
Information and Computation 207 (2009) 459–495

Contents lists available at ScienceDirect

Information and Computation

j ourna l homepage: www.e lsev ie r .com/ loca te / i c

Asynchronous sequential processes

Denis Caromel, Ludovic Henrio ∗, Bernard Paul Serpette

CNRS—I3S—UNS—INRIA Sophia-Antipolis, 2004, route des Lucioles, F-06902 Sophia-Antipolis, France

A R T I C L E I N F O A B S T R A C T

Article history:

Received 16 December 2004

Revised 14 September 2008
Available online 30 December 2008

Keywords:

Object calculus

Concurrency

Distribution

Parallelism

Object-oriented languages

Components

Determinism

Futures

Deterministic behavior for parallel and distributed computation is rather difficult to en-

sure. To reach that goal, many formal calculi, languages, and techniques with well-defined

semantics have been proposed in the past. But none of them focused on an imperative

object calculus with asynchronous communications and futures. In this article, an object

calculus, Asynchronous Sequential Processes (ASP), is defined, with its semantics. We prove

also confluence properties for the ASP calculus. ASPsmain characteristics are asynchronous

communications with futures, and sequential execution within each process. This paper

provides a very general and dynamic property ensuring confluence. Further, more specific

and static properties are derived. Additionally, we present a formalization of distributed

components based on ASP, and show how such components are used to statically ensure

determinacy. This paper can also be seen as a formalization of the concept of futures in a

distributed object setting.

© 2009 Elsevier Inc. All rights reserved

1. Introduction

Distributed object systems are generally based on remote method calls between objects and rely on a concept of threads

rather orthogonal to the object structure. This article formalizes a way of unifying the notion of threads and objects: each

object belongs to a single activity (we use “activity” rather than “process” for expressing the unit of distribution) and each

activity is associated a single thread. Then, activities communicate by asynchronous method calls allowing both sender and

callee to perform operations between the request sending and its treatment, thus increasing concurrency. Futures are intro-

duced to represent awaited results of such asynchronous calls; one of themain contribution of this paper is the formalization

of the notion of futures in the context of distributed objects.

Confluence properties simplify programming as they avoid having to study every possible interleaving of instructions

and communications. They also ease the development of languages and middleware, by authorizing some optimizations

or even allowing the implementation of some mechanisms, e.g. [1]. Confluence of various calculi, languages, or programs

have been studied in the past, using different techniques. Linear channels in π-calculus [2,3], non interference properties in

sharedmemory systems [4], Process Networks [5] or Jones’ technique for creating deterministic concurrency in πoβλ [1] are

typical examples. All these works provide a characterization of confluence in a specific domain but none of them deals with

a concurrent, imperative, object calculus with asynchronous communications.

The study of confluence has two objectives. First it characterizes deterministic programs, because it is often needed that a

program behaves deterministically; one could not imagine a non-deterministic result to a binary or a prime number search.

But more importantly we aim at characterizing the possibilities of interference, and characterizing minimally an execution.

Such a minimal characterization is useful in several contexts, like for example debugging: a program is easily characterized

and reproducible; fault tolerance: the status of an ongoing computation is known in a minimal way, and thus easily stored

* Corresponding author.

E-mail addresses: denis.caromel@inria.fr (D. Caromel), ludovic.henrio@inria.fr (L. Henrio), bernard.serpette@inria.fr (B.P. Serpette).

0890-5401/$ - see front matter © 2009 Elsevier Inc. All rights reserved.

doi:10.1016/j.ic.2008.12.004

http://www.sciencedirect.com/science/journal/08905401
http://www.elsevier.com/locate/ic

460 D. Caromel et al. / Information and Computation 207 (2009) 459–495

and re-executed [6]; and program analysis: one would know exactly which interleaving of actions are significant for the

program execution.

We design a calculus named ASP: Asynchronous Sequential Processes and formalize some properties of determinismon this

calculus. ASPmodels an object-oriented languagewith asynchronous communications and futures, and sequential execution

within each parallel process. We start from a purely sequential and classical object calculus (impς-calculus) [7] and extend

it with two parallel constructors: Active and Serve. Active turns a standard object into an active one, executing in parallel and

serving requests in the order specified by the Serve operator. Parallel composition of activities comes as a consequence of

object activation and only exists at runtime.Method calls on active objects are asynchronous: their results are represented by

futures until the corresponding response is returned. Automatic synchronization of activities comes from wait-by-necessity

[8]: a wait automatically occurs upon a strict operation (e.g. a method call) on a future.

Innovative aspects of ASP calculus include a formalization of the following features in an object oriented context: futures

together with asynchronous method calls, data-driven synchronization, and unification of the notions of processes and

objects. Moreover confluence properties seems to be novel in such a distributed objects framework. Our key property states

that the execution is only determined by the order of activities sending requests to a given activity; asynchronous replies can occur

in any order without observable consequence. This work is more general and strongly related to the Process Networks of

Kahn [5]. Thisworkalso identifies sets of programs thatbehavedeterministically, includinga characterizationofdeterministic

components.

On the practical side, the ASP-calculus model is implemented as a Java middleware, ProActive [9], allowing parallel and

distributed programming. The properties shown in this paper are useful both in the design of ProActive, e.g., because any

strategy for returning a future is equivalent and can be implemented in the middleware, and for the programmer as he only

has to ensure that the result will be calculated.

The passing of futures between activities, both as method parameters and as method results is an important feature of

ASP. As futures can proliferate, from a practical point of view, a strategymust be specified to choose when and how a request

result should be sent back to replace the references to the corresponding futures. The ASP calculus captures all the possible

update strategies, and thus properties are valid for all of them. Moreover, a given activity is insensitive to the moment when a

result comes back. This is a powerful characteristic of the confluence property we exhibit.

This paper is organized as follows. Section 2 presents the sequential part of ASP, which is strongly based on the impς-

calculus. Section3 informally introduces theASPcalculus, its principles anda fewexamples. Section4defines the semantics of

ASP and some intrinsic properties, Section5presents its confluenceproperties, and Section 6 showhowtobuild deterministic

components in ASP. Section 7 compares ASPwith other concurrent calculi and their confluence properties. An appendix gives

some technical details of the proofs and the equivalence relation. This work was partly and briefly presented in [10], more

details on proofs and extensions of the calculus can also be found in [11].

2. Sequential calculus

2.1. Syntax

We start from an imperative sequential object calculus strongly inspired from the one of Abadi and Cardelli. The purpose

of this calculus is to serve as the sequential core on top of which the parallel calculus will be defined. The only characteristics

that have been changed in the ASP sequential calculus, relatively to the impς-calculus, are the following:

• Because arguments passed to active objects methods will play a particular role, we added a parameter to every method

like in [12]. In addition to the self argument of methods, noted xj and representing the object on which the method is

invoked, we add an argument representing a parameter object to be sent to the method, noted yj .

• We do not include method update in our calculus because we do not find it necessary. It is still possible to express

updatable methods in our calculus.

• As in [13], during the reduction, locations (reference to objects in a store) can be part of terms. Locations do not appear in

user syntax.

In this article, we will distinguish user syntax/user terms corresponding to programs and runtime syntax/runtime terms

that are generated when evaluating programs and will have a different syntax.

The abstract syntax of the ASP calculus is given in Fig. 1, a, b as defined in the figure range over terms, li∈1..n
i

range over

field names;m
j∈1..m
j

are method names; ς is a binder for method parameters; and a location ι is an entry in the store defined

below. let x = a in b, sequence a; b,1 lambda expressions, andmethodswith zero or several arguments can be easily expressed

in our calculus and are used in the following.

1 Let x = a in b� [m = ς(_, x)b].m(a) a; b � [m = ς(_, _)b].m(a).

D. Caromel et al. / Information and Computation 207 (2009) 459–495 461

Fig. 1. Sequential syntax.

2.2. Semantic structures

Free and bound variables are defined as usual: ς is the only binder, it binds two variables at the same time. Let locs(a)

denote the set of locations appearing in a, and fv(a) the set of variables occurring free in a.User terms are closed termswithout

location, where a is closed iff (fv(a)=∅ ∧ locs(a)=∅) . Locations appear when putting objects in the store.

Substitution. The substitution of b by c in a is written: a
{{
b← c

}}
. Substitutions are denoted by θ ::={{ bi ← ci

}} i∈1..n
. In

the semantics, substitution is applied in a classical way: it replaces a formal parameter x by the locations of the arguments

without replacing inside binders: expressions under ς(x, z) or ς(z, x) are unchanged. Usually, substitutionmust avoid variable

capture, but here variables are always substituted by locations, which avoids this problem.

Let ≡ be the equality modulo renaming of locations (substitution of locations by locations) provided the renaming is

injective. In other words, ≡ is the equality modulo “alpha-conversion” of locations.

Store. Reduced objects are objects with all fields reduced to a location:

o ::= [li = ιi;mj = ς(xj , yj)aj
]i∈1..n
j∈1..m

A store σ is a finite map from locations to reduced objects: σ ::={ιi �→ oi}. The domain of σ , dom(σ), is the set of locations

defined by σ .

Let σ :: σ ′ append two storeswith disjoint locations.When the domains are not disjoint, σ + σ ′ updates the values defined
in σ ′ by those defined in σ . It is defined on dom(σ) ∪ dom(σ ′) by

(σ+σ ′)(ι) = σ(ι) if ι ∈ dom(σ)

σ ′(ι) otherwise

Note that σ :: σ ′ is equal to σ + σ ′ but specifies that dom(σ) ∩ dom(σ ′) = ∅.

Configuration. Let a sequential configuration (a, σ) be a pair (expression, store). We denote by � (a, σ)ok a well-formed

configuration, i.e. a configuration that has no free variable and defines every location it uses:

Definition 1 (Well-formed sequential configuration).

�(a, σ)ok⇔
{
locs(a) ⊆ dom(σ) ∧ fv(a) = ∅ ∧
∀ι∈dom(σ), locs(σ (ι))⊆dom(σ) ∧ fv(σ (ι))=∅

2.3. Reduction

We first define reduction contextsR as expressions with a unique hole •:

R ::= • |R.li |R.mj(b) | ι.mj(R)|R.li := b | ι.l :=R | clone(R) | [li = ιi; lk =R; lk′ = bk′ ;mj = ς(xj , yj)aj]i∈1...k−1,k
′∈k+1...n

j∈1..m

R[a] denotes the syntactic replacement of the hole • by a inR:

R[a]=R {{ •←a
}}
. This replacement is however different from classical substitution because it allows variables in a to be

captured by the binders inR.

462 D. Caromel et al. / Information and Computation 207 (2009) 459–495

Table 1

Sequential reduction

Table 1 defines a small-step, substitution-based operational semantics for our sequential calculus. It gives reduction rules

that are applied at the point represented by the occurrence of • in R; rules are object creation (storealloc), field access

(field), method invocation (invoke), field update (update) and shallow clone (clone). This semantics is very similar to the

one of [13]. To evaluate a user term a, an initial configuration (a, ∅) is created. It contains the user term a, and the empty store.

Sequential reduction has two interesting properties. First, reduction preserves well-formedness. Second, the sequential

reduction is deterministic up to the choice of freshly allocated locations:

Property 1 (Determinism). Let c, d and d′ be three configurations:

c→S d ∧ c→S d′ ⇒ d ≡ d′

3. Parallel calculus

This section defines a parallel calculus which is based on activities. Each ASP object is either active or passive. There is

one active object at the root of each activity. Activities run in parallel, and interact only through asynchronous method calls.

Synchronization is due to a data-driven synchronization on the result of an asynchronous method call: wait-by-necessity.

3.1. Principles

An activity is a process associated with a set of objects put in a store. Among these objects, one is active; every remote

method call sent to the activity is actually sent to this object, such remote invocations are called requests. An activity also

contains the pending requests (requests that have been received and should be served later) and the values of the results

for finished requests. Passive (i.e., non active) objects are only referenced by objects belonging to the same activity but any

object can reference active objects and futures: there is no shared memory except references to active objects and futures.

Activities are single threaded, which is crucial for ASP properties.

The activation of an object Active(a,m) creates a new activity whose active object is a copy of a. Serve(m1..mn) performs

a blocking service of requests received by the current active object. Unlike many other concurrent calculi based on the

ς-calculus, in ASP, the requests are not executed by the thread that performs the method call.

A future is an identifier representing the result of a method call to an active object, this allows method invocations on

active objects to be asynchronous. Execution will be blocked when we try to perform a strict operation (e.g. accessing a

field of the objects) on a future. Such blocking states are called wait-by-necessity. When the method is finished, the result is

returned, and if the execution was blocked in a wait-by-necessity, it can continue. We call future reference, a reference to a

future, i.e. a reference to a remote method invocation for which the result has not yet been returned, and future value, the

result corresponding to a future once it has been computed.

D. Caromel et al. / Information and Computation 207 (2009) 459–495 463

Fig. 2. Example of a parallel configuration.

3.2. User syntax

We extend the sequential calculus by adding the possibility to create active objects and to serve requests:

a, b∈L ::= ... sequential calculus term

|Active(a,mj) activates object,mj is the activity method

|Serve(m1, ..,mn)
n>0 starts the service of a request,

|a ⇑ f , b a with continuation f , b (not in user syntax)

3.3. Informal semantics

In every activity α, a current term aα represents the current computation. Every activity has its own store σα which contains

one active and many passive objects. It contains also a pending request queue which stores the pending method calls and a

future listwhich stores the results of finished requests. Fig. 2 gives an illustration of a configuration consisting of two activities.

It contains three references to futures (one calculated, one current, and one pending). The active objects are bold ellipses;

futures references are diamonds; future values, current future and pending requests are merged in the bottom rectangles:

calculated future values are on the left, current futures are represented by a bold rectangle and pending requests are on the

right. Continuations will not appear in our representation.

Activities. The Active operator Active(a,mj) creates a new activity α with the object a at his root, a is called the active object

and acts as the master object of the new activity. The object a is copied with all its dependencies2 (deep copy) into a new

activity. The second argument to the Active operator is the name of a method which will be called as soon as the object is

activated. This method with no argument is called the service method as it should specify the order in which the requests are

served. A FIFO service serves the requests in the order they arrived in the activity; in that case, in Fig. 2, the current request

(bold square) progresses from left to right in the queue. When the service method terminates, no more request is treated.

Remote references to the active object of activity αwill be denoted by, the generalized reference AO(α) in the runtime syntax.

A field access on an active object reference is irreversibly stuck. However, the fields of an active object can bemanipulated

by its own activity, and accessed remotely via accessors.

Requests. Communications between activities are due tomethod calls on active objects and returns of corresponding results.

Amethod call on an active object consists in atomically adding an entry to the pending requests of the callee, and associating a

future to the response (in the ProActive implementation, the request sender waits for an acknowledgment before continuing

2 To prevent remote references to passive objects.

464 D. Caromel et al. / Information and Computation 207 (2009) 459–495

its execution). Arguments of requests and values of futures are deeply copied when they are transmitted between activities.

Active objects are transmitted with a reference semantics.

