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Differential gene expression in the recovery from ischemic
renal injury
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Differential gene expression in the recovery from ischemic renal injury.
Recovery from renal ischemia requires regeneration of damaged tubular
epithelium. Previous studies have examined the expression of proto-
oncogenes and growth factors after ischemia, but the response of genes
coding for structural and functional genes has not been scrutinized.
Rats were subjected to 40 minutes of renal artery occlusion and 60
minutes to 96 hours of reperfusion. Total RNA was isolated and mRNA
for the structural protein actin, the enzymes superoxide dismutase and
renin, the proto-oncogene c-fos, the nuclear protein histone H2b, and
the putative marker for cell injury TRPM-2 was quantitated by North-
ern hybridization. Expression of the proto-oncogene c-fos was seen
early but for only short duration. Histone gene expression was not
markedly increased until 24 hours after isehemia, but remained in-
creased for several days. Renin mRNA was undetectable one hour after
ischemia, but was present in normal amounts at 24 and 48 hours. In
contrast, superoxide dismutase mRNA was present in decreased
amounts 24, 48, and 96 hours after ischemia. TRPM-2 gene expression
was greatly increased 24 to 72 hours after ischemia and began decreas-
ing at 96 hours, This selective sequence of gene expression or repres-
sion after renal ischemia might maximize the proliferative repair pro-
cess. This information will be useful for designing therapies to further
enhance recovery from acute renal injury.

The magnitude of renal dysfunction after a toxic or ischemic
insult depends on the extent of the initial damage as well the
pace of the repair process. Most investigations into the patho-
physiology of acute renal failure have focussed on the "injury"
phase. Thus, oxygen free radicals, ATP depletion, increased
intracellular Ca phospholipase activation, and mitochon-
drial dysfunction have all been implicated in contributing to
acute renal injury. Far less attention has been paid to the
"repair" phase of acute renal failure.

Nearly 20 years ago, Cuppage, Tate, and colleagues reported
a series of studies using mercuric chloride-induced renal injury
in the rat as a model for acute renal failure [1, 21. They observed
that even if approximately 90% of proximal tubule epithelial
cells were lost due to necrosis or sloughing, the remaining cells
would repopulate the denuded tubule along the tubular base-
ment membrane [21. In these studies, the cell doubling time was
approximately 14 hours so that cells lost from the proximal
nephron could be totally replaced within about five days. These
investigators further observed that increased DNA synthesis
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could be observed within 24 hours of the initial insult with a
peak in new DNA synthesis occurring at three days [1, 21.

More recently several groups have studied the importance of
specific growth factors and their ability to influence the repair
process. Epidermal growth factor (EGF) and transforming
growth factor-alpha (TGFa) have been found to favorably
influence the course of experimental acute renal failure by
increasing cellular proliferation [3, 4]. Whether EGF plays a
regulatory role in the repair response, however, is unclear.
After acute renal injury, although there is up-regulation of renal
EGF receptors, there is decreased renal pre-pro-EGF message
and decreased urinary EGF excretion [5—7].

Another approach to uncovering the secrets of the renal prolif-
erative response to acute injury has been to catalogue the changes
in gene expression following injury which precede and may,
therefore, control epithelial cell growth. Norman et a! observed a
marked increase in the expression of proto-oncogenes as well as
genes coding for structural and transport proteins for up to 48
hours after folic acid renal injury [8]. Ouellette et al noted a
prompt, transient, and marked increase in expression of two
"immediate early" genes, Egr-l and c-fos, alter isehemia in the
mouse kidney [9]. Safirstein et al also reported similar findings in
the rat after 50 minutes of renal ischemia [7].

The purpose of the present study was to examine the expres-
sion of a wider variety of genes involved in cellular proliferation
as well as mature renal epithelial cell functions for a longer time
period after renal ischemia in order to discern any sequential
nature of gene expression after acute renal injury. In addition to
studying genes controlling DNA synthesis and cellular prolifer-
ation, we were particularly interested in several specific genes.
Because angiotensin II has been suggested to be involved in
renal hypertrophy and hyperplasia, we evaluated renal renin
gene expression after ischemia [10—12]. Since renal ischemic
injury is mediated, in part, by oxygen free radicals we were
interested in determining whether genes coding for antioxidant
protective mechanisms, such as superoxide dismutase, would
be selectively induced by this oxidant injury [13, 14]. We were
also interested in studying TRPM-2 gene expression, a putative
marker for renal injury, for an extended observation period
[15—17].

