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Abstract  

The convergence of the classical finite element method (FEM) and boundary element method (BEM) is poor due to the 
edge and vertex singularities of the solution of the involved Dirichlet problem relative to an elliptic operator in 
a polyhedron. Using the global regularity results of Lubuma and Nicaise (1994), we analyse refined FEM and BEM with 
optimal rates of convergence. 
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1. Introduction and preliminaries 

This extended version of the note [17] is the constructive part of the authors' work [18] where 
regularity properties are studied for the variational solution of the Dirichlet problem relative to an 
elliptic operator on a Lipschitz bounded polyhedron f2 with boundary F. We are mainly interested 
in optimal rates of convergence in the approximation of the solution by both the finite element 
method (FEM) and the boundary element method (BEM). To keep this part relatively self- 
contained, let us say a few words about those results of Part I which we need here. 

Let 

L -- y~ (-  1)'a,,~D "÷~ (1.1) 
Ipl =m 
Iql =m 
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be a homogeneous strongly elliptic operator of order 2m with constant coefficients. An integer 
k f> m and a dis t r ibut ionf  • H k -"(t2) being fixed, we are concerned with u •/~/m(f2), solution of the 
well-posed variational problem: 

f avqDVu.D~vdx= ~ f . ~ d x  Vv•~II(O).  (1.2) Z 
Ip]=m da da 
lql=m 

(For s • R, the usual Sobolev spaces H'(I2) with norm II" I1,.  and semi-norm l" I,.a are defined for 
example in [12].) 

In the light of [10], u presents vertex, edge and vertex-edge singularities which are described in 
Part I. To recall this result, we briefly mention the suitable notation. Fix S in the set 5e(f2) of 
vertices of I2 and consider the edges As.j, 1 ~ j ~ Js, adjacent to S. The polyhedron f2 coinciding 
near S with a cone Cs of section Gs on the unit sphere centred at S, with (rs, Os, ~Ps) the associated 
spherical coordinates. Analogously, near each Aso defining a dihedron of interior measure 
0 < O~sd < 2rq we introduce the spherical coordinates (rs, Osj, ~Psj) also centred at S, where 0s j  
represents the angular distance to the edge As j  and 0 < <Pso < Ogso. Let As(k) and Asj(k) denote 

- 1  the respective finite sets of poles 2 and /~ of 2 ~ 5 ¢ s 1 ( 2 )  and #~£~os j (# )  such that 
m - 3 < Re2 ~< m + k - 3, m - 1 < Re# ~< m + k - 1, the operators Aes(2): Hm(Gs) ~ H-m(Gs) 

cA 

and £Psj(#) : H=(0, Ogso) ~ H-re(O, ~sj )  being obtained from L in the usual way (see [10]). Finally, 
we shall use two types of cut-off functions Zs = Zs(rs) • ~(R+)  and Zsj = Zsj(Osj) • ~([0 ,  2n]): Zs 
(resp. Zsj) with support  concentrated near S (resp. As,r), is identically equal to 1 in a neighbourhood 
of S (resp. As,r). Moreover, the support  of Zsj is chosen in such a way that the functions Oso and 
sin Osj are equivalent on supp Zsj(Oso -~ sin Osj in symbol). 

The result of [10] can be rephrased as below. 

Theorem 1.1 (Dauge [10]). Assume that u can be extended to the infinite cone Cs, S • 5,°(Q), in such 
a way that the extension still denoted by u has a compact support and satisfies 

u • ~I"(Cs) and Lu • HR-'(Cs). (1.3) 

Assume, in addition, that 

£Ps(2) and ~ s j ( # )  are invertible for 
(1.4) 

R e 2 = k + m -  3 and R e # - - k + m - 1 .  

Then, u admits the sinoular representation 

Js 
u = Uo + zs Z uS'  + S us'J'", I1.5) 

2cAn(k) j= 1 laeAs,j(k) 

where Uo • Hk+r"(Cs) is the reoular part, u s'x is the vertex singular part relative to S and 2, u sJ'u 
includes the vertex-edge and the edge singularities related to S, Asd and it. 

By analogy with the three-dimensional smooth conical corners and the two-dimensional case, 
one would like the assumption (1.3) to hold in such a way that the local formula (1.5) leads to 
a global decomposition of the solution u of (1.2) into regular and singular parts. Moreover, one 
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expects the decomposit ion to permit the restoration in the F E M  of the optimal order of conver- 
gence in O(h k) that would hold if u has the regularity u 6 H ~ ÷ =(O). But such a global decomposit ion 
is not easy to obtain. Even, when the decomposit ion is direct, as in the case m = k = 1 considered in 
[17], the structure of the edge [10, Theorem 16.9] and vertex-edge [10, Theorem 17.13] singular- 
ities is very complex (only the vertex singular part u s'x is explicit: its first term behaves like r~O~.j for 
suitable/z ~ As.~(k), cf. [10, pp. 145, 151, 152]). Therefore, the extension to R 3 of classical techniques 
like the dual singular function method [3, 4, 15], the singular function method [23] and the mesh 
refinement method I'2] is not automatic. In this one respect, let us quote a few references: 1'1] (mesh 
refinement for a particular class of edges), [19] (adapted mesh excluding data of class Lz(I2)) and 
[22] (singular function method with doubt  about the expected error estimate). 

