is (s+ 12)(s+ 5)(s+ 2), hence we want the cohomology of
the complex F12

w (� ⊗D G•)=F1
w(� ⊗D G•), which has the shape,

0→ Q41 → Q86 → Q45 → 0:

By evaluating the dimensions of the cohomology groups in Macaulay 2, we ,nd

i3:RatExt(M,x)

2

o3 = HashTable{0 = ¿ QQ }
5

1 = ¿ QQ

3

2 = ¿ QQ

Since we already computed a polynomial solution, this means there is one ratio-
nal solution with pole along x. Similarly, we get the exact same dimensions for
ExtiD(M; k[x; y][1=y]), which means that there is also one rational solution with pole
along y. The rank of the system is 3, therefore we have found all the solutions. We
could also compute,

i4:RatExt(M,f)

1

o4 = HashTable{0 = ¿ QQ }
3

1 = ¿ QQ

2

2 = ¿ QQ

where f is any of the polynomials x − y; x − 1, or y − 1. As expected, there are no
rational solutions with poles along x − y; x − 1, or y − 1, but in all cases there are
new Ext1 and Ext2. We have not computed Ext with respect to any products of poles
since it is computationally too intensive for now.

Once we have evaluated the dimension of the solution spaces, we can compute the
solutions by a brute force method.
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1. For a given holonomic system M , compute its singular locus. Let f be a polynomial
such that f = 0 contains the singular locus.

2. Evaluate the dimension d of the rational solutions by the homological duality
method.

3. Try to ,nd rational solutions of the form r(x)=fk ; degree(r) = p. Increase p + k
until we ,nd d linearly independent solutions.

4.3. Holonomic solutions by duality

Isomorphism (5) can also be expressed (see e.g. [3]) as

ExtiD(M;N ) � TorDn−i(ExtnD(M;D); N ):

To compute the right-hand-side, it is also well known that for all M ′, and in particular
M ′ = ExtnD(M;D),

TorDn−i(M
′; N ) � Hi(K•((M ′ ⊗k[x] �−1)⊗̂N ; {xi − yi; @i + 7i}ni=1));

where K• denotes the Koszul complex and ⊗̂ denotes the external tensor product into
the category of D2n = k〈x1; y1; : : : ; xn; yn; @1; 71; : : : ; @n; 7n〉-modules. Combining these
isomorphisms leads to

ExtiD(M;N ) � Hi(K•((D(M)⊗̂N ; {xi − yi; @i + 7i}ni=1)):

By an automorphism of D, we can transform {xi − yi; @i + 7i}ni=1 into {xi; yi}ni=1, for
which the Koszul complex computes the derived restriction to the origin.

Algorithm 4.6. (Evaluating dimensions of holonomic solution spaces)
INPUT: holonomic left D-modules M and N
OUTPUT: dimensions of ExtiD(M;N ).

1. Compute the dual D(M) using Algorithm 4:1
2. Form the D2n-module D(M)⊗k N and apply the change of coordinates A :D2n → D2n

where A maps,

xi �→ 1
2xi − 7i; @i �→ 1

2yi + @i;
yi �→ − 1

2xi − 7i; 7i �→ 1
2yi − @i:

3. Compute the restrictions of A(D(M)⊗k N ) to the origin using the algorithm in [9].
They are ,nite dimensional vector spaces.

4. Return the dimensions.

Example 4.7. Let M =F1(2;−3;−2; 5) be the Appell di-erential equation of Example
2.5, and let N=k[x; y][1=x]=k[x; y]. It has presentation D=D·{x; @y}, where the generator
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1 corresponds to 1=x. Using the above algorithm, we compute

i5 : DExt(M, N)

1

o5 = HashTable {0 =¿QQ}
3

1 =¿QQ

2

2 =¿QQ

Similarly, let N = k[@x; @y] � D=D · {x; y}, the module of the delta functions with the
support (0; 0). Then we compute

i6 : DExt(M, N)

0

o6 = HashTable {0 =¿QQ}
1

1 =¿QQ

2

2 =¿QQ

As before, once we know the dimension of HomD(M;N ), we can compute the so-
lutions of M in N by a brute force method.

1. For given holonomic systems M and N , evaluate the dimension d of HomD(M;N )
by the homological duality method.

2. Filter N by ,nite-dimensional vector spaces Fi(N ) and search for solutions in Fi(N )
for increasing i until d linearly independent solutions are found.

For instance in step 2, if N = D=J , then we can use the induced Bernstein ,ltration
B where Bi(D=J ) consists of residues of elements L ∈ D whose total degree is less
than or equal to i.
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