Methods

Renal ischemia model
Male Sprague-Dawley rats weighing 225 to 275 g were a!-

lowed unlimited access to food and water until the time of
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Fig. 1. Northern blot analysis of c-fos mRNA in
paired control (C) and ischemic (I) kidneys.

study. Rats were anesthetized with sodium pentobarbital (60
mg/kg i.p.). Bilateral flank incisions were made and the right
kidney was removed. The left kidney perirenal fat was removed
and the left renal artery was exposed. A non-traumatic vascular
clamp was then placed across the renal artery for 40 minutes.
After removal of the clamp the animal was sutured and allowed
to recover, except when the kidney was removed after only 60
minutes of reperfusion in which case the animal remained on a
temperature-controlled heated table. For some studies of c-fos
gene regulation the renal artery was occluded for only 10
minutes or a sham occlusion of the renal artery was performed.
After the desired period of reperfusion (60 mm to 96 hr), the
animal was anesthetized and a midline abdominal incision was
made to provide rapid access to the kidney. The kidney was
excised, decapsulated, wrapped in aluminum foil, and plunged
in liquid nitrogen. Frozen kidneys were stored at —70°C until
needed. For these studies, the nonischemic right kidney re-
moved at the time of initial surgery and processed and frozen in
an identical manner served as a paired control. Because of
inter-animal variation in mRNA content for specific genes, we
studied two to five rats for each time period.

The model of renal ischemia was specifically chosen because
it is well-studied, less traumatic than a two-kidney occlusion
model, and provides the nonischemic, nephrectomized kidney
as a control specimen. A potential disadvantage of this model is
that a stimulus for renal hypertrophy might be superimposed
upon that for hyperplastic repair. Since all renal tissue was
made ischemic, the stimulus for independent hypertrophy was
probably minimized.

RNA isolation and Northern hybridization
Total renal RNA was extracted by the guanidinium isothio-

cyanate/cesium chloride procedure 1181. The RNA was dis-
solved in sterile water and RNA concentrations determined by
absorbance readings at 260 nm. Aliquots (20 sg) of total kidney
RNA were electrophoresed in a 1% agarose gel containing 20
mM MOPS, 1 msi EDTA, 5 mrvi sodium acetate pH 7.0, and 2.2
M formaldehyde and transferred to nylon membranes (Duralon
UVM, Stratgene, La Jolla, California, USA). In each gel
equivalent loading of RNA, absence of degradation, and the
positions of the 28 5 and 18 S ribosomal RNA were determined
by ethidium bromide staining. RNA was fixed to the nylon
membranes by UV light (Stratalinker°, Stratgene). The mem-
branes were prehybridized at 60°C for four hours in a buffer
containing 5X SSC, 5X Denhardt's reagent, 50 mrs Tris-hydro-
chloride, pH 7.5, 0.1% sodium pyrophosphate, 0.2% SDS, 200
sg/m1 sonicated, denatured salmon testes DNA, and 100 sg/m1

yeast tRNA. The membranes were then hybridized at 42°C with
random oligomer primer labelled cDNA probes (see below) for
16 to 18 hours in a buffer containing 50% formamide (deion-
ized), 5X SSC, lx Denhardt's reagent, 50 m Tris-hydrochlo-
ride, pH 7.5, 0.1% sodium pyrophosphate, 1% SDS, 100 jig/mI
salmon testes DNA, and 100 jig/ml yeast plus RNA. The
membranes were washed for 45 minutes in 2X SSC, 0.1% SDS
twice at room temperature and once at 60°C, and were then
washed in 0.2X SSC and 0.1% SDS at 60°C for 45 minutes.
Autoradiographs (Kodak XAR-5 film) were obtained and quan-
titated by computer-assisted videodensitometry [191. Exposure
times were varied to make sure densitometric readings were in
the linear range of the films. For each RNA sample at least two
gels were made and the resulting membranes probed to confirm
the initial findings.

Preparation of probes
The cDNA probes were labeled with 32P-dCTP (3000 Ci!

mmol; ICN Biomedicals, Irvin, California, USA) by random
oligomer priming [201. The following probes were used for the
hybridization studies: mouse c-fos [21], rat renin (pRen44.ceb)
[221, rat histone H2b [231, mouse a-actin (pAM91) [24], rat
TRPM-2 [25], and rat SOD [26].

Results

The c-fos gene was rapidly induced by renal ischemia, but
expression of c-fos was observed for only short duration.
Northern blots for c-fos mRNA are shown in Figure 1. C-fos
was expressed at very low levels in non-ischemic control
kidneys. After just 10 minutes of ischemia and 60 minutes of
reflow there was a marked increase in c-fos message (second
and fourth lane). By 24 hours after ischemia c-fos mRNA was
no longer detectable. Expression of the c-fos gene was far
greater after 40 minutes of ischemia (lanes 10 and 12). However,
24 hours later c-fos message was no longer detectable despite
such prominent expression only 23 hours earlier.