To overcome the above difficulties, the following global regularity result is established in 1'18]. 

Theorem 1.2. r and 3 being the distances to the vertices and edges oft2, respectively, we consider the 
weighted function 

0 :=  ~ Z s [ 1 - ~  Xs.j(Os.j)+ ~ O s j Z s . j ( O s . j ) ] + ( 1 - ~  Zsl6. (1.6, 
S e .~(O) j = 1 j = 1 S e ,~(g2) / 

Let o~ and fl be nonnegative real numbers such that 

a = 0 if As(k) = 0 VS~ St(O), 
otherwise aCN*, a > k + m - 3 _ Re2 V2~ As(k); (1.7a) 

fl = O if As.j(k) = O VS~ 6e(f2), 1 <~ j <<. Js, 
otherwise fl~[~*, fl > k + m - 1 - Re/t Vl~eAs.j(k). (1.7b) 

Then u belongs to the weighted Sobolev space Hk+m'~'#(t2) of functions v fulfilling 

[i v ll2+m.~.#,~:= i iv l l  2 2 m,Q "{- IVlk+m.=.a,t~ < + ~ ,  (1.8) 

where 

IV 2 JIo, . 
[ 7 1 = k + m  

Furthermore, if m 1, then the conormal derivative ~k := 3 = Y,p,q=lVpapq~U/r of u is in the space 
H k- 1/2,~,#(F) of traces defined by 

H k- l /2 '~'#(F):= {tp e H -  t/2(F): I tp [k - 1/2,~t,fl,F < "Ji- (30 V face F of F}, (1.9) 

where, with the convention 0 = 1 if fl = O, 

2 {fFr2 -,02#-, [~Plk-1/E,~,a,F: = ~, IDr(pl2 dx 
l'd=k - I 

f fF  Ir~(x)O#(x)D'(p(x)- r~(y)O#(y)D'~p(y)I2 } 
+ dxdy  (1.10) 

×F I x - y l  3 " 

Observe that the spectral condition (1.4) which is difficult to survey is not stated a priori in 
Theorem 1.2. This theorem is indeed the key to the desired numerical treatment of problem (1.2). In 
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fact, we use the related regularity to refine the mesh size in such a way that the optimal convergence 
in the H m and lower norms is restored for the FEM (Section 3). Likewise, we develop (Section 4) 
a refined BEM with optimal rates of convergence for second-order operators. Nevertheless, the 
reduction of the boundary value problem (1.3) to a boundary integral equation is always possible, 
see for instance [9]. We have avoided this case here since the practical solution of such problems 
for m >I 2 remains difficult. However, we start with the classical FEM (Section 2) to underline its 
poor convergence and also to collect the standard notation we need. 

2. The classical FEM 

In this section, we indicate how slow the convergence is of the classical FEM. This requires some 
notation which we give now, following those in [6] as well as their extensions in [4]. Thus, 
according to the latter authors, we fix a real parameter t e [0, k] which influences both the accuracy 
and the rate of convergence of the FEM. The domain f2 being nonsmooth,  the optimal value t = k 
is not reached. Nevertheless, due to the noninteger version of Theorem 1.1 (see [ 10, Theorem 7.13] ), 
one obtains the regularity 

u e Hm+t(f2) if t < ao, (2.1) 

where 

ao:= min{ 1 +  Re2 > m -  1 & Re#  > m -  1:2 & # poles o f ~ s l ( 2 )  & 5e -1 s.~ (•), S e ~(t2), 

1 <~j<~Js} -m+l .  (2.2) 

The inclusions (2.1) and (2.10) below are extensions to three-dimensional vertex and/or edge 
singularities of the lower and maximal regularity results in [4, Remark 9.12] relative to angular 
points. 

Let us also fix a family (rh)h> 0 of triangulations of f] which consist of straight elements K and 
which satisfy the usual properties [6, p. 38]. The family is supposed to be regular; i.e. the ratios 
hr/px between the exterior diameters hr and the interior diameters Pr of elements K e Uh> OZh are 
uniformly bounded from above, the maximal mesh h := maxr~rh hK tending to zero. 