Serving requests. The primitive Serve stops the activity until a requestmatching its argument is found in the pending requests,

i.e. a request on one of the method specified as parameter of the Serve primitive. A service can be performed at any time,

including while serving another request. ⇑ is runtime syntax needed to formulate the operational semantics, it is used to

save the continuation3 of the request we are currently servingwhile we serve another one. Note that with such amechanism

there are several requests being served at the same time, except if Serve operations are only performed by the top level

activity, i.e., no Serve is performed while a request is being served.

When the execution of a request is finished, the corresponding future is associated with the calculated value. Then, the

execution restores the continuation that had been stored when the service started.

Futures. Futures are generalized references that represent the result of an asynchronous method call. This result may be

unavailable if it is not yet calculated or not yet sent. The result is the future value. We call future update the operation

consisting in sending the calculated value for a future and replacing a reference to the future by this value. Inside each

activity, the future list maps futures to their values within the activities that computed them. A future value is called partial

if its dependencies contain future references.

An operation on an object is strict if it needs to access the content of the object: field and method access, update, clone.

Transmitting an object to another activity is not a strict operation. Futures can be manipulated while we do not perform

strict operations on them. Await-by-necessity occurs when a strict operation occurs on a future: the activity is blocked until

the future is updated. In Fig. 2, futures f2 and f3 denote pointers to not yet computed requests while f points to a future value

computed but not yet updated.

3.4. Future update strategies

As futures can be safely manipulated and transmitted between activities, references to futures can proliferate. Different

strategies can be implemented for returning the value of a future. In our semantics, every reference to a future can be replaced

by the future value (partial or complete) at any time. Thus, we capture all the possible future update strategies. Specifying a

strategywould restrict the possible reductions but could simplify and optimize the execution. For example, an eager strategy

would send a result as soon as its value has been calculated; the future list would become useless but this would necessitate

to contact every activity containing a reference to the future at once. The opposite strategy would consist in returning only

complete results and forbidding the usage of futures as parameter of method call; such a strategy leads to many stuck and

even deadlocked configurations. These two strategies have been implemented in ProActive.

3.5. Example: sieve of Eratosthenes

Remember the Sieve of Eratosthenes finds prime numbers by applying successive filters:when a prime number n is found,

a newfilter is created such that every number that is divisible by nwill be rejected by the filter. If all filters for prime numbers

strictly smaller than n have been created and n is accepted by all these filters then n is prime. This section translates in ASP

the distributed Sieve of Eratosthenes described in [14] for Process Networks. In Process Networks, the sieve was performed

by several processes linked by channels (with operations get and put), a process for each prime number. Each process gets

numbers from the process associated to the previous prime number, and pushes values to the one associated with the next

prime. We applied the same methodology and created one activity per prime number found. We first considered that the

communications comes from the activity that performs a get on a channel to the one that performs a put on the same channel

and replace such Process Networks communication by a call to a request get (see Fig. 4). Repeat performs an infinite loop and

will be defined later on. Fig. 3 defines a “pull” Sieve of Eratosthenes in ASP, depicted in Fig. 4.

The Integer object generates all integers. There is one Sieve object for each prime number. It returns the next integer given

by its parent sieve that is not divisible by the prime number n. The Sift object manages the whole computation.We supposed

Display is an object to which the list of primes have to be sent. When a new prime is found, a new Sieve is inserted between

the Sift and the former last Sieve. Note that the only strict operations on integers n are the ones performed by the Display

object and MOD. In this example, every object always replies to a get request: prime numbers are pulled one after the other

one by the sift object. Thus, the program will be evaluated sequentially and the pipelining that could be performed on the

example of Kahn and MacQueen cannot occur here. The following implementation of the sieve allows such pipelining; see

Fig. 5.

A push version. Fig. 6 defines a “push” Sieve of Eratosthenes in ASP, depicted in Fig. 5. Integers are put successively into a

pipeline of sieve objects which finally send the next prime to a Display objects.

3 Here, continuation stands for the state of the interrupted service, that is to say the instructions still to be executed to finish the service.

D. Caromel et al. / Information and Computation 207 (2009) 459–495 465

Fig. 3. Example: Sieve of Eratosthenes (pull).

Fig. 4. Sieve of Eratosthenes (pull).

Fig. 5. Sieve of Eratosthenes (push).

4. Parallel semantics and properties

4.1. Structure of parallel activities

We assume that we have three distinct name spaces: activities (α,β ∈ Act), locations (ι) and futures (f , fi)
4. Activities have

unique names, and locations are local to an activity. A future will be characterized by its identifier fi, the source activity α and

the destination activity β of the corresponding request: f
α→β
i

. Future identifiers fi must be chosen such that f
γ→α
i

is unique.

For example, the future identifiers can be unique for each destination activity.

A parallel configuration is a set of activities:

P,Q ::= α[a; σ ; ι; F;R; f] ‖ β[. . .]‖ . . .

We will denote by α ∈ P the fact that an activity named α belongs to the configuration P. Each activity α[a; σ ; ι; F;R; f] is
characterized by:

• a current term a = b ⇑ f
γ→α
i

, c to be reduced. a contains the terms corresponding to the different requests being treated,

services are separated by ⇑. The left part b is the term currently evaluated, the right one f
γ→α
i

, c is the continuation:

4 There are already name spaces for the fields, methods and variables identifiers which appear in the user terms and are not created dynamically.

466 D. Caromel et al. / Information and Computation 207 (2009) 459–495

Fig. 6. Example: sieve of Eratosthenes (push).

respectively the future and current term of a service that has been stopped before the end of its execution, because a

new Serve instructionwas encountered during this request service.When the current service will be finished, the current

term c will be restored, and its result associated to the future f
γ→α
i

. c can also contain continuations;

• a store σ containing all objects of the activity α;

• an active object location ι, the location of the active object of activity α. σ(ι) is the active object of α which will handle

requests;

• a mapping future values associating, for each served request, a location ι to its future fi: F = {fi �→ ι}. In fact, the value of

future fi is the part of store that has ι for root (the deep copy of σ(ι));

• a list of pending requests R = {[mj; ι; f γ→αi
]};

• a current future f , the future associatedwith the request currently served;more precisely, if the current term is a ⇑ f
γ→α
i

, b

then f will be the future associated with the value computed by a.

Empty parts of activitieswill be denoted by ∅: ∅ can be an empty list (futures or requests), an empty current term (no activity),

or an empty current future (when no request is currently treated). When necessary we will denote by σα the store of activity

α and similarly for the other components of the activities. Moreover,M denotes a finite and non-empty set of method labels.

M = {m1, . . . ,mn} n>0

A request can be seen as the “reification” of a method call [15]. Each request r ::= [mj; ι; f γ→αi
] consists of

• the name of the target method:mj ,

• the location of the argument passed to the request: ι,

• the future identifier which will be associated to the result: f
γ→α
i

.

We will denote by :: the concatenation of request queues. Consequently, R :: r adds a request r at the end of the request

queue R. and R′ :: r :: R matches a queue containing the request r. Similarly, F :: {fi �→ ι} adds a new future association to the

set of future values.

In the store, one has:

o ::= [li = ιi;mj = ς(xj , yj)aj]i∈1..nj∈1..m reduced object

| AO(α) active object reference

| fut(f α→β
i

) future reference (proxy)

fut(f
α→β
i

) references the future f
α→β
i

. AO(α) references the active object in activity α. AO(α) and fut(f
α→β
i

) act as “proxy” to

a remote activity or to a future object. Note that, when a reference to a future appears in an activity, the activity that may

know the corresponding value can easily be contacted because it is encoded in the future reference: β in f
α→β
i

.

The runtime syntax guarantees that there are no shared references in ASP except futures and active objects; moreover

active objects are only accessible through asynchronous method calls and future values are immutable. Such a structure is

crucial to ensure ASP properties.

4.2. Parallel reduction

First, object activation and continuations are added to reduction contexts:

R ::= . . . | Active(R)|R ⇑ f , a

4.2.1. Deep copy

Wedefine here operators on the store that will be used in the semantics. The operator copy(ι, σ) creates a store containing

the deep copy of σ(ι). copy(ι, σ) is the smallest store satisfying the rules of Table 2. In Table 2 the first two rules specify the

domain of the deep copy: recursively, all locations referenced by ι; and the last one states that the codomain is the same in

D. Caromel et al. / Information and Computation 207 (2009) 459–495 467

Table 2

Deep copy

Fig. 7. request.

the copied and the original store. The deep copy of a future or an active object reference is the reference itself: deep copy

does not follow global references. The part of store formed by the deep copy is independent: � (ι, σ)ok ⇒ � (ι, copy(ι, σ))ok.
We define a functionMergewhich merges two stores. It creates a new store, merging independently σ and σ ′ except for ι

which is taken from σ ′:

Merge(ι, σ , σ ′) = σ ′θ + σ
where θ = {{

ι′← ι′′ | ι′ ∈dom(σ ′) ∩ dom(σ)\{ι}, ι′′ fresh }}
The following operator adds the part of σ reachable from the location ι at the location ι′ of σ ′ avoiding collision of locations;

only ι′ can be updated:

Copy&Merge(σ , ι ; σ ′, ι′) � Merge(ι′, σ ′, copy(ι, σ)
{{
ι← ι′

}}
)

4.2.2. Reduction rules

Table 3 describes the reduction rules corresponding to the small step semantics of the parallel calculus. Note that local,

newservice and endservice are local rules involving a single activity. Here is a short description of these rules:

local inside each activity, a local reduction can occur following the rules of Table 1. Only one sequential rule needs a slight

modification: cloning a future is considered as a strict operation in order to ensure determinism: the clone rule applied to

a future is stuck. To summarize, rules field, invoke, update, clone are stuck when the target location is a future reference.

However, reply may transform a future reference into a reachable object.field, update, and clone are stuck when the target

location is activity reference, but request allows to invoke an active object method.

newact activates an object. A newactivity γ is created containing the deep copy of the object σ(ι) and empty pending requests

and future values. A reference to the created activity AO(γ) is created in α. Remark that other references to ι in α are still

pointing to the passive object.mj specifies themethod run initially by the active object. It is a methodwith no argument that

is executed upon object activation and should perform Serve operations.

request sends a new request from activity α to activity β. Fig. 7 illustrates the application of the request rule, using the same

variables as in the rule. A new future f
α→β
i

is created to represent the result of the request. α stores a reference to this future

468 D. Caromel et al. / Information and Computation 207 (2009) 459–495

Table 3

Parallel Reduction (values neither used nor modified are grayed)

and can continue its execution. A request containing the name of the method, the location of a deep copy of the argument

stored in σβ , and the associated future is added to the end of the pending requests Rβ : [mj; ι′′; f α→βi
]. A particular rule is

necessary when an asynchronousmethod call is performed on the caller activity itself, i.e., when α = β. This is different from
a sequential call on the active object:

request α = β
σα(ι)=AO(α)ι′′ �∈ dom(σα) f α→αi new future ιf �∈ dom(σα)

ι′′ /= ιf σ ′α = Copy&Merge(σα , ι
′ ; {ιf �→ fut(f α→αi)} ::σα , ι′′)

α[R[ι.mj(ι
′)]; σα; ια; Fα;Rα; fα]‖Q −→ α[R[ιf]; σ ′α; ια; Fα;Rα :: [mj; ι′′; f α→αi]; fα]‖Q

serve serves a new request (Fig. 8). The reduction of the current term is stopped and stored as a continuation: future f ,

expressionR[[]], and the first request on one of the labels specified inM is treated. To ensure ASP properties, it is crucial that

only the oldest request matching a criterion can be served. Indeed, treating the last request matching M would be highly

dependent on the interleaving between communications and local reductions. The activity is actually stuck until a matching

request is found in the pending request queue.

endservice associates the result of the request that has just been treated to the current future f . It applies when the current

request is finished (i.e. current term is a location). The result is deep copied to prevent post-servicemodification of the value.

The new current term and current future are obtained from the continuation (Fig. 9).

reply updates a future value (Fig. 10). It applies when the value associated to a future has been calculated and replaces

a reference to a future by the part of store associated with it, i.e., by the deep copy of the location associated to f
γ→β
i

).

Deliberately, we do not specify when this rule should be applied. It is only required that an activity contains a reference to

a future, and another one has calculated the corresponding result. However, wait-by-necessity can only be resolved by the

update of the future value, which constraints themoment when this rule can be applied. In general, a future f
γ→β
i

also needs

to be updated in an activity different from the origin of the request (α /= γ) because of the capacity to transmit futures, e.g.

D. Caromel et al. / Information and Computation 207 (2009) 459–495 469

Fig. 8. serve.

Fig. 9. endservice.

as method call parameters. A future can also be updated in the same activity it has been calculated, when α = β, leading to

the following particular case for the rule reply:

reply α = β
σα(ι) = fut(f

γ→α
i

) Fα(f
γ→α
i

) = ιf σ ′α=Copy&Merge(σα , ιf ; σα , ι)
α[aα; σα; ια; Fα;Rα; fα] ‖ P −→ α[aα; σ ′α; ια; Fα;Rα; fα] ‖ P

After an update, a future valuemust be kept stored because the futuremight have proliferated in other activities; however

garbage collection techniques could be applied to futures [16,17].

We can define the infinite loop Repeat and the FIFO service that serves the requests in the order they arrived:

Repeat(a) � [repeat = ς(x)a; x.repeat()].repeat()
FifoService � Repeat(Serve(M))

where M is the set of all the method labels of the concerned active object.

An initial configuration consists of a single activity, with the user program a as current term: μ[a; ∅; ∅; ∅; ∅; ∅]. This activity
never receives any request, it communicates by sending requests, creating activities, or receiving replies.

470 D. Caromel et al. / Information and Computation 207 (2009) 459–495

Fig. 10. reply.

4.3. Well-formedness

Let FL(γ) be the list of futures that have been calculated, the current futures (i.e., fγ and those in the continuation of the

current term), and futures corresponding to pending requests. It is depicted by the rectangles at the bottom of the activity

in Fig. 2.

Definition 2 (Future list).

FL(γ) = {f β→γ
i

| {f β→γ
i
�→ ι}∈Fγ } :: {fγ } ::F(aγ) :: {f β→γi

| [mj , ι, f
β→γ
i
]∈Rγ }

where

{
F(a ⇑ f , b) = f :: F(b)
F(a) = ∅ ifa /= a′ ⇑ f , b

Let ActiveRefs(α) and FutureRefs(α) be respectively the set of active objects and the set of futures referenced in α:

ActiveRefs(α) = {β | ∃ι∈dom(σα), σα(ι) = AO(β)
}
,

FutureRefs(α) =
{
f
β→γ
i

| ∃ι∈dom(σα), σα(ι) = fut(f
β→γ
i

)
}

Definition 3 (Well-formedness). A parallel configuration iswell-formed if all local configurations are well-formed, according

to Definition 1; every referenced activity belongs to the configuration; and every future reference points to a future that

either has been calculated, or has a corresponding entry in a pending request queue:

� Pok⇔ ∀α ∈ P,

⎧⎨
⎩
� (aα , σα)ok ∧ � (ια , σα)ok
β ∈ ActiveRefs(α)⇒ β ∈ P

f
β→γ
i

∈ FutureRefs(α)⇒ f
β→γ
i

∈ FL(γ)

Property 2 (Correct reduction). Well-formedness is preserved by parallel reduction:

� Pok ∧ P −→ P′ �⇒ � P′ok

4.4. Future and parameter isolation

The following property states that the value of each future and each request parameter are situated in isolated parts of

the store. Fig. 11 illustrates the isolation of a future value on the left and a request parameter on the right.