When kidneys were subjected to surgical manipulation and
isolation of the renal artery without occlusion, c-fos message
was increased fourfold (N = 2). This increased c-fos expression
was small in magnitude when compared to the 39-fold induction
after just 10 minutes of ischemia or the 289-fold induction after
40 minutes of ischemia. Thus, the induction of c-fos was not, for
the most part, secondary to nonspecific renal trauma.

Expression of the histone H2b gene which codes for a histone
protein required for new DNA synthesis lagged behind that
observed for c-fos. After 60 minutes of reperfusion there were
decreased levels of histone H2b message compared with non-
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Fig. 2. Northern blot analysis of histone H2b
mRNA in paired control (C) and ischemic (1)
kidneys.

Fig. 3. Northern blot analysis of a-actin mRNA in
paired control (C) and ischemic (I) kidneys.

Fig. 4. Northern blot analysis of renin mRNA in
paired control (C) and ischemic (I) kidneys.

Fig. 5. Northern blot analysis of SOD mRNA in
paired control (C) and ischemic (I) kidneys.

ischemic control kidneys (Fig. 2, first 4 lanes). However, by 24
hours of reperfusion there was a striking increase in histone
H2b gene expression in postischemic kidneys (Fig. 2, lanes 5 to
8). High levels of histone H2b mRNA persisted at 48 hours after
ischemia and remained elevated at 72 and 96 hours.

The level of mRNA for a-actin, a structural protein, did not
show the marked changes seen for the proto-oncogene c-fos or
the DNA synthesis-related histone H2b. Figure 3 shows that
there was a slight decrease in a-actin expression 60 minutes
after ischemia and a slight increase 24 hours after ischemia.
However, at 48, 72, and 96 hours there were generally compa-
rable levels of a-actin mRNA in control and postischeinic
kidneys (data not shown).

Genes coding for "functional" proteins showed yet a dif-
ferent pattern of expression. Renin mRNA was undetectable
one hour following ischemia, but was present in normal
amounts 24 and 48 hours after ischemia (Fig. 4). The decrease
in renin mRNA at 72 and 96 hours may be related to volume

expansion. In contrast, superoxide dismutase mRNA was
present in decreased amounts 24 and 48 hours after renal
ischemia, with complete or partial recovery by 72 hours fol-
lowed by a decrease at 96 hours (Fig. 5).

Expression of the TRPM-2 gene was greatly increased 24 to
72 hours after ischemia (Fig. 6). By 96 hours after ischemia,
although TRPM-2 mRNA was still found in increased levels, the
amount was diminished compared with earlier time points.

To help synthesize the data the results from all of the
experiments have been compiled in Table 1. This format
emphasizes the several patterns of gene expression observed
after renal ischemia.

Discussion

One of the most interesting findings in this study is the
sequential nature of gene expression following ischemic renal
injury. Expression of some genes occurred after the expression
of others. However, we did not determine whether the expres-
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Fig. 6. Northern blot analysis of TRPM-2 mRNA in
paired control (C) and ischemic (I) kidneys.

Table 1. Summary of results

Reperfusion:
60

minutes
24

hours
48

hours
72

hours
96

hours

c-fos 289.0 0 0 ND ND
Histone H2b 0.1 11.0 18.0 20.0 26.0
TRPM-2 0.6 6.0 11.0 13.1 7.7
a-actin 0.6 1.7 0.9 1.6 0.8
Superoxide dismutase 0.7 0.5 0.3 1.0 0.4
Renin 0.1 1.2 0.9 0.3 0.7

Results are expressed as the ratio of mRNA (O.D. units) of the
ischemic to paired control kidneys, and are the mean values of 2 to 3
animals at each time point. ND, not done.

sion of one gene was truly dependent upon that of the preceding
one. For ultimate recovery, the repair process requires cellular
proliferation followed by differentiation of the new cells into
mature, functioning cells. After ischemic injury most of this
activity involves proximal tubule epithelial cells in the S2 and
S3 segment [27]. Some of our findings were predictable,
whereas others were not.

In other cell types as well as in renal epithelial cells, mitosis
is preceded by new DNA synthesis. This new DNA synthesis is
induced by intracellular signals that allow a quiescent G0 phase
cell to re-enter the cell cycle. The proto-oncogene c-fos is one
of several "immediate early" genes that are induced early in
this process. Expression of c-fos does not require new protein
synthesis and may be involved in transcriptional modulation
[28]. Our findings are consistent with those of other investiga-
tors in demonstrating a prompt but transient expression of this
gene [7—10]. Some time after the induction of c-fos other genes
necessary for DNA synthesis, such as histone H2b, showed
increased expression. The pattern of histone H2b expression is
similar to that seen for 3H-thymidine incorporation (a more
integrated marker for new DNA synthesis) by postischemic
kidneys which is maximal 48 to 72 hours after ischemia [3]. In
pointing out this sequential nature of gene expression we
presume that the same cells that make c-fos and histone H2b
eventually proliferate.