With each K e [.]hT.h, we associate a finite element (K, Pr ,  S,K) with the four properties below: 
(i) Pr is a vector space of finite dimension M; 

(ii) Pk +m- l (K) c Pr  ~ Hk +m(K); here for I e ~,  P~(K) denotes the finite-dimensional space of 
polynomials of degree at most I on K; 

(iii) SK is a finite set of M linearly independent continuous linear forms on Hm+'(K); 
(iv) the local interpolation operator rex acting on H m ÷t(K) and the global interpolation operator 

7rh defined on Hm+'(t2) fulfil the compatibility conditions: 

(7~hV)/K = 7ZK(V/K ) VVe  Hm+t(O), (2.3) 

7[hV e hm(~'~) VVe hm(~2) n H"+t(f2). (2.4) 

An additional requirement, guaranteeing the approximation property of the space PK, is 
as follows. With each finite element (K, PK, ZK), K e Uzh is associated on one hand with an 
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A A 

affine-equivalent finite element (K, P, 27). The former concept means that there exists an in- 
vertible affine mapping F K : R  3 ~ R 3 " ~ , * X : =  F~:(~) = Bx2 + bx such that K = FK(/() and 
nxV = "~(v o Fx) ° F~ 1, for any v ~ Hm+'(K) (given an object 0, the symbol 0 indicates its correspon- 
dence under the above-mentioned affine mapping). On the other hand, the elements (K, P, Z) rela- 
tive to all K ~ t, Jh>0Vh are chosen such that 

sup{hg 'K~OTh } < +o% sup{p~X:K~UT,}< +oo  (2.5a) 

and there exists the same constant c > 0 satisfying, for tl e [t, k], 

lit 3 -  ~t3l[,,+,,,~ ~< c[~l,,+t,.~ VO~H"+"(K). (2.5b) 

A similar estimate for weighted Sobolev spaces will be stated in (3.1b) below. 

Remark 2.1. When m > 1, the continuity requirement (2.4) between adjacent elements is so 
"critical" that a nonconforming FEM may be recommended to relax it (cf. [6, Ch. 6]). Analogously, 
conditions (2.5a) and (2.5b) which are the key to a satisfactory interpolation theory in Sobolev 
spaces are stated a priori to simplify the exposition. In fact, these properties are classically met for 
a family whose all elements are affine-equivalent to a single reference finite element [6]. But, except 
when m = 1, such families are practically rare. Therefore, one has to consider more complex 
situations as, for example, composite elements [6], almost-affine [6] or compact-affine [4] families 
of finite elements. 

We define the trial and test space Vh by 

Vh: = {Vh ~/4re(f2): Vh/K ~ Px VK~ zh}. (2.6) 

The Lax-Milgram lemma extends to the space Vh and guarantees the existence of a unique solution 
of the discrete problem: find uh ~ Vh such that 

ff apqDPuh'D~vhdx = f f6hdx Vvh~ Vh. 
[pl=m 
Iql = m 

(2.7) 

Likewise, given an integer v ~< m and a function 9 in H"-~(12)', the dual of H m- v(~2) for the 
extension of the duality of L2(f2), there exists a unique solution q~g E Vh of 

f apqD p vh.Dqqg~ dx = (g, vh) Vvh ~ Vh. 
Ipl=m 
I~t[ = m 

(2.8) 

Problem (2.8) is the discrete counterpart of the well-posed variational adjoint problem: find 
O 

q~g ~ H"(f2), solution of 

I apqDPv.D~qJgdx = (g, v) Vv~flm(f2). 
Ipl = m 
]ql=m 

(2.9) 
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Since linear functionals on H " -  v(t2) can be applied to elements of/7/m- ~(t2) (written by abuse of 
notat ion Hm-~(t2) ' c H~-m(f2)), Problem (2.9) has, as in (2.1), the lower regularity 

¢pg e H"+'(I2)  for tr < Zo and tr ~< v, (2.10) 

where 
__ __ ~ - 1  Zo:= m a x { ½ + R e 2 < m - 1  & R e # < m  l : 2 & / x p o l e s o f Z ~ V s l ( 2 ) &  s,2(#), 

S~6P(f2), 1 <~J <<, Js}  + m -  1 (2.11) 

is the analogue of tro in (2.2). 
We can now specify the convergence of the classical F E M  (2.7). 