Property 3 (Store partitioning). Let

ActiveStore(α) = copy(ια , σα) ∪
⋃

ι∈locs(aα)
copy(ι, σα),

D. Caromel et al. / Information and Computation 207 (2009) 459–495 471

Fig. 11. Store partitioning: future value, active store, request parameter.

At any stage of computation, each activity has the following invariant:

σα ⊇
⎛
⎜⎝ActiveStore(α) ⊕

⊕
{f �→ιf }∈Fα

copy(ιf , σα) ⊕
⊕

[lj;ιr ;f]∈Rα
copy(ιr , σα)

⎞
⎟⎠

where ⊕ is the disjoint union.

This invariant is proved by checking it on each reduction rule. The part of σα that is outside the above partition may be

freely garbage collected. The futures and parameters partitions are immutable, except for future updates.

5. Confluence and determinism

This section introduces a notion of compatibility and an equivalence relation between configurations. Then, we present

several confluenceproperties.Ourobjective is to identifywhat creates concurrency inASP.ASPcombines concurrent activities

with limited concurrency inorder to simplify the reasoningaboutprograms. Theconfluencepropertypresentedhereprovides

aminimal condition ensuring that two executions of the same program produce the same result. Here, two configurations are

said to be confluent if they can lead to the same result. Appendices formalize the notion of equivalence modulo future updates

and proves the crucial theorems presented in this section.

5.1. Definitions and hypothesis

First, let
*−→ denote the reflexive transitive closure of −→; and αP denote the activity α of configuration P.

We suppose that the names of freshly allocated activities are chosen deterministically: the first activity created by α will

have the same identifier for all the possible executions. Non-deterministic choice of fresh activity names would require to

rename activities when defining the equivalence of two configurations. We would have to apply also the renaming to the

definition of compatibility between request sender list (Definition 6), leading to more complex notations.

We also specify future identifiers, f
α→β
i

. To simplify notations, fi is now the name of the method invoked, indexed by

its arrival number in β: if the 4th request received by β comes from γ and concerns method foo, then its future is foo
γ→β
4

.

Consequently, in the following, f denotes a method label.

Potential services. LetMαP be an approximation of the set ofM that can appear in the Serve(M) instructions that the activity α

may perform in the future. In other words, for a given configuration P, for each activity α, if an activitymay perform a service

on a set of method labels, then this set must belong to MαP . More formally:

∃Q , P
*−→ Q ∧ aαQ =R[Serve(M)] ⇒ M ∈MαP

This set is called potential services, and can be either specified by the programmer and checked, or statically inferred. Note

that P
*−→ Q ⇒MαQ ⊆MαP . For example, consider a program P containing two Serve primitives, one serving requests onm1

orm2 (Serve(m1,m2)), and another serving requests onm3 (Serve(m3)). Potential services would be: MαP = {(m1,m2), (m3)}.

472 D. Caromel et al. / Information and Computation 207 (2009) 459–495

Two requests onmethodsm1 andm2 are said to be interfering in α for a program P if they both belong to the samepotential

service, that is to say if they can appear in the same Serve(M) primitive: ∃M∈Mαp , {m1,m2} ⊆ M.

5.2. Configuration compatibility

We introduce now concepts that will be useful for establishing confluence properties in Section 5.4. Informally, two

configurations are compatible if, for each activity γ present in both, the list of senders of requests received by γ in one

configuration is the prefix of the same list in the other configuration. Moreover, two non-interfering requests can safely be

exchanged. This compatibility relationwill be a criterion for confluence andwill be used to show that the order of evaluation

is entirely defined by the order of request sending.

Definition 4 (Request Sender List). The request sender list (RSL) of α is the list of the identifiers of the activities that have

sent requests to α. These identifiers are ordered by the request reception order. Each element is indexed by the name of the

invoked method. The ith element of RSL(α) is inferred from the ith future computed by the activity as follows:

(RSL(α))i = β f if f β→αi
∈FL(α)

FL(α) has been defined in Section 4.3. The RSL list is obtained from futures associated to served requests, current requests,

and pending requests. This list is ordered by the request arrival order, and thus, some entries corresponding to served requests

can appear after some current or pending requests. Serve operations can be performedwhile another request is being served;

then the relation between RSL order and FL order is complex. However, if only the servicemethod performs Serve operations,

then all the restrictions to potential services of the RSL and of the FL are in the same order. For a FIFO service the order of

requests is not changed from the moment they are received. Thus the RSL is directly obtained from the concatenation of the

future values in the order they have been calculated, the unique current future, and the pending requests in the order they

arrived. If f
β→α
n is the current future then f δ→α

1
. . . f

γ→α
n−1 correspond to the calculated futures and f δ→α

n+1 . . . correspond to the

pending requests.

Definition 5 (RSL comparison �). RSLs are ordered by the prefix order on activities:

α1
f1 . . . αn

fn � α′1
f ′
1 . . . α′m

f ′m ⇔ n ≤ m ∧ ∀i∈[1..n],αi = α′i

Definition 6 (RSL compatibility: RSL(αP) �� RSL(aQ)). Two RSLs are compatible if one is prefix of the other:

RSL(αP) �� RSL(aQ)⇔
(
RSL(αP) � RSL(αQ) ∨ RSL(αP) � RSL(αQ)

)
An equivalent criteria for RSL compatibility is that two RSLs are compatible if they have a least upper bound: i.e. if

RSL(αP) � RSL(αQ) exists.
Let RSL(α)

∣∣
M
represent the restriction of the RSL(α) list to the set of labelsM. For instance (αf0 :: β f1 :: γ f2)

∣∣{f0,f2} = αf0 :: γ f2 .

Two configurations are said to be compatible if all the restrictions of their RSL that can be served are compatible.We suppose

that configurations to be compared derive from the same ancestor P0. Thus there is P0 such that P0
*−→ P and P0

*−→ Q and

then the compatibility of P and Q is defined by:

Definition 7 (Configuration compatibility: P �� Q). If P0 is an initial configuration such that P0
*−→ P and P0

*−→ Q

P��Q ⇔ ∀ α∈P ∩ Q , ∀M∈MαP0
, RSL(αP)

∣∣
M
�� RSL(αQ)

∣∣
M

Two configurations P and Q are compatible if for every activity α present in both, the RSL of α in P and the RSL of α in

Q are compatible. We will show that two compatible configurations are confluent; this ensures that the execution is fully

determined by the arrival order of the request senders. In fact, the behavior of each activity is determined by the requests it

received, including their parameters; but, considering the whole configuration, the order of request senders is sufficient: it

determines uniquely the request parameters.

5.3. Equivalence modulo future updates

We now define an equivalence relation that is insensitive to future updates. First, let ≡R be an equivalence relation on

pending requests allowing them to be reordered provided the compatibility of RSLs is maintained: requests that can not

interfere, i.e. that cannot be served by the same Serve primitive, can be safely exchanged.

Equivalence modulo future updates, denoted by ≡F , is an extension of ≡R allowing the update of some calculated futures.

Informally, if one can reach an object by following a path from the root of the activity α, then the same path can be followed

in the same activity of the equivalent term and leads to an equivalent object. Paths express the accesses to parts of terms,

D. Caromel et al. / Information and Computation 207 (2009) 459–495 473

Fig. 12. Cycle of futures: though different, bottom configurations behave the same.

fields, locations inside the current activity store, . . . and are insensitive to the dereferencing of futures. Equivalence modulo

future updates consists in considering references to futures already calculated as equivalent to local references to the part

of store which is the (deep copy of the) future value. For ≡F , a future is equivalent to a part of store if this part of store is the

deep copy of the future value.

The definition of equivalence modulo future updates is formalized in Appendix 8, Definition 22. We focus now on a few

sufficient conditions for equivalence modulo future update. First, two configurations only differing by some future updates

are equivalent:

P
reply−→ P′ ⇒ P ≡F P′

We also have the following sufficient condition, which is more general:

P1
reply−→ P′ ∧ P2

reply−→ P′ ⇒ P1 ≡F P2

But this condition is still not necessary, for example the equivalence modulo future updates deals with cycles of futures

which cannot be identified thanks to the preceding condition. Configurations with cycles can lead to executions that will

never converge but behave identically, see Fig. 12 for an example.

We exhibit now some properties of ≡F . Let T be any reduction defined in Table 3: T ∈ {local,newact,request,

serve, endservice,reply}. T−→ represents the application of the rule T and
T−→ the reflexive transitive closure of

T−→. Then

let us denote by
T�⇒� the reduction

T−→ preceded by some applications of the reply rule.

Definition 8 (Parallel Reduction with Future Updates).

T�⇒� = reply*−→ T−→ if T /= reply and
reply*−→ if T = reply

Informally, this reduction achieves as many replies as necessary, and then applies another transition.

Property 4 (Equivalence and Reduction). If one can apply a reduction rule on a configuration then, after several reply, the same

rule can be applied on any equivalent configuration, and an equivalent configuration is obtained.

P
T−→ Q ∧ P ≡F P

′ ⇒ ∃Q ′, P′ T�⇒�Q ′ ∧ Q ′ ≡F Q

The following corollary states that one can actually apply several reply before the reduction P
T−→ Q without any

consequence on the Property 4:

Property 5 (Equivalence and Generalized Parallel Reduction).

P
T�⇒�Q ∧ P ≡F P′ ⇒ ∃Q ′, P′ T�⇒�Q ′ ∧ Q ′ ≡F Q

Theseproperties showa slight similaritywithproperties ofweakbisimulation: twoequivalent configurations canperform

the same reduction and become equivalent, reply being a non-observable transition.

474 D. Caromel et al. / Information and Computation 207 (2009) 459–495

5.4. Partial confluence

We now present the main theorem of this paper, it states that compatible configurations are confluent.

Definition 9 (Confluent Configurations: P1 � P2).

Two configurations are confluent if they can be reduced to equivalent configurations.

P1 � P2 ⇔ ∃R1,R2, P1 *−→ R1 ∧ P2
*−→ R2 ∧ R1 ≡F R2

Theorem 1 (Partial Confluence). If, from a given term, we obtain two compatible configurations, then these configurations are

confluent.

P
*−→ Q1 ∧ P

*−→ Q2 ∧ Q1 �� Q2 ⇒ Q1 �Q2

The content of the confluence theorem can be summarized by: non-determinism can only originate from the invocation of

two interfering request rules on the same destination activity. The order of updates of futures never has any influence on

the reduction of a term; the only constrain to the moment when a reply must occur is a wait-by-necessity on that future.

Even if this property is natural, it allows a lot of asynchrony and proves that the mechanism of futures is rather powerful,

even though they are single assignments variables and the calculus is imperative. Furthermore, the order of requests does

not matter if they cannot be involved in the same Serve primitive, thus some requests on different methods do not interfere;

they can be safely exchanged. On the contrary, consider two different requests R1 and R2 on the same method of a given

destination activity; if in Q1, R1 is before R2, and in Q2, R2 is before R1; then the configurations obtained from Q1 and Q2 will

never be equivalent regarding ≡F .

The proof of Theorem 1 is presented in Appendix A.6; the key idea is that from two compatible configurations, one can

send missing requests in the right order, and the configurations can be reduced to a common one modulo ≡F .

Note that if, instead of Serve(M), the service primitivewas serving the oldest request coming from a given activity Serve(α),

then the resulting calculus would be fully deterministic. Indeed, the request would always be served in the same order. Such

a calculus would be similar to Process Networks where get operations are performed on a given channel and a channel have

a single source process. The next sections identify a set of terms that behave deterministically.

5.5. Deterministic Object Networks

If two different activities never send concurrently to the same target activity a request on a givenmethod (or set ofmethod

labels M that appears in a Serve(M)), then no conflict can appear and the reduction is confluent. To formalize this principle,

we define a deterministic object network (DON) as a program that, at any time, for each set of labelM onwhich α can perform

a Serve primitive, only one activity can send a request on methods of M.

Definition 10 (DON). A configuration P is a Deterministic Object Network if it verifies the property DON(P):

DON(P)⇔
(
P

*−→ Q ⇒ ∀α∈Q , ∀M∈MαP , ∃1 β∈Q , ∃m∈M,

aβ =R[ι.m(. . .)] ∧ σβ(ι) = AO(α)

)

where ∃1 means “there is at most one”.

DON(P) implies that two activities cannot be able to send requests that can interfere to the same third activity, and thus

RSLs are compatible.

Property 6 (DON and compatibility). DON terms always reduce to compatible configurations:

DON(P) ∧ P
*−→ Q1 ∧ P

*−→ Q2 ⇒ Q1 �� Q2

As compatibility implies confluence, the set of DON terms is a deterministic subset of ASP terms that cannot be identified

purely syntactically.

Theorem 2 (DON determinism). DON terms ensure the Church-Rosser property:

DON(P) ∧ P
*−→ Q1 ∧ P

*−→ Q2 ⇒ Q1 �Q2

D. Caromel et al. / Information and Computation 207 (2009) 459–495 475

5.6. Toward a static approximation of DON terms

The DON definition is dynamic. However, it could be approximated by statically determining the set of active objects that

can send a request on methodm of activity α. Thus, a static approximation of the set of activities and of the remote method

invocations performed on those activities is necessary. Static analysis has been studied in the literature. Our objective is not

to detail a static analysis of ASP because it would be very similar to existing works; we rather explain how such an analysis

could be used to statically ensure determinism. Additionally, Section 6 will show how component-oriented programming

can be used to statically ensure determinism. Suppose one has a static approximation of activities: α̇, β̇,

Definition 11 (Approximated call graph). An approximated call graph G(P) relates activities by the method they accept. We

write α̇
foo−→ β̇ ∈ G(P) if a request on the method foomay be sent from α̇ to β̇. More formally:

P
*−→ Q ∧ aαQ=R[ι.foo(ι′)] ∧ σαQ (ι) = AO(β)⇒ α̇

foo−→ β̇ ∈ G(P) ∈ G(P)

We define a faithful approximation as an approximation that does not merge two dynamic activities as a single static one.

Definition 12. Astatic approximation is faithful for anactivityα,written F(α), ifwhenever α̇ = γ̇ thenα = γ . Anapproximated

call graph is faithful if for all α̇
foo−→ β̇ ∈ G(P), it is the case that F(β).

Two real activities can be merged into a single abstract one but not the opposite. Then, the following property is an

approximation of DON terms:

Definition 13 (Static DON). Suppose G(P) is faithful. Let the potential service be approximated such thatMβP ⊆Mβ̇P
. Then

a program P is a Static Deterministic Object Network, SDON(P), if the following condition holds:

α̇ /= α̇′ ∧ α̇
m1−→ β̇ ∈ G(P) ∧ α̇′ m2−→ β̇ ∈ G(P)⇒ ∀M∈Mβ̇P

, {m1,m2} �⊆ M

Theorem 3 (DON determinism).