Another aspect of the sequential nature of gene expression,
that of repression of other genes early in the recovery phase of
ischemic injury, was a more surprising finding. Sixty minutes
after ischemia expression of histone H2b was repressed despite
its being expressed in much increased magnitude just 23 hours
later. The level of renin mRNA was also markedly decreased
just 60 minutes after ischemia. On the other hand, superoxide
dismutase message was less dramatically decreased but the
diminished levels persisted for several days. Yoshioka and
coworkers similarly reported no change in SOD activity in the
glomerulus three days after a mild ischemic insult (30 mm

ischemia), although they found a substantial increase in activity
six days after ischemia [29]. The finding of initial repression of
the SOD gene suggests that when the kidney is subjected to
severe oxidant stress, as is ischemia-reperfusion injury, the
subsequent response favors cellular proliferation to replace lost
cells rather than enhancing mechanisms of protection against
other oxidant insult. Although this appears to be a wise choice
by the kidney, this is a different response from that seen in
oxidant injury in other organs in which anti-oxidant protective
mechanisms are subsequently enhanced. For example, when
rats were exposed to 95% oxygen, SOD mRNA in the lung
increased by approximately 50% [14].

The term "repression of genes" has been used loosely here.
Only the steady state level of mRNA for a particular gene was
measured. A decrease in this level could be due to differentially
increased degradation of a specific message as well as gene
inactivation. In addition, only changes in total kidney message
can be detected with the methods we employed. Thus, neither
inter- nor intra-nephron heterogeneity could be evaluated. In
situ hybridization studies could better address those issues.

A potential explanation for the decreased levels of histone
H2b, renin and SOD mRNA is the loss of a population of cells
that constitutively express these genes with relative preserva-
tion of cells that express these genes at lower levels or not at all.
We do not favor such an explanation since the time pattern for
renin and histone H2b expression was different from that for
SOD; this would require the existence of at least three major
cell populations with differential sensitively to ischemic injury,
two of which have equal ability to proliferate after injury.
Instead, we favor the hypothesis that cells surviving critical
injury can differentially regulate gene expression during regen-
eration to both induce expression of usually silent genes and to
repress expression of constitutively expressed genes.

Recent evidence has implicated angiotensin II (Ang II) in the
growth response of a number of cell types including renal
proximal tubular and mesangial cells [10—12, 30—32]. Conver-
sion of angiotensinogen to angiotensin I by renin is the rate
limiting step in the generation of Ang II. Although not providing
any definitive information about Ang II levels, the examination
of renin message provides an opportunity to examine local renal
renin synthesis. The lack of an increase in renin mRNA
suggests that the renal renin-angiotensin system is not critical
for epithelial cell regeneration following ischemia. Blockade of
Ang II formation by captopril actually enhanced renal recovery
following ischemia, a finding which could be related to altered
renal hemodynamics [33, 34]. The late suppression of renin
mRNA at 72 hours may have been related to volume expansion
secondary to renal failure.

Testosterone-repressed prostate message-2 (TRPM-2) is an
androgen-renressed mRNA cloned from regressing rat ventral
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prostate [25]. This mRNA encodes for a protein identical to rat
sulfated glycoprotein-2 (SGP-2 and also known as clusterin)
produced by rat sertoli cells [35—38], and is highly homologous
(82% amino acid homology in the coding region) to human
complement cytolysis inhibitor (CLI; SP-40,40), a protein
which inhibits the lysis of cells by the CSb-9 complex [39—41]. In
the rat kidney increased expression of TRPM-2 was found at 24
and 48 hours, but not at one week, following ureteral obstruc-
tion [15]. In preliminary reports, increased expression of this
gene followed ischemic and nephrotoxic injury [16, 17]. The
prolonged expression of TRPM-2 after an acute ischemic insult
raises the possibility that TRPM-2 is induced not only by tissue
injury, but may also be in some manner related to tissue repair
processes.

The selective and orderly sequence of gene expression or
repression after renal ischemia, a process which presumably
maximizes the proliferative repair response, might suggest
approaches to therapeutic maneuvers to enhance recovery.
Such interventions might be optimized by careful attention to
timing or by administering agents that act at different stages of
the repair process sequentially. For this to occur we must
continue to unravel the intricacies of renal epithelial cell prolif-
eration and identify those genes whose expression is critical to
the recovery process.
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