Theorem 2.2 I f  t < fro, there holds the asymptotic error estimate 

II u - uh II m.~ <~ ch'lUlm+,.~, (2.12) 

where c represents here and elsewhere various constants independent of  h. Moreover, i f  v is an integer 
and tr is a real number such that 0 < v <<. m, tr <~ v and a < ~o, then the error in the lower-order 
Sobolev space Hm-v(t2) is 

Ilu - uhllr,-v.~ <~ ch'+' lul ,+, .~.  (2.13) 

Proof (sketch). The proof of Theorem 2.2 works as that of Theorem 10.2 in [4]. In fact, because of 
(2.5), the classical interpolation theory in Sobolev spaces is valid. Therefore, as in this reference, 
(2.12) is based on the regularity (2.1) and on the C6a lemma, while (2.13) follows from (2.10) and the 
Aubin-Nitsche lemma. []  

3. An improved FEM 

As mentioned previously both convergence results in Theorem 2.2 are slow in the sense that the 
classical optimal rates known for smooth solutions and corresponding to the specific value t = k 
are not valid. It is our task here to restore these optimal results. To this end, we shall refine the 
meshsize hr.  Let us first state the analogue of Theorem 3.1.1 in [6-1 about interpolation theory in 
Sobolev spaces. 

Theorem 3.1. For o~ < k - ½ and fl < k - ½, the weighted Sobolev space Hk+rn'~'#(Q) introduced in 
Theorem 1.2 is compactly embedded in Hm(f2). Moreover, there exists a constant c > 0 such that, for 
v ~ H k + m,~.l~ (t2), 

inf II v - z I1~ +m.~.a.,~ ~< c IVlk +r,.~,a,,~. (3.1a) 
z e  Pk+m- l(f2) 

(The norm and semi-norm occurring in (3.1a) are defined in (1.8)-(1.9).) 

Proof (sketch). The compact  embedding announced in Theorem 3.1 being proved in Part  1 of this 
paper (Theorem 6.2), the inequality (3.1 a) follows, as in [6, Theorem 3.1.1] and [13, Lemma 8.4.1.3-1, 
from a classical argument  of contradiction. []  
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As,.i 

Fig. 1. Faces of the zones of influence. 

Remark 3.2. Under  the hypotheses of Theorem 3.1, it is worth pointing out that the constant c > 0 
in (3.1a) depends upon the set f2. Therefore, in the inequality 

(3.1b) 

which is the consequence of (3.1a), we actually need, and assume a priori, following (2.5b) and the 
comments in Remark 2.1, that the constant c in (3.1b) is the same for all finite elements (K, P, S). 
Notice that the interpolates, r~a and also nhU and rcru, K e Uh>oZh are meaningful because of the 
relations (2.1), (2.3) and (2.4). Notice also that the weighted functions of the respective spaces 
Hm+k'~'P(K) and Hm+k'~3(/~) are connected in a specific way described in the four cases below. 

Another  reason of concern is the choice of ~ and ft. In fact, owing to Theorems 1.2 and 3.1, we fix 
henceforth ~ and fl as follows: 

{~ = 0 if As(k) = 0 '¢Se 6e(O), 
otherwise ct6M*, k - ½  > a > k + m - 3 -  Re). V).eAs(k); (3.2a) 

otherwise fie N*, 

if As,j(k) = 0 VS e  S~(O), 1 <~ j <<. Js, 
(3.2b) 

k - ½ > f l > k + m - l - R e #  k/#eAs,j(k). 

The left-hand sides of the inequalities in (3.2) permit the applicability of (3.1) to u or ~; they are not 
restrictive due to Theorem 1 in [14] which states that Re). > m - 1 and Re#  > m - ½. 

Let us go back to the main purpose of this section. It is well known [6] that  an asymptotic rate of 
2 convergence for the global error [[ u - uh []m,O results from a bound for each local error [u _ nKU[m, K2 

associated with K e za. On the other hand, the refinement of the mesh hr is necessary only near the 
singularities of the domain.  Therefore, we divide t2 into three zones under the influence of vertex- 
edge, vertex and edge singularities, respectively. More precisely, for any vertex S e Se(O) and any 
edge A of I2, we set (see Fig. 1): 

f2~ := supp Zs c~ supp Zs,j, 1 <<. j <<. Js, 

t2s:= B(S, e)\ U j=l J~ t2j s, 

f2A := {X e O; 5A(x) < e}\Us~Io~B(S, e); 
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> 0 is small enough and 6a is the distance to the edge A. We assume also that the triangulations Zh 
are chosen in such a way that any element K contained in one of the zones t2s, f2a and f2~, 
1 <<. j <~ Js is arranged according to one of the four possibilities hereafter. 

Case 1: K is far away from vertices and edges. Since u ~ Hk+m'°'°(K) = Hk÷m(K), there holds 
using (2.5a) and (2.5b), the classical estimate I-6, p. 133-1: 

2 lU -- ~KUIm,K <~ Ck2K k ~. ID~ul2 dx.  (3.3) 
I;,l=k +m 

We want to write the right-hand side of (3.3) in terms of the semi-norm of the space H k ÷m'~'P(K). 
To this end, by construction (cf. (1.6)), we have, for any vertex S, the relations 

0 = 1 in f2s, 

0 _~ Os,j, Os,j _~ sin Os,~, sin OS,j __-- (~As,i in f2~, (3.4) 
rs 

and, for any edge A, 

0 _~ 6A, rs > e, inf2a.  (3.5) 

Therefore, (3.4) and (3.5) transform (3.3) into 

(infK r2~) - 1 if K c t2s, 

[u __ 7~xbllm, x 2  ~ ch2klul2+m,~.a,r × (infrr2~-2ac52~) -1 if K c f2 Js, (3.6) 

(infr62~)-1 if K ~ t2a. 