SDON(P) ∧ P
*−→ Q1 ∧ P

*−→ Q2 ⇒ Q1 �Q2

Proof. It is sufficient to prove that SDON(P)⇒DON(P). Suppose P is not a DON, then it may eventually send two concurrent

requests, and thus there is an activity β of a configuration Q such that P
*−→ Q and:

∃M∈MβP , ∃α /= α′, ∃m1,m2 ∈ M,

{
aα =R[ι.m1(ι

′)] ∧ σα(ι) = AO(β)

aα′ =R[ι2.m2(ι
′
2
)] ∧ σα′ (ι2) = AO(β)

Then, by definition of G(P) α̇ m1−→ β̇ ∈ G(P) and similarly for m2. As G(P) is faithful, α̇ /= α̇′. Finally P is not a SDON because:

α̇ /= α̇′ ∧ α̇ m1−→ β̇ ∈ G(P) ∧ α̇′ m2−→ β̇ ∈ G(P) ∧ m1,m2 ∈ M ∧ M ∈Mβ̇P
�

5.7. Tree topology determinism

This section can be seen as a simple application of SDON that has the advantage to be valid even in the highly interleaving

case of FIFO services. The request flow graph R is the graph where nodes are activities and there is an edge between two

activities if one activity can send requests to another one:

α̇→ β̇ ∈ R⇔ ∃foo.α̇ foo−→ β̇ ∈ G(P)

If the request flow graph is a tree then the term verifies the SDON definition.

Property 7 (Tree Request Flow Graph). If the request flow graph R forms a set of trees then the reduction is deterministic.

The next property is a direct application of DON determinism. It is bothmore dynamic and thusmore precise considering

control flow; and only sensitive to object topology and thus less precise considering the global references really used. The

activity dependence graph A is a graph where nodes are activities, and there is an edge between two activities if the store of

an activity has a reference to another activity: (α̇, β̇) ∈ A if ∃ι, σα̇(ι) = AO(β̇).

Property 8 (Tree Topology). If at every step of reduction the activity dependence graph A forms a set of trees then the execution

is deterministic.

476 D. Caromel et al. / Information and Computation 207 (2009) 459–495

Of course, Properties 7 and 8 can be combined and one can remove from the activity dependence graph, every edge on

which no communication is performed. FIFO is, to some extent, the worst case with respect to determinism, as any change

to the order of request reception will lead to non-determinism.

5.8. Channels in ASP

DON terms are ASP programs behaving deterministically; to some extent, these programs are related to Process Net-

works [14]. To show this, we define channels in ASP and use them to relate Process Networks with DON terms.

Definition 14 (Channels). Let channels be pairs (M,α)whereM is a set of method labels and α a destination activity. Let S be

a set of channels such that, for all (M1,α), (M2,α) ∈ S:

M1 /= M2 ⇒ ∀m1 ∈ M1.m2 ∈ M2. � ∃M ∈MαP , {m1,m2} ⊆ M

For each program P, there are many valid sets of channels forming a lattice. At the top, the less precise repartition has one

channel for each activity (∪M∈MαP
M,α). In the case where one only serves one method at a time, the most precise set of

channels is pairs (method label, activity).

This notion of channel relates DON to the Process Networks: a programwhere each channel has only one source activity is

clearly a DON program; and in Process Networks, each channel has only one sender process. ASP can be seen a generalization

of Process Networks because one canwait on several requests simultaneously, and futures act as hidden channels insensitive

to reply order.

5.9. A deterministic example

We show below how the theorems presented in this section can be applied to the examples of the sieve of Eratosthenes,

presented in Section 3.5.

The pull version (Fig. 3) is deterministic because, as shown in Fig. 4, its activities dependence graph always forms a tree,

and is a SDON. To be precise, during the creation of a newactivity for a new Sieve, during a small time, the topology is not a tree

because both Sift and the activated Sieve have a reference to the former first Sieve, see Fig. 4. However, following the remark

of Section 5.7, it has no consequence because when the topology is not a tree, Sift does not use this link to communicate.

This example shows that tree topology of activities can easily be used to prove determinacy.

Wenow focus on the push example because, there, every Sieve activity always keeps a reference to theDisplay (Fig. 5), and

determinism can only be verified by amore dynamic property: this program is not a SDON. Indeedwhat ensures determinacy

is the fact that as soon as another Sieve is created, the former one no longer sends results to the Display. As soon as a new

Sieve is created, the preceding one no longer uses its reference to Display. We call Sieven the name of the nth created sieve

activity.

First, the Sieve of Eratosthenes is deterministic because its RSLs are the same for every execution, and thus are compatible.

More precisely, in every execution the RSLs are of the form:

RSL(Sieven) = Sieven−1 :: Sieven−1 :: Sieven−1 :: . . .
RSL(Display) = Sieve1 :: Sieve2 :: Sieve3 :: . . . :: Sieven

We can also show that the Sieve of Eratosthenes is DON. For the Display activity which is the only that is accessed by

several others, consider the activities that can send a request do Display. The Display.put request can only be invoked from

the last created Sieve, between the first put request served and the next sieve creation:

aSievek=R[ι.put(. . .)] ∧ σβ(ι)=AO(Display)⇒ Sievekis the last sieve

Consequently, at most one activity can send a request to the Display at each moment, and finally the push version of sieve is

a DON. The static analysis necessary for verifying DON is simpler than inferring exactly all the possible RSLs as shown above.

However, direct and automatic static verification of DON is still difficult to implement.

In the sieve example all the activities always serve the only request (put or get) that can be sent to them. Like FIFO service,

this case is the worst one with respect to determinism: SDON determinacy is equivalent to tree determinacy. The interest of

SDON compared to tree determinacy lies in its ability to generalize determinacy properties to activities selectively serving

different requests coming from different activities. Fig. 13 shows a configuration that is a SDON but do not verify the tree

determinacy, it corresponds to the term:

D. Caromel et al. / Information and Computation 207 (2009) 459–495 477

Fig. 13. A deterministic configuration according to SDON.

Fig. 14. A primitive component.

let gamma = Active([. . . Serve(m1) . . . Serve(m2)]) in
let alpha = Active([. . . gamma.m1 . . .]) in
let beta = Active([. . . gamma.m2 . . .]) in . . .

6. Deterministic components

This section demonstrates how to build hierarchical, distributed, and deterministic components upon ASP calculus. The

component approach presented here is realized by asynchronous components communicating by asynchronous method

calls. We show how components can be used to ensure the DON property. Indeed, components provide an abstraction for

the topology of active objects: the component structure is an abstraction of the activity structure. The SDON property can

be ensured by analysis of the component structure.

6.1. Primitive components

Primitive components are the base of the component assembly, they encode the business code, and have provided (server)

and required (client) interfaces.

Definition 15 (Primitive Component—Fig. 14). A primitive component is characterized by a component name Name, together

with names for its Server Interfaces (SI), and for its Client Interfaces (CI).

PC ::= Name < {SIi}i∈1..k , {CIj}j∈1..l >

We define Exported(PC) = {SIi}i∈1..k , and Imported(PC) = {CIj}j∈1..l .
Primitive Component Activity: To give functionalities to a primitive component, we attach it an ASP term a corresponding to

an object to be activated; the service method srv to be triggered on activation of a; a mapping from SIs to subsets of the

served methods; and a mapping from CIs to names of fields of the object a, these fields will store references to components.

478 D. Caromel et al. / Information and Computation 207 (2009) 459–495

Fig. 15. A composite component.

M range over the set of method labels, andL over the set of field labels.

PCAct ::= NameAct < a, srv,ϕS ,ϕC >

where

{
ϕS : Exported(PC)→ ℘(M)

ϕC : Imported(PC)→L
are total functions

6.2. Hierarchical components

From primitive components, composite components can be built by interconnecting components and exporting some SIs

and CIs. To simplify notations, we suppose that each interface of a primitive component has a unique name (qualified names

could be used for disambiguation).

Definition 16 (Composite Component). A composite component is a set of components (C1, . . . ,Cn)) exporting some server

interfaces (εS), some client interfaces (εC), and connecting some client and server interfaces (defining a partial binding ψ):

CC ::= Name� C1, . . . ,Cm; εS;ψ; εC �

where a component Ci is either a primitive or a composite one:

C ::= PC | CC

And each CC definition (Name� C1, . . . ,Cm; εS;ψ; εC �) verifies that a given CI can only be connected once, and only the

interfaces of the direct sub-components can be plugged or exported:

εS ⊆
⋃

sc∈C1...Cm
Exported(sc) is also denoted Exported(CC)

ψ :
⋃

sc∈C1...Cm
Imported(sc) →

⋃
sc∈C1,...Cm

Exported(sc) is a partial function

εC ⊆
⋃

sc∈C1...Cm
Imported(sc) is also denoted Imported(CC)

Such that dom(ψ) ∩ εC = ∅

A composite component forwards the requests it receives to its sub-components, and forwarding the requests emitted

by its subcomponents. According to the bindings requests can be sent from the external world to sub-components, from

sub-components to the external world, or directly between two sub-components. Fig. 15 shows a composite component

composed of two components with all kinds of allowed bindings; arrows show the flow of message forwarding. [18] gives a

translational semantics for ASP components.

Definition 17 (Closed Component). A component C is closed if it does not export or import any interface:

Imported(C) = ∅ ∧ Exported(C) = ∅

Definition18 (CompleteComponent).Aprimitivecomponent isalwayscomplete.AcompositecomponentName� C1, . . . ,Cm;
εS;ψ; εC � is complete if it is formed of complete components and all the interfaces of its inner components are plugged or

exported:

C1, ..,Cm are complete ∧ dom(ψ) ∪ εC=
⋃

sc∈C1...Cm
Imported(sc) ∧ codom(ψ) ∪ εS =

⋃
sc∈C1...Cm

Exported(sc)

D. Caromel et al. / Information and Computation 207 (2009) 459–495 479

Non-complete component can lead to deadlocks or requests without destination, because some of their subcomponents

are not completely connected. However we chose to allow non-complete components to be defined.

6.3. Determinism and components

We now use SDON definition to build deterministic components. For this, we define the deterministic assemblage of

components based on the fact that primitive components provide an abstraction for activities. Then, the SDON definition

can be ensured by the specification of deterministic primitive components and connections of interfaces. We first require

that for any two methods belonging to a given SI, those methods cannot interfere. If additionally, each SI can be accessed by

a single primitive component. Then, ensuring that only one CI is plugged to each SI avoids interfering requests and ensures

confluence. As each primitive component PC is an abstraction of an activity, we denoteMPC the potential services associated

to the activity defined by PC.

Definition 19 (Deterministic Primitive Component (DPC)).Aprimitive component PC = Name < {SIi}i∈1..k , {CIj}j∈1..l > is aDPC if

its activityNameAct < a, srv,ϕS ,ϕC > associates its server interfaces todisjoint subsets of the servedmethods of the embedded

active object; and such that two interfering requests necessarily belong to the same SI:{∀i, i′ ∈ 1..k, i /= i′ ⇒ ϕS(SIi) ∩ ϕS(SIi′) = ∅
∀M ∈MPC , ∃i ∈ 1..k, M ⊆ ϕS(SIi)

Definition 20 (Deterministic Composite Component (DCC)).ADCC is a composite component built by connecting deterministic

components.

DC ::= DCC | DCP
DCC ::= Name� DC1, . . . ,DCm; εS;ψ; εC �

where each SI is only used once, either bound or exported:

ψis an injective partial function ∧ codom(ψ) ∩ εS = ∅
ADCC assemblage verifies the SDONproperty because eachDPC statically identifies an activity; and the absence of sharing

of SIs ensure that two activities cannot send concurrent requests on the same SI.

Theorem 4 (DCC determinism). DCC components are deterministic.

This is due to the simple forwarder role of composite components: a request sent by a PC will be (indirectly) transmitted

to another PC that is connected to it. Neither the content nor the order of requests on a given binding is modified by the

composite components. To summarize, DCCs statically ensure deterministic behavior of component, based on the following

requirements:

• Potential services can be statically determined or are specified and checked dynamically (every served set have been

declared as a potential service).

• SI interfaces are respected: they only receive requests on the methods they define; this could be checked by typing

techniques [7], on ASP source terms.

• Requests follow bindings, they are neither modified nor reordered.

• There is a bijection between primitive components and functional activities.

The two first requirements correspond to static analysis or specification; whereas the two last ones must be guaranteed by

the component semantics.

7. Related works

7.1. General formalisms

TheASP-calculus is based on theuntyped imperative object calculus of Abadi andCardelli (impς-calculus of [7]). ASP local

semantics looks like the one described in [13] butwe did not find any concurrent object calculus [19,20,21]with a similarway

of communication between asynchronous objects. Thus the ASP calculus seems to introduce new characteristics, especially

asynchronous communications with futures which are interesting both in theory and in practice (e.g. hiding latency in wide

area networks).

Proving equivalence between terms can be performed by introducing bisimulation on an object calculus like in [22]. We

decided to express an equivalence relation specific to ASP but some aspects of our equivalence are close to bisimulation

techniques. CIU (Closed Instance of Use) equivalence introduced in [22] deals only with static terms. In order to capture the

intrinsic properties of the calculus, we were first interested in dynamic properties like confluence, thus CIU equivalence is

inadequate to our problem.

480 D. Caromel et al. / Information and Computation 207 (2009) 459–495

7.2. Concurrent calculi and languages

Obliq and Øjeblik. Obliq [23] is a language based on the ς-calculus that expresses both parallelism and mobility. It is based

on threads communicating with a shared memory. Like in ASP, calling a method on a remote object leads to a remote

execution of the method but this execution is performed by the original thread (or more precisely the original thread is

blocked). Moreover, for a non-serialized object, many threads can manipulate the same object. Whereas in ASP, the notion

of executing thread is linked to the activity and thus every object is “serialized” but a remote invocation does not stop the

current thread because of the futures mechanism. Finally, in ASP wait-by-necessity is sufficient for synchronization and no

specific notion of thread is necessary. Øjeblik [12] is a subset of Obliq, expressive enough for allowing the expression of

any Obliq program. A formal semantics has been defined for Øjeblik. The main results on Øjeblik concerns migration. The

generalized references for all mutable objects, the presence of threads and the principle of serialization (withmutexes)make

the Obliq and Øjeblik languages very different from ASP. In fact there is no way of ensuring a confluence property similar to

ours on Obliq.

More generally, Gordon and Hankin [19], and Jeffrey [20] also introduce parallel calculi based on threads and shared

memory which are, for the same reasons as Øjeblik inadequate to our case.

π-calculus. π-calculus is based on communications over channels. Pierce and Turner introduced a language derived from

π-calculuspict to implement object-based programming and synchronization based on channels in [24].

Our calculus could be rewritten in the π-calculus [25,26] but this would not help us to prove our confluence property

directly. Indeed, in π-calculus, synchronization is based on channels. On the contrary, ASP relies on data-driven synchroniza-

tion over an imperative object calculus, and thus its semantics is different fromπ-calculus. Indeed,while the synchronization

in ASP is implicit, the π-calculus impose to explicit synchronization channels; the same constraint in ASP would require one

to know the first point where the value of a future is needed, and communication for the reception would be explicit, this is

both complicated and undecidable in the general case. Thus, it seems impossible to express in the π-calculus the distinction

between asynchronous requests and sequential method call that exists in ASP, because it is impossible to distinguish them

statically. For example a systematic access to objects through an additional channel that is only filled when the future value

is calculated (in the case of a future), cannot be encoded directly.