Thus, for this first case, the mesh refinement condition (H k'~'p) is 

(infKr~) 1/k if K ~ f2s, 

( n  k'~'a) hr <<. ch x ( in f r rJ -ab~J  1/k if K ~ t2~, 

(infrb~a) 1/k if K ~ f2a. 

Case 2: K, contained in f2Js, or t2a, is far away from vertices but meets the edge As,j or A. Details 
are provided only for K ~ f2J; the other case is, owing to (3.5), analysed analogously and yields 
besides the same condition (H k'~'a) below. 

The solution has now the regularity u ~ Hk÷m'°'a(K). Because of the equivalences in (3.4), the 
transformation t~ of u under the affine mapping FK (see Section 2 for the notation) is such that 

^ ^ 

6 Hk+ra'O'lJ(f~) where the weighted function to be considered is the distance 6a~.,(x):= d(~, "4S,j)" 
As in I6, Theorems 3.1.2 and 3.1.3], 

lu - rCKUl2,K <~ CpK2mldet BKI X I~ -- ~12.t~. 

From I fi -- 72fi12,jt ~< IL fi -- r2fi 112+k,~,O,~ and (3.1b), we infer 

- rCKUl2,K <<. cpr2" lde tBr l  × ~ I I ̂ a6As,j Det]l 2 d2. lu 
h, l=k+m JK 
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By the change of variable x = FK()~), the relation 6as.j(') ~< cp~ 1 6As,j(. ) due to [6, Theorem 3.1.3] 
and SUpK hk < + go (cf. (2.5a)) and by the assumption SUpK p~l < + gO (cf. (2.5a)), the previous 
inequality becomes 

lu -- rcrul2,r <<, cpi2"-2ah~ tk+') Z f [ rk-'r~s O~s,j D~ u l Z dx. 
M=k+m .) K 

Finally, we arrive at the formula 

2 f rs2~-2t~ 2 - -  u Ik + , . ,~ ,p ,K,  (3 .7 )  lu rcrUlm,r ~ ch 2k-20 in I 

because of the regularity of the family of triangulations. Consequently, the mesh has to be adapted 
in the edge direction by the condition. 

k 

( n  k'''p) hr ~ ch ~-~ inf rts "-o)/tk-¢). 
K 

Case 3: K ~ f2~s meets a vertex S and the associated edge As,j. In this case u ~ Hk+m'"P(K); 
f ie  Hk+"'"P(K) where f(~):= d(S, 2) and 0(2) is the angle between the lines $2 and As,j. Once 
again, the inequality (3.1b) and arguments similar to those in the above considered second case 
yield the estimate 

2 ch2k-2~ lu nKUI~,K <~ lU ~ - Ik+m,,,tJ,r. (3.8) 

The restriction on the mesh in the edge-vertex direction is 

(H k'''a) hr <<, ch k/tk-~). 

Case 4: K ~ f2s meets the vertex S but not the edges. Now u ~ Hk+r"'"° (K) and ~ e Hk+"'"° (K,), 
the weight f being defined in the previous case. Because of the fact that 0 = 1 in f2s, the adaptation 
of our arguments which are now familiar yields the same local error bound (3.8) as well as the same 
condition (H k'''t~) in the vertex direction. 

In the subdomain of f] located far away from all the sets t2s, f2a and f2~, we keep of course 
classical triangulations with uniform meshsize in h. Combining the inequalities (3.6)-(3.8) and the 
observation in case 4, we have established the following optimal convergence result. 

T h e o r e m  3.3. I f  the regular family of triangulations (Zh) is refined according to the conditions (Hk'~'a), 
(H k'~'t~) and ~tHk'~'a~3 ~, then there holds the asymptotic error estimate 

I lu - uh I1,,.~ ~< chklulk+m.~.P.O 
between the solution u of(1.2) and its approximation uh in (2.7). 

Regarding the convergence in lower norms II • I l m - , ,  the optimal rates are restored under more 
restrictive conditions as we specify now. 

Theorem 3.4. Fix an integer v, 0 < v <~ m and real numbers ~' and fl' satisfying relations (3.2a), (3.2b) 
but with v, ~' and fl' in lieu of k, ct and fl, respectively. In addition to the requirements (HR'~'P), (H k'~'~) 
and (Hk'~'P), we assume that the triangulations (Zh) are subject to (H~'~"~'), (H~ '~''g') and (H~'~"P'). 
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Then 

Il u - Uh IIm-~,~ ~< chk +~lulk +~.~.a,o. 