Under certain restrictions: linear and linearized channels [2,3] π-calculus terms can be statically proved to be confluent

and such results could be applicable to some ASP terms. Our objective here is to have a very general confluence property,

even if it is in general not statically verifiable. Then several static approximations of this properties can be performed. Still,

our confluence property is closed to linearized channels. Indeed, using the channels defined in Section 5.8, programs that

verify the DON property would be considered in π-calculus as communicating over linearized channels and would behave

deterministically. ASP can be considered as richer because updates of response along non-linearized channels are allowed.

Moreover, channels in ASP are more flexible than in π-calculus because several methods can be in the same channel, and

one can wait for a request on any subset of these method. We can perform a Serve on a part of a channel without losing

determinacy.

Process Networks. Process Networks of Kahn et al. [5,14,27] are explicitly based on the notion of channels between processes,

performing put and get operations on them. One channel can link at most one source process and many destinations.

Destinations do not split the channel output, but each one reads every value put in the channel. The reading on a channel is

performed by a blocking get primitive. The order of reading on channels is fixed by the source program. Process Networks

are deterministic. Process Networks provide confluent parallel processes but require that the order of service is predefined

and two processes cannot send data on the same channel, which is more restrictive and less concurrent than ASP.

The ASP channel view introduced in this paper can also be compared to Process Networks channels. Like in the π-calculus

case, ASP channels seemmore flexible and our property more general especially by the fact that future updates can occur at

any time: return channels do not have to verify any constraint and Serve can be performed on a part of a “channel”.

The πoβλ language. πoβλ [1,28] is a concurrent object-oriented language. A sufficient condition is given for increasing the

concurrency without losing determinacy. For program verifying this condition, one can return results from a method before

the end of its execution. Then the execution of the method continues in parallel with the caller thread. This sufficient

condition is expressed by an equivalence between original and transformed program. πoβλ can be translated to (dialects

of) the π-calculus (e.g. [29]). From such a translation, Sangiorgi [30], and Liu and Walker [31,32] proved the correctness of

transformations on πoβλ described in [28].

In πoβλ, a caller always waits for the method result (synchronous method call), which can be returned before the end

of the called method. In ASP, method calls are asynchronous thus more instructions can be executed in parallel: the futures

mechanism allows one to continue the execution in the calling activity without having the result of the remote call. A simple

extension to ASP could provide a way to assign a value to a future before the end of the execution of a method. Note that

in πoβλ this characteristic is the source of parallelism whereas in ASP this would simply allow an earlier future update; in

ASP the source of parallelism is the object activation and the systematic asynchronous method calls between activities. The

condition given in [28], stating that the result of a method is not modified after being returned, has its counterpart in ASP

D. Caromel et al. / Information and Computation 207 (2009) 459–495 481

by a deep copy of the result (Property 3: Store partitioning). Similarly, the unique reference condition from the same work is

reflected in ASP with the constraints on objects topology (no remote reference to passive objects).

Actors. The active object concept is rather closed to, and was somehow inspired by, the notion of actors [33,34]. Both rely on

asynchronous communications, but actors are rather functional, while ASP is in an imperative and object-oriented setting.

While actors are interacting by asynchronous message passing, ASP is based on asynchronous method calls, which remain

strongly typed and structured, with future-based synchronizations and without explicit continuations. To some extent, ASP

future semantics accounts for the capacity to achieve confluence and determinism in an imperative setting. Finally, the

bisimulation techniques used by Agha et al. in [33,34] would have been inadequate to obtain themain result presented in the

currentpaper: a strong, somehowintrinsic, butdynamicpropertyonprocesses interactingbyasynchronous communications.

To someextent, this article develops the idea introduced in [34,33] that “Thebehavior of a component is locallydetermined

by its initial state and the history of its interactions”. However, we chose to take into account a more global history in order

to be only sensitive on the order of the message senders instead of the complete history of messages. In ASP, the history of

an activity interactions is uniquely determined by the RSLs of all activities.

Other languages and calculi. Futures have first been introduced in Multilisp and ABCL [35]. More recently, programming

paradigms similar to ASP have been developed in different contexts, among them one can distinguish λ(fut), Creol, and

AmbientTalk. The join-calculus is also a key calculus that could be compared to ASP. We detail those related works below

Halstead definedMultilisp [36], a languagewith sharedmemorywith futures. But the combination of sharedmemory and

side effects prevents Multilisp from being determinate. In some way, this paper adapts the notion of futures in a distributed

asynchronous object calculus.

λ(fut) is a concurrent lambda calculus with futures, with non determinism primitives (cells and handles). In [37], the

authors define a semantics for this calculus, and two type systems. This paper provide a very good formalization of futures,

with explicit creation point, for lambda calculus;much in the same spirit as inMultilisp. This formalization is better suited for

multithreading, whereas ASP is particularly adapted to distribution. Alice [38] is anML-like language that can be considered

as an implementation of λ(fut).

Ref. [39] provides a language with futures that features “uniform multi-active objects”: roughly each method invocation

is asynchronous because each object is active; each object has several current threads, but only one is active at each mo-

ment. However, their futures are also explicit: a get operation retrieves their value. The authors also provide an invariant

specification framework for proving properties on such multi-active objects with futures. This work is also a formalization

of the Creol language [40].

AmbientTalk [41] is a language closed to ProActive and ASP. The main difference is that, in AmbientTalk, invocations on

futures are asynchronous. This changesmuch the flowof execution, in away thatmay be difficult to grasp for the programmer.

A variant of ASP could be used as a model of AmbientTalk, providing interesting confluence properties.

The join-calculus [42,43] is a calculuswithmobility and distribution. Synchronization in join-calculus is based on filtering

patterns over channels. The differences between channel synchronization and data-driven synchronization described for the

π-calculus also make the join-calculus inadequate for expressing a semantics closed to the one of ASP.

7.3. Static analysis

We presented here dynamic properties ensuring confluence, as well as a first step toward static approximation of these

properties. It is beyond the scope of this paper to design a static analysis of a (distributed) object language, we provide below

some related works that would be useful in order to design a convenient static analysis. The set of active objects and their

topology could be approximated statically, using classical static analysis techniques [44,45,46].

A simpler methodology like balloon types [47] could also be useful. Balloon types [47] express a way of restricting the

object topology by typing. The balloon types topology is a sub-case of the topology that is sufficient for confluence of ASP

programs and it is simple to verify (typing). Indeed, if we applied a balloon types methodology, it would create an objects

topology where references between activities form a tree and these reference only link active objects. In ASP, passive objects

can reference active ones. Thus the topology of objects ensured by [47] is sufficient but not necessary.

In [48], the topology of object graphs has been analyzed by a static analysis [46] to parallelize programs. It uses a variant

of the Tree Determinism property.

8. Conclusion

We proposed a calculus modeling asynchronous communications with futures in object systems, and exhibited con-

fluence properties. Such properties simplify programming as they prevent the programmer from having to study every

possible interleaving of instructions and messages to understand the behavior of a given program. More than determinism

properties, this paper also clearly identifies the interferences that can be source of non-determinism. Furthermore, data-

driven synchronization alleviates the programmer from the study of synchronization, and thus, it is a very convenient way

of programming.

482 D. Caromel et al. / Information and Computation 207 (2009) 459–495

The ASP calculus is based on asynchronous activities processing requests and responding by means of futures. When an

activity has sent a request, it can perform other operations while the result value is not needed and the result to come is

represented by a future. Such futures are first class entities that can be passed as parameter and results. We also extended

ASP into a distributed and hierarchical component model.

ASP ensures a confluence property on compatible terms: two configurations with compatible RSLs (Request Sender

List) are confluent. To summarize, the execution is only determined by the ordered list of activity sending requests to a

given one. What makes ASP properties powerful is the insensitivity to the moment when results of requests are obtained.

Consequently, an equivalence relation was introduced to consider equivalent a term before and after the reply reduction.

We defined a sufficient condition for determinacy: Deterministic Object Networks (DON) terms behave deterministically. We

proved that every program communicating over a tree (Property 7: Tree request flow graph) behaves deterministically, even

in the case of a FIFO service. All these properties illustrate the fact that the future mechanism in an imperative language

seems rather powerful and convenient. Components can provide a way to statically identify active objects, i.e. distributed

entities: components are the unit of distribution and concurrency. This allows the definition of deterministic composition of

components, that are easy to identify statically.

To summarize, confluence properties result from several factors. First, futures are immutable entities, which ensures that

their value is the same whatever moment they are accessed. Second, activities are mono-threaded, which, together with the

absence of shared memory between activities, prevents concurrent accesses inside each activity. Consequently, concurrency

is restricted to requests simultaneously sent from different activities to the same destination.

In the proposed framework, deep copy is necessary to ensure the ASP properties. A study of shared memory ensuring

the same properties (e.g., “share on read”) is beyond the scope of this study and may be difficult to implement efficiently.

However, some of the properties proved in this paper can be used to lower the cost of sending this deep copy along the

network, for example:

• We could send a future instead of the deep copy of the parameter when calling a request, and update this future only if

the request parameter is really needed thus using the wait-by-necessity mechanism.

• request sending could be performed in parallel with other operations. The only requirement is to ensure causal ordering

of requests, for example by adding a FIFO sending queue on the sender side.

Both solutions still require a deep copy of the request parameter to be performed locally at the request sending point.

As a perspective, more precise static approximations of DON programs are still to be investigated. It would also be

interesting to specify MαP statically.

Appendix A. Technical details on the equivalence modulo futures

This appendix formalizes the equivalence modulo future updates and proves its main properties. In the proofs, we will

not detail cases of reply and request where α = β, indeed these are considered as special cases and can be deduced from

the study of the general cases of reply and request. We only detail here the most crucial proof, i.e. the proof related to the

relationship between equivalence and reduction (Property 4).

A.1. Renaming

Remember that we consider for confluence properties that activity identifiers are chosen deterministically and thus

renaming of activity identifiers is not necessary; consequently, we only define renaming on future identifiers.� is a renaming

of futures, i.e. an alpha-conversion of futures:

� ::= {{
f
β→α
i

← fi′β→α , . . .
}};

A.2. Reordering requests (R1 ≡R R2)

The equivalence relation is defined modulo the reordering of some requests. Two requests can be exchanged if they

concern methods which cannot interfere; i.e., if there is no service concerning both method labels.

Tworequestqueuesareequivalent if all their restrictionson requests that can interfere in the same Serve(M)areequivalent.

In other words, for every set M of labels belonging to a Serve(M) primitive of α the list of requests that can be captured by

Serve(M) is equivalent in both configurations (αP and αQ). Moreover, in this article, we only compare terms coming from the

same initial configuration P0; as MαP0
is a static approximation, the potential services of two compared configurations are

the same. R1 is a correct reordering of the request queue R2 if and only if R1 ≡R R2 where ≡R is defined in Table A.1. The first

rule expresses the fact that two requests can be exchanged if they do not interfere. The other two rules express reflexivity

and transitivity.

D. Caromel et al. / Information and Computation 207 (2009) 459–495 483

Table A.1

Reordering requests

Fig. A.1. Simple example of future equivalence.

Table A.2

Path definition

A.3. Future updates

The equivalence modulo future updates consists in considering the reference to calculated futures like local reference to

a deep copy of the value of the future. In other words, future references can be followed as if they were local references to a

deep copy. Thus, when two futures references concerns the same future, they are not considered as aliases. Fig. A.1 illustrates

an update of a future value. The two configurations are equivalent.

A.3.1. Following references and sub-terms

We formalize below the idea that “future references can be followed as if they were local references.” We first define the

relation
α�→L expressing paths inside an activity. Then

α*�→L expresses paths that can follow future references.

We first define a
α�→x b. x indicate the path inside an activity that has to be followed for going from the term a to term b.

Table A.2 shows a few examples of primitive paths. Then paths are defined inductively concatenating primitive paths in a

straightforward manner . denotes paths concatenation (e.g. a
α�→L1.L2 b⇔ ∃c, a α�→L1 c

α�→L2 b).

The only particular details in the definition of paths are the following. Bound variables are renamed inside the rule that

enters a method body in order to avoid considering alpha conversion of formal parameters at a higher level. Starting with an

activity identifier, a path begins with an access to the current term a, active object location ι, futures values F , current future

f , or pending requests. Equivalence of pending requests uses ≡R (Table A.1). Note that there is no b such that AO(β)
α�→x b or

fut(f γ→β) α�→x b.

Let
α*�→L be the preceding relation where one can follow futures if necessary and thus cover other activities than α.

484 D. Caromel et al. / Information and Computation 207 (2009) 459–495

Definition 21 (a
α*�→L b).

a
α*�→L0 ...Ln b⇔ (n = 0 ∧ a

α�→L0 b) ∨ ∃ιi , fi , βi , γi i≤n

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a
α�→L0 fut(f

γ1→β1
1

) ∧ Fβ1 (f
γ1→β1
1

) = ι1∧
σβ1 (ι1)

β1�→L1 fut(f
γ2→β2
2

) ∧ Fβ2 (f
γ2→β2
2

) = ι2
∧ . . .∧
σβn (ιn)

βn�→Ln b

This definition first follows a path inside an activity α, then follows a future reference from α to β1, and continues the path

in β1 etc. Note that when one follows a future reference, two local (ref) and one future references are in fact considered

as identical to a single local reference. In other words, the following of local and future references from fut(f
γi→β1
i

) in α to

σβ1 (ι1) in β1 is not taken into account in the path L. For example, in Fig. A.1 the three arrows of the first configurations that

are around the future reference (the future reference plus the arrow before and after) are considered as equivalent with a

single arrow on the second configuration.

Furthermore, following a path from a given term leads to the same expression except if the destination of the path is a

future reference:

Lemma 1 (Uniqueness of path destination).

a
α*�→L b ∧ a

α*�→L b
′ ⇒ b = b′ ∨ ∃fn, ιn,βn, γ , δ,

{
(σβn (ιn) = fut(f

γ→δ
n) ∨ Fδ(f

γ→δ
n) = ιn)

∧(b = ιn ∨ b′ = ιn)

The particular case (when b /= b′) occurs when the destination of the path is a future reference. Thus, the path does not

necessarily follow this reference. For example, if b = ιn in βn where σβn = fut(f
γ→δ
n) then one can have b′ = ιf where ιf is the

location of future fut(f
γ→δ
n) in β.

A.3.2. Equivalence definition

Below is a formal definition of equivalence modulo future updates. The first condition (1) expresses the equivalence both

inside an activity and by following futures and the last two conditions (2, 3) express the correctness of aliasing (alias must

be the same in both configurations). These two last conditions will be named alias conditions in the following. Note that in

the alias conditions the existence of a′ and a′′ such that αP
α*�→L a

′ and αP
α*�→L′ a′′ is already ensured by the first condition.

Consequently, the alias conditions ensure that a′ = a′′ and a′ and a′′ are “correctly aliased”.

Definition 22 (Equivalence modulo future updates: P ≡F Q).