Proof. For g e Hm-~(f2) ' c H~-m(f2), the choice of v, ~' and fl' guarantees, owing to Theorem 1.2, 
that the solution q~g of the adjoint problem (2.9) belongs to the weighted Sobolev space 
H ~ ÷"~"P'(Y2) for which the analogue of Theorem 3.1 holds. Therefore, for the Galerkin approxima- 
tion tp~ e Vh of tp g (cf. 2.8)), Theorem 3.3 yields the error bound 

II q~0 _ q~ 11 m,~ ~< chVl~o°l~+m,=,,a'.~. (3.9) 

As the adjoint problem (2.9) is regular, i.e., the operator 9 e H ' - ' ( f2 ) '  ~ q~°e H~+m'"'¢'(12) is 
continuous, the Aubin-Nitsche lemma combined with (3.9) and the estimate in Theorem 3.3 imply 
the desired result. [] 

Remark 3.5. Simplifications are possible in Theorem 3.4. For example, both series of refinement 
conditions coincide when m = k = v = 1. Furthermore, for smooth conical corners, our conditions 
degenerate to (H k'~'°) or (H~ '~''°) and (H k'~'°) or (H~ '~''°) which, in the case of second-order 
two-dimensional problems, are exactly those obtained in [20]. 

Remark 3.6. Along the lines of Section 3 of this paper, there remains the important question of 
generating effectively refined triangulations of the polyhedral volume I2. It seems to the authors 
that this problem is so difficult that the existing schemes are, as reported by several mathematic- 
ians, obtained from computer programs or concern restrictive class of geometries [1]. However, as 
we explain in the next section, the situation is much easier if one is concerned with refined 
triangulations of the boundary r which is a surface. 

4. A refined BEM 

In this section, we consider second-order operators of the form 

3 
L = -  ~ alj~ 2. (4.1) 

i,j= 1 

Such an assumption already allows to bring Section 3 closer to realistic situations as, for example, 
tetrahedral polynomial finite elements of class C °. Nevertheless, here we shall use an alternative 
technique which simplifies the approximation analysis. Namely, we study a boundary element 
method which, reducing the initial three-dimensional problem (1.2) and (4.1) on I2 to a two- 
dimensional one (cf. (4.5) below) on F, provides effective refined triangulations of r consisting of 
triangles. As explained in the Introduction, practical boundary element methods for operators of 
order 2m, with m >~ 2 are still difficult, that is the reason why we do not consider this case. 

The BEM works here because of the specific properties of the operator L. In fact, on one hand it 
is well known that this operator has a fundamental solution E that is a two-sided inverse of L on 
the space of compactly supported distributions on R3; moreover, E has a weakly singular kernel, 
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still denoted by E, such that the function (x, y)~.,E(x, y) is C ~ outside the diagonal of R a x R a. On 
the other hand, the second Green formula yields the next lemma. 

Lemma 4.1. 
f ~ H k-  1(~"~) obeys, with obvious notation, the integral representation formula 

u(x) = °lly(x) + ~¢r¢(x) 

= f E ( x , z ) f ( z ) d z - f r E ( x , y ) ~ ( y ) d s ( y ) ,  x~£2, 

where 
s 

= ~ U/r:= ~ vialjOsU/r, 
i , j=  1 

with d/~ L2(F) (cf Theorem 1.2 and [18, Theorem 2.5]) is the conormal derivative of u. 

The solution u e/]ri(t2) of (1.2) and (4.1) corresponding to the right-hand side of 

(4.2) 

(4.3) 

Formula (4.2) is the starting point of the so-called direct method of potentials. The functions 
qlf(x) and ~/r~,(x) are, indeed, the Newtonian and single-layer potentials, respectively. We denote 
by q / a n d  ~ the corresponding operators on suitable Sobolev spaces, ~/'o being the boundary 
integral operator defined by the distributional trace of x-~,,~q~(x). 

Lemma 4.2 (Costabel [7]). (a) The linear operators ql:H k- l (f2) --, H k + x (f2), ~ : H -  1/2 (F) ~ H 1 (t2) 
and ~ o : H -  t/E(F) - - '  HUE(/') are continuous. 

(b) The operator 3e" o is strongly elliptic, i.e., there exist a compact operator T: 
H -  1/2(F) ~ H1/2(F) and a constant 2 > 0 such that a Garding inequality holds: 

((~¢r o + T)  v, V)n,/2(r)× n-,,2(r) >. )~ II v It 2_ 1/2.F VV~ H -  1/2 (F). (4.4) 

With part (a) of Lemma 4.2, the representation relative to the direct method (4.2) extends to 
points x on the boundary F; this permits to consider the unknown ~ ~ H -  1/Z(F) in this method as 
a solution to the Fredholm boundary integral equation of the first kind: 

~g'oO = 9 or (~e'off, z) = (9, z) Vze H -  x/2(F), (4.5) 

with 9 := - qlfr ~ H k+ 1/2(F). 