P ≡F Q ⇔ ∀αs.t.α ∈ P ∨ α ∈ R, ∀L
(
∃a, αP α*�→L a⇔ ∃a′, αR α*�→L a

′
)

(1)

∧ ∀L, L′, a,
(
αP

α�→L a ∧ αP α�→L′ a⇒ ∃c, L0, L′0, a′, L1, L′1, γ
{
L = L0.L1 ∧ L′ = L′

0
.L′
1
∧ L1 /= ∅

αR
α*�→L0 c

γ�→L1 a′ ∧ αR
α*�→L′

0
c
γ�→L′

1
a′
)

(2)

∧ ∀L, L′, a,
(
αR

α�→L a ∧ αR α�→L′ a⇒ ∃c, L0, L′0, a′, L1, L′1, γ
{
L = L0.L1 ∧ L′ = L′

0
.L′
1
∧ L1 /= ∅

αP
α*�→L0 c

γ�→L1 a′ ∧ αP
α*�→L′

0
c
γ�→L′

1
a′

)
(3)

where R = Q� and � is a renaming of future identifiers.

The alias conditions can be expressed as follows: “if two paths lead to a common term (e.g., the same location) then in

the equivalent configuration these paths also lead to a common term.” On the left of the implication, the paths are local to

an activity. Actually two references to a future leads to the same future value, and are aliased; while the two updated futures

will be two different deep copies of the future value; consequently, ensuring correctness of aliases is sufficient on local paths.

The paths on the right of the implication can follow the future references but the last alias must be local to an activity. This

condition ensures that the last pair of paths (L1 and L′
1
) will still be aliased when the future values is updated. If some aliases

appear before the last one (if L0 /= L′
0
), then alias conditions also have to be verifiedwith L0 and L′

0
: αR

γ�→L0 c ∧ αR γ�→L′
0
cmust

correspond to aliased objects in αP . Note that alias condition is trivially true when L = L′.
The roles of the different paths in the alias conditions are also illustrated in Fig. A.2. One can verify that the alias of paths

L and L′ in the bottom configuration is simulated by two aliases in the first one. Note that the last alias is local to an activity.

Property 9 (Equivalence relation). ≡F is an equivalence relation.

In the following equivalence of sub-termswill be needed: sub-terms are equivalent if they are part of equivalent expressions.

D. Caromel et al. / Information and Computation 207 (2009) 459–495 485

Fig. A.2. The principle of the alias conditions.

Definition 23 (Equivalence of sub-terms).

a ≡F a′ ⇔ ∃L, a ∈ αP ∧ a′ ∈ αQ ∧ P ≡F Q ∧
(
αP

α*�→L a,⇔ αQ
α*�→L a

′
)

This definition means that equivalent sub-terms will be implicitly related to the configurations to which they belong.

Consequently, writing a ≡F a′ will suppose that there are two configurations P and Q such that P ≡F Q . The definition

of equivalence modulo future updates on configurations has the following consequences on the sub-terms.

Lemma 2 (Sub-term equivalence).

a ≡F a′ ⇒ ∀L
(
∃b, a α*�→L′ b⇔ ∃b′, a′ α*�→L′ b′

)

∧ ∀L, L′, b, a α�→L b ∧ a
α�→L′ b⇒ ∃c, L0, L′0, b′, L1, L′1, γ

{
L = L0.L1 ∧ L′ = L′

0
.L′
1
∧ L1 /= ∅

a′ α*�→L0 c
γ�→L1 b′ ∧ a′ α*�→L′

0
c
γ�→L′

1
b′

∧ ∀L, L′, b, a′ α�→L b ∧ a′ α�→L′ b⇒ ∃c, L0, b′, L1, L′1, γ
{
L = L0.L1 ∧ L′ = L′

0
.L′
1
∧ L1 /= ∅

a
α*�→L0 c

γ�→L1 b′ ∧ a
α*�→L′

0
c
γ�→L′

1
b′

A.4. Properties of ≡F

This section details properties of ≡F that are useful in order to prove Property 4 and finally confluence. The following

property is a consequence of Tables A.1, A.2, and Definition 22:

Property 10 (Equivalence and compatibility).

P ≡F Q ⇒ P �� Q

Consider now the case where a new entry is added to the store of two equivalent terms and is referenced from the same

place in both terms. Adding equivalent sub-terms at the same place in two equivalent configurations produces equivalent

configurations:

Lemma 3 (≡F and store update).

⎧⎪⎪⎨
⎪⎪⎩
P ≡F Q ∧ a ≡F a′ ∧ � P′ok ∧ � Q ′ok
ι ∈ dom(σαP) ∧ ι′ ∈ dom(σαQ) ∧ ι ≡F ι

′
P′ = P except σαP′ = {ι→ a} + σαP
Q ′ = Q except σαQ ′ = {ι′ → a′} + σαQ

⇒ P′ ≡F Q ′

486 D. Caromel et al. / Information and Computation 207 (2009) 459–495

The condition “� P′ok ∧ � Q ′ok” ensures that local or generalized references inside a and a′ are already defined in P and

Q . Furthermore, ι ≡F ι
′ is a necessary condition because ι and ι′ are already in P and Q and thus must be reached by the same

path.Anequivalentversionconsists in replacing thecondition ι ∈ dom(σαP) ∧ ι′ ∈ dom(σαQ) ∧ ι ≡F ι
′ by:∃L, αP α�→L ι ∧ αQ α�→L ι.

Lemma 4 (≡F and substitution).

ι ≡F ι
′ ⇒ a

{{
x← ι

}} ≡F a
{{
x← ι′

}}
This lemma proves the soundness of ≡F with respect to the substitution applied in the invoke rule.

Deep copy is defined by: Copy&Merge(σ , ι; σ ′, ι′) � Merge(ι′, σ ′,copy(ι,σ)
{{
ι←ι′ }}). This can be reformulated using the notion of

paths as follows.

Lemma 5 (A characterization of deep copy).

a ∈ copy(ι, σβ)⇔ ∃L, ι β�→L a

This characterization only describes the domain of the deep copy; the following requirement is still necessary to specify

that the codomain of the copied store is identical to the original one: ι′ ∈ dom(copy(ι, σ))⇒ copy(ι, σ)(ι′) = σ(ι′). The following

lemma is a consequence of the preceding properties.

Lemma 6 (Copy and merge).

If P′ = P except σαP′ =Copy&Merge(σβP , ι0 ; σαP , ι) then⎧⎨
⎩ ι0

βP�→L a ⇔ ι
αP′�→L a

′

ι0
βP*�→L a ⇔ ι

αP′ *�→ L a
′

Lemma6states that thepart of the store that is deeply copiedverifies Lemma5and thuspaths starting fromthedestination

of the deep copy in αP′ are the same as paths starting from the source location in βP . The following property states that adding

equivalent deep copies to equivalent configurations produces equivalent configurations.

Lemma 7 (≡F and store merge).⎧⎪⎪⎨
⎪⎪⎩
P ≡F Q ∧ ι ∈ αP ∧ ι′ ∈ αQ ∧ ι0 ∈ βP ∧ ι′

0
∈ βQ

a ≡F a′ ∧ ι ≡F ι
′ ∧ ι0 ≡F ι

′
0

P′ = P except σαP′ = Copy&Merge(σβP , ι0 ; σαP , ι)
Q ′ = Q except σαQ ′ = Copy&Merge(σβQ , ι

′
0
; σαQ , ι′)

⇒ P′ ≡F Q ′

A.5. Sufficient conditions for equivalence

The following properties relate the formal definition of ≡F with the intuitive one saying that two configurations are

equivalent modulo future updates if they differ only by the update of some calculated futures.

Property 11 (REPLY and ≡F).

P
reply−−−→ P′ ⇒ P ≡F P′

This property is proved by checking that the updated store is equivalent with the old one. More precisely, we have the

following sufficient condition for equivalence modulo future updates:

Property 12 (Sufficient condition for equivalence).

{
P1

reply−−−→ P′

P2
reply−−−→ P′

⇒ P1 ≡F P2

{
P

reply−−−→ P1

P
reply−−−→ P2

⇒ P1 ≡F P2

These assertions are easily proved by transitivity of ≡F . Recall this condition is not a necessary condition for equivalence

modulo future updates as it does not deal with mutual references between futures as shown in Fig. 12.

D. Caromel et al. / Information and Computation 207 (2009) 459–495 487

A.6. Equivalence modulo future updates and reduction

We prove here that if a reduction can be made on a configuration then the same one can be made on an equivalent

configuration. This was expressed by Property 4 of Section 5.3 recalled below:

P ≡F P′ ∧ P
T−→ Q ⇒ ∃Q ′, P′ T�⇒�Q ′ ∧ Q ′ ≡F Q

The proof consists of two parts. First, one may need to apply several reply rules before performing the same reduction on

the two terms. Indeed one of the configurations may require a future update to perform the reduction that is feasible on the

equivalent term: by definition of equivalence modulo future updates, some futures may be updated in a configuration and

calculated but not updated in an equivalent configuration. The second part shows that the same reduction rule applied on

two equivalent terms leads to equivalent terms.

Proof. Note that, from a given source configuration a reduction is uniquely specified by the name of the applied rule and

the names of the different activities concerned, except for reply where the future identifier is necessary.

If necessary,
reply−−−→ is applied enough times on P′ (P′ reply*−−−−→ P′′) to be able to apply the same reduction as P −→ Q (same

rule on the same activities) on P′. Indeed, for each awaited future reference, since P can perform the reduction, the future has

already been calculated in P, and P ≡F P′ implies that the future has also been calculated in P′. Thus P′ only needs to update

it.

More precisely, it is straightforward to check that if two configurations are equivalent, the same reduction can be applied

on the two configurations except if one of them is stuck. P′ n be stuck in two situations:

• In the case of a forbidden access to an object (e.g., field access on an active object or non-existing field or method) by

the definition of equivalence, the reduction on the two equivalent terms should lead to the same error. This is impossible

because P can be reduced.

• In the case of an access to a future (wait-by-necessity): if in an activity of P′ one has aαP′ = . . . ι′ . . . and σαP′ (ι′) = fut(f
γ→β
i

)

and the operation performed on ι′ is strict; additionally in P, aαP = . . . ι . . . and σαP (ι) is not a future. The future equivalence
ensures that f

γ→β
i

∈ FβP′ . Then it is possible to update f
γ→β
i

in P′: P′ reply−−−→ P1. If in P1 σαP′
1
(ι′) = fut(f

γ→β
j

) then, another

time, we update the future fj . After a finite number of updates, we obtain P′′ such that P′ reply*−−−−→ P′′ and σαP′′ (ι
′) is not

a future reference. Indeed, if the number of updates was infinite, then neither P′ nor P could be reduced, which would

contradict the hypothesis.

Then P′ reply*−−−−→ P′′ where P′′ ≡F P (Property 11) and in P′′ σαP′′ (ι
′) is not a future reference. Then the same reduction can be

applied on P′′ and P. Actually the reply rule needs to be applied:

− 0 times if the object to be accessed is not a future,

− 1 time if it is actually a future whose value is not a future,

− several times if it is a future whose future value is itself a future reference.

Note that only the objects required by the reduction T must be updated.

Now, one has to verify that if P′′ ≡F P and the same reduction rule is applied on P and P ′′, one obtains equivalent

configurations:

P
T−→ Q ∧ P ′′ T−→ Q ′ ∧ P′′ ≡F P ⇒ Q ′ ≡F Q

where both applications of the rule T are the same (same application points).

The proof consists in a (long) case analysis detailed below. The different cases depend on the reduction applied and the

rules applied to prove the equivalence. In the following the proofs will focus only on the cases where one of the locations

involved in the reduction points to a future in P and is an object in P′′ (updated future). Other cases (several futures or no

future) can be trivially obtained. Of course, we will use the fact that if two terms are equivalent, they have the same form

(such arguments are only detailed for thefield rule). In the following, no details about the renaming of futures and locations

are given: one could easily prove a first step that deals with renaming:

P
T−→ Q ∧ P ′′ T−→ Q ′ ∧ P′′ ≡ P ⇒ Q ′ ≡ Q

local One should consider cases depending on the local rule applied:

488 D. Caromel et al. / Information and Computation 207 (2009) 459–495

storealloc Consequence of Lemma 3.

field

σ(ι) = [li = ιi;mj = ς(xj , yj)aj]i∈1..nj∈1..m k ∈ 1..n

(R[ι.lk], σ)→S (R[ιk1], σ)

Because of the equivalence between current terms of P and P′, one has:

aP = ι.lk ≡F ι2.lk = aP′′

then ι ≡F ι2 and ιk1 ≡F ιk2 (where ιk2 is the location of field lk in P′′) because ι αP�→lk
ιk1 and ι2

αP′′�→ lk
ιk2. Thus P

′′ ≡F Q .

invoke Straightforward: note that the two method bodies must be equivalent and the arguments too. The final equiva-

lence comes from Lemma 4.

update Direct from Lemma 3 and the equivalence of the involved terms.

clone Cloning of futures is forbidden by ASP semantics. Other cases are trivial. This case justifies the fact that cloning a

future is considered as a strict operation: the future update consists in a deep copy of the value whereas the clone

operator performs a shallow clone. Performing a clone and then a reply rule creates two deep copies of the future

value. On the contrary performing a reply before a clone reduction creates only one deep copy with two shallow

copies of the first object of the future value.

newact

γ fresh activity

ι′ �∈ dom(σ) σ ′ = {ι′ �→AO(γ)} ::σ σγ=copy(ι2, σ)
α[R[Active(ι2,mj)]; σ ; ι; F;R; f] ‖ P −→ α[R[ι′]; σ ′; ι; F;R; f] ‖ γ [ι2.mj(); σγ ; ι2; ∅; ∅; ∅] ‖ P

The only interesting case is the presence of futures in the newly created activity. In this case, Lemma 7 is sufficient to

conclude. Indeed in newact, σγ = copy(ι′′, σα) could be written σγ = Copy&Merge(σα , ι′′ ; ∅, ι′′).
request

σα(ι)=AO(β) ι′′ �∈ dom(σβ) f
α→β
i

new future ιf �∈ dom(σα)

σ ′β = Copy&Merge(σα , ι
′ ; σβ , ι′′) σ ′α = {ιf �→ fut(f

α→β
i

)} :: σα
α[R[ι.mj(ι

′)]; σα; ια; Fα;Rα; fα] ‖ β[aβ ; σβ ; ιβ ; Fβ ;Rβ ; fβ] ‖ P −→
α[R[ιf]; σ ′α; ια; Fα;Rα; fα] ‖ β[aβ ; σ ′β ; ιβ ; Fβ ;Rβ :: [mj; ι′′; f α→βi

]; fβ] ‖ P
Modulo renaming, one can choose the same name for the created future in P and Q , and the same location for the

copy of the argument. Lemma 7 can be applied to manage futures that can be present in the deep copy of the requests

parameters.