For the constructive treatment of (4.5), we now fix, by analogy with the notation of Section 3, 
a regular family (zh) of triangulations of F obtained separately for each face and made of triangles 
which satisfy the usual compatibility conditions in [6]. We consider triangular polynomial finite 
elements (K, Pk - 1 (K), Xr), K ~ zh, the set XK of degree of freedom being chosen, as in [5], such that 

fr(~b - rCK~k)= (4.6) dx 0. 

The trial and test space is 

Vh : = {Vh: F -~ ff~; Vh/K ~ P k -  l (K)  V K ~  Zh} C H -  x/2(F). (4.7)  

Notice that the family of finite elements (/(,/3, ,~) reduces now to a single reference element; thus the 
analogues of (2.5) and (3.1b) are automatically valid (cf. Remark 2.1). 
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Theorem 4.3. (a) Eq. (4.5) has exactly one solution ~b E H -  ~I2~E ). This equation is equivalent to the 
domain-variational problem (1.2) and (4.1), i.e., the solution u ~ H 1 (I2) is related to ~9 by (4.2) and (4.3). 

(b) For h small enough, there exists a unique solution of the classical Galerkin BEM: find ~h ~ Vh 
such that 

('NO,Oh, Vh) = (g, Vh) VVh ~ Vh. (4.8) 
(C) The convergence of ~h to ~ is poor, namely, 

II 0 - 7sh II - ~12,~ <- c h l / 2 .  (4.9) 

Proof. (a) The uniqueness of the solution of the variational problem (1.2) and (4.1) implies that the 
operator "/So is injective (see [7, 21-[ for similar arguments). Thus injectivity means bijectivity since 
by (4.4), Uo is a Fredholm operator of index zero. Now, if tp e H-  1/2 (F) solves (4.5), then by Lemma 

° 1 4.2(a), the function v := o-#f+ "Utp belongs to H (f2) and is the unique solution of(1.2) and (4.1). Writing 
formula (4.2) for v and identifying, we get Uoq~ = Vo(t3v/t3~). This yields the claim ~0 = ~3v/c3G/r. 

(b) This part is a direct application of the results of [13] in their form extensively exploited by 
several authors as, for example [8, Lemma 5.2] and [-7, 19, 21]. 

(c) The estimate (4.9) is a rephrasing of Theorem 5 in [7]. [] 

The convergence of the classical BEM (4.8) being slow (cf. (4.9)), we shall, as in Section 3, refine 
the meshsize of the triangulations in such a way that the convergence of the resulting BEM is 
optimally improved. 

The importance of the assumption (4.6) is to deduce, as in [5] for two-dimensional problems, the 
relations 

NiP - I P h I I 2 - , / 2 . ,  • ~< c Z I g '  - ~KliSl2-112.K, 
KE'~h 

and, for any K ~ Zh, 

Cl NiP - ~,(I/' I I- ~/2,i( ~ Iq' - rCKgsI-,/2,K ~ C2 Ill/' -- rc,(q, I I- , /2,,( ,  
where 

Ig' - ~Kg, I - , /2 ,K :=  sup'~ 1 ~ j ' , (v(~ ~ ~ K 0 ) d x  } [ Ivlll2,r ;veHli2(K) ' lVl l l2"r@O_" 

Thus the computation of the error II qJ - ~h II- l/2.r is equivalent to that of the local errors 
I~ - rcKqJl- llZ.K. Moreover, the weighted Sobolev spaces H k- l/2""t~(F) being compactly embedded 
in H-X/E(F) (cf. [-18, Theorem 2.5]), there holds, under appropriate technical modifications (see 
Remark 4.6 below), the following analogue of Theorem 3.3. 

Theorem 4.4. Assume that ~ = ft. For all faces F ofF,  assume also the regular family ('[h) to be such 
that any triangle K contained in Fs:= ff2sc~F, in FA:= ~AC~F or in F~:= ~sc~F fulfils the 

k,~,~ conditions (H k'~'~) and (H k'~'~) or (H 3 ) simplified as follows: 

(infKr~) 1/k if K c Fs, 

(H k;~'~) hr <~ ch x (infr 6~,)  Ilk if K c F~, 

(infK6]) l/k if K ~ FA, 
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where it is understood that the intersection between K and vertices and edges is empty; other- 
wise 

(H2,k,~,~)= (Hk,~,~),3, hr ~ ch k/(k-a) 

Then, we have the optimal rate of convergence: 

H~ -- ~hll-1/2"r <<" chk(  ~r~r '~kI2-~/2"~'~'F) ~/2" 

Remark  4.5. Rather  than Eq. (4.5), one can, using as in [11] the indirect me thod  of potentials, 
obtain a F redho lm integral equat ion  of the second kind, the operator  of which is the double-layer 
potential.  This opera tor  acts on the Sobolev space H1/2(F) (cf. [7]) and even on the space C(F) of 
cont inuous  functions, according to the three-dimensional  version of [16]. Here again, the restora- 
t ion of the opt imal  order  of convergence is subject to a refined BEM of the above type since the 
constructive two-dimensional  approaches  in [5, 8, 16] based on explicit form of singularities are 
not  easily extendable to I~ 3. 

Remark  4.6. The aforesaid technical modificat ions in the derivation of Theorem 4.4 are related to 
bounds  of [~k - r~x~[ 2_ 1/2,x. 

As a consequence of L e m m a  4.2(a) and Theorem 4.4, we have the following corollary. 

Corollary 4.7. Under the conditions of  Theorem 4.4, the approximation Uh of u obtained by replacing 
in (4.2) ~k by ~kh has the convergence property II u - u h  II ~ ,~  = O(hk). 

In the rest of this section, we illustrate Theorem 4.4. To this end, we fix a face F as well as one of 
its vertices S and edges As,~. For  convenience, we may  (after translation, rota t ion and homothety)  
consider Fs u Fas.j u FJs in the plane xoy as a subset of the unit  triangle with vertices (0, 0), (1, 0) and 
(1, 1). Then the vertex S becomes the origin (0, 0), the piece of As,j to be refined being the segment 
PoP ° on the x-axis (see Fig. 2). 

Let n />  1 be an integer and # > 0 the grading parameter  to be chosen later on. In the edge 
direction, we proceed as in [12,20]; namely, we consider the points po = (1,(i/n),) and 
P, = ((i/n) ~', (i/n)~'), i = O, 1,. . . ,  n. 

In the vertex-direction, we argue by induct ion on i as follows (i = 1 and 2 in Fig. 2). Set 
to := (1/n)~'; 
tl := (i/n) ~ - ((i - 1)/n) ~', i = 1, 2 . . . .  , n - 1; 
pk := pO _ (kti, 0), i = O, 1,. . . ,  n - 1, k = 0, . . . ,  Ni with d(P~, PIN') < t~. 

k~ For  i ~> 1, let pk,_ 1, l = 1 . . . . .  Ni, be the closest point  to pO_ 1 such that  d(P °_ 1, Pi-  1) ~> lt~.: We 
adopt  the convent ion  k0 = 0 and kl +N, = N~- 1- With each l = 0, 1 , . . . ,  N~, we associate a series of 
triangles obtained by drawing the segments with end points  pO and -~_1 ,~ = P k ' ÷ J  ~ 0, 1, . . . ,  kt ÷ 1 - kt, as 
well as the segment defined by PiN' and P~_ 1. 
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P 

P~ 

po P~° f~o Pg Pg P~ P~ Po' fg fg P~ p ° 
L 

1( 

Fig. 2. Ref ined  mesh:  n = 5, No = 10, N1 = 9, N2 = 5, P ~  = p2 ,  pk2 = p3 .  

It is easy to show that the above constructed family (in n) of triangulations is regular and satisfies 
in fact the equivalences 

1 ( i  - 1)  ~ ' -  1 
h "~= - , t i "~ for i >~ 2, h r  ~- t i (4.10) 

n /'//~ 

for any triangle K between the lines y = (i /n) ~ and y = ((i - 1)/n) ~', i = 1, . . . ,  n. Furthermore,  for 
i > / I  and x in such a triangle the distances r ( x )  to the vertex (0, 0) and 6(x) to the edge are such that 

r ( x )  >1 6 ( x )  >i (4.11) 

(He,) ( H  1, ) and if F rom (4.10) and (4.11), we infer that this triangulation fulfils the conditions k,~,~ k,~,~ 
# is chosen such that 

k (4.12) 
#>~ k- -~-  ~" 

Finally, the number  of triangles in the zone of the face subject to the refinement condition is of 
order n"; this may be seen easily on counting the triangles relative to each generation 
i (i = 1, 2, . . . ,  n). Furthermore,  the measure of the segment P o P  ° representing the edge being 1, it 
follows that, for any refined triangulation, the number  of triangles meeting the edge is at least 
CYl k/(k-°O since for such triangles h r  <<. ch k/(k-~). Therefore, the total number  of elements in our 
construction is of optimal order n" for the choice/~ = k / ( k  - ct). 
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Remark 4.8. The optimal rates restored in Theorem 4.4 are obtainable neither by the approach in 
[19] where data of class L2(t2) are omitted nor by that in [11] based on trace spaces with integer 
exponents. 
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