The rest of theproof is straightforward. For example, the equivalenceof requests ([mj; ι; f α→βi
] ≡F [m′j; ι; f α→βi

]) is ensured
because we take the same location, the same future name, and mj = m′

j
because aαP ≡F aαP′ .

serve Informally, the equivalence between the two request lists implies that the served requests are equivalent, which is

sufficient to conclude. The fact that the equivalence definition is defined modulo a reordering of requests is essential

here; more precisely: P′′ ≡F P ⇒ ∀M ∈MαP , RαP
∣∣
M
≡F RαP′′

∣∣
M
. Thus the first request of RαP

∣∣
M

will be equivalent modulo

future updates in both configurations. Consequently, serve will serve equivalent requests.

endservice The equivalence between future lists is straightforward. The proof is based on the application of Lemma 7.

reply In this case P′ ≡F Q and P′ �⇒� ′. Thus Q = P′ = P′′ is sufficient.
Note that most of this proof has been simplified by Lemma 7. �

Corollary 5 (page 473) is a direct consequence of the property shown above. More precisely, if T = reply then the proof

is straightforward. Else P
T�⇒�Q can be decomposed in P

reply*−−−−→ P1
T−→ Q . The conclusion comes from the application of the

preceding property to P1; P1 ≡F P′ because ≡F is transitive.

Appendix B. Details on the confluence theorem proof

This appendix proves the confluence theorem of Section 5. After some notations and preliminary lemmas, we focus on a

local confluence property; finally Section B.3 generalizes local confluence and proves Theorem 1, recalled below:

P
*−→ Q1 ∧ P

*−→ Q2 ∧ Q1 �� Q2 ⇒ Q1 �Q2

D. Caromel et al. / Information and Computation 207 (2009) 459–495 489

Let P0 be an initial configuration. Let us consider two configurationsQ andQ ′ obtained from the same initial one: P0
*−→ Q ,

P0
*−→ Q ′. Let us suppose that the two configurations are compatible: Q �� Q ′ that is to say their RSLs have a least upper

bound. Let Q(Q ,Q ′) be the set of configurations obtained from P0 and having requests sender lists smaller than the ones of

Q or Q ′:

Q(Q ,Q ′)={R|P0 *−→R ∧ ∀α∈R, RSL(αR)
∣∣
M

� (RSL(αQ)
∣∣
M
� RSL(αQ ′)

∣∣
M
)}

Note thatQ ,Q ′ ∈ Q and also for all intermediate configuration between P andQ (P′ such that P
*−→ P′ *−→ Q), one has P′ ∈ Q.

To prove confluence, we must reduce terms Q and Q ′ to a common one by performing the missing reductions from Q and

Q ′. The terms derived from Q and Q ′ will be constrained to stay inside Q to ensure that a common term will be reached.

B.1. Lemmas

We consider configurations where all the futures and the active objects of σ , σ0, and σ
′ are well defined (it is necessary

for ≡F to be well defined). That is to say, all stores and expressions are parts of a well-formed parallel configuration.

The following lemmas gives properties on the appending and merging of stores.

Lemma 8 (Independent stores).

dom(σ1) ∩ dom(σ2) = ∅ ⇒
⎧⎨
⎩

σ1 :: σ2 = σ2 :: σ1
σ1 + σ2 = σ2 + σ1
σ1 + (σ2 :: σ) = σ2 :: (σ1 + σ)

Lemma 9. Local reduction can be extended with an independent store:

(a, σ)→S (a
′, σ ′)⇒ (a, σ :: σ0)→S (a

′′, σ ′′ :: σ0)where (a′′, σ ′′) ≡F (a
′, σ ′)

Lemma 10 (Multiple copies). Several store copies compose as follows:

ι ∈ dom(copy(ι′, σ ′)) ⇒ (
copy(ι, σ)+ copy(ι′, σ ′) = copy(ι′, copy(ι, σ)+ σ ′))

Additionally adding an independent store can be done either before or after merging two other stores, provided locations

created during the merge are chosen conveniently. That is due to the fact that configurations can be identified modulo

renaming of locations:

Corollary 1 (Copy and store update). If ι′ /∈ dom(σ ′) then there is away of choosing locations allocated by Copy&Merge(σ1, ι ; σ2, ι′)
such that:

σ ′ + Copy&Merge(σ1, ι ; σ2, ι′) ≡F Copy&Merge(σ1, ι ; σ ′ + σ2, ι′)

B.2. Local confluence

This section presents and proves what we call local confluence, that is a classical confluence property starting from a given

term and performing two concurrent reductions; it is necessary to establish confluence properties of Section 5. This property

is strongly based on the definition of compatibility between configurations (��) via the use of the set Q.

Property 13 (Diamond property).

Let P be a configuration obtained from P0: P0
*−→ P

⎧⎪⎪⎨
⎪⎪⎩

P
T1−→ P1

P
T2−→ P2

P, P1, P2 ∈ Q(Q ,Q ′)
�⇒ P1 ≡F P2 ∨ ∃P′1, P′2,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P1
T2−→ P′

1

P2
T1−→ P′

2
P′
1
≡F P′

2
P′
1
, P′

2
∈ Q(Q ,Q ′)

Proof. This proof is a (long) case study on the conflict (concurrency) between rules. Cases where one of the applied rules

is reply will not be detailed. These cases can be verified but are not useful for the proof of the Property 14. Indeed, for reply

rule we only need to use Property 4.

490 D. Caromel et al. / Information and Computation 207 (2009) 459–495

This analysis is only interesting when there is a real conflict between two rules. That is to say at least a component of one

activity can be read or modified by two rules.

Recall we can suppose that one can choose any location or future namewhen one needs a fresh one. The fact that activities

are chosen deterministically avoids the problem of renaming activities and ensures that the name of an activity will be the

same for two application of the same newact rule.

In the following, if the conflicting rules are different, the activities (α, β) will be indexed by the corresponding rule (e.g.

αrequest is the activity α of the request rule: the source activity of the request). If the rules are the same, the activities will

be indexed by 1 and 2. The proof can be divided into four parts. Except for concurrent request sending part, the fact that

P′
1
, P′

2
∈ Q(Q ,Q ′) is straightforward as the RSL of P′

1
and P′

2
are either the ones of P1 or the ones of P2.

Local vs. Parallel Reduction

local/local. Obvious consequence of the determinism of local reduction.

local/newact αlocal = αnewact impossible becauseR[Active(ι,m)] cannot be reduced locally. No conflict.

local/request αlocal = αrequest impossible (this would correspond to a method call which would be both local and distant).

αlocal = βrequest let α = αrequest and β = αlocal = βrequest
local

(aβ , σβ)→S (aβ1, σβ1)

β[aβ ; σβ ; ιβ ; Fβ ;Rβ ; fβ]‖Q −→ β[aβ1; σβ1; ιβ ; Fβ ;Rβ ; fβ]‖Q = P1

request

σα(ι) = AO(β)

ι′′ �∈ dom(σβ) f
α→β
i

new future ιf �∈ dom(σα) σβ2 = Copy&Merge(σα , ι
′ ; σβ , ι′′) σα2 = {ιf �→ fut(f

α→β
i

)} :: σα
α[R[ι.mj(ι

′)]; σα; ια; Fα;Rα; fα]‖β[aβ ; σβ ; ιβ ; Fβ ;Rβ ; fβ]‖Q −→
α[R[ιf]; σα2; ια; Fα;Rα; fα]‖β[aβ ; σβ2; ιβ ; Fβ ;Rβ :: [mj; ι′′; f α→βi

]; fβ]‖Q = P2

Let us first perform the local reduction on P2. One can suppose (up to renaming) that the locations added to σβ by the two

rules are disjuncts. The deep copy of the argument of the request is added in an independent store; thus σβ2 = σ :: σβ . Thus
Lemma 9 allows us to perform the local reduction on the extended store:

(aβ , σβ)→S (aβ1, σβ1)⇒ (aβ , σ :: σβ)→S (a
′
β2, σ :: σ ′β2)

where (a′
β2
, σ ′
β2
) ≡ (aβ1, σβ1) and (a′β2, σ :: σ ′β2) ≡ (aβ1, σ :: σβ1). Finally:

P2 = α[R[ιf]; σα2; ια; Fα;Rα; fα]‖β[aβ ; σβ2; ιβ ; Fβ ;Rβ2; fβ]‖Q
−→ α[R[ιf]; σα2; ια; Fα;Rα; fα]‖β[a′β2; σ ′β2 :: σ ; ιβ ; Fβ ;Rβ2; fβ]‖Q = P′

2

Now we will focus on the application of the request rule to P1 and consider that σβ1 is obtained by some updates on σβ
(indeed every action of a local rule on the store can be written as a store update): σβ1 = σ0 + σβ .

Corollary 1 is used for adding the request to the store obtained by local reduction. One can apply the request rule to P1.

Let σ ′
β1

be the new store:

σ ′
β1
= Copy&Merge(σα , ι′ ; σβ1, ι′′) ≡F σ0 + Copy&Merge(σα , ι′ ; σβ , ι′′)

≡F σ0 + σβ2
(4)

and obtain a configuration equivalent to P′
2
by Lemma 8. More precisely:

(a′
β2
; σ :: σ ′

β2
) ≡F (aβ1, σ :: σβ1) ≡F (aβ1, σ :: (σ0 + σβ))
≡F (aβ1, σ0 + (σ :: σβ)) ≡F (aβ1, σ

′
β1
) by(4)

local/endservice, and local/serve No conflict.

Creating an Activity

newact/newact, newact/endservice, and newact/serve No conflict.

newact/request One only has to prove that (if αnewact = βrequest) creating a new activity does not interfere with receiving a

request. This is similar to the case local/request.

D. Caromel et al. / Information and Computation 207 (2009) 459–495 491

Fig. B.1. serve/request.

Localized Operations (serve, endservice)

serve/serve, endservice/serve, and eos/endservice No conflict

serve/request The only conflicting case occurs when αserve = βrequest. Informally, if one can perform a serve(M) on P then

there is a request matching the labels of M in the request queue; so adding a new request to the request queue will not

change the served one because serve takes the first request matching M. Fig. B.1 illustrates this case (we consider that this

figure is sufficiently explicit to avoid us giving the technical details of the proof), we suppose in this figure thatmj ∈ M. Note

that the fact that the first request matching a pattern is taken is essential to ensure confluence.

request/endservice Conflict is only possible when αendservice = βrequest = β, the principle of the proof concerning this case

is shown in Fig. B.2.

request

σα(ι) = AO(β) ι′′ �∈ dom(σβ) f
α→β
i

newfuture ιf �∈ dom(σα)

σβ1 = Copy&Merge(σα , ι
′ ; σβ , ι′′) = σ + σβ σα1 = {ιf �→ fut(f

α→β
i

)} :: σα
α[R[ι.mj(ι

′)]; σα; ια; Fα;Rα; fα]‖β[aβ ; σβ ; ιβ ; Fβ ;Rβ ; fβ]‖Q
−→ α[R[ιf]; σα1; ια; Fα;Rα; fα]‖β[aβ ; σβ1; ιβ ; Fβ ;Rβ :: [mj; ι′′; f α→βi

]; fβ]‖Q = P′1

endservice
ι′ �∈ dom(σβ)

F ′β = Fβ :: {fβ �→ ι′} σβ2 = Copy&Merge(σβ , ι ; σβ , ι′) = σ ′ + σβ
β[ι ⇑ f

δ→β
i

, a; σβ ; ιβ ; Fβ ;Rβ ; fβ]‖P −→ β[a; σβ2; ιβ ; F ′β ;Rβ ; f δ→βi
]‖P = P′2

The conflict only concerns the store. But the merges that are performed on the store are independent (ι′′ �∈ dom(σβ)); and

we can suppose that these two operations create disjuncts sets of locations. Then one can perform the missing rule on each

configuration: P′
1
and P′

2
. A configurationwith the following stores is obtained (modulo renaming, the same stores updates as

in the first two rules can be performed): σ ′
β2
≡F σ + σβ2, and σ ′ + σβ1 ≡F σ

′
β1
. Then, the proof relies on the following equality

(using Lemma 8):

σ ′
β2

≡F σ + σβ2 = σ + σ ′ + σβ = σ ′ + σ + σβ = σ ′ + σβ1 ≡F σ
′
β1

492 D. Caromel et al. / Information and Computation 207 (2009) 459–495

Fig. B.2. endservice/request.

Concurrent Request Sending: request/request

α1 = β2 or β1 = α2 Same kind of arguments as in the case local/request with αlocal = βrequest.
α1 = α2 No conflict.

β1 = β2 As P1, P2 ∈ Q, if β1 = β2 then (RSL compatibility) either the two requests come from the same activity, α1 = α2
and there is no conflict or the two requests m1 and m2 cannot interfere: �M ∈MαP0

such that {m1,m2} ⊆ M. In that second

case, adding requests in any order leads to equivalent configurations due to the equivalence rule for pending requests. Let P′
1

be the configuration obtained from P1 by sending the missing request from α2; and P′
2
the configuration obtained from P2

by sending the missing request from α1. The crucial point is to show that the RSL are compatible, let m1 ∈ M1 and m2 ∈ M2

(M1 andM2 are not unique but belong to disjoint sets):

RSL(αP′
1
)
∣∣
M1
= RSL(αP1)

∣∣
M1
= RSL(αP′

2
)
∣∣
M1

� RSL(αQ)
∣∣
M1
� RSL(αQ ′)

∣∣
M1

RSL(αP′
1
)
∣∣
M2
= RSL(αP2)

∣∣
M2
= RSL(αP′

2
)
∣∣
M2

� RSL(αQ)
∣∣
M2
� RSL(αQ ′)

∣∣
M2

And finally, P′
1
, P′

2
∈ Q(Q ,Q ′), and RSLs are compatible.

The proof of P′
1
≡F P′

2
applies the same arguments to pending requests instead of RSLs. �

B.3. Extension

This section extends the local diamond property presented before to obtain a general diamond property which will allow

us to conclude about the confluence of ASP calculus.

Lemma 11 (≡F and Q(Q ,Q ′)).
If P is in Q and P is equivalent modulo future updates to P ′ then P′ is in Q:

P ≡F P′ ∧ P ∈ Q(Q ,Q ′) ∧ P0
*−→ P′ ⇒ P′ ∈ Q(Q ,Q ′)

Lemma 12 (reply vs. other reduction). Let
¬reply−→ consist in applying any reduction except the reply rule.

P
¬reply−→ R ∧ P

reply−−−→ P′ ⇒ P′ ¬reply−→ R′ ∧ R′ ≡F R

D. Caromel et al. / Information and Computation 207 (2009) 459–495 493

Fig. B.3. The diamond property (Property 14) proof.

Then, global confluence is a consequence of local confluence. The following property is a generalized local confluence:

Property 14 (Diamond property with ≡F).

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P1
T1�⇒�Q1

P2
T2�⇒�Q2

Q1,Q2 ∈ Q(Q ,Q ′)
P1 ≡F P2

�⇒ Q1 ≡F Q2 ∨ ∃R1,R2,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q1
T2�⇒�R1

Q2
T1�⇒�R2

R1 ≡F R2
R1,R2 ∈ Q(Q ,Q ′)

Proof. Fig. B.3 illustrates the proof detailed in the following.

If one of the �⇒� on the left of the implication consists only in some reply rules then one can conclude immediately by

Property 4 and Property 11. Else, both T1 and T2 are reduction rules different from reply and can be decomposed: there is P′
1

such that: P1
reply*−−−−→ P′

1

T1−→ Q1. Note that one could have P1 = P′
1
. In the sameway, there is P′

2
such that: P2

reply*−−−−→ P′
2

T2−→ Q2.

By Property 9, ≡F is transitive and then P′
1
≡F P′

2
. By Property 4: ∃S2, P′1

T2�⇒�S2 ∧ S2 ≡F Q2 Thus there is a configuration S

such that:

P′1
reply*−−−−→ S ∧ S

T2−→ S2 ∧ S2 ≡F Q2

Moreover, by Lemma 12:

⎧⎨
⎩P
′
1

reply*−−−−→ S

P′
1

T1−→ Q1

⇒
{
S

T1−→ S1
S1 ≡F Q1

Then, using diamond Property 13 (Lemma 11 ensures S1, S2 ∈ Q):

⎧⎪⎪⎨
⎪⎪⎩

S
T1−→ S1

S
T2−→ S2

S1, S2 ∈ Q
�⇒ S1 ≡F S2 ∨ ∃R1,R2,

⎧⎪⎪⎨
⎪⎪⎩

S1
T2−→ S′

1

S2
T1−→ S′

2
S′
1
≡F S′

2
∧ S′

1
, S′

2
∈ Q

494 D. Caromel et al. / Information and Computation 207 (2009) 459–495

Finally, using Property 4:

S1
T2−→ S′1 ∧ S1 ≡F Q1 ⇒ Q1

T2�⇒�R1 ∧ S′1 ≡F R1

S2
T1−→ S′2 ∧ S2 ≡F Q2 ⇒ Q2

T1�⇒�R2 ∧ S′2 ≡F R2

Note that R1 ≡F R2 and R1,R2 ∈ Q are obtained trivially and finally:

{
Q1

R�⇒� 1 ∧ Q2
R�⇒� 2

R1 ≡F R2 ∧ R1,R2 ∈ Q �

Proving confluence from Property 14 is a classical result. It only relies on the fact that all intermediate configurations

between P0 and Q and between P0 and Q ′ belong to Q.

References

[1] Cliff B. Jones, An object-based design method for concurrent programs, Technical Report, University of Manchester, 1992.
[2] UweNestmann,Martin Steffen, Typing confluence, in: Stefania Gnesi, Diego Latella (Eds.), FMICS ’97: Second International ERCIMWorkshop on Formal

Methods in Industrial-Critical Systems, pp. 77–101. Consiglio Nazionale Ricerche di Pisa, Italy, July 1997. Also available as report ERCIM-10/97-R052,
European Research Consortium for Informatics and Mathematics, 1997.

[3] Naoki Kobayashi, Benjamin C. Pierce, David N. Turner, Linearity and the pi-calculus, Proceedings of POPL ’96, ACM, 1996, pp. 358–371.
[4] Guy L. Steele Jr.,Making asynchronousparallelismsafe for theworld, in: POPL’90, Proceedings of the SeventeenthAnnualACMSymposiumonPrinciples

of Programming Languages, January 17–19, 1990, San Francisco, CA, ACM Press, New York, 1990, pp. 218–231.
[5] Gilles Kahn, The semantics of a simple language for parallel programming, in: J.L. Rosenfeld (Ed.), Information Processing ’74: Proceedings of the IFIP

Congress, North-Holland, New York, 1974.
[6] F. Baude, D. Caromel, C. DelbT, L. Henrio, Promised messages: recovering from inconsistent global states, in: ACM SIGOPS Conference Principles and

Practice of Parallel Programming (PPoPP), Poster., 2007.
[7] Martín Abadi, Luca Cardelli, A Theory of Objects, Springer-Verlag, New York, 1996.
[8] Denis Caromel, Towards a method of object-oriented concurrent programming, Communications of the ACM 36 (9) (1993) 90–102.
[9] Denis Caromel, Wilfried Klauser, Julien Vayssière, Towards seamless computing and metacomputing in Java, Concurrency: Practice and Experience

10 (11–13) (1998) 1043–1061., ProActive available at http://www.inria.fr/oasis/proactive.
[10] Denis Caromel, Ludovic Henrio, Bernard Paul Serpette, Asynchronous and deterministic objects, Proceedings of the 31st ACM SIGACT-SIGPLAN

Symposium on Principles of Programming Languages, ACM Press, 2004, pp. 123–134.
[11] Denis Caromel, Ludovic Henrio, A Theory of Distributed Objects, Springer-Verlag, Inc., New York, 2005.
[12] Uwe Nestmann, Hans Hüttel, Josva Kleist, Massimo Merro, Aliasing models for mobile objects, Information and Computation 175 (1) (2002) 3–33.
[13] Andrew D. Gordon, Paul D. Hankin, Søren B. Lassen, Compilation and equivalence of imperative objects, in: S. Ramesh, G. Sivakumar (Eds.), FSTTCS,

Lecture Notes in Computer Science, vol. 1346, Springer, 1997, pp. 74–87.
[14] Gilles Kahn, David MacQueen, Coroutines and networks of parallel processes, in: B. Gilchrist (Ed.), Information Processing ’77: Proceedings of IFIP

Congress, North-Holland, Amsterdam, 1977, pp. 993–998.
[15] Brian Cantwell Smith, Reflection and semantics in Lisp, in: Conference Record of the Eleventh Annual ACM Symposium on Principles of Programming

Languages, Salt Lake City, Utah, January 15–18, 1984, ACM Press, New York, pp. 23–35.
[16] Bernard Lang, Christian Queinnec, José Piquer, Garbage collecting the world, in: Conference Record of the Nineteenth Annual ACM Symposium on

Principles of Programming Languages, ACM SIGPLAN Notices, January 1992, pp. 39–50.
[17] Fabrice Le Fessant, Detecting distributed cycles of garbage in large-scale systems, in: Conference on Principles of Distributed Computing (PODC), Rhode

Island, August 2001.
[18] Denis Caromel, Ludovic Henrio, Asynchonous distributed components: concurrency and determinacy, in: Proceedings of the IFIP International

Conference on Theoretical Computer Science 2006 (IFIP TCS’06), Santiago, Chile, Springer Science, August 2006 (19th IFIPWorld Computer Congress).
[19] AndrewD. Gordon, Paul D. Hankin, A concurrent object calculus: reduction and typing, Proceedings HLCL’98, vol. 16, Elsevier ENTCS, Amsterdam, 1998
[20] Alan Jeffrey, A distributed object calculus, in: ACM SIGPLANWorkshop Foundations of Object Oriented Languages, 2000.
[21] Oscar Nierstrasz, Towards an object calculus, in: M. Tokoro, O. Nierstrasz, P. Wegner (Eds.), Proceedings of the ECOOP’91 Workshop on Object-Based

Concurrent Computing, LNCS, vol. 612, Springer-Verlag, 1992, pp. 1–20.
[22] Andrew D. Gordon, Gareth D. Rees, Bisimilarity for a first-order calculus of objects with subtyping, in: Conference Record of the 23rd ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages (POPL’96) [49], pp. 386–395.
[23] Luca Cardelli, A language with distributed scope, in: Conference Record of the 22nd ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages (POPL’95), San Francisco, January 22–25, 1995, ACM SIGACT-SIGPLAN, ACM Press, New York, pp. 286–297.
[24] Benjamin C. Pierce, David N. Turner, Concurrent objects in a process calculus, in: Takayasu Ito, Akinori Yonezawa (Eds.), Proceedings of Theory and

Practice of Parallel Programming (TPPP’94), Sendai, Japan, LNCS, Springer-Verlag, Berlin, Heidelberg, 1995, pp. 187–215.
[25] Robin Milner, Joachim Parrow, David Walker, A calculus of mobile processes, part I/II, Journal of Information and Computation 100 (1992) 1–77.
[26] Robin Milner, The polyadic π-calculus: a tutorial, in: Friedrich L. Bauer, Wilfried Brauer, Helmut Schwichtenberg (Eds.), Logic and Algebra of Specifi-

cation, Series F. NATO ASI, vol. 94, Springer-Verlag, Berlin, Heidelberg, 1993. Available as Technical Report ECS-LFCS-91-180, University of Edinburgh,
October 1991.

[27] Daren L. Webb, Andrew L. Wendelborn, Julien Vayssière, A study of computational reconfiguration in a Process Network, in: Proceedings of the 7th
Workshop on Integrated Data Environments Australia (IDEA’7), February 2000.

[28] Cliff B. Jones, Steve J. Hodges, Non-interference properties of a concurrent object-based language: proofs based on an operational semantics, in:
Burkhard Freitag, Cliff B. Jones, Christian Lengauer, Hans-Jörg Schek (Eds.), Object-Orientation with Parallelism and Persistence, Kluwer Academic
Publishers, Dordrecht, 1996, pp. 1–22 (Chapter 1).

[29] Cliff B. Jones, Process-algebraic foundations for an object-based design notation, Technical Report, University of Manchester, 1993 (UMCS-93-10-1).
[30] Davide Sangiorgi, The typedπ-calculus atwork: aproof of Jones’s parallelisation theoremonconcurrent objects, Theory andPractice ofObject-Oriented

Systems 5 (1) (1999) (An early version was included in the Informal Proceedings of FOOL 4, January 1997).
[31] Xinxin Liu, DavidWalker, Confluence of processes and systems of objects, in: Peter D. Mosses, Mogens Nielsen, Michael I. Schwarzbach (Eds.), TAPSOFT

’95: Theory and Practice of Software Development, 6th International Joint Conference CAAP/FASE, LNCS, vol. 915, Springer-Verlag, Berlin, Heidelberg,
1995, pp. 217–231.

http://www.inria.fr/oasis/proactive

D. Caromel et al. / Information and Computation 207 (2009) 459–495 495

[32] Xinxin Liu, David Walker, Partial confluence of processes and systems of objects, Theoretical Computer Science 206 (1–2) (1998) 127–162.
[33] Gul Agha, Ian A. Mason, Scott F. Smith, Carolyn L. Talcott, Towards a theory of actor computation (extended abstract), in: W.R. Cleaveland (Ed.),

CONCUR’92: Proceedings of the Third International Conference on Concurrency Theory, Springer-Verlag, Berlin, Heidelberg, 1992, pp. 565–579.
[34] Gul Agha, Ian A. Mason, Scott F. Smith, Carolyn L. Talcott, A foundation for actor computation, Journal of Functional Programming 7 (1) (1997) 1–72.
[35] Akinori Yonezawa, Etsuya Shibayama, Toshihiro Takada, Yasuaki Honda, Modelling and programming in an object-oriented concurrent language

ABCL/1, in: A. Yonezawa, M. Tokoro (Eds.), Object-Oriented Concurrent Programming, MIT Press, Cambridge, MA, 1987, pp. 55–89.
[36] RobertH.Halstead Jr.,Multilisp: a language for concurrent symbolic computation, ACMTransactionsonProgrammingLanguages andSystems (TOPLAS)

7 (4) (1985) 501–538.
[37] J. Niehren, J. Schwinghammer, G. Smolka, A concurrent lambda calculus with futures, Theoretical Computer Science 364 (3) (2006) 338–356.
[38] JoachimNiehren, David Sabel,Manfred Schmidt-Schau, Jan Schwinghammer, Observational semantics for a concurrent lambda calculuswith reference

cells and futures, in: Proceedings of the 23rd Conference on the Mathematical Foundations of Programming Semantics (MFPS XXIII), Electronic Notes
in Theoretical Computer Science, vol. 173, New Orleans, April 2, 2007, pp. 313–337

[39] F.S. de Boer, D. Clarke, E. Broch Johnsen, A complete guide to the future, in: ESOP, 2007, pp. 316–330.
[40] Einar Broch Johnsen, Olaf Owe, Ingrid Chieh Yu, Creol: a type-safe object-oriented model for distributed concurrent systems, Theoretical Computer

Science 365 (1–2) (2006) 23–66.
[41] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, W. De Meuter, Ambient-oriented programming in ambienttalk, in: D. Thomas (Ed.), ECOOP,

Lecture Notes in Computer Science, vol. 4067, Springer, 2006, pp. 230–254.
[42] Cédric Fournet, Georges Gonthier, Jean-Jacques Levy, Luc Maranget, Didier Remy, A calculus of mobile agents, in: U. Montanari, V. Sassone (Eds.),

Proceedings of the 7th International Conference on Concurrency Theory (CONCUR), LNCS, vol. 1119, Springer-Verlag, Berlin, Heidelberg, August 1996,
pp. 406–421.

[43] Cédric Fournet, Georges Gonthier, The reflexive CHAM and the join-calculus, in: Conference Record of the 23rd ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL’96) [49], pp. 372–385.

[44] Alain Deutsch, Interprocedural may-alias analysis for pointers: beyond k-limiting, in: PLDI’94 Conference on Programming Language Design and
Implementation, Orlando, Florida, vol. 29, no. 6, ACM SIGPLAN Notices, June 1994, pp. 230–241.

[45] Alain Deutsch, Semanticmodels and abstract interpretation techniques for inductive data structures and pointers, in: Proceedings of the ACMSIGPLAN
Symposium on Partial Evaluation and Semantics-Based Program Manipulation, La Jolla, California, June 21–23, 1995, pp. 226–229.

[46] Mooly Sagiv, Thomas Reps, Susan Horwitz, Precise interprocedural dataflow analysis with applications to constant propagation, Theoretical Computer
Science 167 (1–2) (1996) 131–170.

[47] Paulo Sergio Almeida, Balloon types: controlling sharing of state in data types, in: Mehmet Akşit, Satoshi Matsuoka (Eds.), ECOOP’97—Object-Oriented
Programming 11th European Conference, Jyvskyl, Finland, vol. 1241, Springer-Verlag, New York, 1997, pp. 32–59.

[48] Isabelle Attali, Denis Caromel, Romain Guider, A step toward automatic distribution of Java programs, in: S.F. Smith, C.L. Talcott (Eds.), FIP International
Conference on Formal Methods for Open Object-Based Distributed Systems, Kluwer Academic Publishers, Dordrecht, 2000, pp. 141–161.

[49] ACM SIGACT-SIGPLAN, Conference Record of the 23rd ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL’96), St.
Petersburg, Florida, January 21–24, ACM Press, 1996.

	Introduction
	Sequential calculus
	Syntax
	Semantic structures
	Reduction

	Parallel calculus
	Principles
	User syntax
	Informal semantics
	Future update strategies
	Example: sieve of Eratosthenes

	Parallel semantics and properties
	Structure of parallel activities
	Parallel reduction
	Well-formedness
	Future and parameter isolation

	Confluence and determinism
	Definitions and hypothesis
	Configuration compatibility
	Equivalence modulo future updates
	Partial confluence
	Deterministic Object Networks
	Toward a static approximation of DON terms
	Tree topology determinism
	Channels in ASP
	A deterministic example

	Deterministic components
	Primitive components
	Hierarchical components
	Determinism and components

	Related works
	General formalisms
	Concurrent calculi and languages
	Static analysis

	Conclusion
	Renaming
	Reordering requests (R1RR2)
	Future updates
	Properties of F
	Sufficient conditions for equivalence
	Equivalence modulo future updates and reduction
	Lemmas
	Local confluence
	Extension

	References

